

	TEST REF	UKI			(
FCC ID	ZLE-RG930I				X	
Test Report No:	TCT210824E067					
Date of issue:	Sep. 27, 2021					
Testing laboratory: :	SHENZHEN TONGCE	TESTING L	٩Β			
Testing location/ address:	TCT Testing Industrial F Street, Bao'an District S Republic of China					
Applicant's name: :	Power Idea Technology	(Shenzhen	Co., Ltd.			
Address::	4th Floor, A Section, La Xinxi RD, Hi-Tech Indus ShenZhen, 518057 Chir	trial Park N				
Manufacturer's name :	Power Idea Technology	(Shenzhen	Co., Ltd.			
Address:	4th Floor, A Section, Languang Science&technology, Xinxi RD, Hi-Tech Industrial Park North, Nanshan, ShenZhen, 518057 China					
				407		
Standard(s):	FCC CFR Title 47 Part KDB 662911 D01 Multip KDB 789033 D02 Gene v02r01	le Transmit	ter Output v	02r01	Rules	
Standard(s) : Test item description :	KDB 662911 D01 Multip KDB 789033 D02 Gene v02r01	le Transmit	ter Output v	02r01	Rules	
Test item description :	KDB 662911 D01 Multip KDB 789033 D02 Gene v02r01	le Transmit	ter Output v	02r01	Rules	
Test item description : Trade Mark :	KDB 662911 D01 Multip KDB 789033 D02 Gene v02r01 LTE SMART TABLET	le Transmit	ter Output v	02r01	Rules	
Test item description : Trade Mark : Model/Type reference :	KDB 662911 D01 Multip KDB 789033 D02 Gene v02r01 LTE SMART TABLET RugGear	ole Transmit ral U-NII Te	ter Output v	02r01	Rules	
-	KDB 662911 D01 Multip KDB 789033 D02 Gene v02r01 LTE SMART TABLET RugGear RG930i Refer to EUT description	ole Transmit ral U-NII Te	ter Output v	02r01	Rules	
Test item description : Trade Mark : Model/Type reference : Rating(s) : Date of receipt of test item : Date (s) of performance of	KDB 662911 D01 Multip KDB 789033 D02 Gene v02r01 LTE SMART TABLET RugGear RG930i Refer to EUT description Aug. 24, 2021	n of page 3	ter Output v	02r01	Rules	
Test item description : Trade Mark : Model/Type reference : Rating(s) : Date of receipt of test item 	KDB 662911 D01 Multip KDB 789033 D02 Gene v02r01 LTE SMART TABLET RugGear RG930i Refer to EUT description Aug. 24, 2021	n of page 3	ter Output vi st Procedure	02r01 es New I	Rules	
Test item description : Trade Mark : Model/Type reference : Rating(s) : Date of receipt of test item	KDB 662911 D01 Multip KDB 789033 D02 Gene v02r01 LTE SMART TABLET RugGear RG930i Refer to EUT description Aug. 24, 2021 Aug. 24, 2021 ~ Sep. 27	n of page 3	ter Output v	02r01 es New I	Rules	

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

FCT 通	ING CENTRE TECHNOLOG	Y		Report	No.: TCT210824	E067
		TABLE OF CO	<u>ONTENTS</u>			
		ormation				3
	•					3
1.2. Model	(s) list				··(co))····	3
		8				
		ry				
		and mode				
		port Units				
I. Facilities	and Accre	ditations				8
4.1. Facilit	ies					8
	-					-
4.3. Measu	Irement Unce	ertainty				8
		easurement Data				
		ent				
	-	on				
		ed Output Power				
		dwidth				
		nd 99% Occupied B				
		nsity				
		ns				37
		y Measurement				<i>51</i> 55
		sult of Conducte				
)		aphs of Test Set	up			
Appenaix	C: Photogra	aphs of EUT				
					Page 2 of 2	216

1. General Product Information

Report No.: TCT210824E067

1.1. EUT description

I.I. EOI description			
Test item description:	LTE SMART TABLET		
Model/Type reference:	RG930i		
Sample Number:	TCT210824E004-0101		
Operation Frequency:	Band 1: 5180 MHz -5240 MHz Band 2A: 5260 MHz -5320 MHz Band 2C: 5500 MHz -5700 MHz Band 3: 5745 MHz -5825 MHz		
Channel Bandwidth:	802.11a: 20MHz 802.11n: 20MHz, 40MHz 802.11ac: 20MHz, 40MHz, 80M	Hz	
Modulation Technology:	Orthogonal Frequency Division	Multiplexing(OFDM)	
Modulation Type:	256QAM, 64QAM, 16QAM, BPS	SK, QPSK	
Antenna Type:	Internal Antenna		
Antenna Gain:	2.3dBi		
Rating(s)	Adapter Information: MODEL: HKC0115021-2D INPUT: AC 100-240V, 50/60Hz, OUTPUT: DC 5V, 2A Rechargeable Li-ion Battery DC		G

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

Page 3 of 216

1.3. Test Frequency

Band 1

1					
20N	1Hz		40MHz	80	MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180	38	5190	42	5210
40	5200	46	5230		(.c)
48	5240				

Band 2A

2 A					
20N	1Hz	40MHz		80	MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency
52	5260	54	5270	58	5290
56	5280	62	5310		
64	5320	5)			

Band 2C

20M	1Hz		40MHz	80	MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency
100	5500	102	5510	106	5530
120	5600	118	5590	122	5610
140	5700	134	5670		
	X		X		X V

Band 3

20N	1Hz	40MHz		80	MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency
149	5745	151	5755	155	5775
157	5785	159	5795		
165	5825				

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Report No.: TCT210824E067

Page 4 of 216

2. Test Result Summary

CT 通测检测 TESTING CENTRE TECHNOLOGY

		(\mathbf{c})	
Requirement	uirement CFR 47 Section		
Antenna requirement	§15.203	PASS	
AC Power Line Conducted Emission	§15.207	PASS	
Maximum Conducted Output Power	§15.407(a)	PASS	6
6dB Emission Bandwidth	§15.407(a)	PASS	
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	PASS	
Power Spectral Density	§15.407(a)	PASS	
Restricted Bands around fundamental frequency	§15.407(b)	PASS	
Radiated Emission	§15.407(b)	PASS	
Frequency Stability	§15.407(g)	PASS	
		[.0.]	

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

5.For the band 5.15-5.25GHz,EUT meet the requirements of 15.407(a)(ii).

Page 5 of 216

|--|

3. General Information

3.1. Test environment and mode

Operating Environment:			
Temperature:	25.0 °C		
Humidity:	56 % RH	(C)	(C)
Atmospheric Pressure:	1010 mbar		
Test Mode:			
Engineering mode:		continuous transmi dulations with max.	
ables, rotating the turntable and vertical polarizations. Th		–	
ollowing pages. We have verified the constru- were carried out with the EU report and defined as follows	T in transmitting op s:	eration, which was s	hown in this test
We have verified the constru were carried out with the EU	T in transmitting op s:	eration, which was s	hown in this test
We have verified the constru- were carried out with the EU report and defined as follows	T in transmitting op s:	eration, which was s	hown in this test
We have verified the constru- were carried out with the EU report and defined as follows Per-scan all kind of data ra was worst case.	T in transmitting op s:	eration, which was s el, and found the fo	hown in this test
We have verified the constru- were carried out with the EU report and defined as follows Per-scan all kind of data ra was worst case. Mode	T in transmitting op s:	eration, which was s el, and found the fo Data rate	hown in this test
We have verified the constru- were carried out with the EU report and defined as follows Per-scan all kind of data ra was worst case. Mode 802.11a(SISO)	T in transmitting op s:	eration, which was s el, and found the fe Data rate 6 Mbps	hown in this test
We have verified the constru- were carried out with the EU report and defined as follows Per-scan all kind of data ra was worst case. Mode 802.11a(SISO) 802.11n(HT20) (MIMO)	T in transmitting op s:	eration, which was s el, and found the fo Data rate 6 Mbps 6.5 Mbps	hown in this test
We have verified the constru- were carried out with the EU report and defined as follows Per-scan all kind of data ra was worst case. Mode 802.11a(SISO) 802.11n(HT20) (MIMO) 802.11n(HT40) (MIMO)	T in transmitting op s:	eration, which was s el, and found the fo Data rate 6 Mbps 6.5 Mbps 13.5 Mbps	hown in this test
We have verified the constru- were carried out with the EU report and defined as follows Per-scan all kind of data ra- was worst case. Mode 802.11a(SISO) 802.11n(HT20) (MIMO) 802.11n(HT40) (MIMO) 802.11ac(VHT20) (MIMO)	T in transmitting op s:	eration, which was s el, and found the fe Data rate 6 Mbps 6.5 Mbps 13.5 Mbps 6.5 Mbps 6.5 Mbps	hown in this test
We have verified the constru- were carried out with the EU report and defined as follows Per-scan all kind of data ra- was worst case. Mode 802.11a(SISO) 802.11n(HT20) (MIMO) 802.11n(HT40) (MIMO) 802.11ac(VHT20) (MIMO) 802.11ac(VHT40) (MIMO)	T in transmitting op s:	eration, which was s el, and found the fe Data rate 6 Mbps 6.5 Mbps 13.5 Mbps 6.5 Mbps 13.5 Mbps 13.5 Mbps	hown in this test

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
/	1	1	/	1

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Facilities and Accreditations 4.

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098 SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

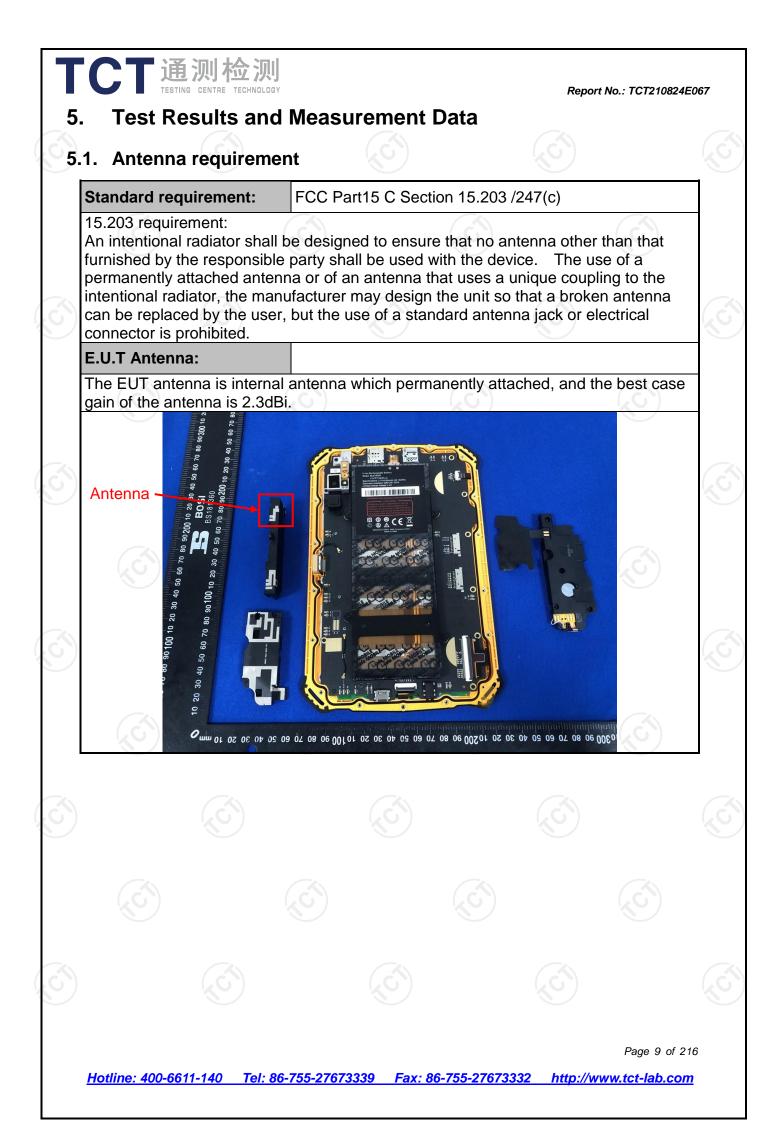
The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

 IC - Registration No.: 10668A-1 SHENZHEN TONGCE TESTING LAB CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB


Address: TCT Testing Industrial Park Fugiao 5th Industrial Zone, Fuhai Street, Bao'an District Shenzhen, Guangdong, 518103, People's Republic of China

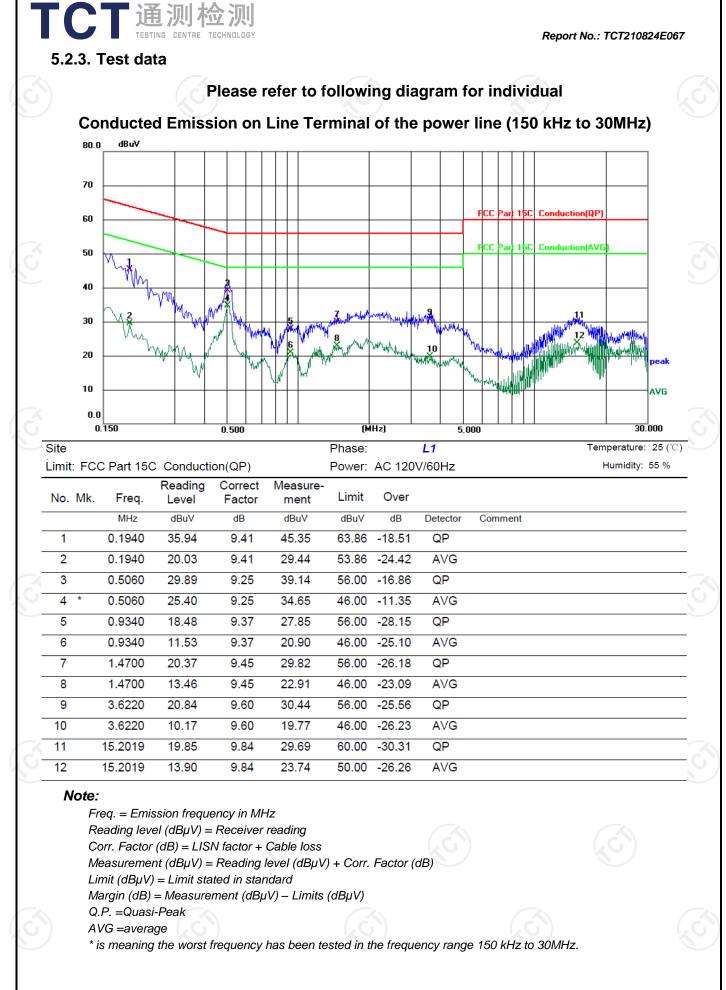
TEL: +86-755-27673339

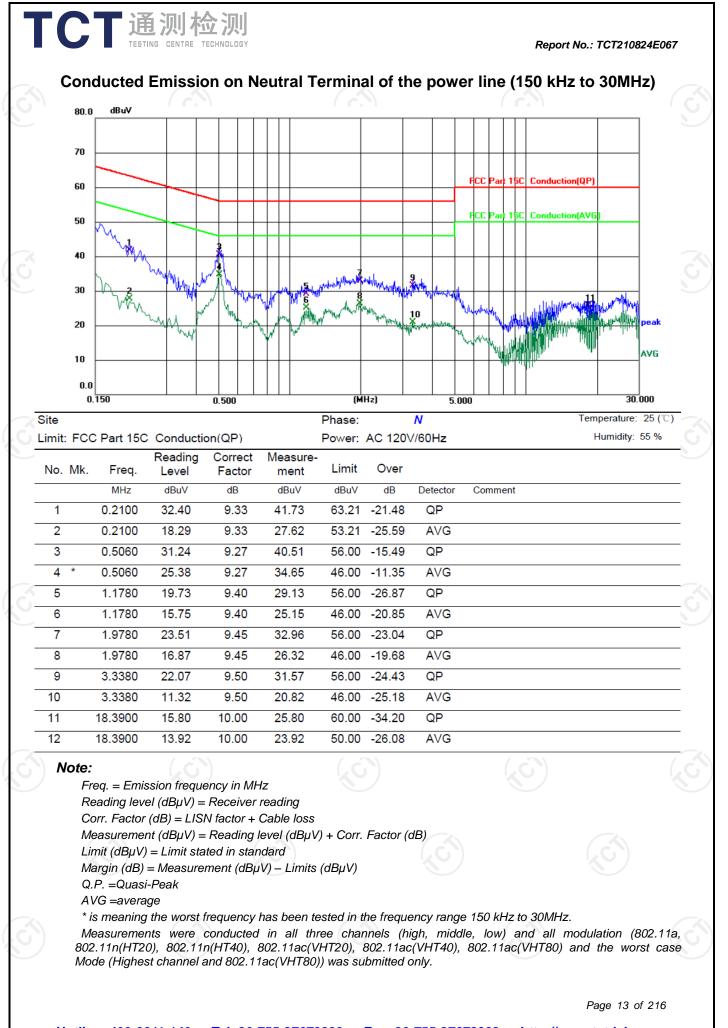
4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU	
1	Conducted Emission	± 3.10 dB	
2	RF power, conducted	± 0.12 dB	
3	Spurious emissions, conducted	± 0.11 dB	
4	All emissions, radiated(<1 GHz)	± 4.56 dB	
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB	
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB	S

2. Conducted Emissi 2.1. Test Specification	on		
Fest Requirement:	FCC Part15 C Section	15.207	
Test Method:	ANSI C63.10:2013		$\left(\mathcal{C}^{\prime}\right)$
Frequency Range:	150 kHz to 30 MHz		
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	=auto
.imits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (o Quasi-peak 66 to 56* 56 60	dBuV) Average 56 to 46* 46 50
Γest Setup:	E.U.T AC powe Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization N Test table height=0.8m	EMI Receiver	— AC power
Fest Mode:	Tx Mode	No.	
Fest Procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 		

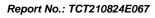

Page 10 of 216


5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)						
Equipment	Manufacturer	Model	Serial Number	Calibration Due		
EMI Test Receiver	R&S	ESCI3	100898	Jul. 07, 2022		
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Mar. 11, 2022		
Line-5	тст	CE-05	N/A	Jul. 07, 2022		
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A		

Page 11 of 216

Page 12 of 216


Test Requirement:	2.1046				
Test Method:	KDB789033 D02 G	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E			
	Frequency Band (MHz)	Limit			
	5180 - 5240	24dBm(250mW) for client device			
Limit:	5260 - 5320 5470 - 5725	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz 24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz			
	5745 - 5825	30dBm(1W)			
Test Setup:	Power meter	EUT			
Test Mode:	Transmitting mode	with modulation			
Test Procedure:	KDB789033 D0 Rules v02r01 S 2. The RF output o meter by RF ca compensated to 3. Set to the maxim EUT transmit co	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 			
Test Result:	PASS				
Remark:	Conducted output power= measurement power +10log(1/x) X is duty cycle=1, so 10log(1/1)=0 Conducted output power= measurement power				

5.3. Maximum Conducted Output Power

5.3.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Page 14 of 216

5.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Power Meter	Agilent	E4418B	GB43312526	Jul. 07, 2022
Power Sensor	Agilent	E9301A	MY41497725	Jul. 07, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

Page 1	5 of	216
--------	------	-----

4. 6dB Emission Band .4.1. Test Specification	width
Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)& Part 2 J Section 2.1049
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Limit:	>500kHz
Test Setup:	Spectrum Analyzer
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.5. 26dB Bandwidth and 99% Occupied Bandwidth

5.5.1. Test Specification

	47 CFR Part 15C Section 15.407 (a)& Part 2 J Section
Test Requirement:	2.1049
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D
Limit:	No restriction limits
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 1% to 5% of the OBW. Set the Video bandwidth (VBW) = 3 *RBW. In order to make an accurate measurement. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.6. Power Spectral Density

5.6.1. Test Specification		
Test Requirement:	FCC Part15 E Section 15.407 (a)	
Test Method:	KDB662911 D01 Multiple Transmitter Output v02 KDB789033 D02 General UNII Test Procedures Rules v02r01 Section F	
Limit:	 ≤11.00dBm/MHz for Band 1 5150MHz-5250MHz device) ≤11.00dBm/MHz for Band 2A&2C 5250-5350&5 5725 ≤30.00dBm/500KHz for Band 3 5725MHz-5850I The e.i,r,p spectral density for Band 1 5150MHz MHz should not exceed 10dBm/MHz 	470- MHz
Test Setup:	Spectrum Analyzer EUT	9
Test Mode:	Transmitting mode with modulation	
Test Procedure:	 Set the spectrum analyzer or EMI receiver sprive with entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Stime = Auto, Detector = RMS. Allow the sweeps to continue until the trace states. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated us procedures of ANSI C63.4 or the latest CISPR 1 measurements above 1 GHz, so as to simulate a free-space environment. 	Sweep abilizes. e st sing the 6-1-4 for
Test Result:	PASS	<u>()</u>

5.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022
	KO J		XU /	

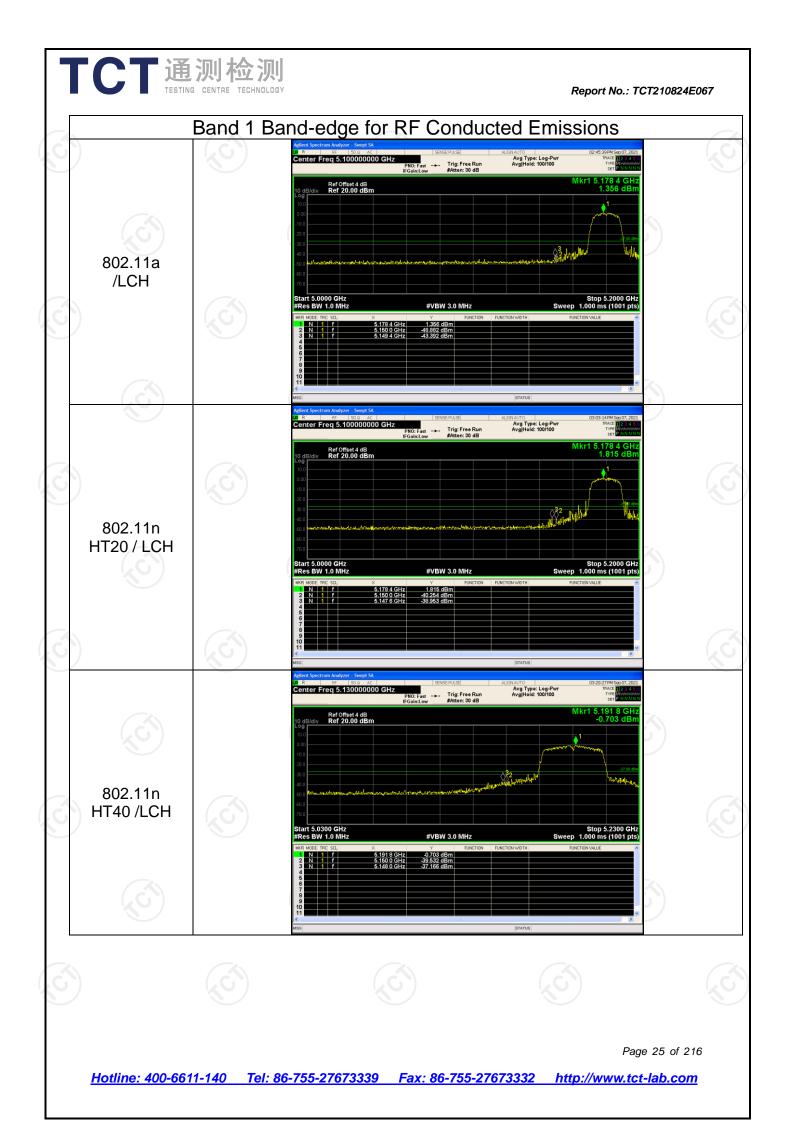
Page 18 of 216

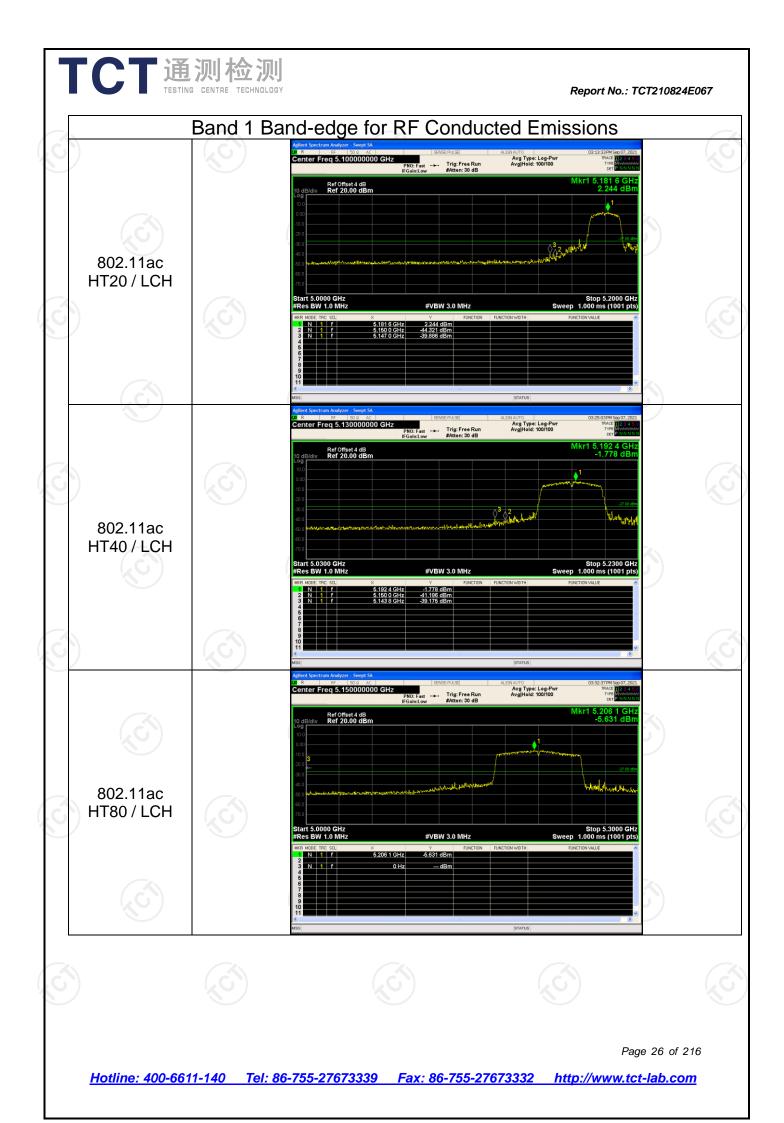
Report No.: TCT210824E067 5.7. Band edge 5.7.1. Test Specification **Test Requirement:** FCC CFR47 Part 15E Section 15.407 **Test Method:** ANSI C63.10 2013 In un-restricted band: For Band 1&2A&2C: -27dBm/MHz For Band 3: Frequency Limit Frequency Limit (MHz) (dBm/MHz) (MHz) (dBm/MHz) -27 5850~5855 27~15.6 < 5650 5650~5700 -27~10 5855~5875 15.6~10 Limit: 5700~5720 10~15.6 5875~5925 10~-27 5720~5725 15.6~27 > 5925 -27 $E[dB\mu V/m] = EIRP[dBm] + 95.2 @3m$ In restricted band: Detector Limit@3m Peak 74dBuV/m AVG 54dBµV/m **Test Setup:** Test Receiv Test Mode: Transmitting mode with modulation 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum **Test Procedure:** value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold

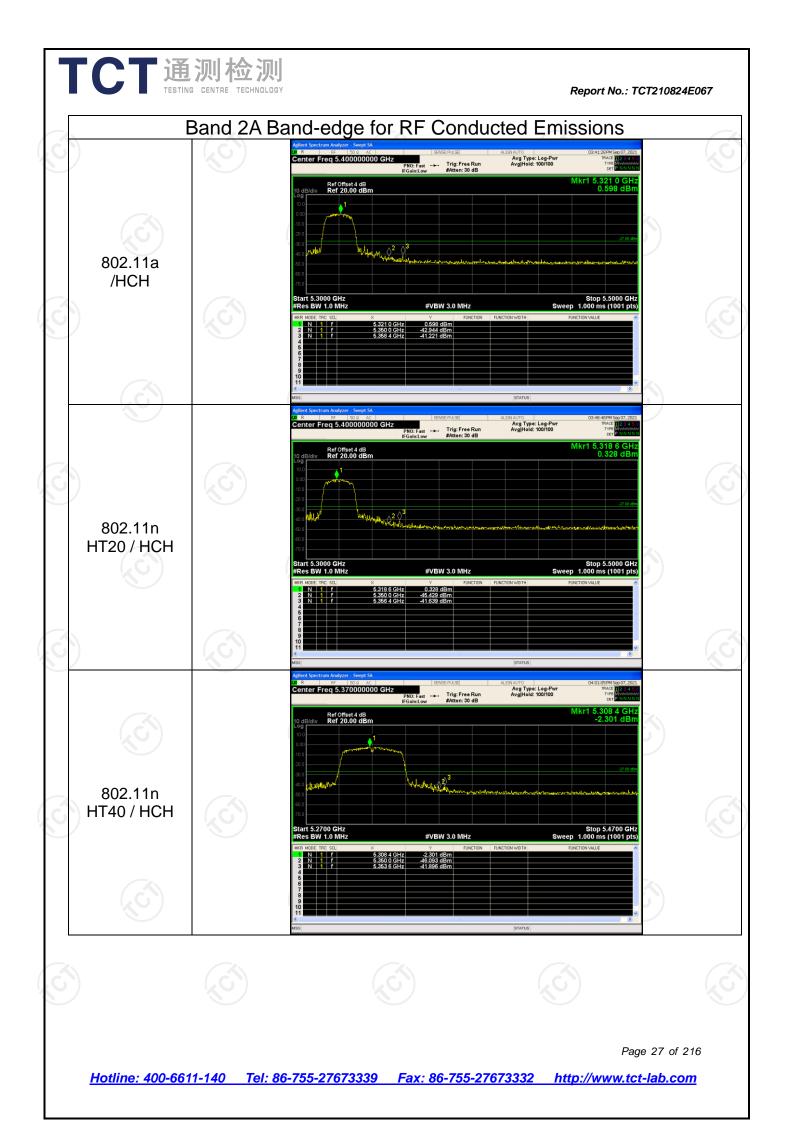
Page 19 of 216

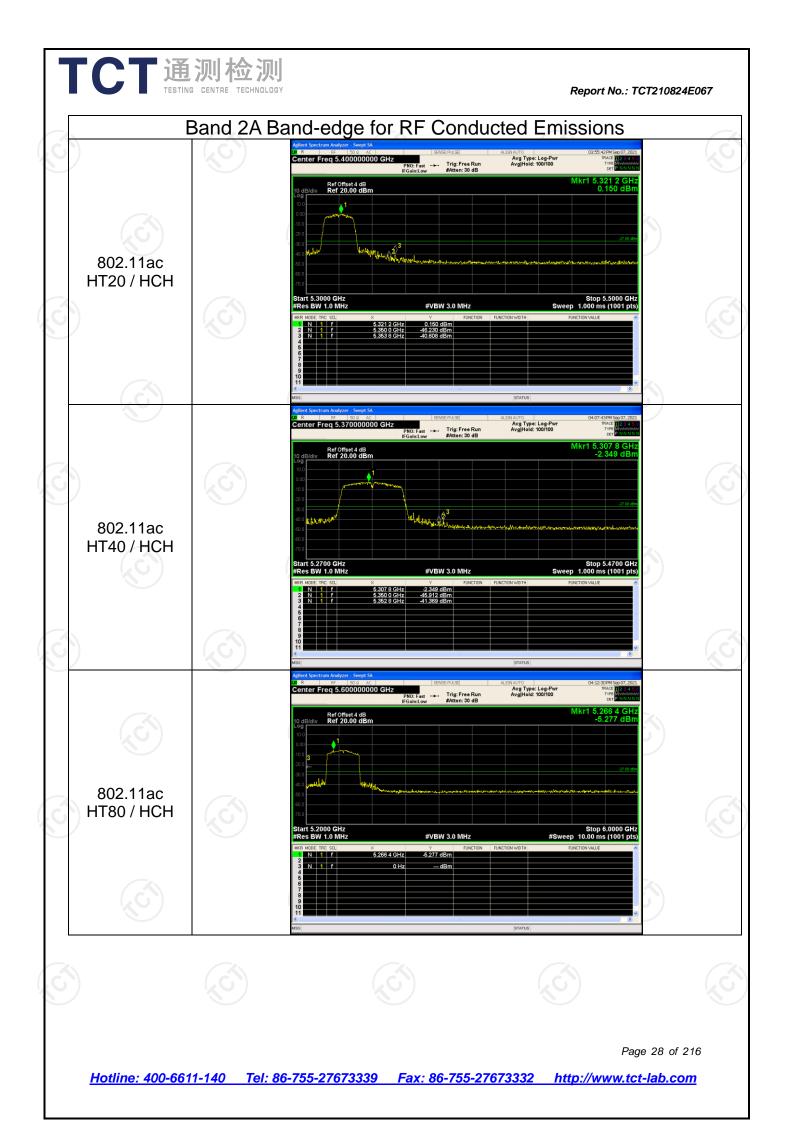
TC	st Result:	I 汉川 检 汉 IG CENTRE TECHNOLO	Mode. 6. If the 10dB lo stopped reporte 10dB m quasipe	d and the pe d. Otherwise	e limit speci eak values o e the emissi d be re-teste age method	UT in peak ified, then te of the EUT w ions that did ed one by on	esting could b vould be I not have ne using peak	e
5		Ś						

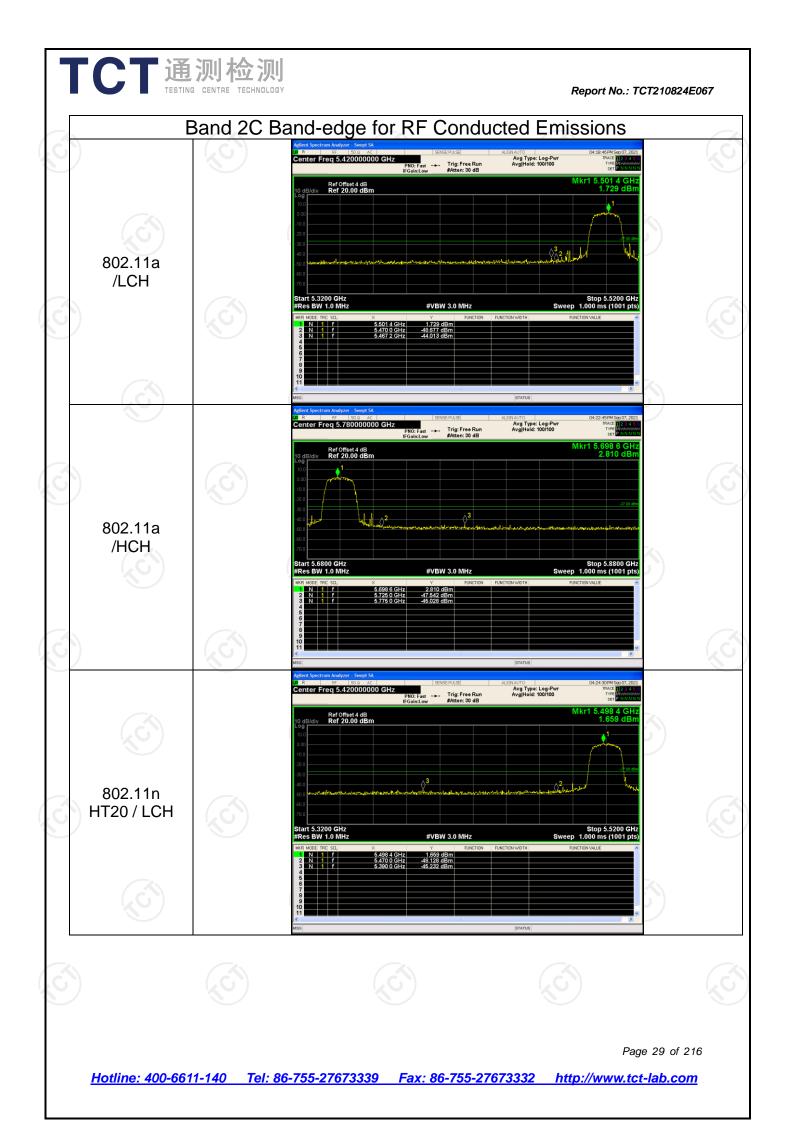
5.7.2. Test Instruments

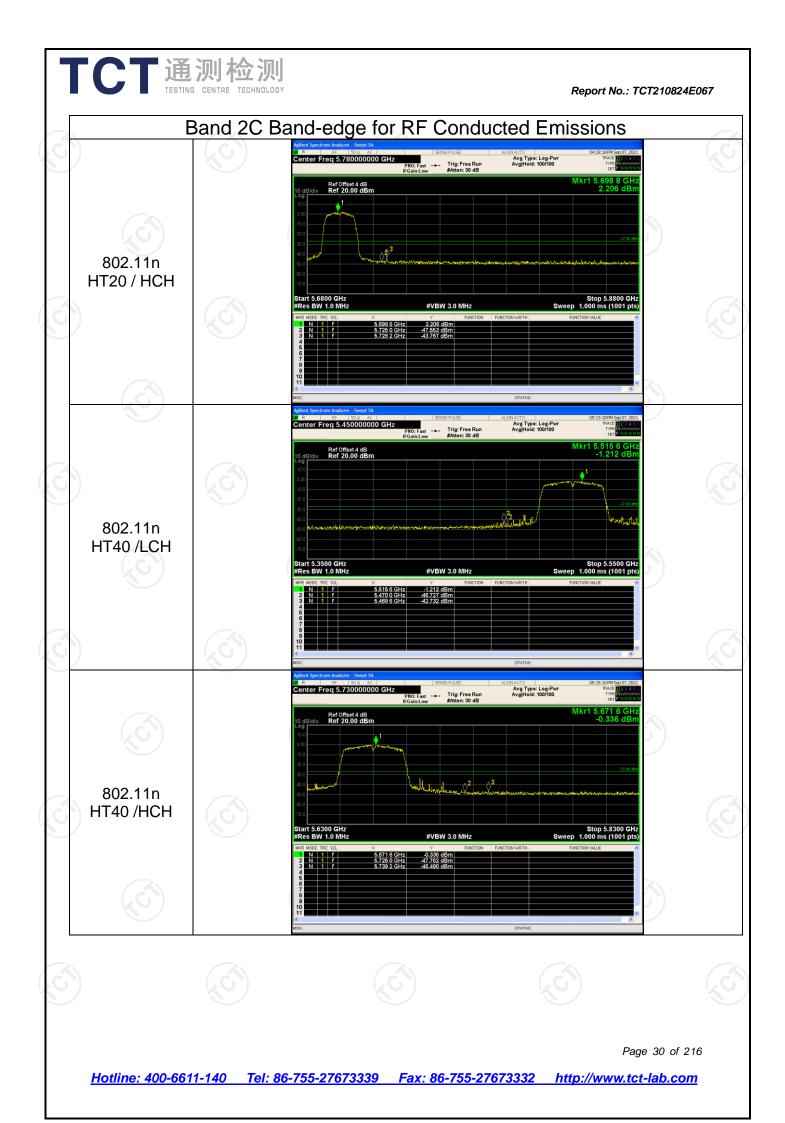

		nission Test Sit	e (300)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jul. 07, 2022
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 07, 2022
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Mar. 11, 2022
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Apr. 08, 2022
Pre-amplifier	HP	8447D	2727A05017	Jul. 07, 2022
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023
Coaxial cable	SKET	RC_DC18G-N	N/A	Apr. 08, 2022
Coaxial cable	SKET	RC-DC18G-N	N/A	Apr. 08, 2022
Coaxial cable	SKET	RC-DC40G-N	N/A	Jul. 07, 2022
Antenna Mast	Keleto	CC-A-4M	N/A	N/A
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

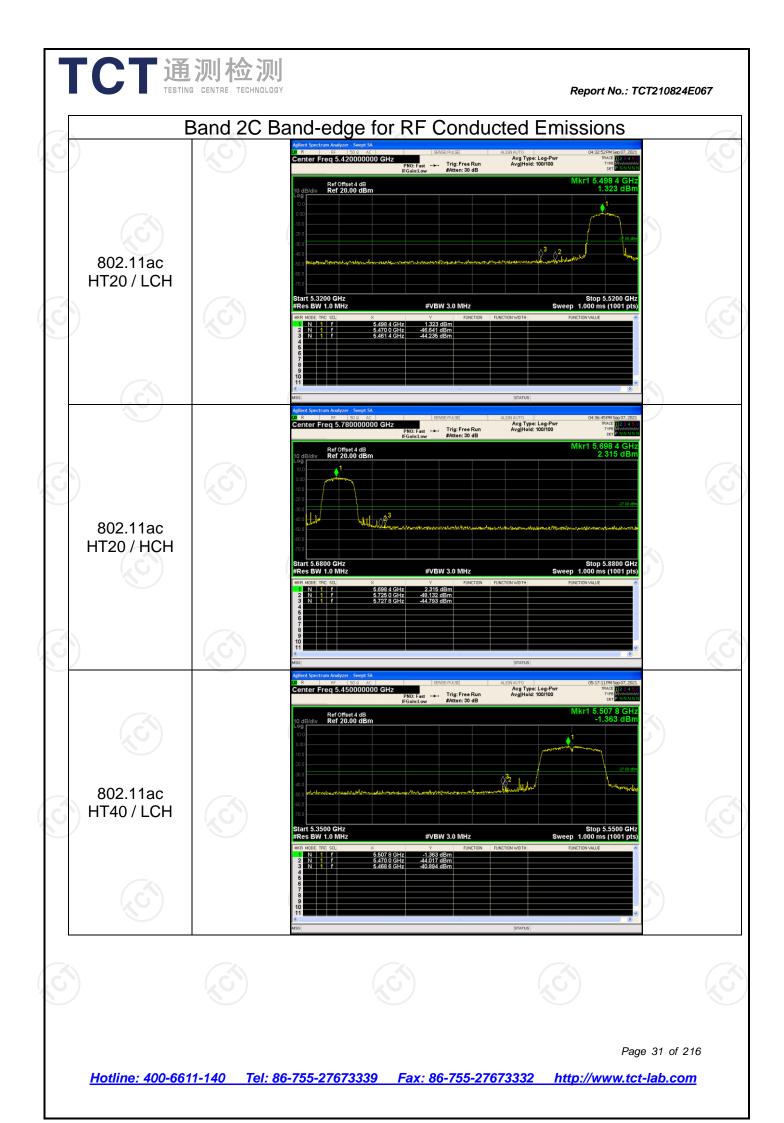

Report No.: TCT210824E067 5.7.3. Test Data Limit Limit Ant. 802.11 Read level Freq. Factor Peak CH (dBuV/m) (dBuV/m) Pol. Over (MHz) (dBuV/m) (dB)(dBuV/m) а (Peak) (Avg) H/V 41.08 5.82 5150 46.90 74 54 -7.10 Н Lowest Band 1 5150 74 V 37.11 5.82 42.93 54 -11.07 & Band 5350 40.54 6.52 47.06 74 54 -6.94 Н 2A Highest 45.33 74 5350 38.81 6.52 54 -8.67 V 5470 52.66 5.82 58.48 68.2 1 -9.72 н Lowest Band 5470 46.91 5.82 52.73 68.2 1 -15.47 V 2C & 5850 64.53 6.52 71.05 122.2 -51.15 1 н Band 3 Highest 5850 122.2 61.20 6.52 67.72 / -54.48 V Remark: Factor(dB)=Ant. Factor+Cable Loss-Amp. Factor 802.11 Limit Ant. Limit Read level Factor Frea. Peak CH (dBuV/m) (dBuV/m) Over Pol. n (MHz) (dBuV/m) (dB) (dBuV/m) (Peak) (Avg) H/V HT20 5150 40.72 6.96 47.68 74 54 -6.32 Н Lowest Band 1 5150 40.04 6.96 47.00 74 54 -7.00 V &Band 5350 35.69 8.21 43.9. 74 54 -10.10 н 2A Highest 5350 37.21 8.21 45.42 74 54 -8.58 V 51.29 5470 8.21 59.50 68.2 -8.70 Н 1 Lowest Band 5470 47.77 -12.22 V 8.21 55.98 68.2 / 2C & 5850 61.21 8.87 70.08 122.2 -52.12 H / Band 3 Highest 67.22 122.2 5850 58.35 8.87 -54.98 V 1 Remark: Factor(dB)=Ant. Factor+Cable Loss-Amp. Factor Page 22 of 216

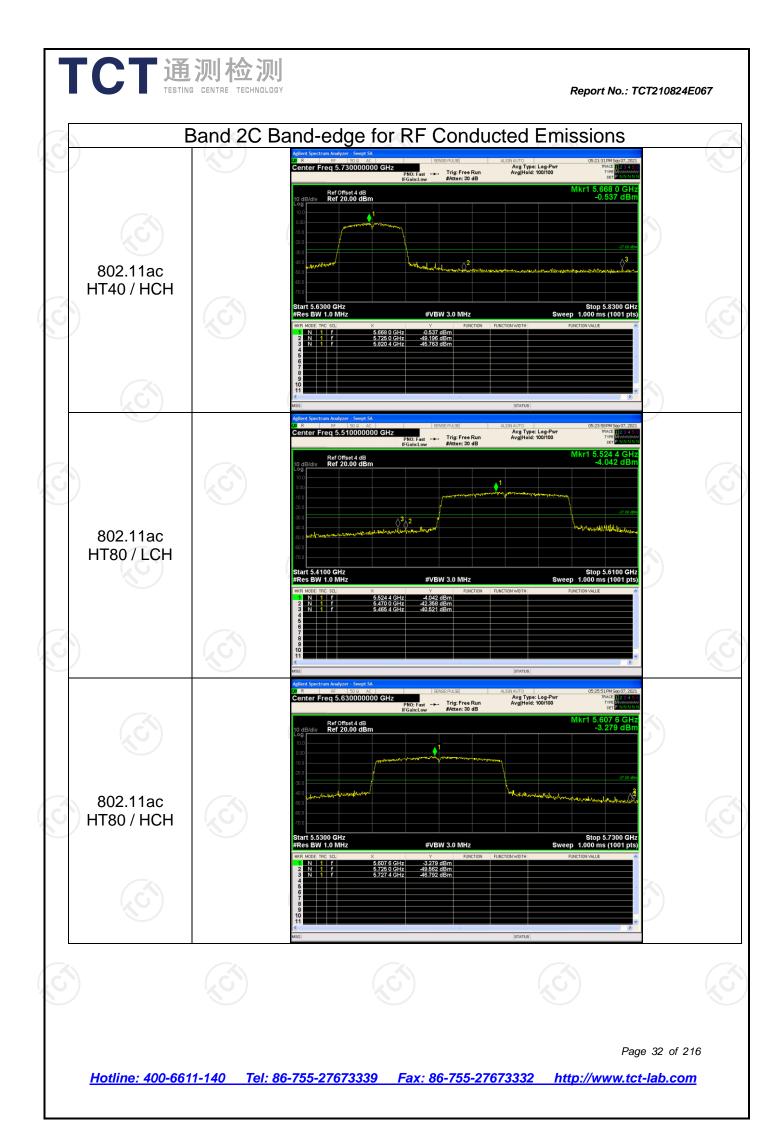

8	802.11						Limit	Limit		Ar
	n HT40	СН	Freq. (MHz)	Read_level (dBuV/m)	Factor (dB)	Peak (dBuV/m)	(dBuV/m) (Peak)	(dBuV/m) (Avg)	Over	Po H/
		Louiset	5150	42.47	5.82	48.29	74	54	-5.71	Н
	Band 1	Lowest	5150	37.30	5.82	43.12	74	54	-10.88	V
Ċ	&Band 2A		5350	40.91	6.52	47.43	74	54	-6.57	Н
		Highest	5350	38.10	6.52	44.62	74	54	-9.38	V
			5470	52.58	5.82	58.40	68.2	/	-9.80	Н
	Band	Lowest	5470	46.96	5.82	52.78	68.2		-15.42	N
	2C & Band 3		5850	63.92	6.52	70.44	122.2		-51.76	Ĥ
Ľ	sanu s	Highest	5850	61.40	6.52	67.92	122.2	/	-54.28	V
R	emark:	Factor(dB)	=Ant. Fac	tor+Cable Los	ss-Amp. F	actor				l
-	02.11 ac HT20	СН	Freq. (MHz)	Read_level (dBuV/m)	Factor (dB)	Peak (dBuV/m)	Limit (dBuV/m) (Peak)	Limit (dBuV/m) (Avg)	Over	An Po H/
	Band 1 &Band —	Lowest	5150	41.70	6.96	48.66	74	54	-5.34	H
			5150	39.85	6.96	46.81	74	54	-7.19	V
9	2A	Highost	5350	35.21	8.21	43.42	74	54	-10.58	Ē
		Highest	5350	37.40	8.21	45.61	74	54	-8.39	V
	5470 50.50 8.21 58.71 68.2 / -9.49							-9.49	н	
	Band Lowest	Lowest	5470	45.67	8.21	53.88	68.2	/	-14.32	V
	2C &		5850	60.88	8.87	69.75	122.2		-52.45	H
E	Band 3	Highest	5850	58.44	8.87	67.31	122.2	/	-54.89	V
R	emark.	Eactor(dB)		ctor+Cable Los			122.2		01.00	-
))		0			<u> </u>)		K
	802.11 ac HT40	СН	Freq. (MHz)	Read_level (dBuV/m)	Factor (dB)	Peak (dBuV/m)	Limit (dBuV/m) (Peak)	Limit (dBuV/m) (Avg)	Over	An Po H/
	Band 1		5150	42.22	5.82	48.04	74	54	-5.96	Н
			5150	37.42	5.82	43.24	74	54	-10.76	V
č	&Band 2A		5350	41.53	6.52	48.05	74	54	-5.95	H
			5350	39.11	6.52	45.63	74	54	-8.37	V
			5470	52.30	5.82	58.12	68.2	/	-10.08	Н
	Dand		5470	46.75	5.82	52.57	68.2	/	-15.63	V
	Banu		5470	+0.7J						v
	2C & 3and 3		5850	64.42	6.52	70.94	122.2		-51.26	H

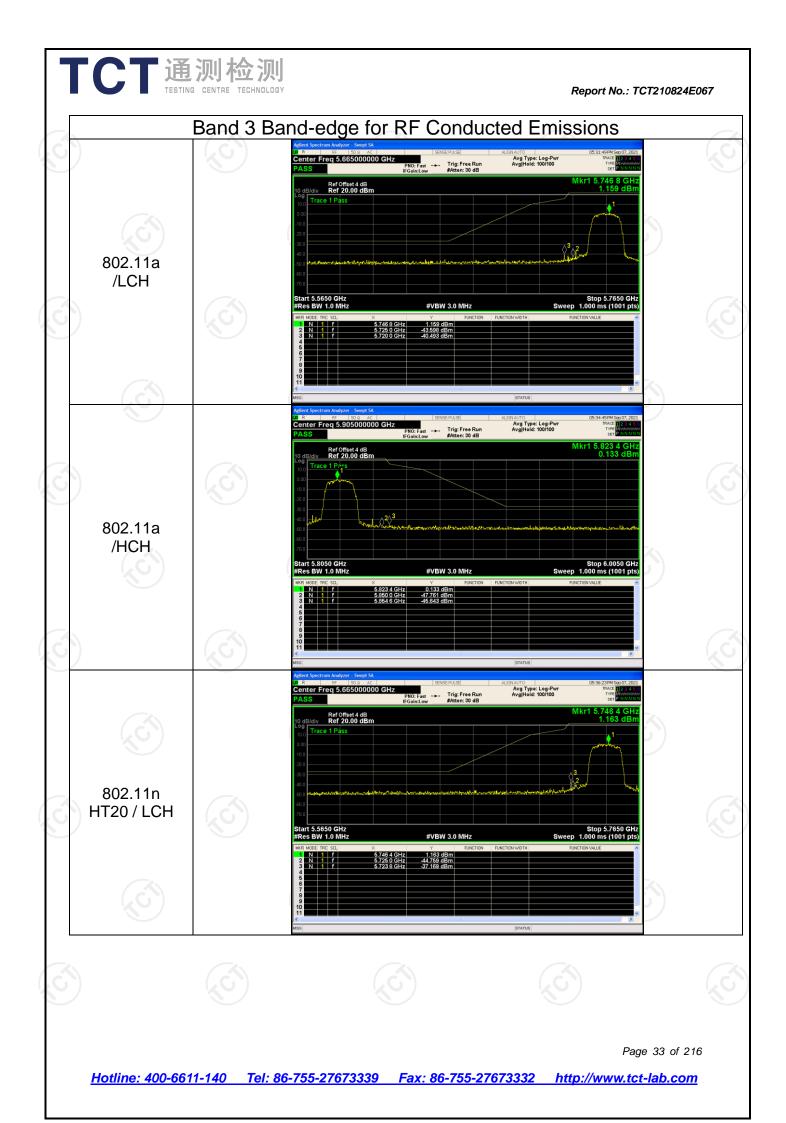

Page 23 of 216

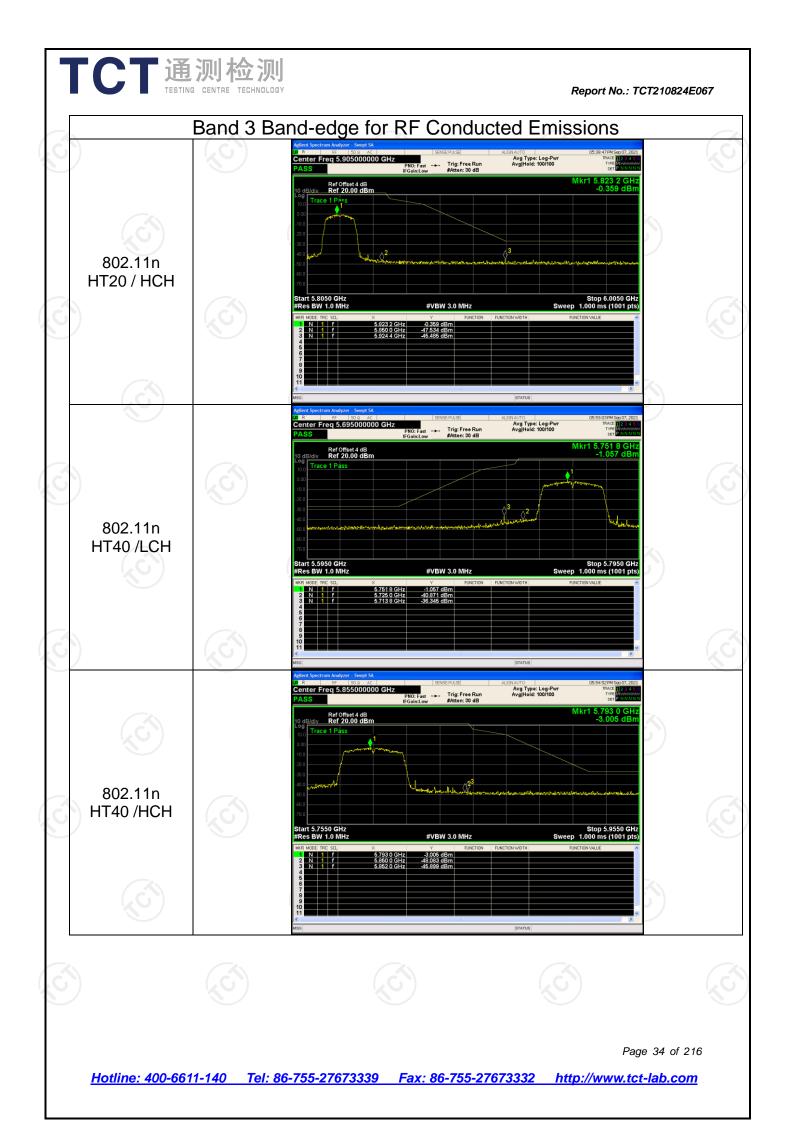

302.11 ac HT80	СН	Freq. (MHz)	Read_level (dBuV/m)	Factor (dB)	Peak (dBuV/m)	Limit (dBuV/m) (Peak)	Limit (dBuV/m) (Avg)	Over	Ar Po H/
Donal 4	Lowest	5150	42.59	6.96	49.55	74	54	-4.45	F
Band 1 &Band		5150	41.15		48.11	74	54	-5.89	\
2A	Highest	5350 5350	39.78 38.24	8.21 8.21		74 74	54 54	-6.01 -7.55	۲ ۱
	I		I		I	I	1		
Band	Lowest		5470 43.08	8.21	51.29	68.2	1	-16.91	H
2C &					50.93				L N
Band 3	Highest	5850	39.50	8.87	48.37	122.2	/	-73.83	
Remark:	Factor(dB)	=Ant. Fac	ctor+Cable Los	ss-Amp. F	actor	X	(
	ac HT80 Band 1 &Band 2A Band 2C & Band 3	ac HT80CHBand 1 &Band 2ALowestBand 2AHighestBand 2C & Band 3Lowest	ac HT80CHFreq. (MHz)Band 1 &Band 2ALowest5150Band 1 ABand 2ALowest5350Band 2C & Band 3Lowest547053505850	$\begin{array}{c ccccc} ac \\ HT80 \\ \hline Ht10 \\ \hline Ht1$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

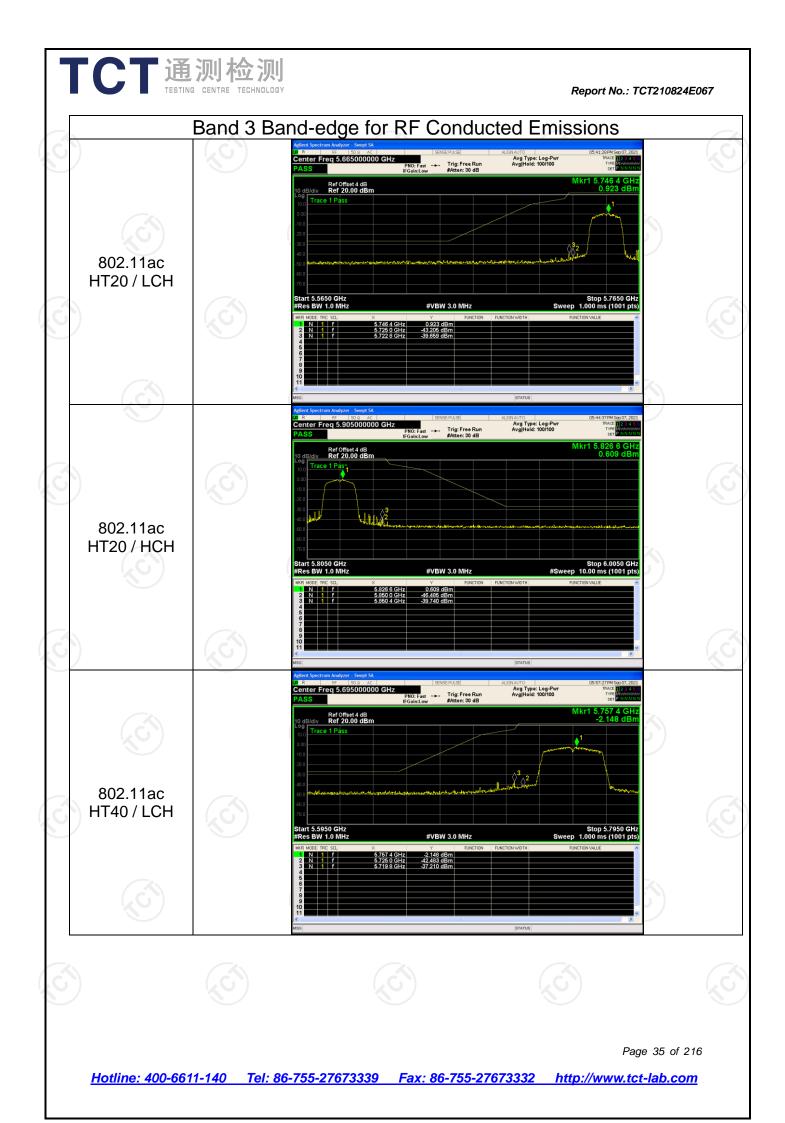


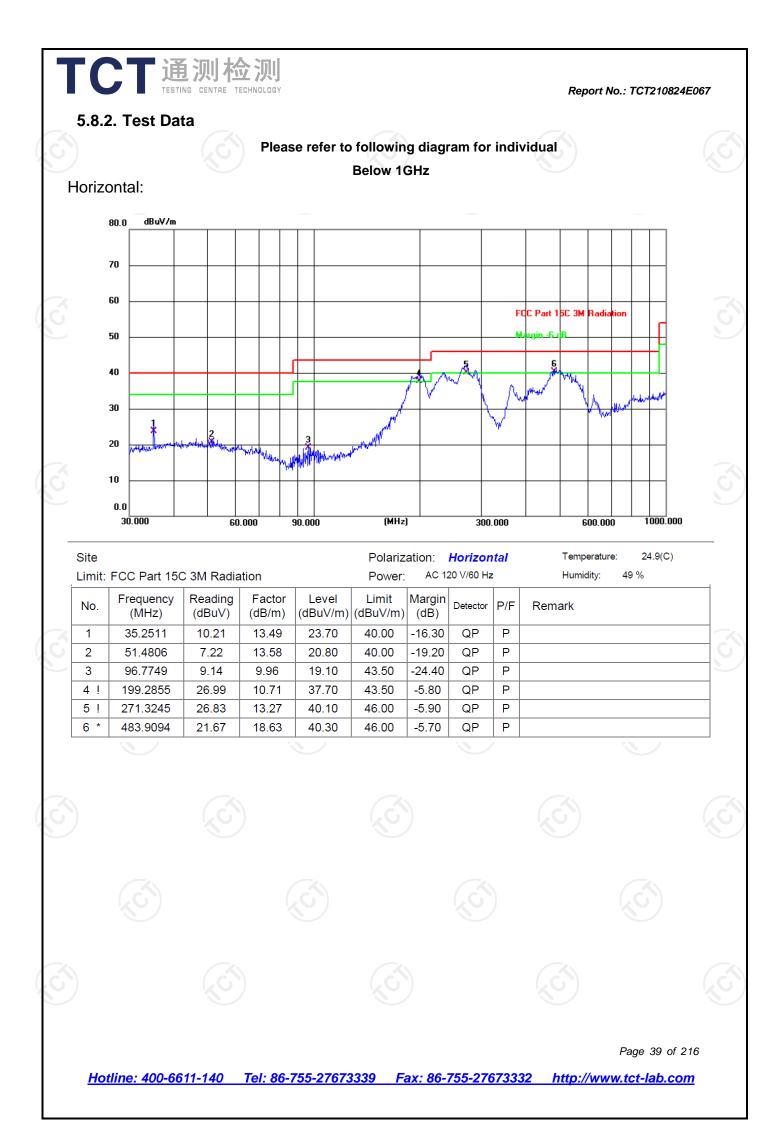


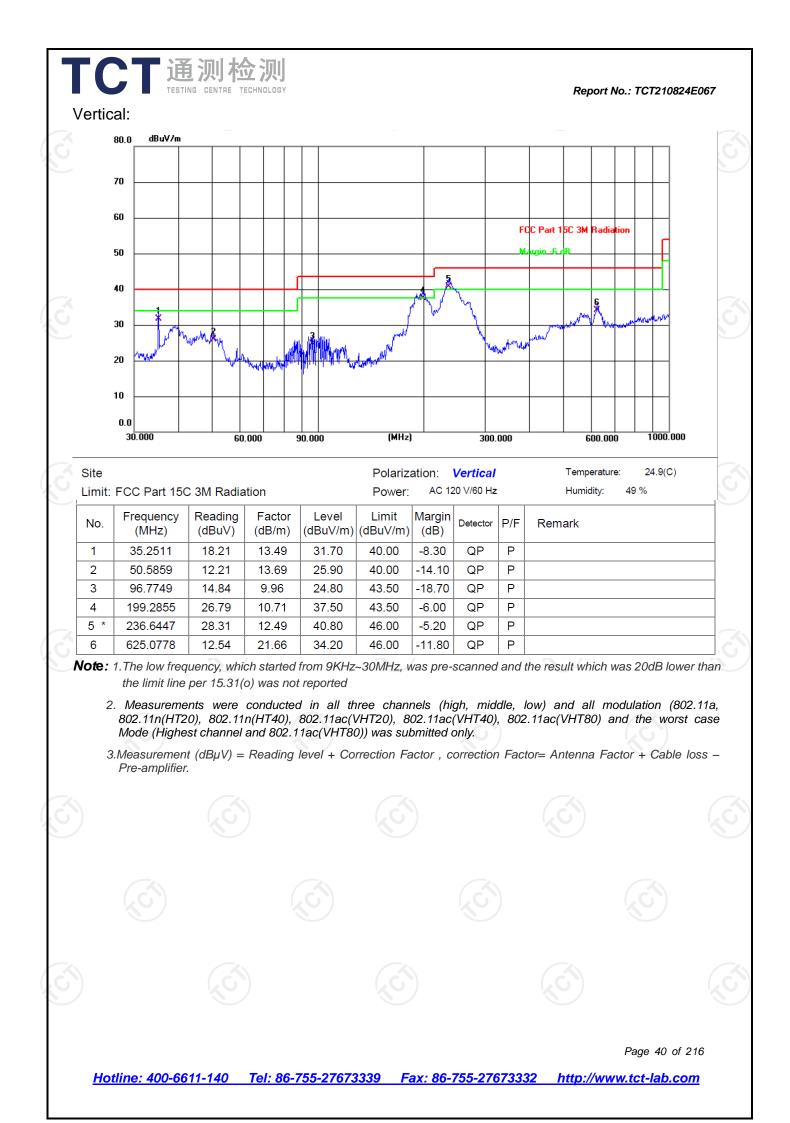









Report No.: TCT210824E067


5.8. Unwanted Emissions

Test Requirement:	FCC CFR47	Part 15 Se	ection 15.	407 & 1	5.209 & 15.205	
Test Method:	KDB 789033	D02 v02r	01			
Frequency Range:	9kHz to 40Gł	Hz (3		(
Measurement Distance:	3 m	Ó	J			
Antenna Polarization:	Horizontal &	Vertical				
Operation mode:	Transmitting	mode with	n modulat	ion		
Paggivar Satura	Frequency 9kHz- 150kHz 150kHz-	9kHz- 150kHz Quasi-peak 200Hz 1kHz			Remark Quasi-peak Value Quasi-peak Value	
Receiver Setup:	30MHz-1GHz Above 1GHz	Quasi-peak Peak Peak	120KHz 1MHz 1MHz	300KHz 3MHz 10Hz	Quasi-peak Value Peak Value Average Value	
Limit:	Frequency 0.009-0.490 0.490-1.705 1.705-30 30-88 88-216 216-960 Above 960	G F (1) 2 2 3 1 1 1 2 2 2 2 3 3 1 1 2 2 2 2 2 3 3 1 1 2 2 3 3 1 1 2 2 3 3 1 1 1 1	Detec Peal AVC Field Strength microvolts/m 2400/F(KHz) 24000/F(KHz) 2000/F(KHz) 24000/F(KHz) 20	k G n eter)	Limit@3m 74dBµV/m 54dBµV/m Measurement Distance (meters) 300 3 30 3 3 3 3 3 3 3 3 3 3	
	Above 960 500 3 In un-restricted bands: 68.2dBuV/m For radiated emissions below 30MHz Distance = 3m Computer Pre - Amplifier W Im Ground Plane					
Test setup:	For radiated	emissions	below 30		Pre -Amplifier	

	LOGY Report No.: TCT210824E00
	EUT Tum Table Ground Plane
	Above 1GHz
	AE EUT Horn Anteena Tower Horn Anteena Tower Ground Reference Plane Test Receiver Controllier
	1. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation.
Test Procedure:	 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasi-peak or average method as specified andthen reported in a data sheet.
Test results:	PASS

Page 38 of 216

	TESTING	CENTRE TECH	NOLOGY				Rep	ort No.: TCT2	10824E067
				Indulation 7	Гуре: Band	1			
			IV		: 5180MHz	1			
roqueneu	Ant. Pol.	Peak	A) (reading	Correction	Emissio	on Level	Dook limit	AV limit	Margin
requency (MHz)	H/V	reading (dBµV)	AV reading (dBuV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)		Margir (dB)
10360	Н	38.75		8.02	46.77		74	54	-7.23
15540	H	38.60		9.87	48.47		74	54	-5.53
	СH —				(С Т			
40000	V	00.07		0.00	40.00		74	54	7.04
10360 15540	V	38.07 39.19		8.02	46.09		74 74	54	-7.91
15540	V			9.87	49.06			54	-4.94
	V			 11a CH40	: 5200MHz			<u> </u>	
		Peak		Correction		on Level	Deal Parts		N.4
requency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10400	Н	40.20		7.97	48.17		74	54	-5.83
15600	H	38.41		9.83	48.24	~	74	54	-5.76
(GĤ		- (, C)		(\mathcal{O}^{-}		40	
10400	V	40.93		7.97	48.90		74	54	-5.10
15600	V	38.12		9.83	47.95		74	54	-6.05
	V				×				
			1		: 5240MHz		F	[]	
requency	Ant. Pol.	Peak	AV reading	Correction		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	Н	38.61		7.97	46.58		74	54	-7.42
15720	Н	38.25		9.83	48.08		74	54	-5.92
\	C H					9-			
10480	V	39.10		7.97	47.07		74	54	-6.93
15720	V	36.88		9.83	46.71		74	54	-7.29
	V			(
			11	n(HT20) CH	H36: 5180M	Hz			
requency	Ant. Pol.	Peak	AV reading	Correction		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dĒ)
10360	Н	42.01		8.02	50.03		74	54	-3.97
15540	CH_	38.35		9.87	48.22	- C	74	54	-5.78
	н					<u> </u>			
10360	V	42.29		8.02	50.31		74	54	-3.69
15540	V	38.54		9.87	48.41		74	54	-5.59
	V			((
			11		140: 5200M				
requency	Ant. Pol.	Peak	AV reading	Correction		on Level	Peak limit	AV limit	Margir
(MHz)	H/V	reading (dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10400	H	40.97		7.97	48.94	<u> </u>	74	54	-5.06
15600	<u>GH</u>	39.04	<u></u> C	9.83	48.87	<u> </u>	74	54	-5.13
	H								
10400	V	41.06		7.97	49.03		74	54	-4.97
15600	V	38.19		9.83	48.02		74	54	-5.98
	V								
	•	1.1.1.1.1.1.		n(HT20) CH				I	

Page 41 of 216

		TESTING	CENTRE TECHI	NOLOGY				Repo	ort No.: TCT21	0824E067
reque	ancy	Ant. Pol.	Peak	AV reading	Correction	Emissic		Peak limit	AV limit	Margin
(MH		H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
1048	30	Н	41.72		7.97	49.69		74	54	-4.31
1572	20	Н	39.91		9.83	49.74		74	54	-4.26
	-	Н								
1048	20	V	40.79		7.97	48.76		74	54	-5.24
		V								
1572	20	V	39.41		9.83	49.24		74	54	-4.76
				11	n(HT40) CF	138: 5190M	Hz			
			Peak		Correction	1	n Level	Deal Fait		
Freque (MH		Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
1038	30	Н	40.53		7.75	48.28		74	54	-5.72
1557		Н	37.92		9.87	47.79		74	54	-6.21
		Н								
4000	0 1		44.00		775	40.00		7 4	EA.	E 00
1038		V	41.23		7.75	48.98	<u> </u>	74	54	-5.02
1557	/0	V	38.58		9.87	48.45		74	54	-5.55
		V			 n(HT40) CH	 146: 5230M	 H ₇			
			Deek	1	, ,		n Level			
reque= MH		Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
1046	30	Н	41.78		7.97	49.75		74	54	-4.25
1569		H	38.34		9.83	48.17		74	54	-5.83
		H								
								l		
1046	60	U V	41.64		7.97	49.61		74	54	-4.39
1569	90	V	38.91		9.83	48.74		74	54	-5.26
		V								
					· /	CH36: 5180			Г	
Freque	ency z)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Factor	Emissic Peak	on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(MH	`			\cdot \cdot \cdot	(dD/m)			· · /	· · /	
(MH	20		,		(dB/m)	(dBµV/m)	(dBµV/m)	74	54	4.61
(MH 1036		H	41.37		8.02	49.39	(aBhr/w) 	74 74	54 54	-4.61 -5.97
(MH		H H H	,		· · ·			74 74 	54 54 	-4.61 -5.97
(MH 1036		Н	41.37 38.16		8.02 9.87	49.39		74		-5.97
(MH 1036	40	Н	41.37 38.16		8.02 9.87	49.39		74		-5.97
(MH 1036 1554	40 60	H H V V	41.37 38.16 		8.02 9.87 	49.39 48.03 		74 	54 	-5.97
(MH 1030 1554 	40 60	H H V	41.37 38.16 39.23		8.02 9.87 8.02 9.87 	49.39 48.03 47.25 49.43 		74 74	54 54	-5.97 -6.75
(MH 1030 1554 	40 60	H H V V	41.37 38.16 39.23 39.56 		8.02 9.87 8.02 9.87 c(VHT20) C	49.39 48.03 47.25 49.43 CH40: 5200	 MHz	74 74 74	54 54 54	-5.97 -6.75 -4.57
(MH 1030 1554 	40 50 40	H H V V	41.37 38.16 39.23 39.56 Peak		8.02 9.87 8.02 9.87 c(VHT20) C Correction	49.39 48.03 47.25 49.43 CH40: 5200 Emissio	 MHz on Level	74 74 74	54 54 54	-5.97 -6.75 -4.57
(MH 1030 1554 1030 1554 	40 60 40 ency	H H V V V	41.37 38.16 39.23 39.56 	 11ac	8.02 9.87 8.02 9.87 c(VHT20) C	49.39 48.03 47.25 49.43 CH40: 5200 Emissio Peak	 MHz on Level AV	74 74 74 	54 54 54 	-5.97 -6.75 -4.57
(MH 1036 1554 1036 1554 Freque (MH 1040	40 60 40 ency z)	H H V V V Ant. Pol. H/V	41.37 38.16 39.23 39.56 Peak reading (dBμV) 40.36	 11ac	8.02 9.87 8.02 9.87 c(VHT20) C Correction Factor (dB/m) 7.97	49.39 48.03 47.25 49.43 CH40: 5200 Emissio	 MHz on Level	74 74 74 Peak limit (dBµV/m) 74	54 54 54 AV limit (dBµV/m) 54	-5.97 -6.75 -4.57 (dB) -5.67
(MH 1036 1554 1036 1554 Freque (MH	40 60 40 ency z)	H H V V V Ant. Pol. H/V	41.37 38.16 39.23 39.56 Peak reading (dBμV)	 11ac AV reading (dBµV)	8.02 9.87 8.02 9.87 c(VHT20) C Correction Factor (dB/m)	49.39 48.03 47.25 49.43 CH40: 5200 Emissic Peak (dBµV/m)	 MHz on Level AV (dBµV/m)	74 74 74 Peak limit (dBµV/m)	54 54 54 AV limit (dBµV/m)	-5.97 -6.75 -4.57 Margin (dB)
(MH <u>1036</u> 1554 <u></u> <u>1036</u> <u>1554</u> Freque (MH <u>1040</u>	40 60 40 ency z)	H H V V V Ant. Pol. H/V	41.37 38.16 39.23 39.56 Peak reading (dBμV) 40.36	 11ac AV reading (dBµV)	8.02 9.87 8.02 9.87 c(VHT20) C Correction Factor (dB/m) 7.97	49.39 48.03 47.25 49.43 CH40: 5200l Emissic Peak (dBµV/m) 48.33	 MHz on Level AV (dBµV/m) 	74 74 74 Peak limit (dBµV/m) 74	54 54 54 AV limit (dBµV/m) 54	-5.97 -6.75 -4.57 (dB) -5.67
(MH 1036 1554 1036 1554 Freque (MH 1040 1560 	40 50 40 2) 20 00 00	H H V V V Ant. Pol. H/V H H	41.37 38.16 39.23 39.56 Peak reading (dBμV) 40.36 39.15 	 11ac AV reading (dBµV) 	8.02 9.87 8.02 9.87 c(VHT20) C Correction Factor (dB/m) 7.97 9.83 	49.39 48.03 47.25 49.43 CH40: 5200l Emissic Peak (dBμV/m) 48.33 48.98 	 MHz on Level AV (dBµV/m) 	74 74 74 Peak limit (dBµV/m) 74 74 	54 54 54 AV limit (dBµV/m) 54 54 	-5.97 -6.75 -4.57 Margin (dB) -5.67 -5.02
(MH 1036 1554 1036 1554 1554 Freque (MH 1040 1560 1040	40 50 40 ency z) 50 50 50 50 50 50 50 50 50 50	H H V V V Ant. Pol. H/V H H H	41.37 38.16 39.23 39.56 Peak reading (dBμV) 40.36 39.15 39.61	 11ac AV reading (dBµV) 	8.02 9.87 8.02 9.87 c(VHT20) C Correction Factor (dB/m) 7.97 9.83 7.97	49.39 48.03 47.25 49.43 CH40: 5200 Emissio Peak (dBμV/m) 48.33 48.98 47.58	 MHz on Level AV (dBµV/m) 	74 74 74 Peak limit (dBµV/m) 74 74 74 74	54 54 54 (dBµV/m) 54 54 54 54	-5.97 -6.75 -4.57 Margin (dB) -5.67 -5.02 -6.42
(MH 1036 1554 1036 1554 Freque (MH 1040 1560 	40 60 40 ency z) 00 00 00 00	H H V V V Ant. Pol. H/V H H	41.37 38.16 39.23 39.56 Peak reading (dBμV) 40.36 39.15 	 11ac AV reading (dBµV) 	8.02 9.87 8.02 9.87 c(VHT20) C Correction Factor (dB/m) 7.97 9.83 	49.39 48.03 47.25 49.43 CH40: 5200l Emissic Peak (dBμV/m) 48.33 48.98 	 MHz on Level AV (dBµV/m) 	74 74 74 Peak limit (dBµV/m) 74 74 	54 54 54 AV limit (dBµV/m) 54 54 	-5.97 -6.75 -4.57 Margin (dB) -5.67 -5.02

Page 42 of 216

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TC	TESTING	CENTRE TECHI	A A A A				Repo	ort No.: TCT21	0824E067
			11a	c(VHT20) C	CH48: 5240	MHz			
-		Peak		Correction	Emissio	on Level	Deal line's		N.4
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10480	Н	37.78		7.97	45.75		74	54	-8.25
15720	Н	38.10		9.83	47.93		74	54	-6.07
	Н					_			
	<u>(</u> O)		1 C			$\langle O \rangle$	•		
10480	V	39.29		7.97	47.26		74	54	-6.74
15720	V	39.18		9.83	49.01		74	54	-4.99
	V								
			11a	c(VHT40) C	CH38: 5190	MHz			
_		Peak		Correction		on Level			
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10380	Н	41.48		7.75	49.23		74	54	-4.77
15570	Н	39.32		9.87	49.19		74	54	-4.81
(Н		 C		(. C. +-		C	
10380	V	39.06		7.75	46.81		74	54	-7.19
15570	V	39.42		9.87	49.29		74	54	-4.71
	V								
			11a	c(VHT40) C	CH46: 5230	MHz			
		Peak		Correction	Emissio	on Level	Dealdlingit		Maraia
Frequency (MHz)	Ant. Pol. H/V	reading	AV reading (dBµV)	Factor	Peak	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(101112)	11/ V	(dBµV)	(uphv)	(dB/m)	(dBµV/m)	(dBµV/m)	(ubµ v/m)	(ubµ v/m)	(ub)
10460	Н	39.39		7.97	47.36		74	54	-6.64
15690	Н	39.14		9.83	48.97		74	54	-5.03
/	С H		× V			8 7		<u> </u>	
10460	V	39.52		7.97	47.49		74	54	-6.51
15690	V	38.08		9.83	47.91		74	54	-6.09
	V	-							/
			1	1ac(VHT80) CH42:521	0			
Frequency	Ant. Pol.	Peak	AV reading	Correction	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10420	Н	41.35		7.96	49.31		74	54	-4.69
15630	G H	40.11		9.84	49.95	<u>,G-</u>	74	54	-4.05
	Н								
					1	1	1		
10420	V	42.28		7.96	50.24		74	54	-3.76
15630	V	39.71		9.84	49.55		74	54	-4.45
	V	<u> </u>		(6					(

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page 43 of 216

	TESTING	CENTRE TECH	NOLOGY				Rep	ort No.: TCT21	10824E067
			M	odulation T	Vino: Rond (20			
			IVI		ype: Band 2 : 5260MHz	28			
_		Peak		Correction		on Level			
requency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBuV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margir (dB)
10520	Н	38.56		7.97	46.53		74	54	-7.47
15780	Н	37.03	-774	9.83	46.86	<u> </u>	74	54	-7.14
(<u> </u>					<u> </u>			
10520	V	41.88		7.97	49.85		74	54	-4.15
15780	V	38.92		9.83	49.05		74	54	-4.15
	V								
·	-			11a CH56	: 5280MHz	1		<u> </u>	
requency	Ant. Pol.	Peak	AV reading	Correction		on Level	Peak limit	AV limit	Margir
(MHz)	H/V	reading (dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dĒ)
10560	Н	39.03		7.98	47.01		74	54	-6.99
15840	H	39.11		9.85	48.96		74	54	-5.04
(<u>CH</u>		<u></u>		(
10560	V	39.95		7.98	47.93		74	54	-6.07
15840	V	38.61		9.85	48.46		74	54	-5.54
	V								
					: 5320MHz	•		- I	
requency	Ant. Pol.	Peak	AV reading	Correction		on Level	Peak limit	AV limit	Margir
(MHz)	H/V	reading (dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dĔ)
10640	Н	40.15		7.98	48.13		74	54	-5.87
15960	Н	37.60		9.85	47.45		74	54	-6.55
	Сн								
10640	V	39.66		7.98	47.64		74	54	-6.36
15960	V	36.02		9.85	45.87		74	54	-8.13
	V				×				
			11		52: 5260MI				
requency	Ant. Pol.	Peak	AV reading	Correction		on Level	Peak limit	AV limit	Margir
(MHz)	H/V	reading (dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dĒ)
10520	H	41.49		7.97	49.46		74	54	-4.54
15780	H H	38.37		9.83	48.20		74	54 	-5.80
					<u> </u>		<u> </u>		
10520	V	38.51		7.97	46.48		74	54	-7.52
15780	V	36.03		9.83	45.86		74	54	-8.14
<u> </u>	V			(<u> </u>				(
			11		158: 5280M				
requency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio Peak	on Level AV	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10560	H	39.28	-7	7.98	47.26		74	54	-6.74
15840	<u>GH</u>	38.53	- 7 0	9.85	48.38	G^{-}	74	54	-5.62
	H					<u></u>			
10560	V	40.69		7.98	48.67		74	54	-5.33
15840	V	39.74		9.85	49.59		74	54	-4.41
	V	((· · · ·		((
			4.4.	n(HT20) CH	10.4 500014				

Page 44 of 216

		CENTRE TECHN	IOLOGY				Керс	ort No.: TCT21	0824E067
requency	Ant. Pol.	Peak	AV reading	Correction	Emissio		Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10640	Н	38.11		7.98	46.09		74	54	-7.91
15960	Н	35.93		9.85	45.78		74	54	-8.22
	H								
10640	V	39.45		7.98	47.43		74	54	-6.57
	V							1	
15960	V	39.72		9.85	49.57		74	54 	-4.43
					154: 5270M		·		
		Peak		Correction	r	on Level	De als lissit		. A sure in
requency	Ant. Pol. H/V	reading	AV reading	Factor	Peak	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(MHz)	FI/V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(ubµ v/m)		(ub)
10540	Н	41.53		7.97	49.50		74	54	-4.50
15810	Н	37.99		9.83	47.82		74	54	-6.18
	Н								
10540	V	38.01		7.97	45.98	<u> </u>	74	54	-8.02
15810	V	36.82		9.83	46.65		74	54	-7.35
10010	V			9.63	40.00		74	 	-7.30
	v				 162: 5310M				
		Peak		Correction		on Level			
requency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10620	Н	41.13		7.98	49.11		74	54	-4.89
15930	Н	38.80		9.85	48.65		74	54	-5.35
	H								
10620	S V	38.24		7.98	46.22	<u>, () -}</u>	74	54	-7.78
15930	V	36.78		9.85	46.63		74	54	-7.37
	V								
					C52: 5260N				
requency	Ant. Pol.	Peak	Av reading	Correction		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10520	Н	40.38		7.97	48.35		74	54	-5.65
	Н	39.70		9.83	10 50		74	54	-4.47
15780				5.05	49.53				
15780	Н				49.53				
(60			G)			0
 10520	v	40.51		 7.97	 48.48		74	54	-5.52
(V V	40.51 37.26	60				74 74	54	-6.91
 10520	v	40.51		 7.97 9.83 	 48.48 47.09 		74		
 10520 15780 	V V V	40.51 37.26 	 11ac	7.97 9.83 c(VHT20) C	48.48 47.09 CH56: 5280I	 MHz	74 74 	54	-6.91
 10520 15780 	V V	40.51 37.26 Peak reading		7.97 9.83 c(VHT20) C Correction Factor	 48.48 47.09 CH56: 52801 Emissic Peak	 MHz on Level AV	74 74	54	-6.91
 10520 15780 Frequency (MHz)	V V V Ant. Pol. H/V	40.51 37.26 Реак reading (dBµV)	 11ac AV reading (dBµV)	7.97 9.83 c(VHT20) C Correction Factor (dB/m)	 48.48 47.09 CH56: 5280I Emissic Peak (dBµV/m)	 MHz on Level AV (dBµV/m)	74 74 Peak limit (dBµV/m)	54 AV limit (dBµV/m)	-6.91 Margin (dB)
 10520 15780 Frequency (MHz) 10560	V V V Ant. Pol. H/V	40.51 37.26 Peak reading (dBμV) 38.76	 11ac AV reading (dBµV)	 9.83 c(VHT20) C Correction Factor (dB/m) 7.98	 48.48 47.09 CH56: 5280I Emissic Peak (dBµV/m) 46.74	 MHz on Level (dBµV/m) 	74 74 Peak limit (dBµV/m) 74	54 AV limit (dBµV/m) 54	-6.91 Margin (dB) -7.26
 10520 15780 Frequency (MHz)	V V V Ant. Pol. H/V H H	40.51 37.26 Реак reading (dBµV) 38.76 37.35	 11ac AV reading (dBµV) 	7.97 9.83 c(VHT20) C Correction Factor (dB/m)	 48.48 47.09 CH56: 5280I Emissic Peak (dBµV/m) 46.74 47.20	 MHz on Level AV (dBµV/m) 	74 74 Peak limit (dBµV/m) 74 74	54 AV limit (dBµV/m)	-6.91 Margin (dB) -7.26 -6.80
 10520 15780 Frequency (MHz) 10560	V V V Ant. Pol. H/V	40.51 37.26 Peak reading (dBμV) 38.76	 11ac AV reading (dBµV)	 9.83 c(VHT20) C Correction Factor (dB/m) 7.98	 48.48 47.09 CH56: 5280I Emissic Peak (dBµV/m) 46.74	 MHz on Level (dBµV/m) 	74 74 Peak limit (dBµV/m) 74	54 AV limit (dBµV/m) 54	-6.91 Margin (dB) -7.26
 10520 15780 Frequency (MHz) 10560 15840 	V V V Ant. Pol. H/V H H H	40.51 37.26 Peak reading (dBμV) 38.76 37.35 	 11ac AV reading (dBµV) 	 7.97 9.83 c(VHT20) C Correction Factor (dB/m) 7.98 9.85 	 48.48 47.09 CH56: 5280I Emissic Peak (dBµV/m) 46.74 47.20 	 MHz on Level AV (dBµV/m) 	74 74 Peak limit (dBµV/m) 74 74 	54 (dBµV/m) 54 54 	-6.91 Margin (dB) -7.26 -6.80
 10520 15780 Frequency (MHz) 10560 15840 10560	V V V Ant. Pol. H/V H H H H	40.51 37.26 Peak reading (dBμV) 38.76 37.35 38.12	 11ac AV reading (dBµV) 	 7.97 9.83 c(VHT20) C Correction Factor (dB/m) 7.98 9.85 7.98	 48.48 47.09 CH56: 5280I Emissic Peak (dBµV/m) 46.74 47.20 46.10	 MHz on Level AV (dBµV/m) 	74 74 Peak limit (dBµV/m) 74 74 74 74	54 (dBµV/m) 54 54 54	-6.91 Margin (dB) -7.26 -6.80 -7.90
 10520 15780 Frequency (MHz) 10560 15840 	V V V Ant. Pol. H/V H H H	40.51 37.26 Peak reading (dBμV) 38.76 37.35 	 11ac AV reading (dBµV) 	 7.97 9.83 c(VHT20) C Correction Factor (dB/m) 7.98 9.85 	 48.48 47.09 CH56: 5280I Emissic Peak (dBµV/m) 46.74 47.20 	 MHz on Level AV (dBµV/m) 	74 74 Peak limit (dBµV/m) 74 74 	54 (dBµV/m) 54 54 	-6.91 Margin (dB) -7.26 -6.80

Page 45 of 216

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TC	TESTING	CENTRE TECH	NOLOGY				Repo	ort No.: TCT21	0824E067	
			11a	c(VHT20) C	CH64: 5320	MHz				
_		Peak		Correction		n Level				
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)	
10640	Н	41.17		7.98	49.15		74	54	-4.85	
15960	Н	39.48		9.85	49.33		74	54	-4.67	
/	Н				/					
	(0)					(\mathbf{O})				
10640	V	40.55		7.98	48.53	<u> </u>	74	54	-5.47	
15960	V	36.38		9.85	46.23		74	54	-7.77	
	V									
			11a	c(VHT40) C	H54: 5270	MHz				
		Peak		Ing Correction Emission Level Peak limit AV limit Margin						
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	dBµV/m)	Margin (dB)	
10540	Н	40.69		7.97	48.66		74	54	-5.34	
15810	H	37.75	7	9.83	47.58	×	74	54	-6.42	
()	СH				(.G] -				
							•			
10540	V	39.37		7.97	47.34		74	54	-6.66	
15810	V	37.59		9.83	47.42		74	54	-6.58	
	V									
			11a	c(VHT40) C	CH60: 5310	MHz				
	Ant Dal	Peak		Correction	Emissio	on Level	Dealdlinsit		Marain	
Frequency (MHz)	Ant. Pol. H/V	reading	AV reading (dBµV)	Facior	Peak	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)	
(11112)	I 1/ V	(dBµV)	(ubµv)	(dB/m)	(dBµV/m)	(dBµV/m)		(ubµ v/m)	(UD)	
10620	Н	39.05		7.98	47.03		74	54	-6.97	
15930	Н	37.33		9.85	47.18		74	54	-6.82	
	H					2.4				
10620	V	39.18		7.98	47.16		74	54	-6.84	
15930	V	37.29		9.85	47.14		74	54	-6.86	
	V									
			11a	<u> </u>	C58:5290N	Hz				
Frequency	Ant. Pol.	Peak	AV reading	Correction	Emissio	on Level	Peak limit	AV limit	Margin	
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	
10580	H	41.69		7.98	49.67		74	54	-4.33	
15870	<u>G</u> H	39.17	L.C.	9.85	49.02		74	54	-4.98	
Ϋ́ς	H									
					1		r			
10580	V	40.35		7.98	48.33		74	54	-5.67	
15870	V	37.61		9.85	47.46		74	54	-6.54	
	V									

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page 46 of 216

	TESTING	CENTRE TECH	NOLOGY				Rep	ort No.: TCT2	10824E067
			N.4.	adulation T	una Dand (_
					ype: Band 2): 5500MHz				
		Peak		Correction		on Level	Deal Parts		N.4
requency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBuV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11000	Н	39.25		8.03	47.28		74	54	-6.72
16500	H	39.80		9.76	49.56		74	54	-4.44
	H		- G		(LG+			
44000		40.45		0.00	10.10		74		
11000	V	40.45		8.03	48.48		74	54	-5.52
16500	V V	40.36		9.76	50.12		74	54	-3.88
····	V			 11a CH120): 5600MHz				
_		Peak		Corroction		on Level			
Frequency (MHz)	Ant. Pol. H/V	reading	AV reading (dBµV)	Factor	Peak	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
` '		(dBµV)	(uphv)	(dB/m)	(dBµV/m)	(dBµV/m)	· · /	,	. ,
11200	Н	40.40		8.04	48.44		74	54	-5.56
16800	H	40.82		9.74	50.56		74	54	-3.44
(<u>CH</u>								
11200	V	38.67		8.04	46.71		74	54	-7.29
16800	V	40.22		9.74	49.96		74	54	-4.04
	V	40.22			43.30				-4.04
	v			11a CH140): 5700MHz				
		Peak		Correction		on Level	Dealdlimit		Maraia
requency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11400	Н	38.60		8.05	46.65		74	54	-7.35
17100	Н	40.23		9.72	49.95		74	54	-4.05
	C H								
11400	V	38.72		8.05	46.77		74	54	-7.23
17100	V	40.94		9.72	50.66		74	54	-3.34
	V								
			11r	(HT20) CH	100: 5500N	ЛНz		<u> </u>	
Frequency	Ant. Pol.	Peak	AV reading	Correction		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11000	Н	40.53		8.03	48.56		74	54	-5.44
16500	CH_	39.06		9.76	48.82	. C ``	74	54	-5.18
	Н					<u> </u>			
11000	V	38.72		8.03	46.75		74	54	-7.25
16500	V	36.80		9.76	46.56		74	54	-7.44
	V								
	•		11r	(HT20) CH	120: 5600N	ЛНz			· · · · · · · · · · · · · · · · · · ·
Frequency	Ant. Pol.	Peak	AV reading	Correction		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11200	H	39.55		8.04	47.59		74	54	-6.41
16800	<u>GH</u>	40.48		9.74	50.22	$\langle \mathbf{G}^{-} \rangle$	74	54	-3.78
	H								
11200	V	38.38		8.04	46.42		74	54	-7.58
16800	V	39.12		9.74	40.42		74	54	-5.14
	V								
	•	1.1.1.1.1.1.		(HT20) CH					

Page 47 of 216

	通 TESTING	CENTRE TECH	NOLOGY				Repo	ort No.: TCT21	0824E067
requency	Ant. Pol.	Peak	AV reading	Correction	Emissic		Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11400	Н	38.92		8.05	46.97	(ubµv/iii)	74	54	-7.03
17100	H	40.65		9.72	50.37		74	54	-3.63
	H								
11400	V	38.43		8.05	46.48		74	54	-7.52
17100	V	39.88		9.72	49.60	. 	74	54	-4.40
	V					<u> </u>			
	1		11r	· · /	102: 5510N		1	1	
requency	Ant. Pol.	Peak	AV reading	Correction		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11020	Н	39.03		8.03	47.06		74	54	-6.94
16530	Н	39.91		9.76	49.67		74	54	-4.33
	Н								
11020	V	39.15		8.03	47.18		74	54	-6.82
16530	V	38.33		9.76	47.18	<u>CI</u>	74	54 54	-6.82
10550	V			9.70	40.09				-5.91
	V				 118: 5590N			<u> </u>	
		Peak		Corroction		on Level			
requency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11180	Н	39.61		8.04	47.65	(ubµv/m)	74	54	-6.35
16770	H	38.79		9.74	48.53		74	54	-5.47
	H								
4									
11180	GV	38.08	(C)	8.04	46.12	<u>, G 1</u>	74	54	-7.88
16770	V	37.52		9.74	47.26		74	54	-6.74
	V								
	1	1	11r	<u>(HT40) CH</u>	134: 5670N	/Hz	1	,	
requency	Ant. Pol.	Peak	AV reading	Correction		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11340	Н	40.86		8.05	48.91		74	54	-5.09
17010	Н	39.03		9.72	48.75		74	54	-5.25
	Н								
			60		(=	<u> </u>		<u> </u>	
11340	V	39.21		8.05	47.26		74	54	-6.74
17010	V	37.85		9.72	47.57		74	54	-6.43
	V			 (\/HT20) C	 H100: 5500	 MHz			
		Peak		Correction		on Level			
requency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11000	Н	37.96		8.03	45.99	(ubµv/m) 	74	54	-8.01
16500	H	39.71		9.76	49.47		74	54	-4.53
	Н								
		1	(2))		<u>(</u> 0)	1		
11000	V	39.30		8.03	47.33		74	54	-6.67
		20.70		9.76	49.52		74	54	-4.48
16500	V	39.76		3.10	+J.JZ		17	54	7.70

Page 48 of 216

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

	TESTING	CENTRE TECH	NOLOGY				Repo	ort No.: TCT21	0824E067
			11ac	:(VHT20) C	H120: 5600	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margir (dB)
11200	Н	40.55		8.04	48.59		74	54	-5.41
16800	Н	39.82		9.74	49.56		74	54	-4.44
(F				(
			NO.					KU)	
11200	V	38.87		8.04	46.91	<u> </u>	74	54	-7.09
16800	V	40.29		9.74	50.03		74	54	-3.97
	V								
			11ac	· · · · ·	H140: 5700		-		
requency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	n Level AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margir (dB)
11400	H	39.19		8.05	(dBµV/m) 47.24	(dBµV/m)	74	54	-6.76
17100	H	38.70		9.72	48.42		74	54	-5.58
	С Н								
-									
11400	V	40.99		8.05	49.04		74	54	-4.96
17100	V	39.52		9.72	49.24		74	54	-4.76
	V	<u> </u>							
			11ac	(VHT40) C	H102: 5510	MHz			
	Ant Dal	Peak		Correction	Emissic	on Level	De els lissit		Manain
requency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margir (dB)
11020	Н	38.10		8.03	46.13		74	54	-7.87
16530	H	39.62	(9.76	49.38		74	54	-4.62
	н					4		×)	
11020	V	41.22		8.03	49.25		74	54	-4.75
16530	V	38.76		9.76	48.52		74	54	-5.48
	V								
			<u> </u>	· · · · · · · · · · · · · · · · · · ·	CH118:55		-		
requency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	n Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margir (dB)
11180	н	38.85		8.04	(dBµV/m) 46.89	(dBµV/m)	74	54	-7.11
16770	СH	36.90		9.74	46.64		74	54 54	-7.36
10/10	Ĥ			9.74	40.04				-7.50
				I	I		I		
11180	V	38.38		8.04	46.42		74	54	-7.58
16770	V	37.41		9.74	47.15		74	54	-6.85
	V								
			1			1		I	

		MHz	134: 5670	(VHT40) CI	11ac			
AV limit (dBµV/m) Margin (dB)	Peak limit (dBµV/m)	n Level AV (dBµV/m)	Emissio Peak (dBµV/m)	Correction Factor (dB/m)	AV reading (dBuV)	Peak reading (dBµV)	Ant. Pol. H/V	Frequency (MHz)
54 -8.58	74		45.42	8.05		37.37	Н	11340
54 -8.10	74		45.90	9.72		36.18	Н	17010
		×					K H	
(\mathcal{G})		\mathcal{O}	()		66		\mathcal{S}	(
54 -8.32	74		45.68	8.05		37.63	V	11340
54 -5.11	74		48.89	9.72		39.17	V	17010
							V	
		MHz	H106: 5530	(VHT80) C	11ac			
AV limit Margin (dBµV/m) (dB)	Peak limit (dBµV/m)	n Level AV (dBµV/m)	Emissic Peak (dBµV/m)	Correction Factor (dB/m)	AV reading (dBuV)	Peak reading (dBµV)	Ant. Pol. H/V	Frequency (MHz)
54 -6.18	74		47.82	8.03		39.79	Н	11060
54 -3.01	74		50.99	9.75		41.24	Н	16590
		-	/				Н	/
	•)	NO.			
54 -6.27	74		47.73	8.03		39.70	V	11060
54 -7.67	74		46.33	9.75		36.58	V	16590
							V	
		1Hz	122: 5610N	(HT80) CH	11a			
AV limit Margin (dBµV/m) (dB)	Peak limit (dBµV/m)	n Level AV (dBµV/m)	Emissic Peak (dBµV/m)	Correction Factor (dB/m)	AV reading (dBuV)	Peak reading (dBµV)	Ant. Pol. H/V	Frequency (MHz)
54 -4.48	74		49.52	8.05		41.47	Н	11220
54 -5.92	74		48.08	9.72		38.36	Н	16830
			(Н	(
54 -6.32	74		47.68	8.05		39.63	V	11220
54 -4.47	74		49.53	9.72		39.81	V	16830
-							V	

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

requency									
Frequency				Iodulation T					
Frequency				(HT20) CH					
	Ant. Pol.	Peak	AV reading	Correction		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBuV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	Н	38.25		8.09	46.34		74	54	-7.66
17235	Н	37.61		9.67	47.28		74	54	-6.72
(Н				(
				/					
11490	V	40.37		8.09	48.46		74	54	-5.54
17235	V	41.14		9.67	50.81		74	54	-3.19
	V								
$\langle \rangle$	•		<u> </u>			<u>.</u>		·	
			11a	(HT20) CH	157: 5785N	ЛНz			
		Peak		Correction		on Level	D. J. P. V.		N4
Frequency		reading	AV reading	Factor	Peak	AV	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11570	H	39.52		8.10	47.62		74	54	-6.38
17355	СН	38.87		9.65	48.52	<u></u>	74	54	-5.48
	Ĥ								
11570	V	38.68		8.10	46.78		74	54	-7.22
17355	V	40.11		9.65	49.76		74	54	-4.24
	V			(((
· / · · · ·	_		<u> </u>					11	
			11a	(HT20) CH	161·5825N	ЛНz			
_		Peak		Correction		on Level			
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11650	ЮH	38.07	<u>L.O</u>	8.12	46.19		74	54	-7.81
17475	Й	37.26		9.62	46.88		74	54	-7.12
	H								
	I	L	I	I		<u>.</u>	1	II	
11650	V	39.23		8.12	47.35		74	54	-6.65
17475	V	38.69		9.62	48.31		74	54	-5.69
	V								
-	I *		<u> </u>			<u> </u>		11	
			11n	(HT20) CH	151: 5745N	/Hz			
		Peak		Correction		on Level	D. J. P. H		
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
· /	Н	39.55		8.09	47.64		74	54	-6.36
			1			t			
11510		39.06		9.67	48.73		74	54	-5.27
	Н	39.06		9.67	48.73		74	54 	-5.27
11510 17265		39.06 		9.67 			74 	54 	-5.27

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

9.67

47.36

74

54

-6.64

17265

V

V

37.69

	TESTING	CENTRE TECH	NOLOGY				Rep	ort No.: TCT2	10824E067
			11r	n(HT20) CH	157: 5785N	/IHz			
requency	Ant. Pol.	Peak	AV reading	Correction		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11570	Н	38.56		8.10	46.66		74	54	-7.34
17355	Н	40.12		9.65	49.77		74	54	-4.23
	Н								
)			1		
11570	V	38.88		8.10	46.98		74	54	-7.02
17355	V	39.23		9.65	48.88		74	54	-5.12
	V								
			11r	n(HT20) CH	165: 5825N	ЛНz			
		Peak		Correction		on Level	Dealdlimit		Maraia
requency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11650	Н	39.02		8.12	47.14		74	54	-6.86
17475	H	37.89		9.62	47.51	<u> </u>	74	54	-6.49
()	, G H		[_ `		(.G-+			
				/					
11650	V	36.11		8.12	44.23		74	54	-9.77
17475	V	39.40		9.62	49.02		74	54	-4.98
	V				×				
		(G)		()			(\mathbf{C})		
		Deals	11r	n(HT40) CH				Г Г	
requency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak (dBµV/m)	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11510	Н	40.68		8.09	48.77		74	54	-5.23
17265	С H	38.50	60	9.67	48.17	<u>(61)</u>	74	54	-5.83
	H								
					r	r	r	, , , , , , , , , , , , , , , , , , , ,	
	V	41.17		8.09	49.26		74	54	-4.74
11510		38.94		9.67	48.61		74	54	-5.39
11510 17265	V	30.94		0.01					
	V V)				
17265	-			6)				~
17265	V	G	11r	 (HT40) CH	 159: 5795N	ИНz			Manaia
17265	-			 (HT40) CH	 159: 5795N		Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
17265 requency	V Ant. Pol.	Peak reading	11r AV reading	 (HT40) CH Correction Factor	159: 5795N Emissic Peak	/IHz on Level AV	Peak limit	AV limit	
17265 requency (MHz)	V Ant. Pol. H/V H H	Peak reading (dBµV)	11r AV reading (dBµV)	 (HT40) CH Correction Factor (dB/m)	159: 5795M Emissic Peak (dBµV/m)	/Hz on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	(dB)
17265 requency (MHz) 11590	V Ant. Pol. H/V H	Peak reading (dBµV) 38.95	11r AV reading (dBµV) 	 (HT40) CH Correction Factor (dB/m) 8.10	 159: 5795М Emissic Peak (dBµV/m) 47.05	/IHz on Level AV (dBµV/m) 	Peak limit (dBµV/m) 74	AV limit (dBµV/m) 54	(dB) -6.95
17265 requency (MHz) 11590 17385 	V Ant. Pol. H/V H H H	Peak reading (dBµV) 38.95 38.83 	11r AV reading (dBµV) 	 Correction Factor (dB/m) 8.10 9.65 	 Emissic Peak (dBμV/m) 47.05 48.48 	/Hz on Level AV (dBµV/m) 	Peak limit (dBµV/m) 74 74 	AV limit (dBµV/m) 54 54 	(dB) -6.95 -5.52
17265 requency (MHz) 11590 17385	V Ant. Pol. H/V H H	Peak reading (dBµV) 38.95 38.83	11r AV reading (dBµV) 	 (HT40) CH Correction Factor (dB/m) 8.10 9.65	 159: 5795M Emissic Peak (dBµV/m) 47.05 48.48	/Hz on Level AV (dBµV/m) 	Peak limit (dBµV/m) 74 74	AV limit (dBµV/m) 54 54	(dB) -6.95 -5.52

Page 52 of 216

	TESTING	CENTRE TECH	NOLOGY				Rep	ort No.: TCT21	0824E067
			11ac	(VHT20) C	H149: 5745	MHz			
requency	Ant. Pol.	Peak	AV reading	Correction	Emissic	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading	(dBµV)	Factor	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
、 ,	11	(dBµV)	、 , ,	(dB/m)	(dBµV/m)	(dBµV/m)	,	,	. ,
11490	H	40.24		8.09	48.33		74	54	-5.67
17235	H	37.87		9.67	47.54		74	54	-6.46
	Н								
44400		40.54	- 60	0.00	40.00	$(G^{)}$	74		E 07
11490	V	40.54		8.09	48.63		74	54	-5.37
17235	V	38.68		9.67	48.35		74	54	-5.65
	V								
			11ac	:(VHT20) C	H157: 5785	MHz			
		Peak		Correction		n Level	Deal Parts		N 4
requency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11570	Н	38.39		8.10	46.49		74	54	-7.51
17355	A H	37.06		9.65	46.71		74	54	-7.29
(С Н				(<u> </u>		4.6	
1				/					
11570	V	38.14		8.10	46.24		74	54	-7.76
17355	V	38.72		9.65	48.37		74	54	-5.63
	V	<u> </u>							
				(.0			$\left(\cdot \cdot \cdot \right)$	1	(
			11ac	(VHT20) C	H165: 5825	MHz			
	Ant. Pol.	Peak	AV reading	Correction		on Level	Peak limit	AV limit	Morgin
requency (MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	Margin (dB)
11650	Н	40.08		8.12	48.20		74	54	-5.80
17475	C H	38.94	40	9.62	48.56		74	54	-5.44
	H								
			1	0.40	(= .=				
11650	V	39.25		8.12	47.37		74	54	-6.63
17475	V	40.79		9.62	50.41		74	54	-3.59
)	V			/)				
			11ac	C(VHT40) C	H151 5755	MHz			
		Peak		Correction		n Level			
requency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11510	Н	40.16		8.09	48.25		74	54	-5.75
17265	Н	38.25		9.67	47.92		74	54	-6.08
	Н								
	V	40.66		8.09	48.75		74	54	-5.25
							1 A W		
11510 17265	V V V	36.37		9.67	46.04		74	54	-7.96

Page 53 of 216

			11ac	· · · · ·	H159: 5795				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11590	Н	40.21		8.10	48.31		74	54	-5.69
17385	Н	37.76		9.65	47.41		74	54	-6.59
	Н								
(C)				(
11590	V	40.04		8.10	48.14		74	54	-5.86
17385	V	38.97		9.65	48.62		74	54	-5.38
	V								
			11ac	(VHT80) C	H155: 5775	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11550	Н	40.80		8.09	48.89		74	54	-5.11
17325	Н	39.13		9.66	48.79		74	54	-5.21
)	H		-7					-7	
	·G`)		66			G)		661	
11550	V	41.78		8.09	49.87		74	54	-4.13
17325	V	39.39		9.66	49.05		74	54	-4.95
	V								

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page 54 of 216

)	Test Procedure:	chamber and powered by Turn the EUT on and cou analyzer. c. Turn the EUT of highest temperature speci (approximately 30 min) f chamber to stabilize. e. Re temperature chamber set to The test chamber was a degree C for a minimum voltage was then adjusted	nominal AC/DC voltage. b. pple its output to a spectrum off and set the chamber to the fied. d. Allow sufficient time for the temperature of the epeat step 2 and 3 with the to the lowest temperature. f. allowed to stabilize at +20 of 30 minutes. The supply d on the EUT from 85% to	
)	Test Result:	115% and the frequency re PASS	cora.	
	Remark:	Pre-scan was performed at the worst case (11n) was fo shown in this report.		
)				
	<u>Hotline: 400-6611-140 Tel: 86-i</u>	755-27673339 Fax: 86-755-27	Page 55 of 216 673332 http://www.tct-lab.com	

5.9. Frequency Stability Measurement

5.9.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

.s.r. rest opecification		
Test Requirement:	FCC Part15 Section 15.407(g)) &Part2 J Section 2.1055
Test Method:	ANSI C63.10: 2013	
Limit:	The frequency tolerance shall band of operation frequen variation of 0 degrees to 45 de voltage, and for a variation in the from 85% to 115% of the ra- temperature of 20 degrees C.	cy over a temperature egrees C at normal supply the primary supply voltage
Test Setup:	Spectrum Analyzer	EUT
	The EUT was placed inside chamber and powered by no Turn the EUT on and couple	ominal AC/DC voltage. b.
Test Procedure:	analyzer. c. Turn the EUT off a highest temperature specified (approximately 30 min) for chamber to stabilize. e. Repe temperature chamber set to the The test chamber was allo degree C for a minimum of voltage was then adjusted of 115% and the frequency record	and set the chamber to the d. d. Allow sufficient time the temperature of the eat step 2 and 3 with the the lowest temperature. f. wed to stabilize at +20 30 minutes. The supply on the EUT from 85% to
Test Result:	PASS	
Remark:	Pre-scan was performed at all the worst case (11n) was foun shown in this report.	

