

Test standard/s

47 CFR Part 15Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency
devicesRSS - 247 Issue 1Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

	Test Item	
Kind of test item:	Infrared Camera	
Model name:	FLIR-E7850	A PARTICIPAL OF THE PARTY OF TH
FCC ID:	ZLV-FLIRE7850	
IC:	5306A-FLIRE7850	
Frequency:	UNII bands: 5150 MHz to 5250 MHz	ST.
Technology tested:	WLAN (OFDM/a- & n HT20-mode)	With the second
Antenna:	Integrated PIFA antenna	-
Power supply:	3.7 V DC by VARTA 2P/LIC18650-29EC Li-ION battery	

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Marco Bertolino Lab Manager Radio Communications & EMC

Test performed:

Andreas Luckenbill Lab Manager Radio Communications & EMC

1 Table of contents

1	Table o	f contents	2
2	Genera	I information	3
	2.2 A	Notes and disclaimer Application details Fest laboratories sub-contracted	3
3	Test sta	andard/s and references	4
4	Test en	vironment	5
5	Test ite	m	5
		General description	
6	Descrip	otion of the test setup	6
	6.2 S 6.3 F 6.4 A	Shielded semi anechoic chamber Shielded fully anechoic chamber Radiated measurements > 18 GHz AC conducted Conducted measurements with peak power meter & spectrum analyzer	8 9 10
7	Sequer	ice of testing	12
	7.2 S	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz Sequence of testing radiated spurious above 18 GHz	13 14
			40
8	Measur	ement uncertainty	
8 9		ement uncertainty ary of measurement results	
	Summa		17
9	Summa Addit	ary of measurement results	17 18
9 10	Summa Addin Meas 11.1 11.2 11.3 11.4 11.4.1 11.4.2 11.5 11.5.1 11.5.2 11.6 11.7 11.8 11.9	ary of measurement results tional comments	17 18 19 20 21 23 23 23 23 31 31 31 31 31 35 39 43 45
9 10 11	Summa Addin Meas 11.1 11.2 11.3 11.4 11.4.1 11.4.2 11.5 11.5.1 11.5.2 11.6 11.7 11.8 11.9 11.10 11.11 11.12	ary of measurement results	17
9 10	Summa Addin Meas 11.1 11.2 11.3 11.4 11.4.1 11.4.2 11.5 11.5.1 11.5.2 11.6 11.7 11.8 11.9 11.10 11.11 11.12	ary of measurement results	17 18 19 19 20 21 23 23 23 23 23 23 23 23 23 23 23 23 23 23 31 31 31 35 39 45 55 60 62 65
9 10 11	Summa Addin Meas 11.1 11.2 11.3 11.4 11.4.1 11.4.2 11.5 11.5.1 11.5.2 11.6 11.7 11.8 11.9 11.10 11.11 11.12	ary of measurement results	17 18 19 20 21 23 23 23 23 23 23 23 23 23 23 23 23 23 31 31 31 33 35 39 43 45 65 65
9 10 11 12 Anr	Summa Addin Meas 11.1 11.2 11.3 11.4 11.4.1 11.4.2 11.5 11.5.1 11.5.2 11.6 11.7 11.8 11.9 11.10 11.11 11.12 Obse	ary of measurement results	17 18 19 20 21 23 23 23 23 23 23 23 23 23 23 23 31 31 31 31 31 35 39 43 45 65 65

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH ".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-1390/16-01-12 and dated 2016-12-15.

2.2 Application details

Date of receipt of order:	2016-11-02
Date of receipt of test item:	2016-11-14
Start of test:	2016-11-14
End of test:	2016-11-17
Person(s) present during the test:	Mr. Göran Skedung & Mr. Erik Zarmen

2.3 Test laboratories sub-contracted

None

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 1	May 2015	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices

Guidance	Version	Description
UNII: KDB 789033 D02	v01r03	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No test under extreme conditions required. No test under extreme conditions required.
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
Power supply	:	V _{nom} V _{max} V _{min}	3.7 V DC by VARTA 2P/LIC18650-29EC Li-ION battery No test under extreme conditions required. No test under extreme conditions required.

5 Test item

5.1 General description

Kind of test item :	Infrared Camera
Type identification :	FLIR-E7850
HMN :	-/-
PMN :	FLIR-E7850
HVIN :	E75, E85, E95
FVIN :	-/-
S/N serial number :	Rad. 78100214, 78100407, 78100411 Cond. 78100204
HW hardware status :	1
SW software status :	0.6.2
Frequency band :	UNII bands: 5150 MHz to 5250 MHz
Type of radio transmission : Use of frequency spectrum :	OFDM
Type of modulation :	(D)BPSK, (D)QPSK, 16 – QAM, 64 – QAM
Number of channels :	8 with 20 MHz channel bandwidth
Antenna :	Integrated PIFA antenna
Power supply :	3.7 V DC by VARTA 2P/LIC18650-29EC Li-ION battery

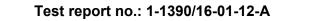
5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

1-1390/16-01-01_AnnexA 1-1390/16-01-01_AnnexB 1-1390/16-01-01_AnnexD

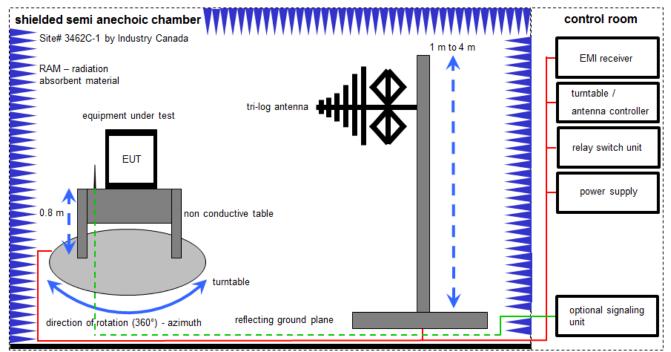
6 Description of the test setup


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated


- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

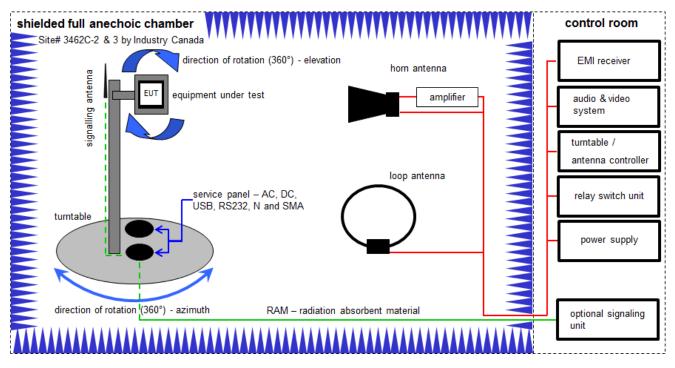
6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Example calculation:

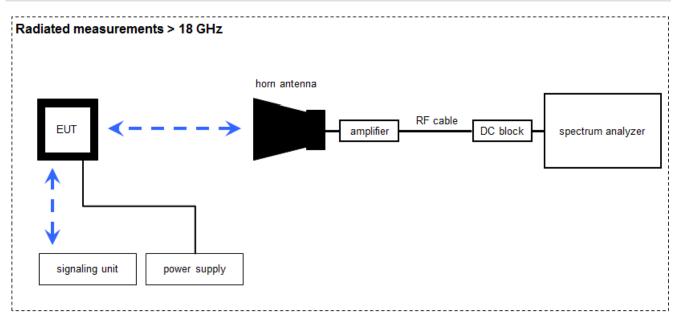
 $FS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	08.03.2016	08.03.2017
3	A	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	02.02.2016	02.02.2018
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018

6.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF


(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

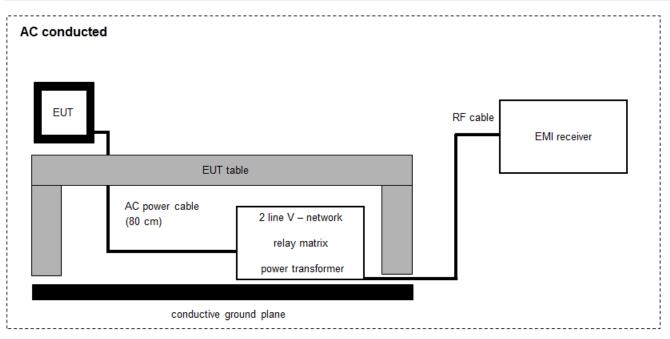
No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A, B	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	viKi!	20.05.2015	20.05.2017
2	A, B, C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A, B, C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
4	С	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
5	В	Amplifier	js42-00502650-28- 5a	Parzich GMBH	928979	300003143	ne	-/-	-/-
6	В	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne	-/-	-/-
7	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
8	В	Broadband Amplifier 5-13 GHz	CBLU5135235	CERNEX	22010	300004491	ev	-/-	-/-
9	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
10	A, B, C	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	vlKl!	13.09.2016	13.03.2018

6.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

 $FS = U_R + CA + AF$

(FS-field strength; U_R-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

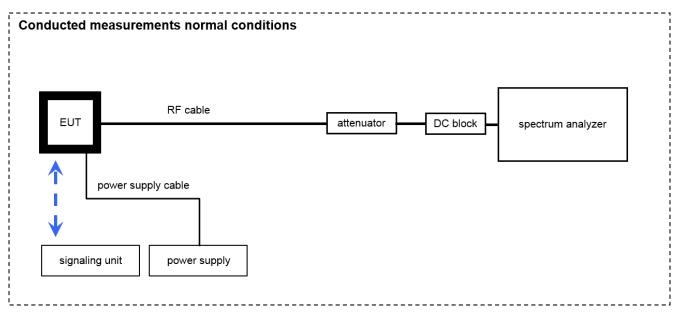

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	RF-Cable	ST18/SMAm/SMAm/ 48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
2	А	RF-Cable	ST18/SMAm/SMm/4 8	Huber & Suhner	Batch no. 127377	400001183	ev	-/-	-/-
3	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 127377	400001185	ev	-/-	-/-
4	А	Amplifier 2-40 GHz	JS32-02004000-57- 5P	MITEQ	1777200	300004541	ev	-/-	-/-
5	А	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda	-/-	300000486	k	10.09.2015	10.09.2017
6	А	Std. Gain Horn Antenna 26.5 to 40.0 GHz	V637	Narda	82-16	300000510	k	14.08.2015	14.08.2017
7	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	21.01.2016	21.01.2017

6.4 AC conducted

FS = UR + CF + VC


(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

 $\frac{Example \ calculation:}{FS \ [dB\muV/m] = 37.62 \ [dB\muV/m] + 9.90 \ [dB] + 0.23 \ [dB] = 47.75 \ [dB\muV/m] \ (244.06 \ \muV/m)}$

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	k	17.06.2016	17.06.2018
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	k	27.11.2006	-/-
3	А	AC- Spannungsquelle variabel	MV2616-V	EM-Test	0397-12	300003259	k	11.12.2015	11.12.2017
4	Α	Power Supply	NGSM 32/10	R&S	3939	400000192	vIKI!	22.01.2015	22.01.2017
5	А	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	04.02.2016	04.02.2017

6.5 Conducted measurements with peak power meter & spectrum analyzer

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	RF-Cable	ST18/SMAm/SMAm/ 60	Huber & Suhner	Batch no. 606844	400001181	ev	-/-	-/-
2	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 127377	400001185	ev	-/-	-/-
3	А	Coax Attenuator 10 dB 2W 0-40 GHz	MCL BW-K10- 2W44+	Mini Circuits	Batch no. 127377	400001186	ev	-/-	-/-
4	А	Power Supply + 2nd Power Supply	LA 2x75/2 GF	Zentro	900003	300001008	ev	-/-	-/-
5	A	PC-WLAN Tester	Intel Core i3 3220/3,3 GHz, Prozessor	MITEQ	2V2403033A45 23	300004589	ne	-/-	-/-
6	А	Teststand	Teststand Custom Sequence Editor	National Instruments GmbH	2V2403033A45 23	300004590	ne	-/-	-/-
7	Α	Switch / Control Unit	3488A	HP	2719A15013	300000151	ne	-/-	-/-
8	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	21.01.2016	21.01.2017

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

8 Measurement uncertainty

Measurement uncertainty					
Test case	Uncertainty				
Antenna gain	± 3 dB				
Power spectral density	± 1.5 dB				
Spectrum bandwidth	± 100 kHz (depends on the used RBW)				
Occupied bandwidth	± 100 kHz (depends on the used RBW)				
Maximum output power	± 1.5 dB				
Minimum emissions bandwidth	± 100 kHz (depends on the used RBW)				
Spurious emissions conducted	± 3 dB				
Spurious emissions radiated below 30 MHz	± 3 dB				
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB				
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB				
Spurious emissions radiated above 12.75 GHz	± 4.5 dB				
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB				

9 Summary of measurement results

	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
\square	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS 247, Issue 1	see table	2017-02-09	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	с	NC	NA	NP	Remark
-/-	Output power verification (conducted)	Nominal	Nominal		-/	-		-/-
-/-	Antenna gain	Nominal	Nominal		-/	-		Declared
U-NII Part 15	Duty cycle	Nominal	Nominal		-/	-		-/-
§15.407(a) RSS - 247 (6.2.1) (1) RSS - 247 (6.2.2) (1) RSS - 247 (6.2.3) (1) RSS - 247 (6.2.4) (1)	Maximum output power (conducted & radiated)	Nominal	Nominal	\boxtimes				-/-
§15.407(a) RSS - 247 (6.2.1) (1) RSS - 247 (6.2.2) (1) RSS - 247 (6.2.3) (1) RSS - 247 (6.2.4) (1)	Power spectral density	Nominal	Nominal	\boxtimes				-/-
RSS - 247 (6.2.4)	Spectrum bandwidth 6dB bandwidth	Nominal	Nominal	\boxtimes				-/-
§15.407(a)	Spectrum bandwidth 26dB bandwidth	Nominal	Nominal	\boxtimes				-/-
RSS Gen clause 6.6	Spectrum bandwidth 99% bandwidth	Nominal	Nominal		-/	-		-/-
§15.205 RSS - 247 (6.2.1) (2) RSS - 247 (6.2.2) (2) RSS - 247 (6.2.3) (2) RSS - 247 (6.2.4) (2)	Band edge compliance radiated	Nominal	Nominal	\boxtimes				-/-
§15.407(b) RSS - 247 (6.2.1) (2) RSS - 247 (6.2.2) (2) RSS - 247 (6.2.3) (2) RSS - 247 (6.2.4) (2)	TX spurious emissions radiated	Nominal	Nominal	\boxtimes				-/-
§15.109 RSS-Gen	RX spurious emissions radiated	Nominal	Nominal	\boxtimes				-/-
§15.209(a) RSS-Gen	Spurious emissions radiated < 30 MHz	Nominal	Nominal	\boxtimes				-/-
§15.107(a) §15.207	Spurious emissions conducted emissions < 30 MHz	Nominal	Nominal	\boxtimes				-/-
§15.407 RSS - 247 (6.3)	DFS	Nominal	Nominal		-/	-		Not performed!

<u>Note:</u> C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

10 Additional comments

Reference documents:	FR400	CH-587 920-02 Flir Evander antenna characterization B.pdf 971D_R01_Part15E_Texas_WG7837-T0B.pdf 971E_R01_Part15E_Texas_WG7837-T0B.pdf
Special test descriptions:	None	
Configuration descriptions:	None	
Test mode:		No test mode available. Iperf was used to ping another device with the largest support packet size
	\boxtimes	Special software is used. EUT is transmitting pseudo random data by itself
Antennas and transmit operating modes:		 <i>Equipment with 1 antenna,</i> <i>Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used,</i> <i>Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)</i>
		 Operating mode 2 (multiple antennas, no beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously but without beamforming.
		 Operating mode 3 (multiple antennas, with beamforming) Equipment operating in this mode contains a smart antenna system using two or more transmit/receive chains simultaneously with beamforming. In addition to the antenna assembly gain (G), the beamforming gain (Y) may have to be taken into account when performing the measurements.

11 Measurement results

11.1 Identify worst case data rate

Measurement:

All modes of the module will be measured with an average power meter or spectrum analyzer to identify the maximum transmission power.

In further tests only the identified worst case modulation scheme or bandwidth will be measured and this mode is used as representative mode for all other modulation schemes.

Additional the band edge compliance test will be performed in the lowest and highest modulation scheme.

Measurement parameters:

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Resolution bandwidth:	3 MHz			
Video bandwidth:	3 MHz			
Trace mode:	Max hold			
Used test setup:	See chapter 6.5 A			
Measurement uncertainty:	See chapter 8			

Results:

Modulation	Modulation scheme / bandwidth						
Frequency	5180 MHz	5240 MHz	5500 MH	5700 MHz	5745 MHz	5825 MHz	
OFDM / a – mode	6 Mbit/s	6 Mbit/s	-/-	-/-	-/-	-/-	
OFDM / n HT20 – mode	MCS0	MCS0	-/-	-/-	-/-	-/-	
Frequency	5190 MHz	5310 MHz	5510 MHz	5670 MHz	5755 MHz	5815 MHz	
OFDM / n HT40 – mode	-/-	-/-	-/-	-/-	-/-	-/-	
Frequency	5210 MHz	5290 MHz	5530 MHz	5610 MHz	5690 MHz	5775 MHz	
OFDM / ac HT80 – mode	-/-	-/-	-/-	-/-	-/-	-/-	

11.2 Gain

Description:

The antenna gain of the complete system is stated by the customer.

Limits:

Antenna Gain 6 dBi / > 6 dBi output power and power density reduction required

Results:

OFDM Band 5150 MHz to 5250 MHz	Antenna gain
Channel	UNII band 5150 MHz to 5250 MHz
Gain Declared by the manufacturer	1.0 dBi

11.3 Duty cycle

Description:

The duty cycle is necessary to compute the maximum power during an actual transmission. The shown plots and values are to show an example of the measurement procedure. The real value is measured direct during the power measurement or power density measurement. The correction value is shown in each plot of these measurements.

Measurement:

Measurement parameter						
According to: KDB789033 D02, B.						
Detector:	Peak					
Sweep time:	Auto					
Resolution bandwidth:	10 MHz					
Video bandwidth:	10 MHz					
Span:	Zero					
Trace mode: Video trigger / view / single sweep						
Used test setup: See chapter 6.5 A						
Measurement uncertainty:	See chapter 8					

<u>Results:</u>

Duty cycle and correction factor:

OFDM / a – mode:	91.02 % duty cycle	=>	0.41 dB
OFDM / n HT20 – mode:	90.69 % duty cycle	=>	0.42 dB

Plots:

Plot 1: duty cycle of the transmitter – OFDM / a – mode

Spectrum			Ē
Ref Level 26.33 dBm	RBW 10 MHz		
Att 45 dB 👄 SWT 13.	4 ms 👄 VBW 10 MHz		
SGL Count 1/1 TDF			
1Pk Clrw			
		M1[1]	14.89 dBm
20 dBm	MI aladynand wallow how was	mutherner Depunder	www.www.www.ch.t.254ms
10 dBm	T I I I I I I I I I I I I I I I I I I I	D2[1] 🕈	-22.29 dB
			4.0767 ms
) dBm			
		D2	
-10 dBm	d-40	tilov	here
	ř l		
-20 dBm			
-30 dBm			
-40 dBm			
40 UBIII			
-50 dBm			
-60 dBm			
-70 dBm			
CF 5.18 GHz	1000 pts	5	1.34 ms/
1arker			
Type Ref Trc X-value		Function	Function Result
	254 ms 14.89 dBm		
	767 ms -22.29 dB		
D3 M1 1 4.4	179 ms 0.42 dB		
Π		Ready	15.11.2016

Date: 15.NOV.2016 14:52:00

Plot 2: duty cycle of the transmitter – OFDM / n HT20 – mode

Spectrum						
Ref Level 3			👄 RBW 10 MHz			
Att		dB 👄 SWT 12.5 ms	VBW 10 MHz			
SGL Count	1/1	TDF				
●1Pk Clrw						
20 dBm				M1[1]		15.22 dBn
20 dBm	տ 🌾 🗝	agentered and a second second and a second	onhorsements Djabers	Myseludenar Ummeredan	monumber day	mannered 826. tops
10 dBm			1	D2[1]		-22.59 dE 3.7778 ms
				I.	1 1	3.7778 ms
0 dBm						
			D2			
-10 dBm	trange		- the		puth	
-20 dBm						
-30 dBm						
1.0.10						
-40 dBm						
-50 dBm						
-50 0.0111						
-60 dBm						
oo abiii						
-70 dBm						
CF 5.18 GH	7		1000 p	ts		1.25 ms/
Marker	2		1000 p			1.23 1137
	Trc	X-value	Y-value	Function	Eunctio	on Result
M1	1	1.8764 m		Function	Function	JII KESUIL
D2 M:		3.7778 m				
D3 M:		4.1656 m				
	1					M2 15.11.2016
				Ready		14.11.11

Date: 15.NOV.2016 14:38:43

11.4 Maximum output power

11.4.1 Maximum output power conducted – for FCC requirements

Description:

Measurement of the maximum output power conduced

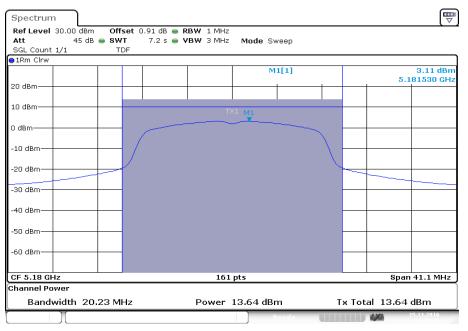
Measurement:

Measurement parameter				
According to: KDB789033 D02, E.2.e.				
Detector:	RMS			
Sweep time:	≥10*(swp points)*(total on/off time)			
Resolution bandwidth:	1 MHz			
Video bandwidth:	3 MHz			
Span:	> EBW			
Trace mode:	Max hold			
Analyzer function	Band power / channel power Interval > 26 dB EBW			
Used test setup:	See chapter 6.5 A			
Measurement uncertainty:	See chapter 8			

Limits:

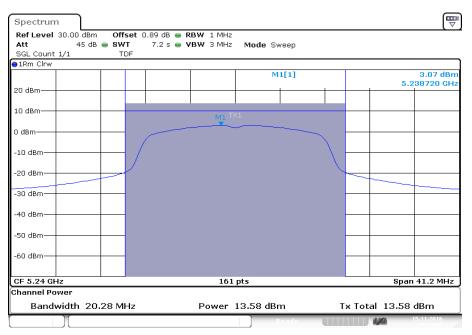
Radiated output power	Conducted output power for mobile equipment
Conducted power + 6 dBi antenna gain	250mW 5.150-5.250 GHz

Result: OFDM / a - mode


OFDM / a – mode	Maxin	num output pov	ver conducted [dBm]
Channel	5180 MHz	5240 MHz		
	13.64	13.58		

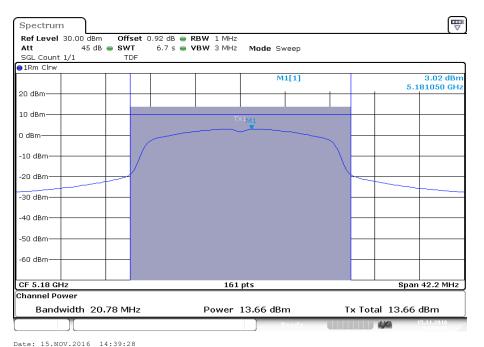
Result: OFDM / n HT20 - mode

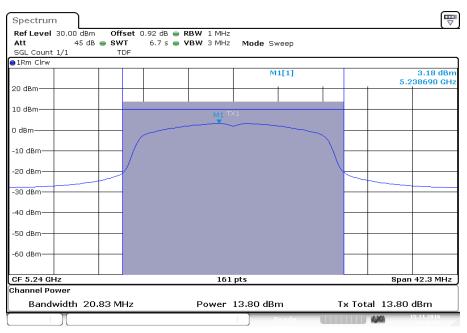
OFDM / n HT20 – mode	Maxin	num output pov	ver conducted [dBm]
Channel	5180 MHz	5240 MHz		
	13.66	13.80		


Plots: OFDM / a – mode

Plot 1: 5180 MHz

Date: 15.NOV.2016 14:52:45


Plot 2: 5240 MHz


Date: 15.NOV.2016 14:33:00

Plots: OFDM / n HT20 - mode

Plot 1: 5180 MHz

Plot 2: 5240 MHz

Date: 15.NOV.2016 14:42:03

11.4.2 Maximum output power – for IC requirements

Description:

Measurement of the maximum output power conduced + radiated

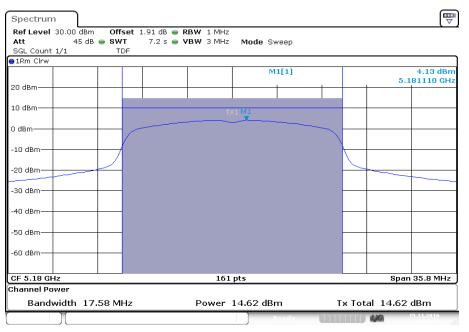
Measurement:

Measurement parameter			
Detector:	RMS		
Sweep time:	≥10*(swp points)*(total on/off time)		
Resolution bandwidth:	1 MHz		
Video bandwidth:	≥ 3 MHz		
Span:	> EBW		
Trace mode:	Max hold		
Analyzer function	Band power / channel power Interval > 99% OBW		
Used test setup:	See chapter 6.5 A		
Measurement uncertainty:	See chapter 8		

Limits:

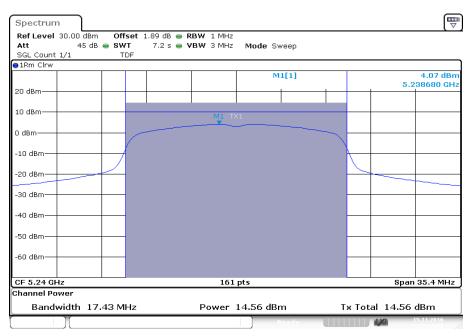
Radiated output power	Conducted output power for mobile equipment
The lesser one of 200 mW or 10 dBm + 10 log Bandwidth 5.150-5.250 GHz	-/-

Result: OFDM / a - mode


OFDM / a – mode		Maximum outpu	ut power [dBm]	
Channel	5180 MHz	5240 MHz		
conducted	14.62	14.56		
radiated	15.62	15.56		

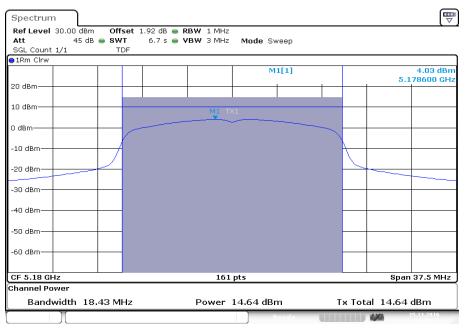
Result: OFDM / n HT20 - mode

OFDM / n HT20 – mode		Maximum outpu	ut power [dBm]	
Channel	5180 MHz	5240 MHz		
conducted	14.64	14.76		
radiated	15.64	15.76		

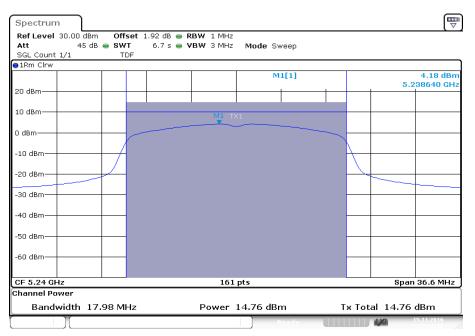

Plots: OFDM / a – mode

Plot 1: 5180 MHz

Date: 15.NOV.2016 14:52:54


Plot 2: 5240 MHz

Date: 15.NOV.2016 14:33:09


Plots: OFDM / n HT20 - mode

Plot 1: 5180 MHz

Date: 15.NOV.2016 14:39:37

Plot 2: 5240 MHz

Date: 15.NOV.2016 14:42:12

11.5 Power spectral density

11.5.1 Power spectral density – for FCC requirements

Description:

Measurement of the power spectral density of a digital modulated system. The measurement is repeated at the lowest, middle and highest channel.

Measurement:

Measurement parameter			
According to: KDB789033 D02, F.			
Detector:	RMS		
Sweep time:	≥10*(swp points)*(total on/off time)		
Resolution bandwidth:	1 MHz (500 kHz for 5.8 GHz band)		
Video bandwidth:	≥ 3xRBW		
Span:	> EBW		
Trace mode:	Max hold		
Used test setup:	See chapter 6.5 A		
Measurement uncertainty:	See chapter 8		

Limits:

Power Spectral Density

power spectral density conducted ≤ 11 dBm in any 1 MHz band (band 5150 – 5250 MHz)

Result: OFDM / a - mode

OFDM / a – mode	Po	ower spectral de	ensity [dBm/MH	lz]
Channel	5180 MHz	5240 MHz		
	3.11	3.07		

Result: OFDM / n HT20 - mode

OFDM / n HT20 – mode	Po	ower spectral de	ensity [dBm/MH	z]
Channel	5180 MHz	5240 MHz		
	3.02	3.18		

11.5.2 Power spectral density – for IC requirements

Description:

Measurement of the power spectral density of a digital modulated system. The measurement is repeated at the lowest, middle and highest channel.

Measurement:

Measurement parameter			
Detector:	RMS		
Sweep time:	≥10*(swp points)*(total on/off time)		
Resolution bandwidth:	1 MHz (500 kHz for 5.8 GHz band)		
Video bandwidth:	≥ 3xRBW		
Span:	> EBW		
Trace mode:	Max hold		
Used test setup:	See chapter 6.5 A		
Measurement uncertainty:	See chapter 8		

Limits:

Power Spectral Density

power spectral density e.i.r.p. \leq 10 dBm in any 1 MHz band (band 5150 – 5250 MHz)

Result: OFDM / a - mode

OFDM / a – mode	Power spectral density [dBm/MHz]			
Channel	5180 MHz	5240 MHz		
	4.13	4.07		

Result: OFDM / n HT20 - mode

OFDM / n HT20 – mode	Power spectral density [dBm/MHz]			
Channel	5180 MHz	5240 MHz		
	4.03	4.18		

11.6 Spectrum bandwidth – 26 dB bandwidth

Description:

Measurement of the 26 dB bandwidth of the modulated signal.

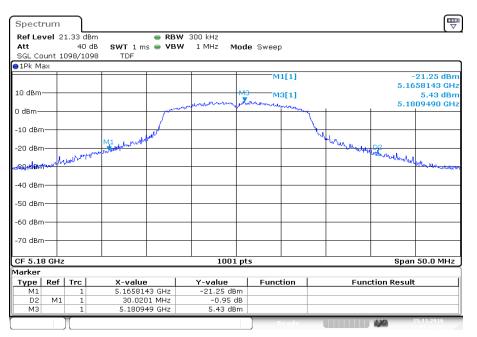
Measurement:

Measurement parameter			
According to: KDB789033 D02, C.1.			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	1% EBW		
Video bandwidth:	≥ RBW		
Span:	> complete signal!		
Trace-Mode:	Max hold		
Used test setup:	See chapter 6.5 A		
Measurement uncertainty:	See chapter 8		

Limits:

Spectrum Bandwidth – 26 dB Bandwidth

-/-


<u>Result:</u>

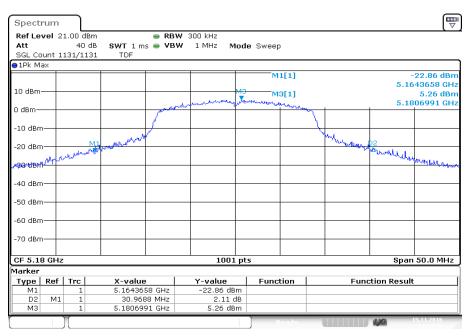
OFDM / a – mode	26 dB bandwidth [MHz]			
Channel	5180 MHz	5240 MHz		
	30.02	31.37		

OFDM / n HT20 – mode	26 dB bandwidth [MHz]			
Channel	5180 MHz	5240 MHz		
	30.97	26.22		

Plots: OFDM / a – mode

Plot 1: 5180 MHz

Date: 15.NOV.2016 14:52:07


Plot 2: 5240 MHz

Spectrum						Ē
Ref Level 3 Att SGL Count 3	40	dB SWT 1 ms 👄 V	BW 300 kHz BW 1 MHz Mod	le Sweep		
●1Pk Max				M1[1]		-23.02 dBn
				(interior)		5.2239160 GH
10 dBm			when when when when when when when when	M3[1]		5.33 dBn 5.2408991 GH
0 dBm			when the state	and and how of	1 1	0.2400991 011
-10 dBm		1		\		
-10 0.011		a nave No			Maralin .	
-20 dBm	Abr.	July water and the second			whenhad	Phyline
30.dBrokelent	Mandan	M1 Marting Under the Work				12 Marthanthathathathathathan
-40 dBm						
-40 aBm						
-50 dBm						
-60 dBm						
-70 dBm						
CF 5.24 GH	z		1001 pt	is I		Span 50.0 MHz
Marker						
Type Ref		X-value	Y-value	Function	Func	tion Result
M1 D2 M1	1	5.223916 GHz 31.3687 MHz				
M3	1	5.2408991 GHz				
	1			Ready		15.11.2016

Date: 15.NOV.2016 14:32:31

Plots: OFDM / n HT20 - mode

Plot 1: 5180 MHz

Date: 15.NOV.2016 14:38:50

Plot 2: 5240 MHz

Spectrum								□
Ref Level : Att SGL Count	40	dB SWT 1 ms 👄 V	BW 300 kHz BW 1 MHz M	ode Swee	эр			
●1Pk Max								
					M1[1]			-21.63 dBm 265134 GHz
10 dBm			ма		M3[1]		3.2	6.00 dBn
			mention	mound			5.2	372029 GH
0 dBm			and the second s			~		
						ΔI		
-10 dBm						- M		
20 dBm		M1 Jun W				Welly D2		
-20 08111		add to the States				1 Store	WHY WHE ARE	
Raudbarry	M	M1 www.frondoordalar					white when t	Manda Comercia
-40 dBm								
-50 dBm								
-50 UBIII								
-60 dBm								
-70 dBm								
CF 5.24 GH	z		1001	pts			Spai	n 50.0 MHz
Marker								
Type Ref		X-value	Y-value		ction	F	unction Resul	t
M1 D2 M3	1	5.2265134 GHz 26.2236 MHz	-21.63 dB 1.06 c					
D2 M: M3	L 1	26.2236 MHz 5.2372029 GHz	1.06 c 6.00 dB					
	1 1	5.2572029 GHz	0.00 ub					45 11 2016
							4,70	14:41:34

Date: 15.NOV.2016 14:41:34

11.7 Occupied bandwidth – 99% emission bandwidth

Description:

Measurement of the 99% bandwidth of the modulated signal acc. RSS-GEN.

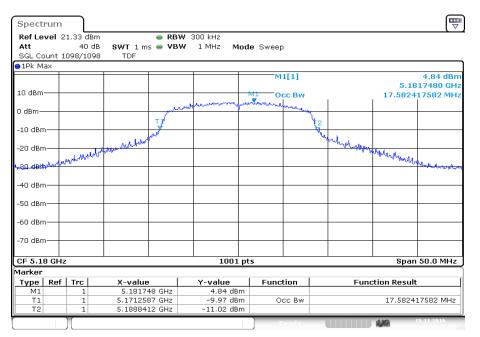
Measurement:

Measurement parameter					
Detector:	Peak				
Sweep time:	Auto				
Resolution bandwidth:	300 kHz / 500 kHz				
Video bandwidth:	1 MHz / 3 MHz				
Span:	50 MHz / 100 MHz				
Measurement procedure:	Measurement of the 99% bandwidth using the integration function of the analyzer				
Trace mode:	Max hold (allow trace to stabilize)				
Test setup:	See sub clause 6.5 A				
Measurement uncertainty:	See sub clause 8				

<u>Usage:</u>

-/-	IC				
Occupied Bandwidth – 99% emission bandwidth					
OBW is necessary for Emission Designator					

<u>Result:</u>


OFDM / a – mode	99% bandwidth [kHz]			
Channel	5180 MHz	5240 MHz		
	17582	17433		

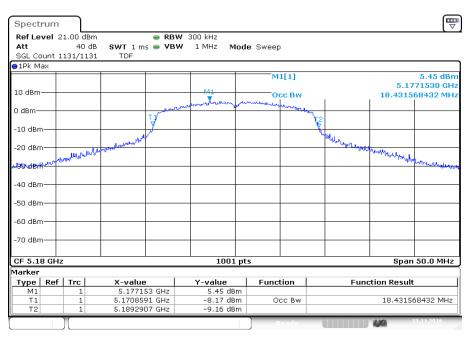
<u>Result:</u>

OFDM / n HT20 – mode	99% bandwidth [kHz]			
Channel	5180 MHz	5240 MHz		
	18432	17982		

Plots: OFDM / a – mode

Plot 1: 5180 MHz

Date: 15.NOV.2016 14:52:35


Plot 2: 5240 MHz

10 dBm M1[1] 5.80 dBm 10 dBm M1 Occ Bw 17.432567433 MHz 0 dBm T T C -10 dBm T C C -20 dBm T C C -20 dBm T C C -30 dBm C C C -20 dBm C C C	Spectrum						
10 dBm M1[1] 5.80 dBm 10 dBm M1 Occ Bw 17.432567433 MHz 0 dBm T T C -10 dBm T C C -20 dBm T C C -20 dBm T C C -30 dBm C C C -20 dBm C C C	Att	40	dB SWT 1 ms 👄 V		le Sweep		x
10 dBm M1 Occ Bw 17.432567433 MHz 0 dBm Tj Tj Tz -10 dBm Tj Tz Tz -20 dBm Tj Tz Tz -20 dBm Tz Tz -20 dBm	●1Pk Max		r				
10 dBm 0 cc Bw 17.432567433 MH; 0 dBm 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					M1[1]		
0 d8m	10 dBm				Occ Bw		
-10 dBm					mare mulere a	1	
-10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -71 1 1 5.238302 GHz T1 1 5.238302 GHz -8.80 dBm -9.15 dBm -9.15 dBm -1.10 dBm	0 dBm				and the second		
-20 dBm	10 dBm					12	
40 dBm -50 dBm -60 dBm -70	-10 0011		and the			Wyme -	
40 dBm -50 dBm -60 dBm -70	-20 dBm		Larl or All and the Area			"Whith the white	hiltere
40 dBm -50 dBm -60 dBm -70		shill ward	-1 ^{60,1} 1				mond resserves the second
40 dBm -50 dBm -60 dBm -70	HOO DRA						
-50 dBm -60 dBm -70							
-60 dBm -70							
Type Ref Trc X-value Y-value Function Function Result M1 1 5.238302 GHz 5.80 dBm	-50 dBm						
Type Ref Trc X-value Y-value Function Function Result M1 1 5.238302 GHz 5.80 dBm	co do-						
CF 5.24 GHz 1001 pts Span 50.0 MHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 5.238302 GHz 5.80 dBm 1	-60 dBm						
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 5.238302 GHz 5.80 dBm T1 1 5.2313087 GHz -9.15 dBm Occ Bw 17.432567433 MHz T2 1 5.2487413 GHz -10.10 dBm	-70 dBm						
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 5.238302 GHz 5.80 dBm T1 1 5.2313087 GHz -9.15 dBm Occ Bw 17.432567433 MHz T2 1 5.2487413 GHz -10.10 dBm							
Type Ref Trc X-value Y-value Function Function Result M1 1 5.238302 GHz 5.80 dBm T1 1 5.2313087 GHz -9.15 dBm Occ Bw 17.432567433 MHz T2 1 5.2487413 GHz -10.10 dBm	CF 5.24 GH	z		1001 p	ts		Span 50.0 MHz
M1 1 5.238302 GHz 5.80 dBm T1 1 5.2313087 GHz -9.15 dBm Occ Bw 17.432567433 MHz T2 1 5.2487413 GHz -10.10 dBm	Marker						
T1 1 5.2313087 GHz -9.15 dBm Occ Bw 17.432567433 MHz T2 1 5.2487413 GHz -10.10 dBm					Function	Fun	ction Result
T2 1 5.2487413 GHz -10.10 dBm					Occ Bw		17 432567433 MHz
pagete 15.11.2016					000 000		11.132307433 MHZ
		71			De adv		15.11.2016

Date: 15.NOV.2016 14:32:51

Plots: OFDM / n HT20 - mode

Plot 1: 5180 MHz

Date: 15.NOV.2016 14:39:19

Plot 2: 5240 MHz

₽ Spectrum Ref Level 22.02 dBm RBW 300 kHz Att 40 dB SGL Count 1128/1128 SWT 1 ms 👄 VBW 🛛 1 MHz Mode Sweep TDF ⊖1Pk Max M1[1] 5.70 dBm 5.2426970 GHa 10 dBm -Occ Bw 17.982017982 MH T. 0 dBm--10 dBm guto all protection of the second -20 dBm Jours Markey -**30.**d8 40 dBm -50 dBm -60 dBm -70 dBm CF 5.24 GHz Span 50.0 MHz 1001 pts Marker **Y-value** 5.70 dBm -5.76 dBm -5.30 dBm X-value 5.242697 GHz Type Ref Trc 1 Function Function Result M1 T1 T2 5.2310589 GHz 5.249041 GHz Occ Bw 17.982017982 MHz LXI

Date: 15.NOV.2016 14:41:54

11.8 Band edge compliance radiated

Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to the lowest channel for the lower restricted band and to the highest channel for the upper restricted band. Measurement distance is 3m.

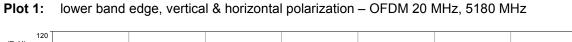
Measurement:

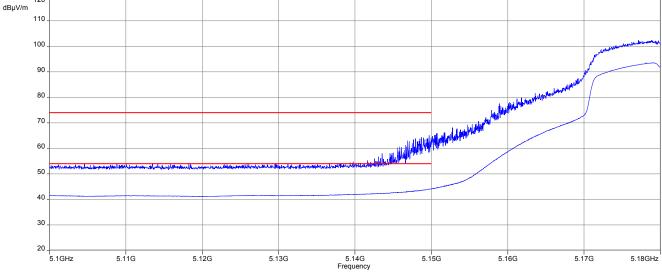
Measurement parameter					
Detector:	Peak / RMS				
Sweep time:	Auto				
Resolution bandwidth:	1 MHz				
Video bandwidth:	≥ 3 x RBW				
Span:	See plots!				
Trace – mode:	Max Hold				
Test setup:	See sub clause 6.2 A				
Measurement uncertainty:	See sub clause 8				

Limits:

Band Edge Compliance Radiated

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).


74 dBμV/m (peak)	
54 dBµV/m (average)	


<u>Result:</u>

Scenario	Band Edge Compliance Radiated [dBµV/m]
band edge	< 74 dBµV/m (peak) < 54 dBµV/m (average)

Plots:

11.9 TX spurious emissions radiated

Description:

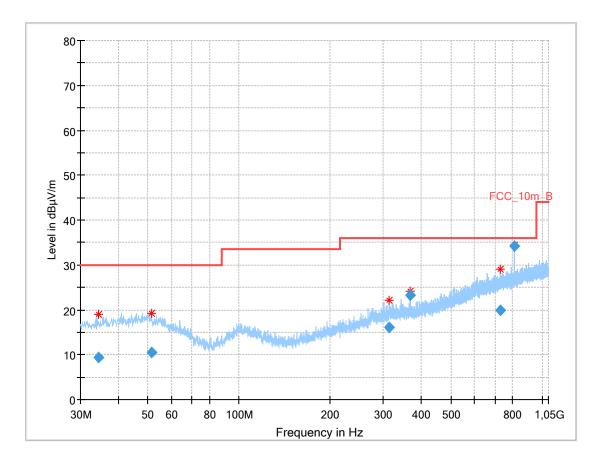
Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at lowest, middle and highest channel.

Measurement:

Measureme	Measurement parameter					
Detector:	Quasi Peak below 1 GHz (alternative Peak) Peak above 1 GHz / RMS					
Sweep time:	Auto					
Resolution bandwidth:	F < 1 GHz: F > 1 GHz:	100 kHz 1 MHz				
Video bandwidth:	F < 1 GHz: F > 1 GHz:	100 kHz ≥ 3 MHz / 1 MHz				
Span:	30 MHz to 40 GHz					
Trace – mode:	Max Hold / Average with 100 counts + 20 log (1 / X) for duty cycle lower than 100 %					
Test setup:	See sub clause 6.1 A See sub clause 6.2 B See sub clause 6.3 A					
Measurement uncertainty:	See sub clause 8					

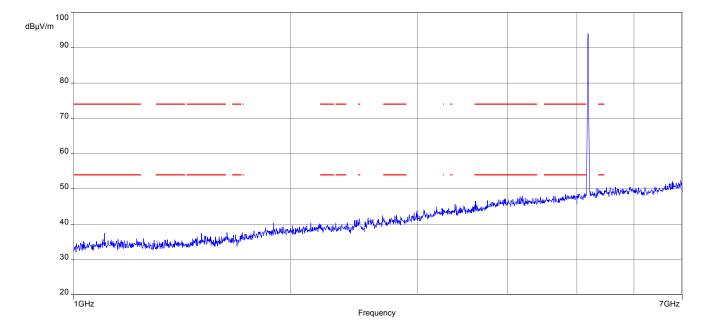
Limits:

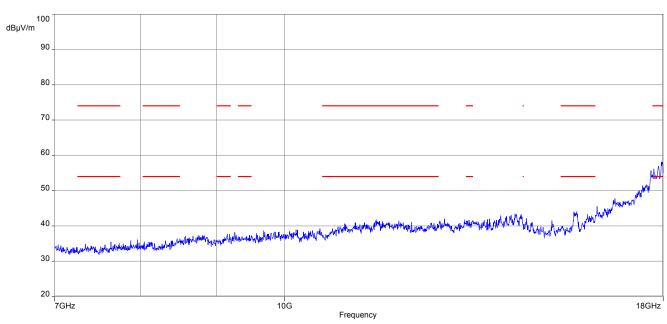
	TX Spurious Emissions Radiated						
	§15.209						
Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance					
30 - 88	30.0	10					
88 – 216	33.5	10					
216 – 960	36.0	10					
Above 960	54.0	3					
§15.407							
Outside the restricted bands! -27 dBm / MHz							


Results: OFDM (20 MHz bandwidth)

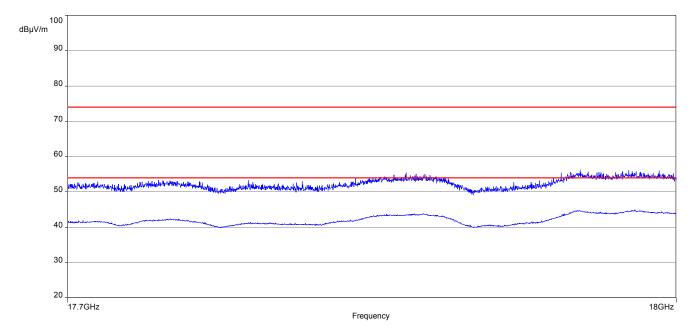
	TX Spurious Emissions Radiated [dBµV/m] / dBm								
Lowest channel 5180 MHz			-/-			Highest channel 5240 MHz			
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	
-/-	Peak	-/-				,	Peak	-/-	
-/-	AVG	-/-				-/-	AVG	-/-	
,	Peak	-/-					Peak	-/-	
-/-	AVG	-/-				-/-	AVG	-/-	
	For emissions below 1 GHz, please lock at the table below the 1 GHz plot.			-1-		For emissions below 1 GHz, please lock at the table below the 1 GHz plot.			
No emissions detected between 1 GHz and 18 GHz.					No emissions detected between GHz and 18 GHz.				
	For emissions above 18 GHz please take look at the plots.						ons above 18 look at the p		

Plots: OFDM / 20 MHz bandwidth

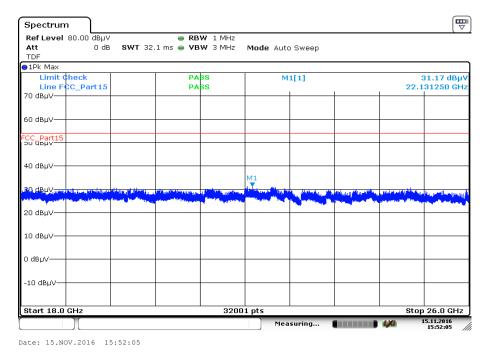

Plot 1: 30 MHz to 1 GHz, 5180 MHz, vertical & horizontal polarization


Final_Result:

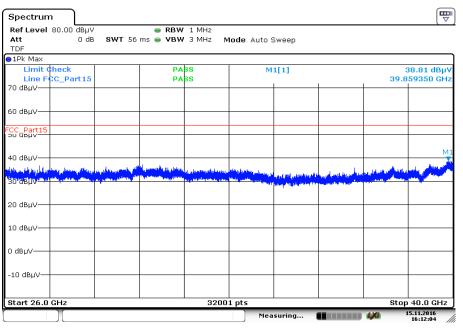
Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
34.359150	9.43	30.00	20.57	1000.0	120.000	100.0	V	100.0	12.6
51.406800	10.61	30.00	19.39	1000.0	120.000	178.0	V	268.0	13.5
313.188750	16.17	36.00	19.83	1000.0	120.000	185.0	Н	205.0	14.8
367.647450	23.29	36.00	12.71	1000.0	120.000	185.0	Н	340.0	16.3
729.645450	19.93	36.00	16.07	1000.0	120.000	185.0	V	77.0	22.2
808.775400	34.13	36.00	1.87	1000.0	120.000	98.0	Н	174.0	22.9



Plot 2: 1 GHz to 7 GHz, 5180 MHz, vertical & horizontal polarization

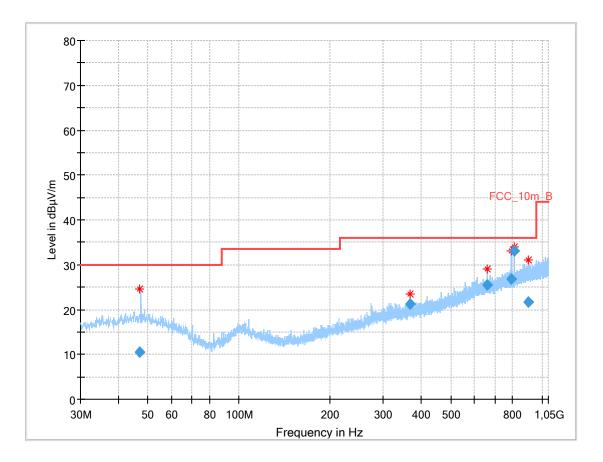


Plot 3: 7 GHz to 18 GHz, 5180 MHz, vertical & horizontal polarization



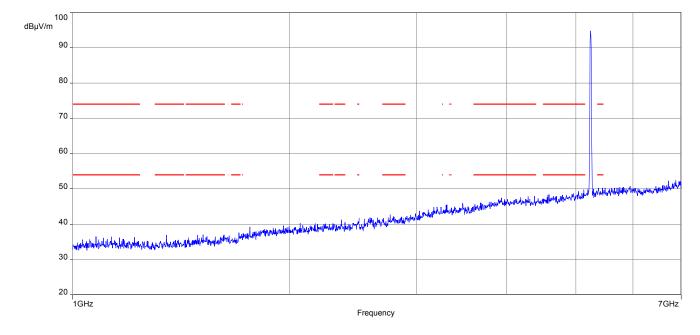
Plot 4: 17.7 GHz to 18 GHz, 5180 MHz, vertical & horizontal polarization

Plot 5: 18 GHz to 26 GHz, 5180 MHz, vertical & horizontal polarization

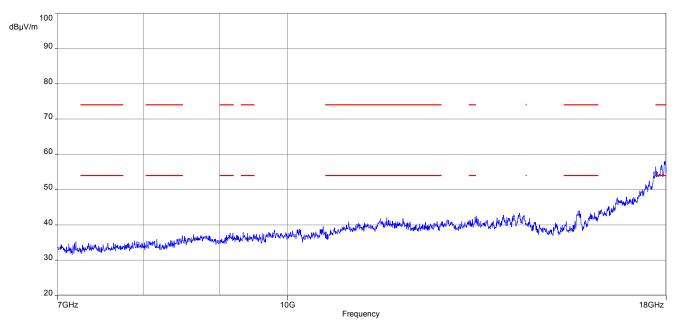


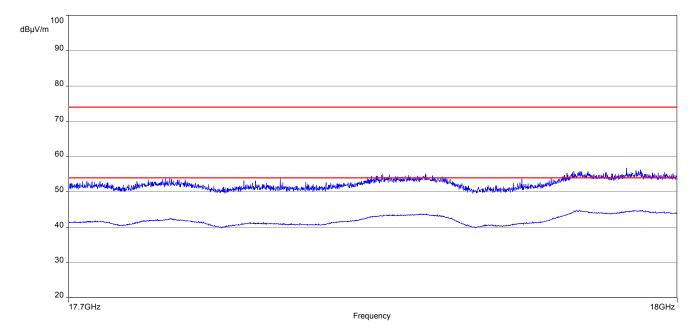
Plot 6: 26 GHz to 40 GHz, 5180 MHz, vertical & horizontal polarization

Date: 15.NOV.2016 16:12:04

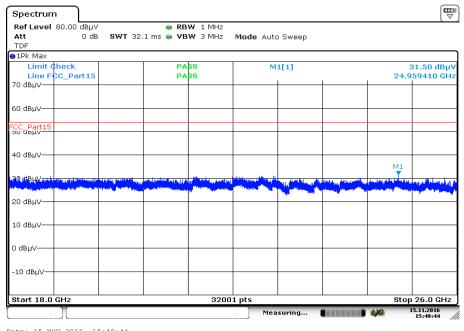

Plot 7: 30 MHz to 1 GHz, 5240 MHz, vertical & horizontal polarization

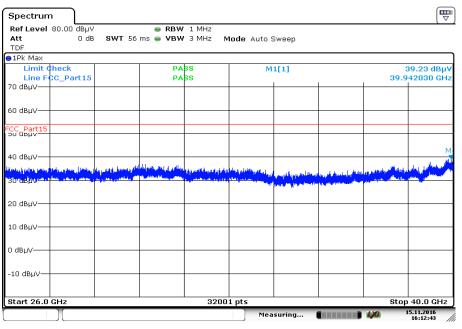
Final_Result:


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
46.915200	10.46	30.00	19.54	1000.0	120.000	101.0	V	27.0	13.7
367.618350	21.18	36.00	14.82	1000.0	120.000	101.0	Н	333.0	16.3
661.699950	25.44	36.00	10.56	1000.0	120.000	98.0	Н	285.0	21.2
791.976150	26.85	36.00	9.15	1000.0	120.000	98.0	Н	175.0	22.7
808.765950	33.10	36.00	2.90	1000.0	120.000	98.0	Н	186.0	22.9
899.134950	21.68	36.00	14.32	1000.0	120.000	98.0	Н	221.0	24.2



Plot 8: 1 GHz to 7 GHz, 5240 MHz, vertical & horizontal polarization





Plot 10: 17.7 GHz to 18 GHz, 5240 MHz, vertical & horizontal polarization

Plot 11: 18 GHz to 26 GHz, 5240 MHz, vertical & horizontal polarization

Date: 15.NOV.2016 15:49:44

Plot 12: 26 GHz to 40 GHz, 5240 MHz, vertical & horizontal polarization

Date: 15.NOV.2016 16:12:43

11.10 RX spurious emissions radiated

Description:

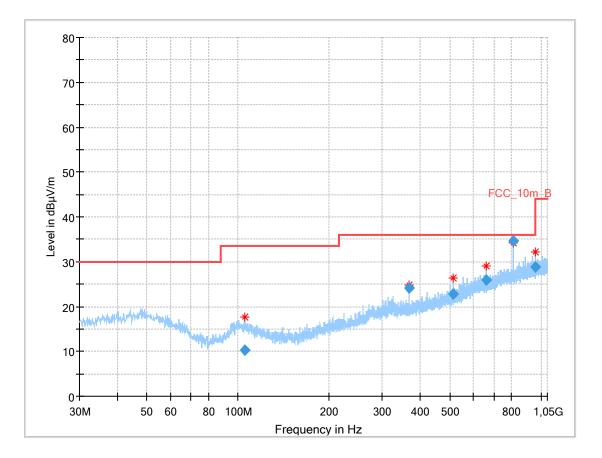
Measurement of the radiated spurious emissions in idle/receive mode.

Measurement:

Measurement parameter					
Detector:	Quasi Peak below 1 GHz (alternative Peak)				
	Peak above 1 GHz / RMS				
Sweep time:	Auto				
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz				
Video bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: ≥ 3 MHz				
Span:	30 MHz to 40 GHz				
Trace mode:	Max Hold / Average with 100 counts + 20 log (1 / X) for duty cycle lower than 100 %				
Test setup:	See sub clause 6.2 B				
Measurement uncertainty:	See sub clause 8				

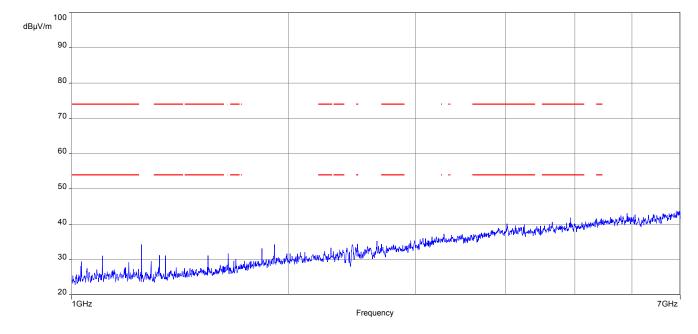
Limits:

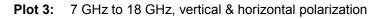
RX Spurious Emissions Radiated						
Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance				
30 - 88	30.0	10				
88 – 216	33.5	10				
216 – 960	36.0	10				
Above 960	54.0	3				

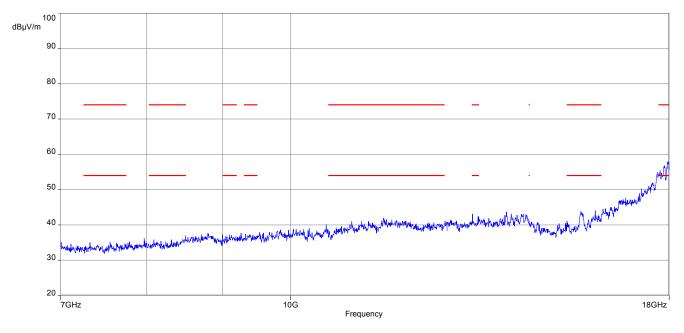

Results:

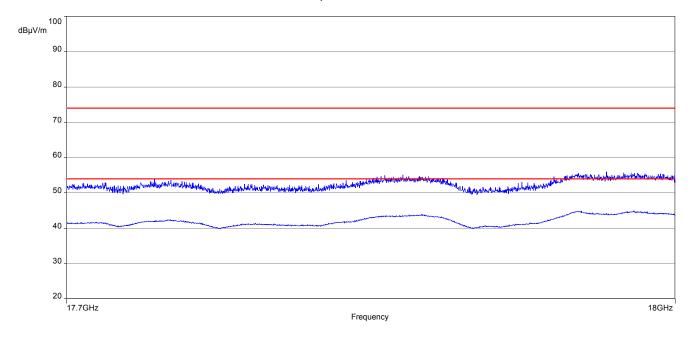
RX Spurious Emissions Radiated [dBµV/m]						
F [MHz] Detector Level [dBµV/m]						
For emissions below 1 GHz, please lock at the table below the 1 GHz plot.						
No emissions detected between 1 GHz and 18 GHz.						
For emis	sions above 18 GHz please take look at th	ne plots.				

Plots:

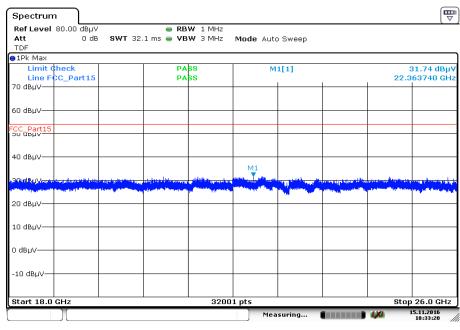

Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization

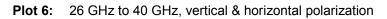

Final_Result:

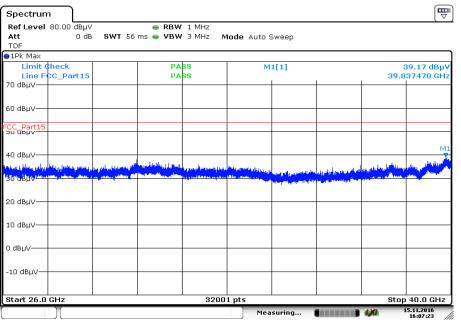

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
104.961150	10.25	33.50	23.25	1000.0	120.000	101.0	V	30.0	11.6
367.637400	24.03	36.00	11.97	1000.0	120.000	185.0	Н	134.0	16.3
514.672500	22.87	36.00	13.13	1000.0	120.000	179.0	Н	116.0	18.9
661.704450	25.88	36.00	10.12	1000.0	120.000	100.0	Н	349.0	21.2
808.761600	34.53	36.00	1.47	1000.0	120.000	98.0	Н	157.0	22.9
955.817850	28.83	36.00	7.17	1000.0	120.000	98.0	Н	123.0	24.4



Plot 2: 1 GHz to 7 GHz, vertical & horizontal polarization






Plot 4: 17.7 GHz to 18 GHz, vertical & horizontal polarization

Plot 5: 18 GHz to 26 GHz, vertical & horizontal polarization

Date: 15.NOV.2016 18:33:20

Date: 15.NOV.2016 16:07:23

11.11 Spurious emissions radiated < 30 MHz

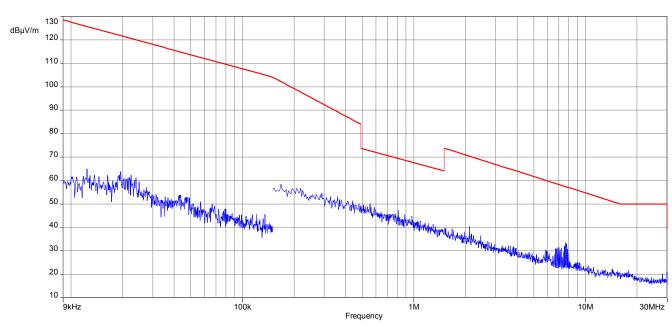
Description:

Measurement of the radiated spurious emissions in transmit mode and receive mode below 30 MHz. The EUT is set first to middle channel. This measurement is representative for all channels and modes. If critical peaks are found the lowest channel and the highest channel will be measured too. Then the EUT is set to receive or idle mode. The limits are recalculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

Measurement:

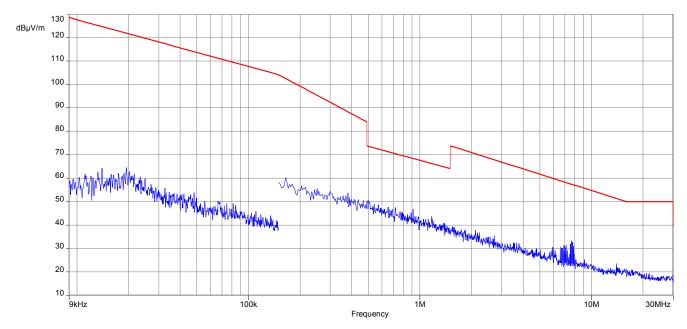
Measurement parameter					
Detector:	Peak / Quasi Peak				
Sweep time:	Auto				
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz				
Span:	9 kHz to 30 MHz				
Trace – mode: Max Hold					
Test setup: See sub clause 6.2 C					
Measurement uncertainty:	See sub clause 8				

Limits:


Spurious Emissions Radiated < 30 MHz					
Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance			
0.009 – 0.490	2400/F(kHz)	300			
0.490 – 1.705	24000/F(kHz)	30			
1.705 – 30.0	30	30			

Results:

Spurious Emissions Radiated < 30 MHz [dBµV/m]						
F [MHz] Detector Level [dBµV/m]						
All detected emissions are more than 20 dB below the limit.						



Plots:

Plot 1: 9 kHz to 30 MHz, OFDM 20 MHz, 5180 MHz

Plot 2: 9 kHz to 30 MHz, OFDM 20 MHz, 5240 MHz

11.12 Spurious emissions conducted < 30 MHz

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to middle channel. If critical peaks are found the lowest channel and the highest channel will be measured too. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

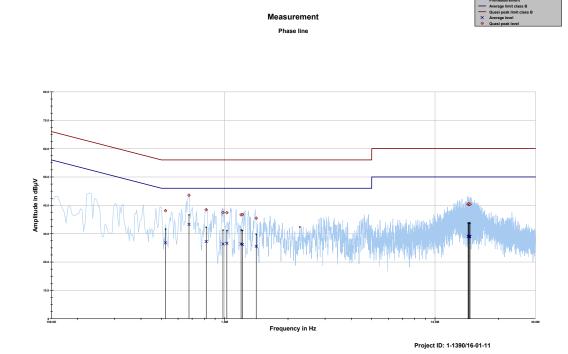
Measurement:

Measurement parameter				
Detector:	Peak - Quasi Peak / Average			
Sweep time:	Auto			
Video bandwidth:	9 kHz			
Resolution bandwidth:	100 kHz			
Span:	150 kHz to 30 MHz			
Trace – mode:	Max Hold			
Test setup:	See sub clause 6.4 A			
Measurement uncertainty:	See sub clause 8			

Limits:

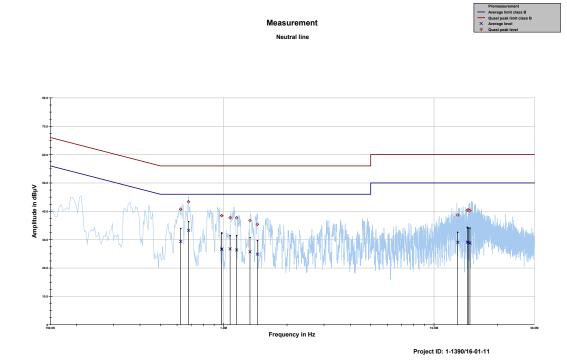
Spurious Emissions Conducted < 30 MHz					
Frequency (MHz)	Quasi-Peak (dBµV/m)	Average (dBµV/m)			
0.15 – 0.5	66 to 56*	56 to 46*			
0.5 – 5	56	46			
5 – 30.0	60	50			

*Decreases with the logarithm of the frequency


Results:

Spurious Emissions Conducted < 30 MHz [dBµV/m]				
F [MHz]	Detector	Level [dBµV/m]		
All detected emissions are more than 20 dB below the limit.				

Plots:


Plot 1: 150 kHz to 30 MHz, phase line

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.522919	38.10	17.90	56.000	26.79	19.21	46.000
0.676320	43.58	12.42	56.000	33.27	12.73	46.000
0.816828	38.43	17.57	56.000	27.23	18.77	46.000
0.981097	37.50	18.50	56.000	26.38	19.62	46.000
1.024143	37.38	18.62	56.000	26.59	19.41	46.000
1.195907	36.63	19.37	56.000	26.40	19.60	46.000
1.214471	36.75	19.25	56.000	26.19	19.81	46.000
1.411336	35.46	20.54	56.000	25.53	20.47	46.000
14.359560	40.35	19.65	60.000	29.10	20.90	50.000
14.454061	40.53	19.47	60.000	29.08	20.92	50.000
14.580180	40.32	19.68	60.000	29.00	21.00	50.000
14.665834	40.37	19.63	60.000	28.93	21.07	50.000

Plot 2: 150 kHz to 30 MHz, neutral line

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.624863	40.74	15.26	56.000	29.36	16.64	46.000
0.680382	43.36	12.64	56.000	33.30	12.70	46.000
0.978189	38.46	17.54	56.000	26.61	19.39	46.000
0.979038	38.43	17.57	56.000	26.71	19.29	46.000
1.072460	37.72	18.28	56.000	26.76	19.24	46.000
1.151821	37.71	18.29	56.000	26.37	19.63	46.000
1.333267	36.78	19.22	56.000	25.72	20.28	46.000
1.445692	35.38	20.62	56.000	24.88	21.12	46.000
12.961744	38.68	21.32	60.000	29.10	20.90	50.000
14.385329	40.34	19.66	60.000	29.14	20.86	50.000
14.539006	40.52	19.48	60.000	29.02	20.98	50.000
14.815537	40.18	19.82	60.000	28.79	21.21	50.000

12 Observations

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2016-12-15
A	5250 MHz to 5350 MHz band removed	2017-02-09

Annex B Further information

<u>Glossary</u>

AVG	-	Average
DUT	-	Device under test
EMC	-	Electromagnetic Compatibility
EN	-	European Standard
EUT	-	Equipment under test
ETSI	-	European Telecommunications Standard Institute
FCC	-	Federal Communication Commission
FCC ID	-	Company Identifier at FCC
HW	-	Hardware
IC	-	Industry Canada
Inv. No.	-	Inventory number
N/A	-	Not applicable
PP	-	Positive peak
QP	-	Quasi peak
S/N	-	Serial number
SW	-	Software
PMN	-	Product marketing name
HMN	-	Host marketing name
HVIN	-	Hardware version identification number
FVIN	-	Firmware version identification number
OBW		Occupied Bandwidth
OC		Operating Channel
OCW		Operating Channel Bandwidth
OOB		Out Of Band

Annex C Accreditation Certificate

Front side of certificate Back side of certificate DAkkS Deuts he itierungsstelle Deutsche Akkreditierungsstelle GmbH Deutsche Akkreditierungsstelle GmbH Beliehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung Standort Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main Standort Braunschwe Bundesallee 100 38116 Braunschweig Standort Berlin Spittelmarkt 10 10117 Berlin Akkreditierung Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen: Funk Mobilitunk (GSM / DCS) + OTA Elektromagnetische Verträglichkeit (EMV) Produktsicherheit SAR / EMF Umwelt Smart Card Technology Bluetooth* Automotive Wi-Fi-Services Kanadische Anforderungen US-Anforderungen Akustik Die auszugsweise Veröffentlichung der Akkreditierungsurkunde bedarf der vorherigen schriftlicher Zustimmung der Deutsche Akkreditierungsstelle GmbH (DAAKS). Ausgenommen davon ist die sepa Weiterverbreitung des Deckblattes durch die umseitig genannte Konformitätsbewertungsstelle in umverändertter Form. Es darf nicht der Anschein erweckt werden, dass sich die Akkreditierung auch auf Ber die über den durch die DAkkS bestätigten Akkreditierungsbereich hinausgehen. eiche erstreckt Die Akkreditierung erfolgte gemäß des Gesetzes über die Akkreditierungsstelle (AkkStelleG) vom 31. Juli 2009 (BGBI. 15, 2625) sowie der Verordnung (EG) Nr. 765/2008 des Europäuchen Parlaments und des Rates vom 9. Juli 2008 über die Vorschriften Tio die Akkrediterung und Arktäberwachung im Zusammenhang mit der Vermarktung von Produkten (Abl. 1218 vom 9. Juli 2008, 5. 30). Die DAkks ist Unterzeichnerin der Wiltitaterlen Abshommen zur gegenstigten Anerkennung der European co-operation for Aczreditation (EA), des International Accreditation Forum (IAF) und der International Laboratory Aczreditation (EAC). Die Unterzeichner dieser Abkommen erkennen ihre Akkreditierungen gegenseitig an. Akustik Near Field Communication (NFC) Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der Akkreditierungsunmmer D-PL-12076-01 und ist gültig bis 17.01.2018. Sie besteht aus diesem Deckblatt, der Rückseite des Deckblatts und der folgenden Anlage mit insgesamt 63 Seiten. Der aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entnommen werden: EA: www.european-accreditation.org ILAC: www.ilac.org IAF: www.ilac.ng Registrierungsnummer der Urkunde: D-PL-12076-01-01 Frankfurt, 25, 11, 2016 Nehe Henrise auf der Räckseite

Note:

The current certificate including annex can be received from CTC advanced GmbH on request.