

CETECOM ICT Services consulting - testing - certification >>>

TEST REPORT

Deutsche
 Akkreditierungsstelle
 D-PL-12076-01-00

Test report no.: 1-9730/15-01-08

Testing laboratory

CETECOM ICT Services GmbH Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: <u>http://www.cetecom.com</u> e-mail: <u>ict@cetecom.com</u>

Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-00

Applicant

FLIR Systems ABAntennvägen 618715 Täby / SWEDENPhone:-/-Fax:-/-Contact:Göran Skedunge-mail:goran.skedung@flir.sePhone:+46 87 53 27 59

Manufacturer

FLIR Systems AB Antennvägen 6 18715 Täby / SWEDEN

Test standard/s

47 CFR Part 15

Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

RSS - 247 Issue 1 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item Kind of test item: Infrared camera Model name: **FLIR-T7250** FCC ID: ZLV-FLIRT7250 5306A-FLIRT7250 IC: Frequency: DTS band 2400 MHz to 2483.5 MHz Technology tested: Bluetooth®, +EDR Antenna: Integrated antenna Power supply: 3.7 V DC by Li - Ion battery Temperature range: -10°C to +55°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorised:

Marco Bertolino Lab Manager Radio Communications & EMC

Test performed:

p.o.

Mihail Dorongovskij Testing Manager Radio Communications & EMC

Test report no.: 1-9730/15-01-08

1 Table of contents

1	Table	able of contents					
2	Genera	al information	3				
		Notes and disclaimer Application details					
3	Test s	andard/s	3				
	3.1	Measurement guidance	3				
4	Test e	nvironment	4				
5	Test it	em	4				
	5.1	Additional information	4				
6	Test la	boratories sub-contracted	4				
7	Descri	ption of the test setup	5				
		Shielded semi anechoic chamber					
		Shielded fully anechoic chamber					
		Radiated measurements > 12.75 GHz					
		Conducted measurements BT system AC conducted					
•		rement uncertainty					
8		-					
9	Seque	nce of testing	12				
		Sequence of testing 9 kHz to 30 MHz					
		Sequence of testing 30 MHz to 1 GHz					
		Sequence of testing 1 GHz to 12.75 GHz					
40		Sequence of testing above 12.75 GHz					
10		mary of measurement results					
11		itional comments					
12	Меа	surement results					
	12.1	Antenna gain					
	12.2	Carrier frequency separation					
	12.3	Number of hopping channels					
	12.4	Time of occupancy (dwell time) Spectrum bandwidth of a FHSS system					
	12.5 12.6	Maximum output power					
	12.0	Detailed spurious emissions @ the band edge - conducted					
	12.8	Band edge compliance radiated					
	12.9	Spurious emissions conducted					
	12.10	Spurious emissions radiated below 30 MHz					
	12.11	Spurious emissions radiated 30 MHz to 1 GHz	59				
	12.12	Spurious emissions radiated above 1 GHz					
	12.13	Spurious emissions conducted below 30 MHz (AC conducted)					
13	Obs	ervations	81				
Anr	nex A	Document history	81				
Anr	nex B	Further information	81				
Anr	nex C	Accreditation Certificate	82				

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2015-07-08
Date of receipt of test item:	2015-07-14
Start of test:	2015-07-14
End of test:	2015-07-14
Person(s) present during the test:	Mr. Göran Skedung

3 Test standard/s

Test standard	Date	Test standard description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 1	May 2015	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices

3.1 Measurement guidance

Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

Test report no.: 1-9730/15-01-08

4 Test environment

Temperature:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No tests under extreme conditions required. No tests under extreme conditions required.
Relative humidity content:		53 %
Barometric pressure:		not relevant for this kind of testing
Power supply:	V _{nom} V _{max} V _{min}	3.7 V DC by Li - Ion batteryNo tests under extreme conditions required.No tests under extreme conditions required.

5 Test item

Kind of test item	:	Infrared camera					
Type identification	:	FLIR-T7250 (FLIR T1030SC)					
HMN	:	-/-					
PMN	:	FLIR-T7250					
HVIN	:	FLIR-T7250					
FVIN	:	-/-					
S/N serial number	:	Radiated units:72500037; 72400046Conducted unit:No information available!					
HW hardware status	:	T198767-01					
SW software status	:	RF test mode					
Frequency band	:	DTS band 2400 MHz to 2483.5 MHz (lowest channel 2402 MHz; highest channel 2480 MHz)					
Type of radio transmission Use of frequency spectrum		FHSS					
Type of modulation	:	GFSK, Pi/4DQPSK, 8DPSK					
Number of channels	:	79					
Antenna	:	Integrated antenna					
Power supply	:	3.7 V DC by Li - Ion battery					
Temperature range	:	-10°C to +55°C					

5.1 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

1-9730/15-01-01_AnnexA 1-9730/15-01-01_AnnexB 1-9730/15-01-01_AnnexD

6 Test laboratories sub-contracted

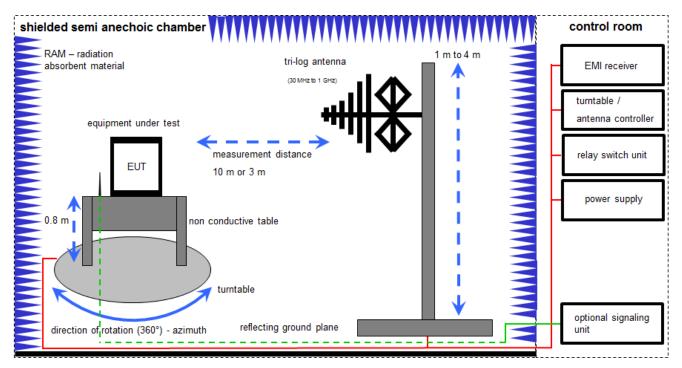
None

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signalling equipment as well as measuring receivers and analysers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

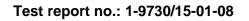
Agenda: Kind of Calibration


- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

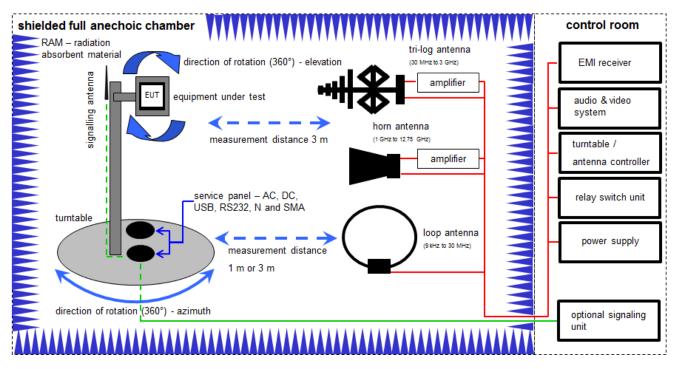
7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63.4. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. The wanted and unwanted emissions are received by spectrum analysers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.4 and ANSI C63.10.


 $SS = U_R + CL + AF$

(SS-signal strength; U_R-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

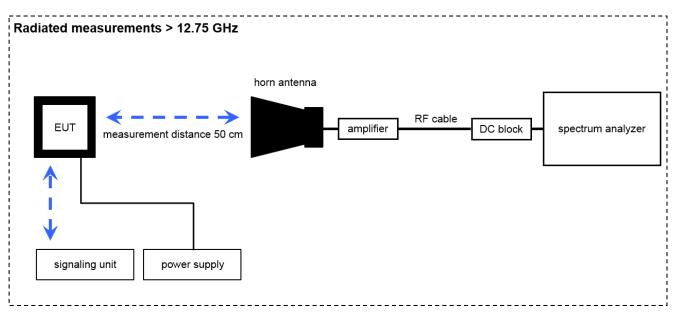
Example calculation:


SS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB\mu V/m] = 31.05 [dB\mu V/m] (35.69 <math>\mu$ V/m)

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev		
2	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	26.01.2015	26.01.2016
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	30.01.2014	30.01.2016
4	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	29.01.2015	29.01.2017
5	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	26.08.2014	26.08.2016
6	A	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	22.04.2014	22.04.2016
7	A	Bluetooth Tester	CBT35	R&S	100635	300003907	ne signalling only	-/-	-/-

7.2 Shielded fully anechoic chamber

 $SS = U_R + CA + AF$


(SS-signal strength; U_R-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

<u>Example calculation</u>: SS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB\mu V/m] = 37.1 [dB\mu V/m] (71.61 µV/m)$

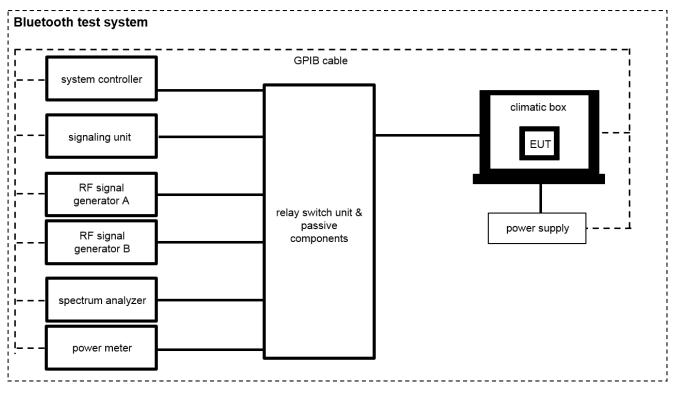
No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	A,C	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9709-5290	300000212	k	23.07.2013	23.07.2015
2	A,B	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	22.01.2015	22.01.2016
3	A,C	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	ne	22.04.2014	22.04.2017
4	Α	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne		
5	А	Band Reject Filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	26	300003792	ne		
6	A	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	318	300003696	k	22.04.2014	22.04.2017
7	A,C	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22050	300004482	ev		
8	Α	Broadband Amplifier	CBLU5135235	CERNEX	22011	300004492	ev		
9	A,C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne		
10	A,B,C	Messrechner und Monitor	Intel Core i3 3220/3,3 GHz, Prozessor	Agilent Technologies	2V2403033A54 21	300004591	ne		
11	A,B,C	NEXIO EMV- Software	BAT EMC	EMCO	2V2403033A54 21	300004682	ne		
12	В	Active Loop Antenna 10 kHz to 30 MHz	6502	Kontron Psychotech	8905-2342	300000256	k	24.06.2015	24.06.2017
13	A,B,C	Bluetooth Tester	CBT35	R&S	100635	300003907	ne signalling only	-/-	-/-

7.3 Radiated measurements > 12.75 GHz

 $SS = U_R + CA + AF$

(SS-signal strength; U_R-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

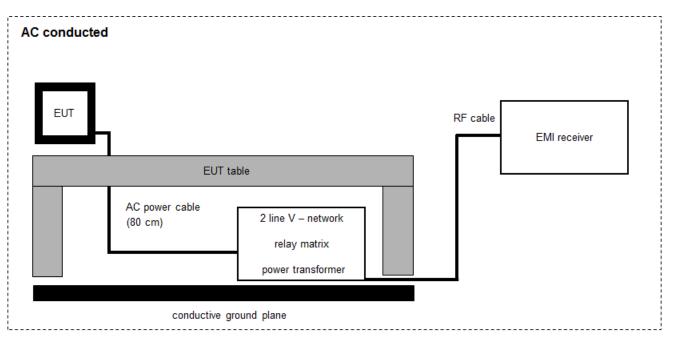

 $\overline{SS [dB\mu V/m]} = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB\mu V/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	А	Std. Gain Horn Antenna 12.4 to 18.0 GHz	639	Narda	8402	30000787	k	22.07.2013	22.07.2015
2	А	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda	8205	300002442	k	19.07.2013	19.07.2015
3	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	22.01.2015	22.01.2016
4	А	Amplifier 2-40 GHz	JS32-02004000-57- 5P	MITEQ	1777200	300004541	ev		
5	А	Bluetooth Tester	CBT35	R&S	100635	300003907	ne signalling only	-/-	-/-
6	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
7	А	RF-Cable	ST18/SMAm/SMm/4 8	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
8	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 127377	400001185	ev	-/-	-/-

Test report no.: 1-9730/15-01-08

7.4 Conducted measurements BT system

OP = AV + CA (OP-output power; AV-analyzer value; CA-loss signal path)


<u>Example calculation:</u> OP [dBm] = 6.0 [dBm] + (11.7) [dB] = 17.7 [dBm] (58.88 mW)

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	А	Switch / Control Unit	3488A	HP		300001691	ne		
2	Α	Power Supply DC	NGPE 40/40	R&S	388	40000078	vlKl!	22.01.2015	22.01.2017
3	A	Signal Analyzer 20Hz-26,5GHz-150 to + 30 DBM	FSIQ26	R&S	835540/018	300002681	k	30.01.2014	30.01.2016
4	A	Frequency Standard (Rubidium Frequency Standard)	MFS (Rubidium)	R&S (Datum)	002	300002681	Ve	29.01.2015	29.01.2017
5	A	CBT (Bluetooth Tester + EDR Signalling)	CBT 1153.9000K35, CBT-B55, CBT-K55	R&S	100313	300003516	vIKI!	26.08.2014	26.08.2016
6	A	CBT-K57 Software- Option for CBT/CBT32	CBT-K57	R&S	101051	300003910	ne		
7	Α	USB/GPIB interface	82357B	Agilent Technologies	MY52103346	300004390	ne		
8	A	BT-K57 Software- Option for CBT/CBT32	CBT-K57	R&S	101483	300003910	ne		
9	Α	Messplatzrechner	Tecline	F+W	101483	300003580	ne		
10	Α	RF cable	-/-	Huber & Suhner	AC02-C01	-/-	-/-	-/-	-/-
11	А	RF cable	-/-	Huber & Suhner	AC02-C02	-/-	-/-	-/-	-/-
12	А	DC block	BLK-18-S	IMET	AC02-DC01	-/-	-/-	-/-	-/-
13	А	Power divider	4324.4	Narda	AC02-PD01	-/-	-/-	-/-	-/-
14	А	Coupler	8143	IMET	-/-	300002842	-/-	-/-	-/-

Test report no.: 1-9730/15-01-08

7.5 AC conducted

SS = UR + CF + VC

(SS-signal strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

 $\frac{Example \ calculation:}{SS \ [dB\mu V/m] = 37.62 \ [dB\mu V/m] + 9.90 \ [dB] + 0.23 \ [dB] = 47.75 \ [dB\mu V/m] \ (244.06 \ \mu V/m)}$

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	A,B	Netznachbildung	ESH3-Z5	R&S	892475/017	300002209	k	17.06.2014	17.06.2016
2	A,B	RF-Filter-section	85420E	HP	3427A00162	300002214	k	27.11.2006	
3	A,B	EMI-Receiver	8542E	HP	3617A00170	300000568	k	28.01.2015	28.01.2016
4	в	Laptop (Customer)	X961D A00	Dell	CP8207030117- OLE42-OLH- AT4-C	-/-	-/-	-/-	-/-

8 Measurement uncertainty

Measurement uncertainty							
Test case	Uncertainty						
System gain	± 3 dB						
Carrier frequency separation	± 21.5 kHz						
Number of hopping channels	-/-						
Time of occupancy	-/-						
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative						
Maximum output power	± 1 dB						
Detailed conducted spurious emissions @ the band edge	± 1 dB						
Band edge compliance radiated	± 3 dB						
Spurious emissions conducted	± 3 dB						
Spurious emissions radiated below 30 MHz	± 3 dB						
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB						
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB						
Spurious emissions radiated above 12.75 GHz	± 4.5 dB						
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB						

9 Sequence of testing

9.1 Sequence of testing 9 kHz to 30 MHz

Setup

- The equipment was setup to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

Premeasurement

- The turntable rotates from 0° to 315° with 45° steps.
- The antenna height is 1.5 meter.
- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axces (0° to 360°).
- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK (QPK / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit, and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

9.2 Sequence of testing 30 MHz to 1 GHz

Setup

- The equipment was setup to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 10 or 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

Premeasurement

- The turntable rotates from 0° to 315° with 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 to 3 meter.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions

- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- The final measurement will be done with QP (Quasi-Peak / see ANSI C 63.4) detector with an EMI receiver
- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit, and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

9.3 Sequence of testing 1 GHz to 12.75 GHz

Setup

- The equipment was setup to simulate a typical usage like descripted in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter (see ANSI C 63.4) see each test details
- The EUT was set into operation.

Premeasurement

- The turntable rotates from 0° to 315° with 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 meter.
- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions

- The final measurement will be performed with minimum the six highest peaks according the requirements of the ANSI C63.4.
- According to the maximum found antenna polarisation and turntable position of the premeasurement the software maximizes the peaks by rotating the turntable position (0° to 360°). This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps). This procedure is repeated for both antenna polarisations.
- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS (RMS / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit, and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

9.4 Sequence of testing above 12.75 GHz

Setup

- The equipment was setup to simulate a typical usage like descripted in the user manual or described by manufacturer.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 0.5 meter
- The EUT was set into operation.

Premeasurement

• The antenna is moved spherical over the EUT in different polarisations of the antenna.

- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and RMS (RMS / see ANSI C 63.4) detector
- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit, and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

10 Summary of measurement results

 There were deviations from the technical specifications ascertained This test report is only a partial test report. The content and verdict of the performed test cases are listed below. 	\boxtimes	No deviations from the technical specifications were ascertained
		There were deviations from the technical specifications ascertained
		This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 1	See table!	2015-07-23	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	с	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (2)	System gain	Nominal	Nominal	GFSK	X				-/-
§15.247(a)(1) RSS - 247 / 5.1 (2)	Carrier frequency separation	Nominal	Nominal	GFSK	X				-/-
§15.247(a)(1) RSS - 247 / 5.1 (4)	Number of hopping channels	Nominal	Nominal	GFSK	\boxtimes				-/-
§15.247(a)(1) (iii) RSS - 247 / 5.1 (4)	Time of occupancy (dwell time)	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	X				-/-
§15.247(a)(1) RSS - 247 / 5.1 (1)	Spectrum bandwidth of a FHSS system bandwidth	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	X X X				-/-
§15.247(b)(1) RSS - 247 / 5.4 (2)	Maximum output power	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	XX				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	X X X				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	X X X				-/-
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	X X X				-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	Nominal	Nominal	8 DPSK	X				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	Nominal	Nominal	8 DPSK RX mode					-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	Nominal	Nominal	8 DPSK RX mode	X				-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	Nominal	Nominal	8 DPSK RX mode	X				-/-

Note: C = Complies; NC = Not complies; NA = Not applicable; NP = Not performed

11 Additional comments

The Bluetooth[®] word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by Cetecom ICT Services GmbH is under license.

Reference documents:	Blueto	both [®] Core Specification
	Modu	le report: Report-ETHE0018.2.pdf
	Anten	na gain: 3-3-TECH-587 900-01 Flir T1020 - Antenna measurements_A
Special test descriptions:	None	
Configuration descriptions:	payloa	sts: were performed with x-DH5 packets and static PRBS pattern ad. andby tests: BT test mode enabled, scan enabled, TX Idle
Test mode:	\boxtimes	Bluetooth Test mode loop back enabled (EUT is controlled over CBT/CMU)
		Special software is used. EUT is transmitting pseudo random data by itself
Antennas and transmit operating modes:		 Operating mode 1 (single antenna) Equipment with 1 antenna, Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)

Test report no.: 1-9730/15-01-08

12 Measurement results

12.1 Antenna gain

Limits:

FCC	IC		
6 dBi			

Results:

T _{nom}	Vnom	ISM band 2400 MHz to 2483.5 MHz
Gain [dBi]		+ 0.9 dBi*

*Note: For detailed information, please take a look at the external document 3-3-TECH-587 900-01 Flir T1020 - Antenna measurements_A.

Verdict: complies

12.2 Carrier frequency separation

Description:

Measurement of the carrier frequency separation of a hopping system. The carrier frequency separation is constant for all modulation-modes. We use GFSK-modulation to show compliance. EUT in hopping mode.

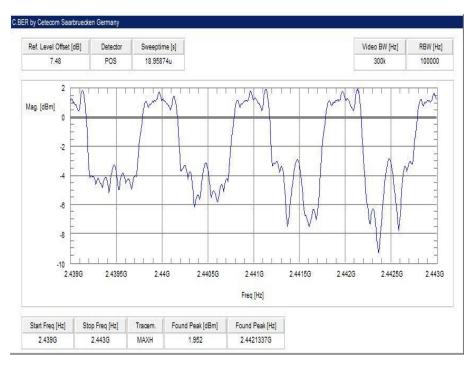
Measurement:

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	100 kHz			
Video bandwidth:	300 kHz			
Span:	4 MHz			
Trace mode:	Max Hold			
Test setup:	See sub clause 7.4 - A			
Measurement uncertainty	See sub clause 8			

Limits:

FCC	IC	
Minimum 25 kHz or two-thirds of the 20 dB bandwidth of the hopping system whichever is greater.		

Result:


Carrier frequency separation	~ 1 MHz
------------------------------	---------

Verdict: complies

Plot:

12.3 Number of hopping channels

Description:

Measurement of the total number of used hopping channels. The number of hopping channels is constant for all modulation-modes. We use GFSK-modulation to show compliance. EUT in hopping mode.

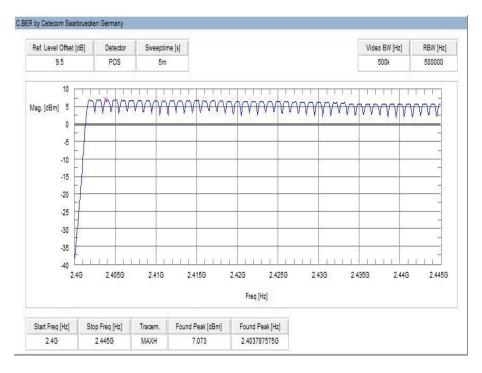
Measurement:

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	500 kHz			
Video bandwidth:	500 kHz			
Span:	Plot 1: 2400 – 2445 MHz Plot 2: 2445 – 2485 MHz			
Trace mode:	Max Hold			
Test setup:	See sub clause 7.4 - A			
Measurement uncertainty	See sub clause 8			

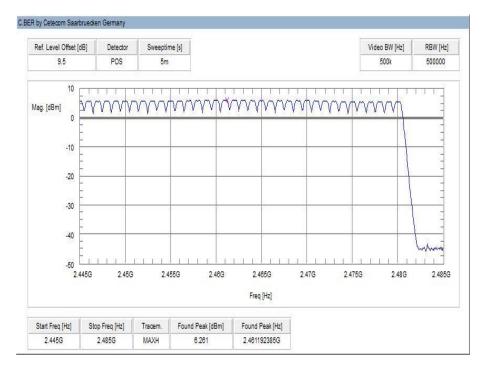
Limits:

FCC	IC		
At least 15 non overlapping hopping channels			

Result:


Number of hopping channels	79
----------------------------	----

Verdict: complies



Plots:

Plot 1: Number of hopping channels (GFSK modulation)

Plot 2: Number of hopping channels (GFSK modulation)

12.4 Time of occupancy (dwell time)

Measurement:

For Bluetooth[®] devices no measurements mandatory depending on the fixed requirements according to the Bluetooth[®] Core Specifications!

For Bluetooth® devices:

The channel staying time of 0.4 s within a 31.6 second period in data mode is constant for Bluetooth[®] devices and independent from the packet type (packet length). The calculation for a 31.6 second period is a follows:

Channel staying time = time slot length * hop rate / number of hopping channels * 31.6 s

Example for a DH1 packet (with a maximum length of one time slot) Channel staying time = $625 \ \mu s + 1600 + 1/s / 79 + 31.6 s = 0.4 s$ (in a 31.6 s period)

For multi-slot packets the hopping is reduced according to the length of the packet.

Example for a DH3 packet (with a maximum length of three time slots) Channel staying time = $3 \times 625 \ \mu s \times 1600/3 \times 1/s / 79 \times 31.6 \ s = 0.4 \ s$ (in a 31.6 s period)

Example for a DH5 packet (with a maximum length of five time slots) Channel staying time = $5 * 625 \ \mu s * 1600/5 *1/s / 79 * 31.6 \ s = 0.4 \ s$ (in a 31.6 s period)

This is according the Bluetooth[®] Core Specification V2.0 & V2.1 & V3.0 & V4.0 (+ critical errata) for all Bluetooth[®] devices and all modulations.

The following table shows the relations:

Packet Size	Pulse Width [ms] *	Max. number of transmissions per channel in 31.6 sec
DH1	0.366	640
DH3	1.622	214
DH5	2.870	128

* according Bluetooth[®] specification

Results:

Packet Size	Pulse Width [ms]*	Max. number of transmissions in 31.6 sec	Dwell time [Pulse width * Number of transmissions]
DH1	0.366	640	234.2 ms
DH3	1.622	214	347.1 ms
DH5	2.870	128	367.4 ms

Limits:

FCC	IC		
The frequency hopping operation shall have an average time of occupancy on any frequency not exceeding 0.4 seconds			

within a duration in seconds equal to the number of hopping frequencies multiplied by 0.4.

Verdict: complies

12.5 Spectrum bandwidth of a FHSS system

Description:

Measurement of the 20dB bandwidth and 99% bandwidth of the modulated signal. The measurement is performed according to the "Measurement Guidelines" (DA 00-705, March 30, 2000). EUT in single channel mode.

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	30 kHz	
Video bandwidth:	100 kHz	
Span:	3 MHz	
Trace mode:	Max Hold	
Test setup:	See sub clause 7.4 - A	
Measurement uncertainty	See sub clause 8	

Limits:

FCC	IC
Pi/4 DQPSk	1500 kHz < < 1500 kHz 1500 kHz

Test report no.: 1-9730/15-01-08

Results:

Modulation	20 dB bandwidth [kHz]		
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK	936	942	942
Pi/4 DQPSK	1278	1278	1284
8DPSK	1290	1296	1290

Verdict: complies

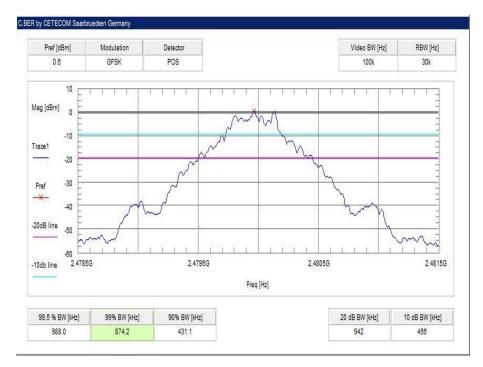
Results:

Modulation	99 % bandwidth [kHz]		
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK	880.2	880.2	874.2
Pi/4 DQPSK	1173	1173	1173
8DPSK	1167	1173	1173

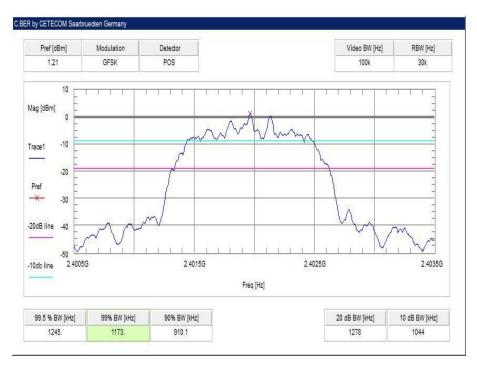
Verdict: complies



Plots:

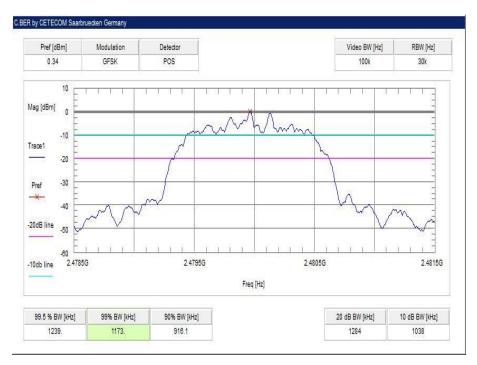

Plot 1: lowest channel - 2402 MHz, GFSK modulation

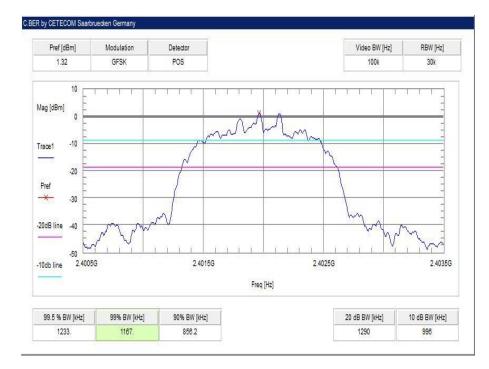
Plot 2: middle channel - 2441 MHz, GFSK modulation



Plot 3: highest channel - 2480 MHz, GFSK modulation

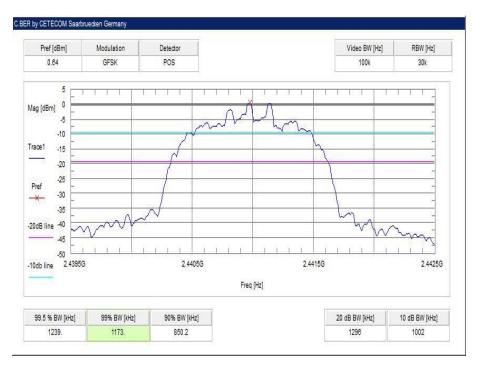
Plot 4: lowest channel – 2402 MHz, Pi / DQPSK modulation





Plot 5: middle channel – 2441 MHz, Pi / DQPSK modulation

Plot 6: highest channel – 2480 MHz, Pi / DQPSK modulation





Plot 7: lowest channel – 2402 MHz, 8 DPSK modulation

Plot 8: middle channel – 2441 MHz, 8 DPSK modulation

Plot 9: highest channel – 2480 MHz, 8 DPSK modulation

12.6 Maximum output power

Description:

Measurement of the maximum output power conducted. EUT in single channel mode. The measurement is performed according to the ANSI C63.10.

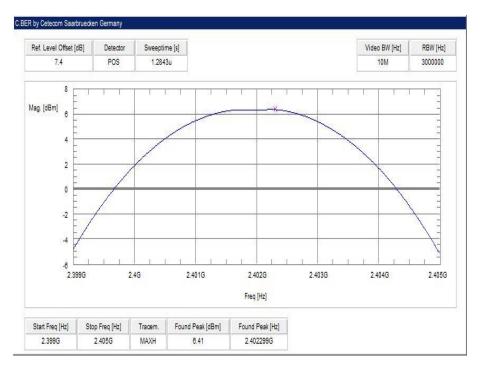
Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	3 MHz		
Video bandwidth:	10 MHz		
Span:	6 MHz		
Trace mode:	Max Hold		
Test setup:	See sub clause 7.4 - A		
Measurement uncertainty	See sub clause 8		

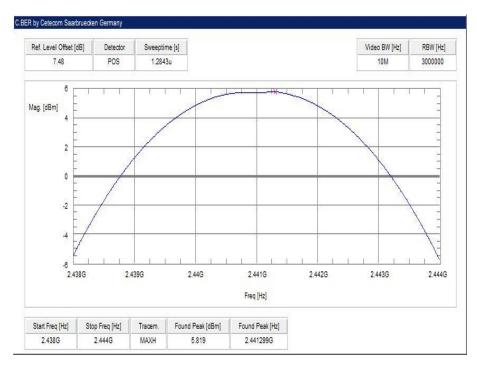
Limits:

FCC	IC	
[Conducted: 0.125 W – antenna gain max. 6 dBi] Systems using more than 75 hopping channels: Conducted: 1.0 W – antenna gain max. 6 dBi		

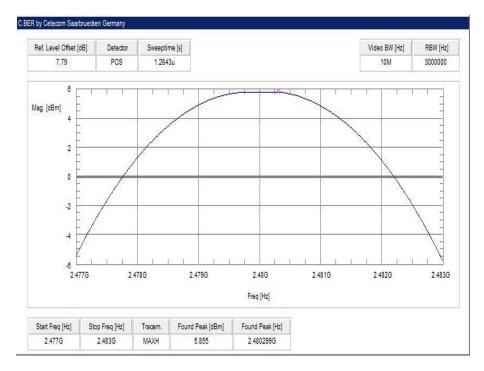
Results:


Modulation	Maximum output power conducted [dBm]		
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK	6.41	5.82	5.86
Pi/4 DQPSK	8.62	8.09	8.15
8 DPSK	8.91	8.43	8.39

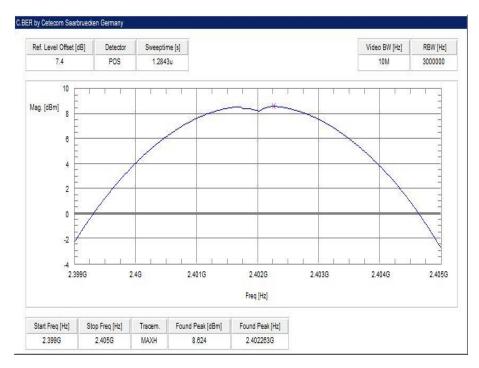
Verdict: complies

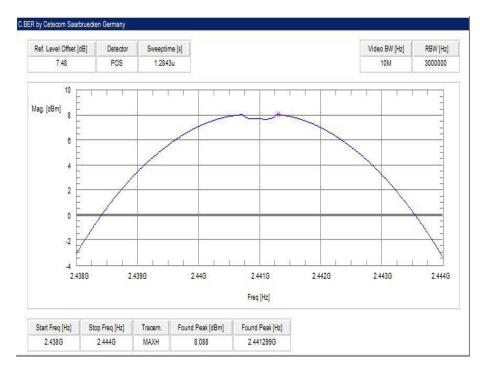


Plots:


Plot 1: lowest channel - 2402 MHz, GFSK modulation

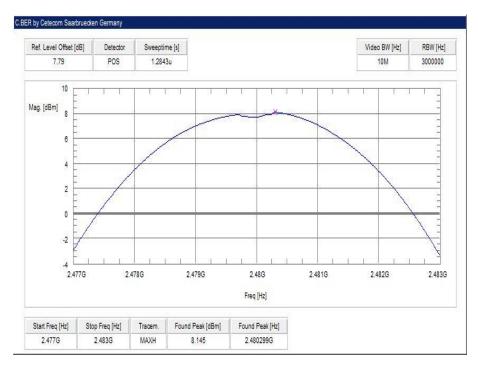
Plot 2: middle channel - 2441 MHz, GFSK modulation

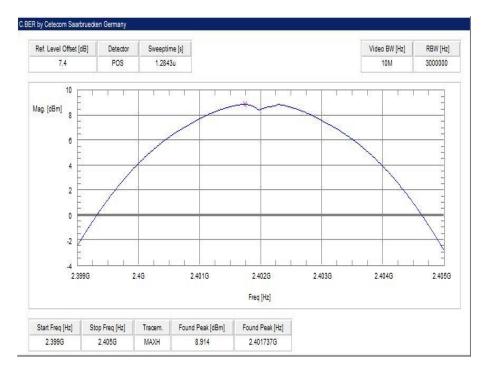




Plot 3: highest channel - 2480 MHz, GFSK modulation

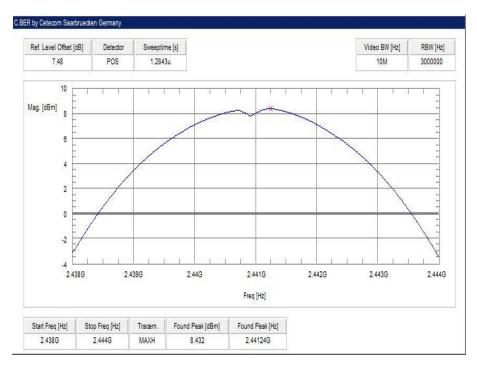
Plot 4: lowest channel – 2402 MHz, Pi / DQPSK modulation

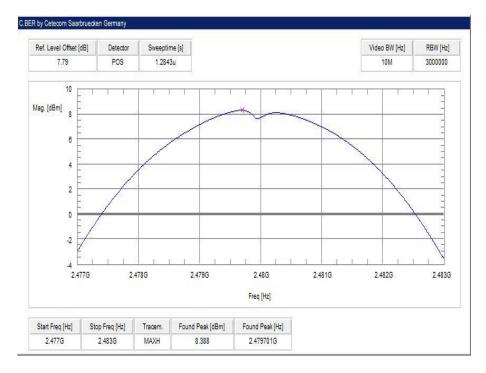




Plot 5: middle channel – 2441 MHz, Pi / DQPSK modulation

Plot 6: highest channel – 2480 MHz, Pi / DQPSK modulation





Plot 7: lowest channel – 2402 MHz, 8 DPSK modulation

Plot 8: middle channel - 2441 MHz, 8 DPSK modulation

Plot 9: highest channel – 2480 MHz, 8 DPSK modulation

12.7 Detailed spurious emissions @ the band edge - conducted

Description:

Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel and hopping mode. The measurement is repeated for all modulations.

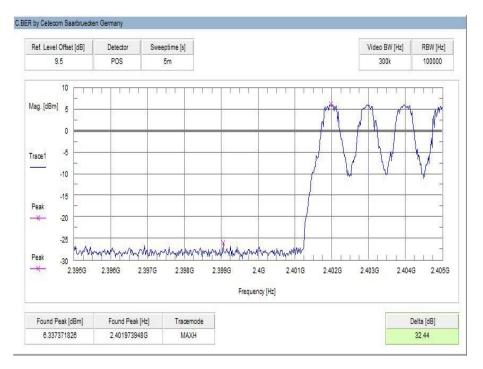
Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	100 kHz	
Video bandwidth:	300 kHz / 500 kHz	
Span:	Lower Band Edge: 2395 – 2405 MHz Upper Band Edge: 2478 – 2489 MHz	
Trace mode:	Max Hold	
Test setup:	See sub clause 7.4 - A	
Measurement uncertainty See sub clause 8		

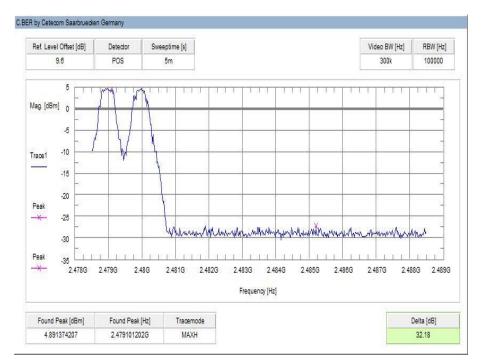
Limits:

FCC	IC
	which the spread spectrum or digitally modulated intentional uced by the intentional radiator shall be at least 20 dB below
that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15 209(a) is not required	

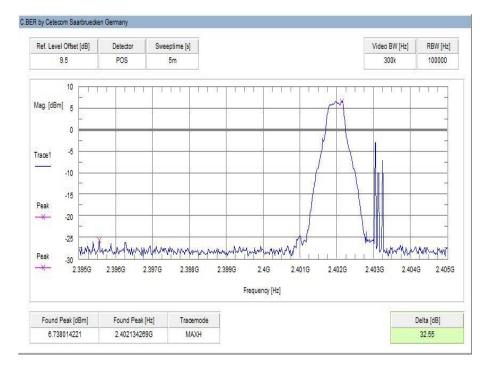
Results:


Scenario	Spurious band edge conducted [dB]		ted [dB]
Modulation	GFSK	Pi/4 DQPSK	8DPSK
Lower band edge – hopping off	> 20 dB	> 20 dB	> 20 dB
Lower band edge – hopping on	> 20 dB	> 20 dB	> 20 dB
Upper band edge – hopping off	> 20 dB	> 20 dB	> 20 dB
Upper band edge – hopping on	> 20 dB	> 20 dB	> 20 dB

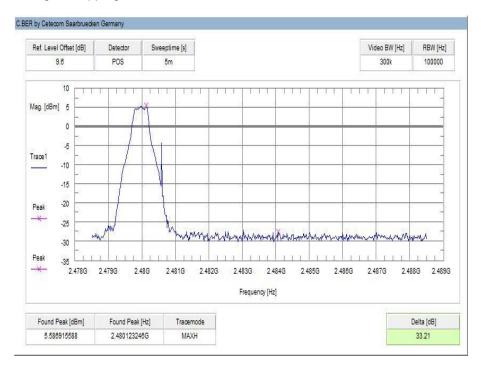
Verdict: complies

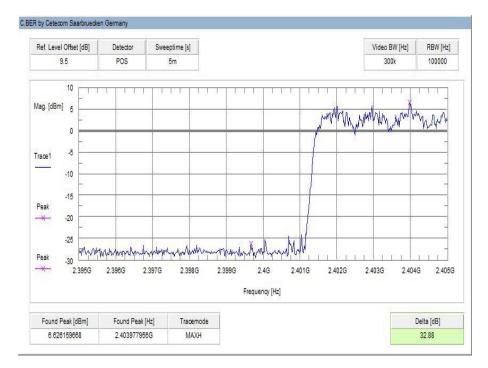


Plots:


Plot 1: Lower band edge - hopping on, GFSK modulation

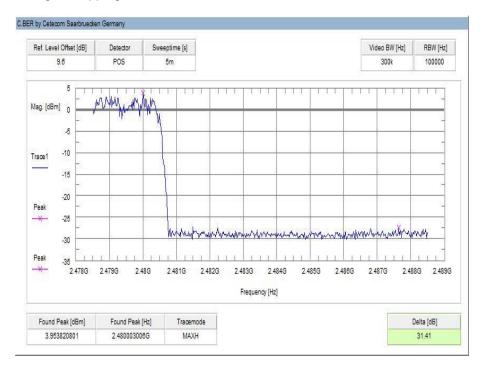
Plot 2: Upper band edge – hopping on, GFSK modulation

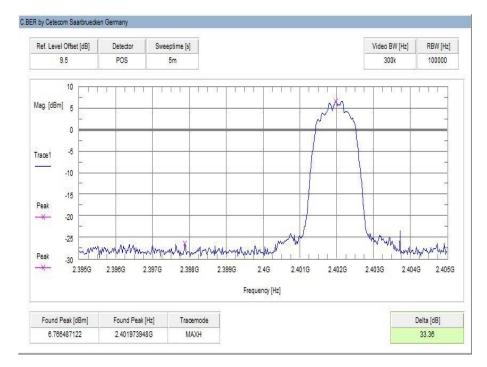




Plot 3: Lower band edge – hopping off, GFSK modulation

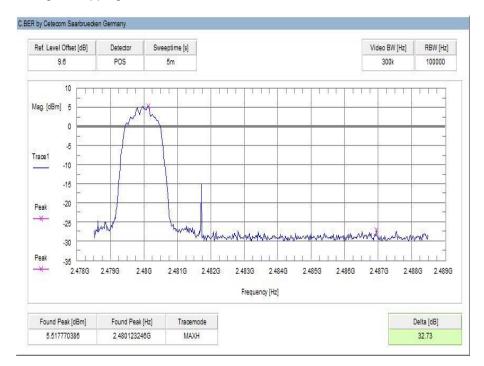
Plot 4: Upper band edge – hopping off, GFSK modulation

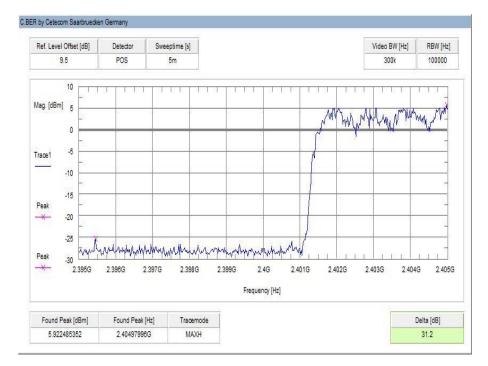




Plot 5: Lower band edge – hopping on, Pi/4 DQPSK modulation

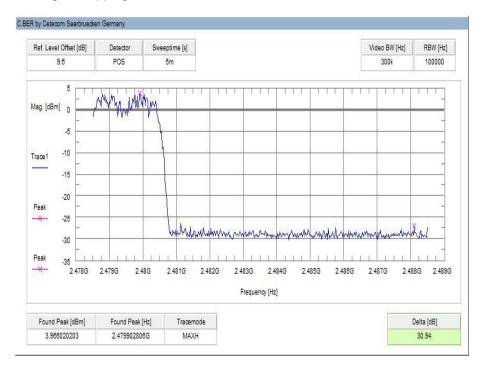
Plot 6: Upper band edge – hopping on, Pi/4 DQPSK modulation





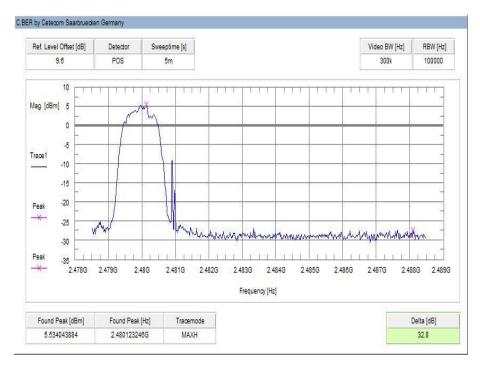
Plot 7: Lower band edge – hopping off, Pi/4 DQPSK modulation

Plot 8: Upper band edge – hopping off, Pi/4 DQPSK modulation



Plot 9: Lower band edge – hopping on, 8DPSK modulation

Plot 10: Upper band edge – hopping on, 8DPSK modulation



Plot 11: Lower band edge – hopping off, 8DPSK modulation

Plot 12: Upper band edge – hopping off, 8DPSK modulation

12.8 Band edge compliance radiated

Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit channel is channel 00 for the lower restricted band and channel 78 for the upper restricted band. The measurement is repeated for all modulations. Measurement distance is 3m.

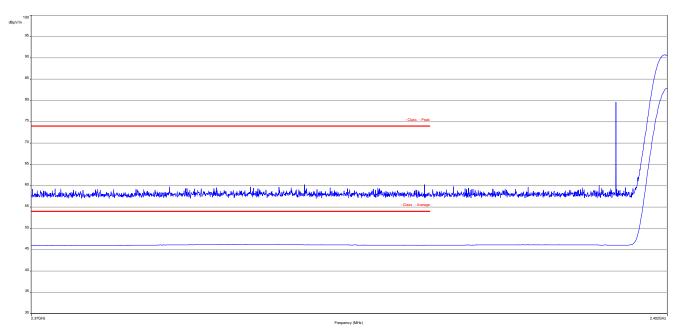
Measurement:

Measurement parameter			
Detector: Peak / RMS			
Sweep time:	Auto		
Resolution bandwidth:	1 MHz		
Video bandwidth:	3 MHz		
Span:	Lower Band: 2370 – 2400 MHz Upper Band: 2480 – 2500 MHz		
Trace mode:	Max Hold		
Test setup:	See sub clause 7.2 - C		
Measurement uncertainty	See sub clause 8		

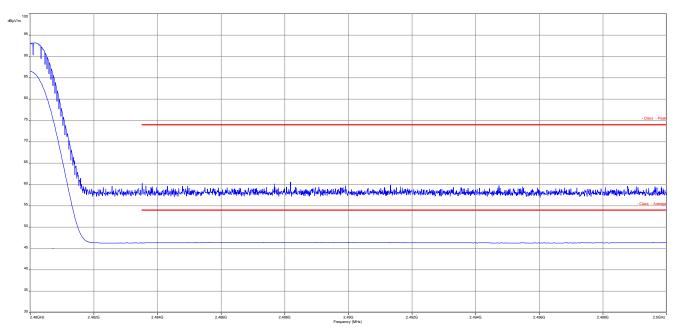
Limits:

FCC	IC	
radiator is operating, the radio frequency power that is product that in the 100 kHz bandwidth within the band that contains t conducted or a radiated measurement. Attenuation below the In addition, radiated emissions which fall in the restricted band	e general limits specified in Section 15.209(a) is not required. ds, as defined in Section 15.205(a), must also comply with the	
54 dBµV/m AVG		
In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)). 54 dBµV/m AVG 74 dBµV/m Peak		

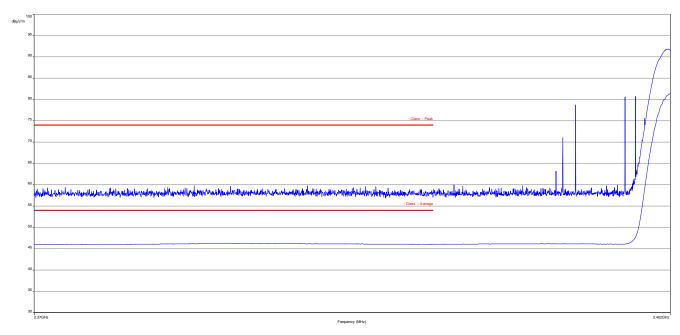
Results:


Scenario	Band edge compliance radiated [dBµV/m]		i [dBµV/m]
Modulation	GFSK	Pi/4 DQPSK	8DPSK
Lower restricted band	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP
Upper restricted band	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP

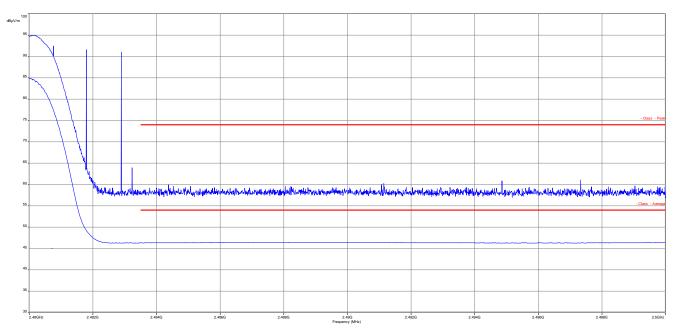
Verdict: complies

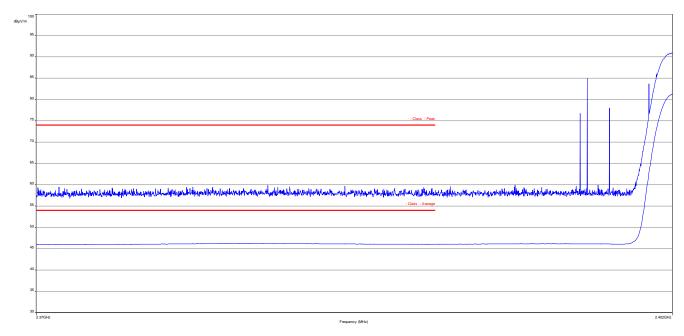


Plots:


Plot 1: Lower band edge, GFSK modulation, vertical & horizontal polarization

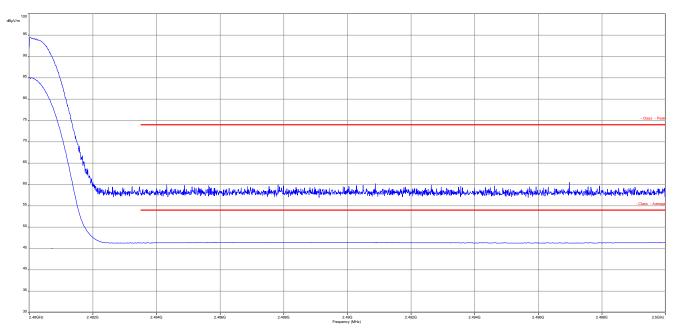
Plot 2: Upper band edge, GFSK modulation, vertical & horizontal polarization





Plot 3: Lower band edge, Pi/4 DQPSK modulation, vertical & horizontal polarization

Plot 4: Upper band edge, Pi/4 DQPSK modulation, vertical & horizontal polarization



Plot 5: Lower band edge, 8 DPSK modulation, vertical & horizontal polarization

Plot 6: Upper band edge, 8 DPSK modulation, vertical & horizontal polarization

12.9 Spurious emissions conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is repeated for all modulations.

Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	100 kHz		
Video bandwidth:	300 kHz		
Span:	9 kHz to 25 GHz		
Trace mode:	Max Hold		
Test setup:	See sub clause 7.4 - A		
Measurement uncertainty	See sub clause 8		

Limits:

FCC	IC
radiator is operating, the radio frequency power that is produ	which the spread spectrum or digitally modulated intentional uced by the intentional radiator shall be at least 20 dB below the highest level of the desired power, based on either an RF e general limits specified in Section 15.209(a) is not required

Results:

	TX spurious emissions conducted				
	GFSK - mode				
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
2402		6.7	30 dBm		Operating frequency
	All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		complies
2441		5.2	30 dBm		Operating frequency
	All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		complies
2480		5.5	30 dBm		Operating frequency
	All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		complies
			-20 dBC		

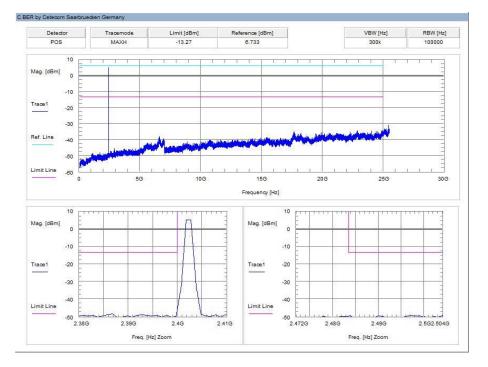
Verdict: complies

Results:

	TX spurious emissions conducted				
	Pi/4-DQPSK - mode				
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
2402		6.6	30 dBm		Operating frequency
All detected emissions are below the -20 dBc criteria. Please take a look at the plot! -20 dBc			complies		
			-20 dBC		
2441		5.3	30 dBm		Operating frequency
	l emissions are be Please take a loo		at the plot!		complies
			-20 dBc		
2480		5.5	30 dBm		Operating frequency
	l emissions are be Please take a loo		-20 dBc		complies
			-20 UDC		

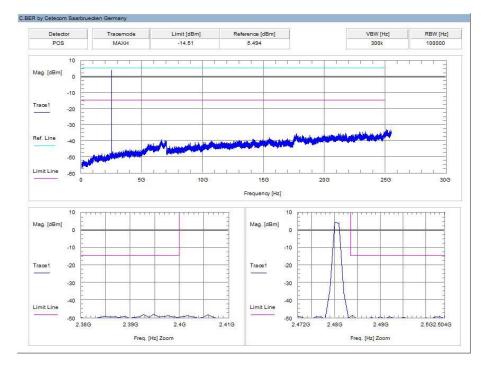
Verdict: complies

Results:

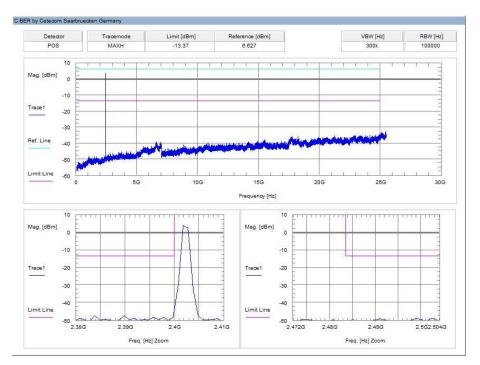

	TX spurious emissions conducted				
	8DPSK - mode				
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
2402		6.0	30 dBm		Operating frequency
	All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		complies
2441		5.7	30 dBm		Operating frequency
	All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		00 40-		complies
			-20 dBc		
2480		5.4	30 dBm		Operating frequency
All detected emissions are below the -20 dBc criteria. Please take a look at the plot!		-20 dBc		complies	
			-20 UBC		

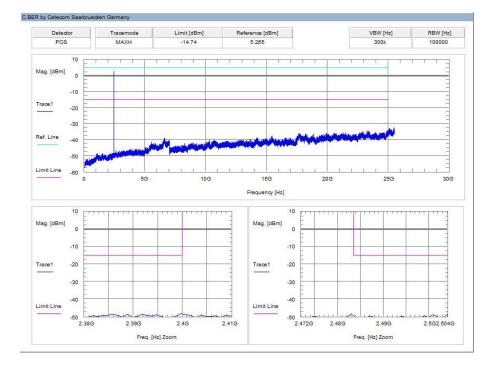
Verdict: complies

Plots:


Plot 1: lowest channel - 2402 MHz, GFSK modulation

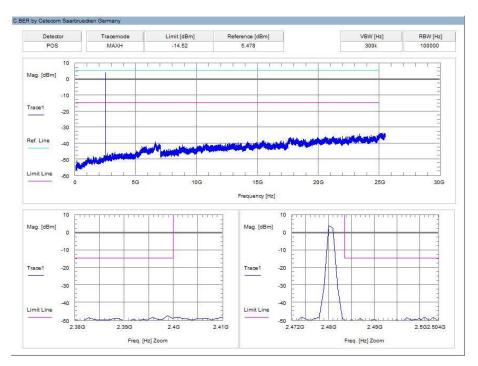
Plot 2: middle channel - 2441 MHz, GFSK modulation

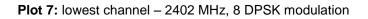


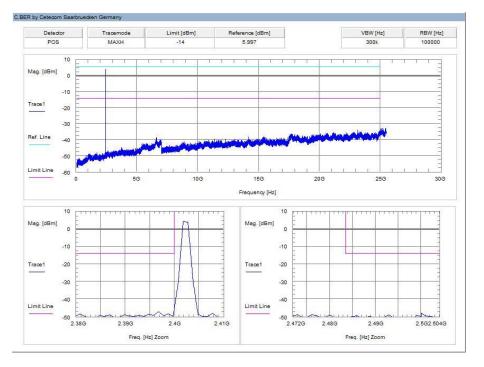


Plot 3: highest channel – 2480 MHz, GFSK modulation

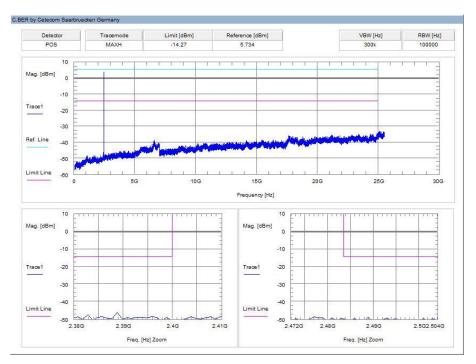
Plot 4: lowest channel – 2402 MHz, Pi / DQPSK modulation

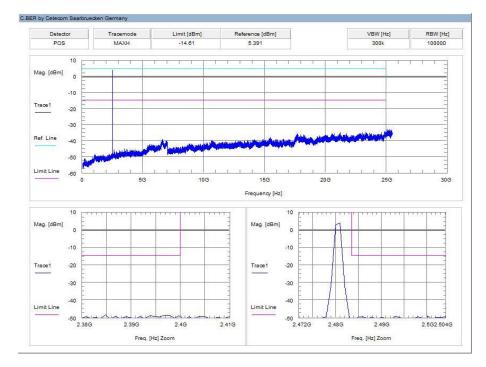





Plot 5: middle channel – 2441 MHz, Pi / DQPSK modulation

Plot 6: highest channel – 2480 MHz, Pi / DQPSK modulation





Plot 8: middle channel – 2441 MHz, 8 DPSK modulation

Plot 9: highest channel - 2480 MHz, 8 DPSK modulation

12.10 Spurious emissions radiated below 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channels are 00; 39 and 78. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

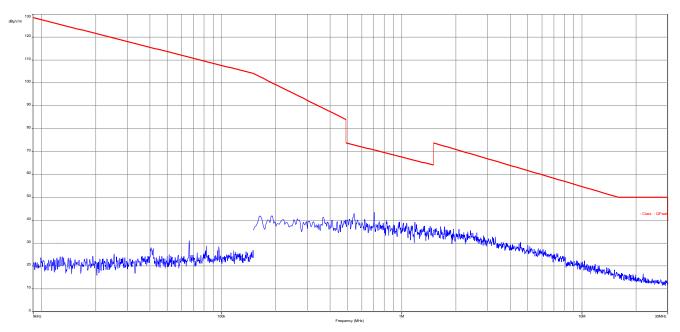
Measurement:

Measurement parameter			
Detector:	Peak / Quasi peak		
Sweep time:	Auto		
Resolution bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz		
Video bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz		
Span:	9 kHz to 30 MHz		
Trace mode:	Max Hold		
Test setup:	See sub clause 7.2 - B		
Measurement uncertainty	See sub clause 8		

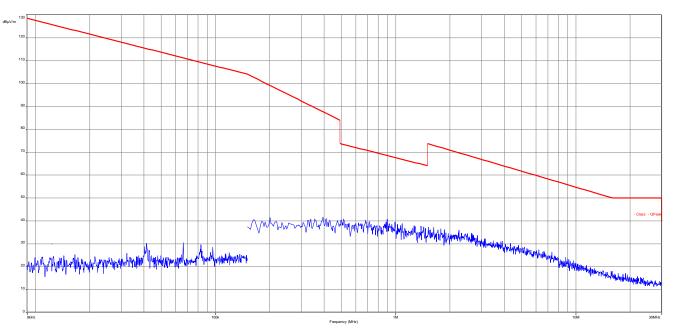
Limits:

FCC		IC								
Frequency (MHz)	Field strength (dBµV/m)		Field strength (dBµV/m)		Field strength (dBµV/m)		Field strength (dBµV/m)		Measurement distance	
0.009 – 0.490	2400/F	F(kHz)	300							
0.490 – 1.705	24000/	/F(kHz)	30							
1.705 – 30.0	3	0	30							

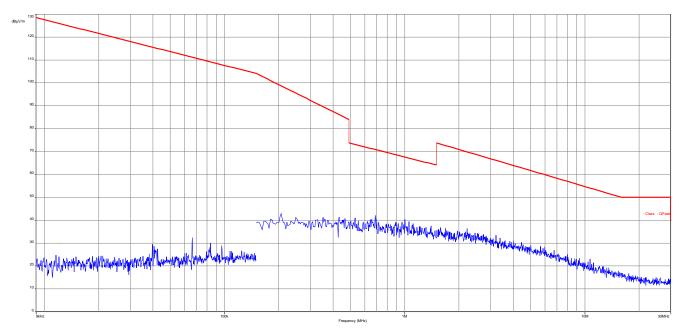
Results:


TX spurious emissions radiated below 30 MHz [dBµV/m]								
F [MHz] Detector Level [dBµV/m]								
All detect	All detected emissions are more than 20 dB below the limit.							

Verdict: complies



Plots:


Plot 1: 9 kHz to 30 MHz, channel 00, transmit mode

Plot 2: 9 kHz to 30 MHz, channel 39, transmit mode

Plot 2: 9 kHz to 30 MHz, channel 78, transmit mode

12.11 Spurious emissions radiated 30 MHz to 1 GHz

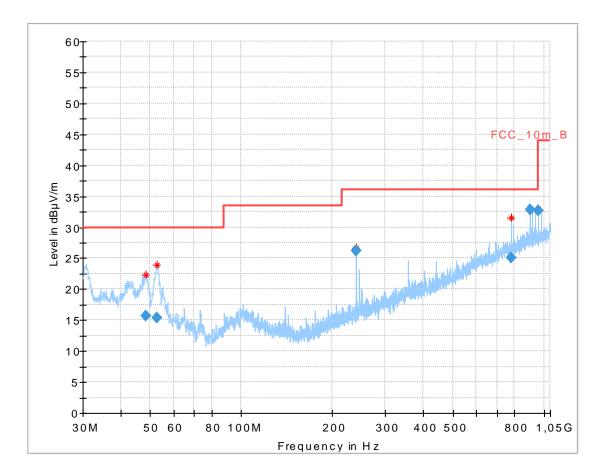
Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power.

Measurement:

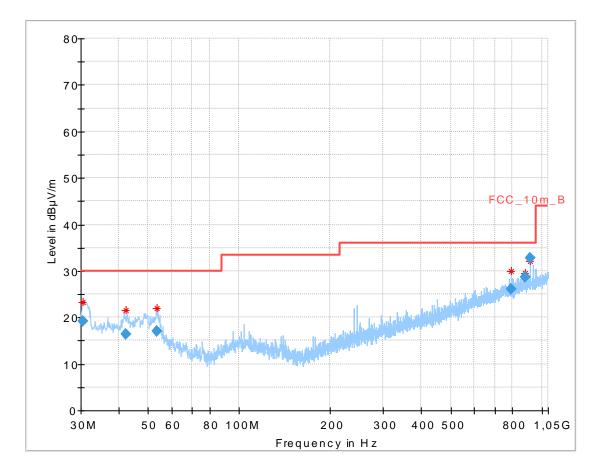
Measurement parameter							
Detector:	Peak / Quasi Peak						
Sweep time:	Auto						
Resolution bandwidth:	3 x RBW						
Video bandwidth:	120 kHz						
Span:	30 MHz to 1 GHz						
Trace mode:	Max Hold						
Measured modulation:	🗆 GFSK 🔲 Pi/4 DQPSK 🖾 8DPSK						
Test setup:	See sub clause 7.1 - A						
Measurement uncertainty	See sub clause 8						

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

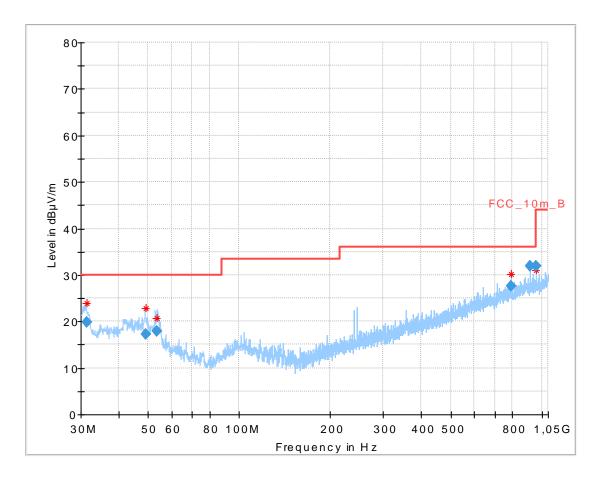

Limits:

FCC			IC				
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).							
§15.209							
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance				
30 - 88	30	0.0	10				
88 – 216	33	3.5	10				
216 – 960	36	5.0	10				
Above 960	54	l.0	3				

Plots: Transmit mode

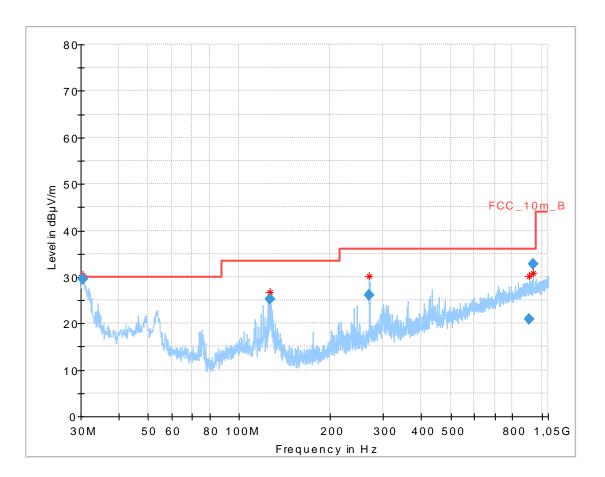

Plot 1: 30 MHz to 1 GHz, TX mode, channel 00, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
48.504300	15.66	30.00	14.34	1000.0	120.000	103.0	V	185	13.0
52.822200	15.29	30.00	14.71	1000.0	120.000	200.0	V	95	12.2
239.589600	26.18	36.00	9.82	1000.0	120.000	350.0	н	7	13.0
781.952850	25.07	36.00	10.93	1000.0	120.000	272.0	н	97	22.7
898.459800	32.76	36.00	3.24	1000.0	120.000	100.0	н	252	24.1
958.342500	32.68	36.00	3.32	1000.0	120.000	100.0	Н	254	24.3


Plot 2: 30 MHz to 1 GHz, TX mode, channel 39, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.371295	19.13	30.00	10.87	1000.0	120.000	101.0	V	10	13.4
42.240750	16.47	30.00	13.53	1000.0	120.000	101.0	V	280	14.0
53.455200	17.11	30.00	12.89	1000.0	120.000	98.0	V	280	12.1
791.559600	26.11	36.00	9.89	1000.0	120.000	100.0	н	261	22.7
878.490600	28.70	36.00	7.30	1000.0	120.000	98.0	н	260	23.8
918.419550	32.76	36.00	3.24	1000.0	120.000	98.0	н	260	24.2

Plot 3: 30 MHz to 1 GHz, TX mode, channel 78, vertical & horizontal polarization



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
31.466550	19.77	30.00	10.23	1000.0	120.000	170.0	V	190	13.5
49.212300	17.27	30.00	12.73	1000.0	120.000	98.0	V	190	12.8
53.465250	17.81	30.00	12.19	1000.0	120.000	98.0	V	260	12.1
791.674800	27.53	36.00	8.47	1000.0	120.000	100.0	н	260	22.7
918.403950	31.99	36.00	4.01	1000.0	120.000	98.0	н	260	24.2
958.350450	32.01	36.00	3.99	1000.0	120.000	98.0	Н	260	24.3

Plots: Receiver mode

Plot 1: 30 MHz to 1 GHz, RX / idle - mode, vertical & horizontal polarization

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.391649	29.49	30.00	0.51	1000.0	120.000	101.0	V	-10	13.4
126.080850	25.23	33.50	8.27	1000.0	120.000	101.0	V	280	9.7
268.698150	26.00	36.00	10.00	1000.0	120.000	98.0	V	81	13.8
911.765700	20.92	36.00	15.08	1000.0	120.000	170.0	Н	190	24.1
938.394300	32.84	36.00	3.16	1000.0	120.000	98.0	Н	260	24.2

12.12 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power.

Measurement:

Measurement parameter							
Detector:	Peak / RMS						
Sweep time:	Auto						
Resolution bandwidth:	1 MHz						
Video bandwidth:	3 x RBW						
Span:	1 GHz to 26 GHz						
Trace mode:	Max Hold						
Measured modulation:	🗆 GFSK 🛛 Pi/4 DQPSK 🖾 8DPSK						
Test setup:	See sub clause 7.2 - A See sub clause 7.3 - A						
Measurement uncertainty	See sub clause 8						

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

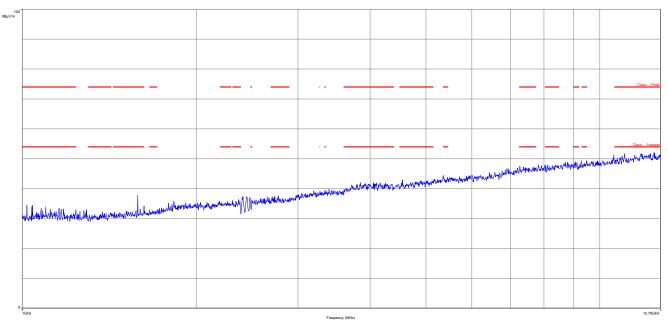
FCC		IC				
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RI conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).						
	§15.	209				
Frequency (MHz) Field strength (dBµV/m) Measurement distance						
Above 960	54	.0	3			

Results: Transmitter mode

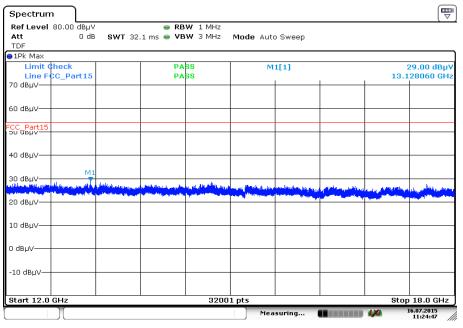
	TX spurious emissions radiated [dBµV/m]									
	2402 MHz			2441 MHz			2480 MHz			
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]		
	All detected emissions are more than 20 dB below the limit.									
-/-	Peak	-/-	1	Peak	-/-	-/-	Peak	-/-		
-/-	AVG	-/-	-/-	AVG	-/-		AVG	-/-		
-/-	Peak	-/-	1	Peak	-/-	1	Peak	-/-		
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-		
-/-	Peak	-/-	/	Peak	-/-	1	Peak	-/-		
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-		

Verdict: complies

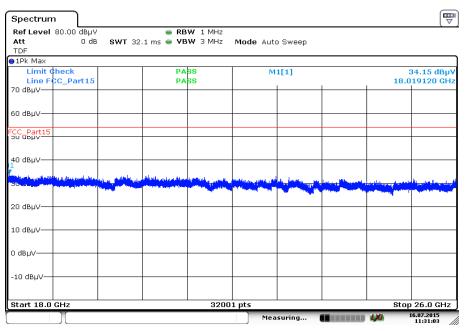
Results: Receiver mode


RX spurious emissions radiated [dBµV/m]								
F [MHz] Detector Level [dBµV/m]								
All detect	ed emissions are more than 20 dB below	the limit.						
1	Peak	-/-						
-/-	AVG	-/-						

Verdict: complies


Plots: Transmitter mode

Plot 1: 1 GHz to 12.75 GHz, TX mode, channel 00, vertical & horizontal polarization

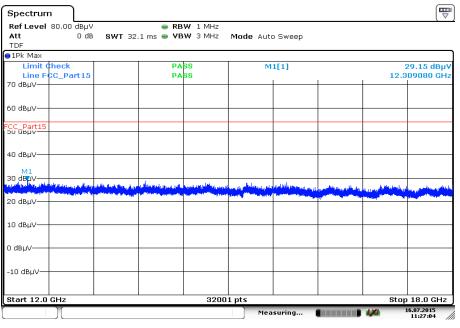

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: 12.75 GHz to 18 GHz, TX mode, channel 00, vertical & horizontal polarization

Date: 16.JUL.2015 11:24:47

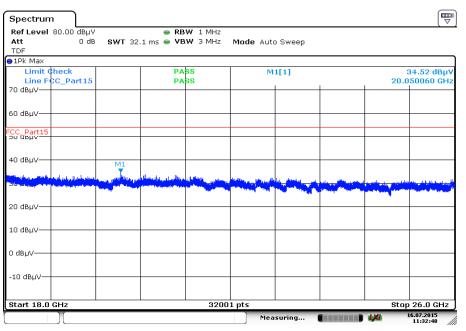
Plot 3: 18 GHz to 26 GHz, TX mode, channel 00, vertical & horizontal polarization

Date: 16.JUL.2015 11:31:03



100 //m								
-	······································						 	 - Class - Per
	, , , ,	<u> </u>					 	 - Class - Avera
			mannewaller	Mangaluman	www.pwr.auswillia.com	hethoder the photo	 	
	al fills for fill fill and the second second and the second second second second second second second second se	hand the product of the second s						
-								
0	GHz		Frequency (MHz)					 12.75GH

Plot 4: 1 GHz to 12.75 GHz, TX mode, channel 39, vertical & horizontal polarization

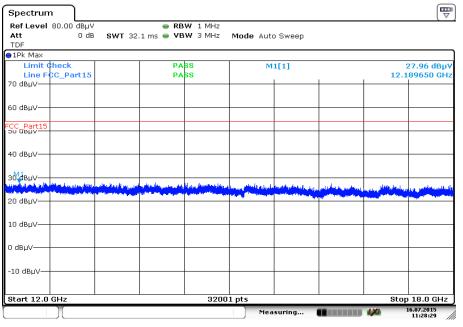

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 5: 12.75 GHz to 18 GHz, TX mode, channel 39, vertical & horizontal polarization

Date: 16.JUL.2015 11:27:04

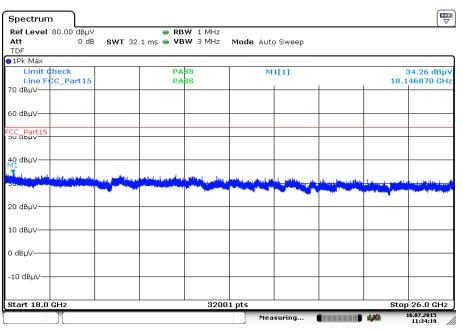
Plot 6: 18 GHz to 26 GHz, TX mode, channel 39, vertical & horizontal polarization

Date: 16.JUL.2015 11:32:48



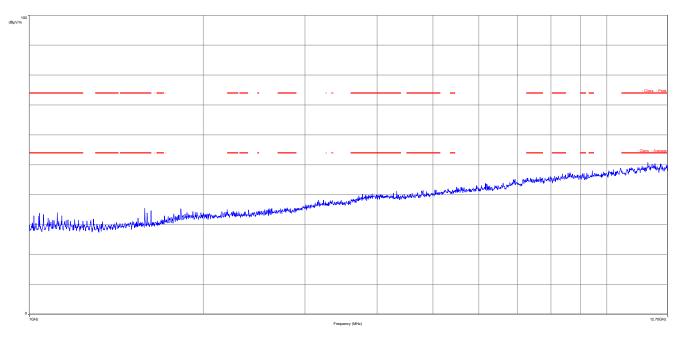
100 n										
	· · · · ·									- Class - F
	· · · ·	·	· · ·	·				<u> </u>		- Class - Ave
							www.	how another	ewww.	hund Mar Marina
				with more thank the	Norther Protection and Inder	Ange Manaders in				
Ittiliai	Maple on warman and a second state of the second states of the second st	pour information of the analysis in the and	AN A A A A A A A A A A A A A A A A A A							
the work wanter	alad har a she wanted a									
0 IGHz		1	Frequency (MHz)							12.750

Plot 7: 1 GHz to 12.75 GHz, TX mode, channel 78, vertical & horizontal polarization

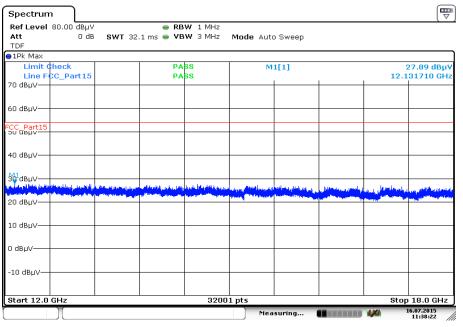

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 8: 12.75 GHz to 18 GHz, TX mode, channel 78, vertical & horizontal polarization

Date: 16.JUL.2015 11:28:29


Plot 9: 18 GHz to 26 GHz, TX mode, channel 78, vertical & horizontal polarization

Date: 16.JUL.2015 11:34:19



Plots: Receiver mode

Plot 1: 1 GHz to 12.75 GHz, RX / idle - mode, vertical & horizontal polarization

Plot 2: 12.75 GHz to 18 GHz, RX / idle - mode, vertical & horizontal polarization

Date: 16.JUL.2015 11:38:22

Spectrum Ref Level 80.00 dBμV Att 0 dB ● RBW 1 MHz SWT 32.1 ms ● VBW 3 MHz Att TDF Mode Auto Sweep ●1Pk Max Limit Check Line FCC_Part15 70 dBµV PASS PASS M1[1] 34.30 dBµ\ 18.160120 GH 60 dBµV-CC_Part15 40 dBµ∨ M1 . 🝸 20 dBµV-10 dBµV-0 dBµV--10 dBµV-32001 pts Stop 26.0 GHz Start 18.0 GHz Measuring... 16.07.2015 11:36:33

Plot 3: 18 GHz to 26 GHz, RX / idle - mode, vertical & horizontal polarization

Date: 16.JUL.2015 11:36:33

12.13 Spurious emissions conducted below 30 MHz (AC conducted)

Description:

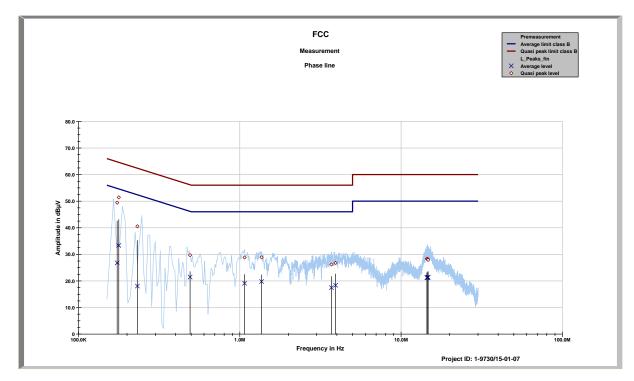
Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channel is channel 39. This measurement is representative for all channels and modes. If critical peaks are found channel 00 and channel 78 will be measured too. The measurement is performed in the mode with the highest output power. Both power lines, phase and neutral line, are measured. Found peaks are remeasured with average and quasi peak detection to show compliance to the limits.

Measurement:

Measurement parameter				
Detector: Peak - Quasi peak / average				
Sweep time:	Auto			
Resolution bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz			
Video bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz			
Span:	9 kHz to 30 MHz			
Trace mode:	Max Hold			
Test setup:	See sub clause 7.5 – A (TX/RX) – B (JBP)			
Measurement uncertainty	See sub clause 8			

Limits:

FCC		IC					
Frequency (MHz)	Quasi-peak (dBµV/m)		Average (dBµV/m)				
0.15 – 0.5	66 to 56*		56 to 46*				
0.5 – 5	56		56		56		46
5 – 30.0	6	0	50				


*Decreases with the logarithm of the frequency

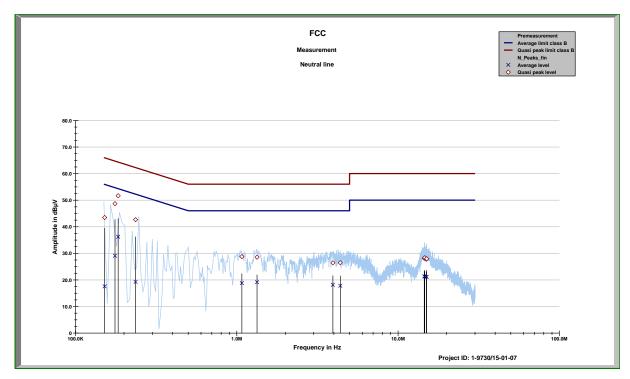
Verdict: complies

Plots & result tables:

Plot 1: 150 kHz to 30 MHz, phase line , TX mode

FCC Phase line tbl

Project ID: 1-9730/15-01-08

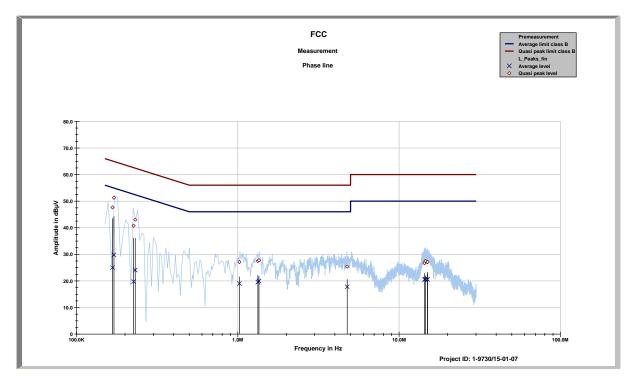

03:01:29 PM, Wednesday, July 15, 2015

Frequency	Quasi peak level	Margin quasi peak	Average level	Margin average
MHz	dBµV	dBµV	dBµV	dBµV
0.17378	49.43	15.35	26.78	28.54
0.17782	51.42	13.17	33.33	21.87
0.23198	40.54	21.84	18.07	35.59
0.49201	29.69	26.45	21.44	24.79
1.07063	28.82	27.18	19.13	26.87
1.3647	28.87	27.13	19.77	26.23
3.6981	26.21	29.79	17.45	28.55
3.9251	26.78	29.22	18.36	27.64
14.443	28.32	31.68	21.23	28.77
14.626	28.14	31.86	21.27	28.73
14.665	28.16	31.84	21.30	28.70
14.693	27.93	32.07	21.39	28.61

Project ID - 1-9730/15-01-08 EUT - FLIR-T7250 Serial Number - 72400046 Operating mode - BT TX (Ch. 39)

FCC Neutral line tbl

Project ID: 1-9730/15-01-08

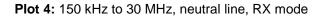

03:01:29 PM, Wednesday, July 15, 2015

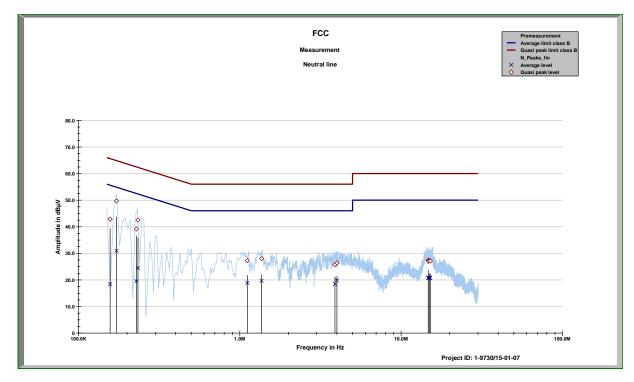
Frequency	Quasi peak level	Margin quasi peak	Average level	Margin average
MHz	dBµV	dBµV	dBµV	dBµV
0.15165	43.46	22.45	17.59	38.36
0.17585	48.68	16.00	29.10	26.17
0.18395	51.65	12.65	36.24	18.79
0.23583	42.66	19.58	19.25	34.29
1.07496	28.75	27.25	18.82	27.18
1.335	28.56	27.44	19.13	26.87
3.9421	26.41	29.59	18.16	27.84
4.3816	26.46	29.54	17.79	28.21
14.514	28.13	31.87	21.36	28.64
14.61	28.34	31.66	21.28	28.72
14.978	27.82	32.18	21.14	28.86
15.03	27.95	32.05	21.15	28.85

Project ID - 1-9730/15-01-08 EUT - FLIR-T7250 Serial Number - 72400046 Operating mode - BT TX (Ch. 39)

Plot 3: 150 kHz to 30 MHz, phase line, RX mode

FCC Phase line tbl


Project ID: 1-9730/15-01-08

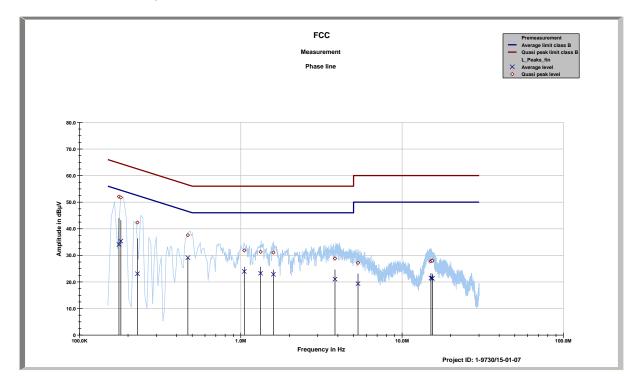

03:18:15 PM, Wednesday, July 15, 2015

Frequency	Quasi peak level	Margin quasi peak	Average level	Margin average
MHz	dBµV	dBµV	dBµV	dBµV
0.16724	47.65	17.45	25.02	30.49
0.17074	51.30	13.63	29.82	25.59
0.22601	40.79	21.81	19.73	34.10
0.23127	43.00	19.40	24.08	29.60
1.02358	27.10	28.90	19.00	27.00
1.3321	27.50	28.50	19.57	26.43
1.3526	27.80	28.20	19.96	26.04
4.7655	25.37	30.63	17.80	28.20
14.361	26.75	33.25	20.52	29.48
14.553	27.48	32.52	20.67	29.33
14.955	27.03	32.97	20.62	29.38
14.993	27.09	32.91	20.55	29.45

Project ID - 1-9730/15-01-08 EUT - FLIR-T7250 Serial Number - 72400046 Operating mode - RX

FCC Neutral line tbl

Project ID: 1-9730/15-01-08


03:18:15 PM, Wednesday, July 15, 2015

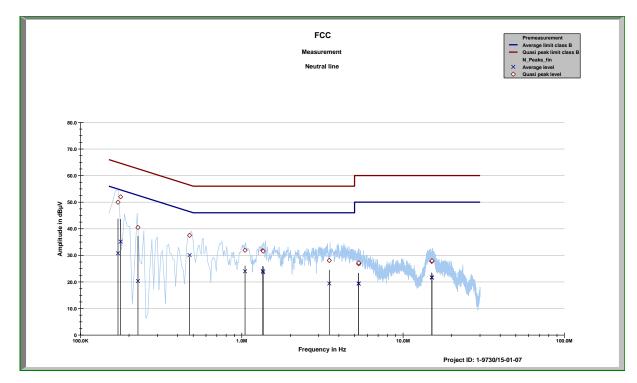
Frequency	Quasi peak level	Margin quasi peak	Average level	Margin average
MHz	dBµV	dBµV	dBµV	dBµV
0.15716	42.83	22.78	18.35	37.44
0.1722	49.68	15.17	30.97	24.40
0.22838	39.11	23.40	19.52	34.25
0.23373	42.53	19.79	24.47	29.14
1.11403	27.27	28.73	18.91	27.09
1.3641	28.00	28.00	19.64	26.36
3.8887	25.73	30.27	18.44	27.56
3.9979	26.37	29.63	19.88	26.12
14.721	27.42	32.58	20.66	29.34
14.737	27.06	32.94	20.93	29.07
15.027	27.33	32.67	20.84	29.16
15.155	27.11	32.89	20.73	29.27

Project ID - 1-9730/15-01-08 EUT - FLIR-T7250 Serial Number - 72400046 Operating mode - RX

Plot 5: 150 kHz to 30 MHz, phase line, JBP

FCC Phase line tbl

Project ID: 1-9730/15-01-08


03:36:42 PM, Wednesday, July 15, 2015

Frequency	Quasi peak level	Margin quasi peak	Average level	Margin average
MHz	dBµV	dBµV	dBµV	dBµV
0.17564	52.08	12.61	34.06	21.20
0.18056	51.78	12.68	35.34	19.79
0.22889	42.34	20.15	23.07	30.67
0.46991	37.58	18.94	29.13	17.73
1.05073	31.82	24.18	23.95	22.05
1.3269	31.32	24.68	23.25	22.75
1.5927	31.07	24.93	22.88	23.12
3.8357	28.79	27.21	21.05	24.95
5.3284	27.17	32.83	19.35	30.65
15.074	27.79	32.21	21.46	28.54
15.375	28.05	31.95	21.33	28.67
15.377	27.97	32.03	21.36	28.64

Project ID - 1-9730/15-01-08 EUT - FLIR-T7250 Serial Number - 72400046 Operating mode - RX + traffic on USB

Plot 6: 150 kHz to 30 MHz, neutral line, JBP

FCC Neutral line tbl

Project ID: 1-9730/15-01-08

03:36:42 PM, Wednesday, July 15, 2015

Frequency	Quasi peak level	Margin quasi peak	Average level	Margin average
MHz	dBµV	dBµV	dBµV	dBµV
0.17082	49.94	14.98	30.77	24.64
0.17746	52.01	12.59	35.15	20.06
0.22714	40.50	22.06	20.34	33.45
0.47488	37.51	18.92	30.09	16.63
1.04771	31.90	24.10	24.00	22.00
1.3493	31.79	24.21	24.10	21.90
1.3573	31.57	24.43	23.65	22.35
3.4854	28.05	27.95	19.41	26.59
5.3001	26.79	33.21	19.43	30.57
5.3046	27.17	32.83	19.31	30.69
15.044	27.69	32.31	21.73	28.27
15.099	27.96	32.04	21.62	28.38

Project ID - 1-9730/15-01-08 EUT - FLIR-T7250 Serial Number - 72400046 Operating mode - RX + traffic on USB

13 Observations

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2015-07-23

Annex B Further information

<u>Glossary</u>

AVG	-	Average
DUT	-	Device under test
EMC	-	Electromagnetic Compatibility
EN	-	European Standard
EUT	-	Equipment under test
ETSI	-	European Telecommunications Standard Institute
FCC	-	Federal Communication Commission
FCC ID	-	Company Identifier at FCC
HW	-	Hardware
IC	-	Industry Canada
Inv. No.	-	Inventory number
N/A	-	Not applicable
PP	-	Positive peak
QP	-	Quasi peak
S/N	-	Serial number
SW	-	Software
PMN		Product marketing name
HMN		Host marketing name
HVIN		Hardware version identification number
FVIN		Firmware version identification number

Annex C Accreditation Certificate

Note:

The current certificate including annex is published on our website (see link below) or may be received from CETECOM ICT Services on request.

http://www.cetecom.com/eu/de/cetecom-group/europa/deutschland-saarbruecken/akkreditierungen.html