

RADIO TEST REPORT

(FCC Part 15 Subpart C)

Applicant:	Power Idea Technology (Shenzhen) Co., Ltd.
Address:	4th Floor, A Section ,Languang Science&technology Building, No. 7 Xinxi RD,Hi-Tech
	Industrial Park North, Nanshan District Shenzhen, China.

Manufacturer:	Power Idea Technology (Shenzhen) Co., Ltd.
Address:	4th Floor, A Section ,Languang Science&technology Building, No. 7 Xinxi RD,Hi-Tech Industrial Park North, Nanshan District Shenzhen, China.
Product:	Smart Phone
Brand Name:	RugGear
Model Name:	PSM02G
Marketing Name:	RG750
FCC ID:	ZLE-RG750
Date of tests:	Nov. 02, 2022 ~ Nov. 23, 2022

The tests have been carried out according to the requirements of the following standard:

- □ Part 15 Subpart C §15. 225
- RSS-Gen Issue 5 Amendment 1 (March 2019)
- **ANSI C63.10-2013**

CONCLUSION: The submitted sample was found to COMPLY with the test requirement

Prepared by Simon Wang	Approved by Luke Lu
Engineer / Mobile Department	Manager / Mobile Department
Simon Wang	lupe lu
Date: Nov. 23, 2022	Date: Nov. 23, 2022

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/fems-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Report Revise Record

ISSUE NO. REASON FOR CHANGE		DATE ISSUED
W7L-P22110001RF09	Original release	Nov. 23, 2022

Tel: +86 755 8869 6566 Fax: +86 755 8869 6577

Email: customerservice.sw@bureauveritas.com

TABLE OF CONTENTS

1.	GEN	ERAL DESCRIPTION	5
	1.1	APPLICANT	5
	1.2	MANUFACTURER	
	1.3	GENERAL DESCRIPTION OF EUT	
	1.4	MODIFICATION OF EUT	
	1.5	APPLICABLE STANDARDS	
2.	TES	Γ CONFIGURATION OF EQUIPMENT UNDER TEST	6
	2.1	DESCRIPTIONS OF TEST MODE	6
	2.2	TEST CONFIGURATIONS	7
	2.3	SUPPORT EQUIPMENT	8
	2.4	TEST SETUP	8
	2.5	MEASUREMENT RESULTS EXPLANATION EXAMPLE	10
3.	TES	Γ RESULT	11
	3.1	20DB AND 99% BANDWIDTH MEASUREMENT	11
	3.2	FREQUENCY STABILITY MEASUREMENT	12
	3.3	FIELD STRENGTH OF FUNDAMENTAL EMISSIONS AND MASK MEASUREMENT	14
	3.4	RADIATED EMISSIONS MEASUREMENT	17
	3.5	AC CONDUCTED EMISSION MEASUREMENT	23
	3.6	ANTENNA REQUIREMENTS	26
4	LIST	OF MEASURING EQUIPMENT	27
5	UNC	ERTAINTY OF EVALUATION	28

Summary of Test RESULT

FCC Rule	IC Rule	Description	Limit	Result	Remark
-	RSS-Gen 6.7	99% Bandwidth	-	Pass	-
15.225(a)(b)(c)	RSS-210 Annex B.6	Field Strength of Fundamental Emissions	15.225(a)(b)(c) RSS-210 Annex B.6	Pass	-
15.215	-	20dB Spectrum Bandwidth	15.215	Pass	•
15.225(d) 15.209	RSS-210 Annex B.6	Radiated Emission	15.225(d) & 15.209 RSS-210 Annex B.6	Pass	See note 1
15.207	RSS-GEN 8.8	AC Conducted Emission	15.207(a)	Pass	See note 1
15.225(e)	Annex B.6	Frequency Stability	< ±100 ppm	Pass	-
15.203	RSS-Gen 6.8	Antenna Requirement	N/A	Pass	-

1. General Description

1.1 Applicant

Power Idea Technology (Shenzhen) Co., Ltd.

4th Floor, A Section ,Languang Science&technology Building, No. 7 Xinxi RD,Hi-Tech Industrial Park North, Nanshan District Shenzhen, China.

1.2 Manufacturer

Power Idea Technology (Shenzhen) Co., Ltd.

4th Floor, A Section ,Languang Science&technology Building, No. 7 Xinxi RD,Hi-Tech Industrial Park North, Nanshan District Shenzhen, China.

1.3 General Description Of EUT

Items	Description
Tx/Rx Frequency Range	13.553 ~ 13.567MHz
Channel Number	1
20dBW	2.697 kHz
99%OBW	2.330 kHz
Antenna Type	FPC Antenna
Type of Modulation	ASK

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Modification of EUT

No modifications are made to the EUT during all test items.

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

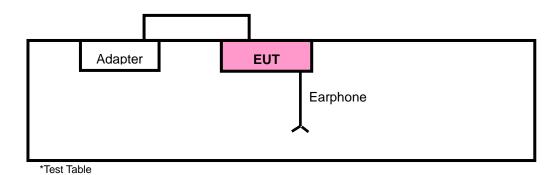
- FCC Part 15 Subpart C §15.225
- ANSI C63.10-2013
- RSS-210 Issue 10
- RSS-Gen Issue 5

BV 7Layers Communications Technology

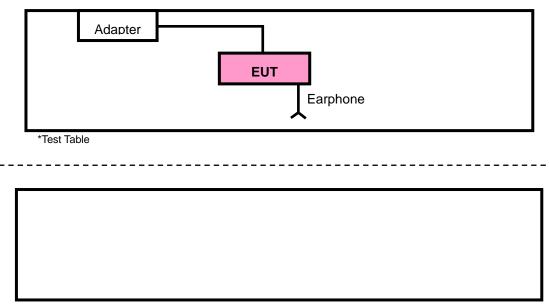
2. Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.


	Test Items					
Α	C Power Line Conducted Emissions	Field Strength of Fundamental Emissions				
20	0dB Spectrum Bandwidth	Frequency Stability				
R	adiated Emissions 9kHz~30MHz	Radiated Emissions 30MHz~1GHz				
No	te:					
1.	The EUT was programmed to be in continuous	ly transmitting mode.				
2.	The ancillary equipment, NFC card, is used	to make the EUT (NFC) continuously transmit at				
	13.56MHz and is placed around 3 cm gap to th	e EUT.				
3.	Pre-Scan has been conducted to determine the	ne worst-case mode from all possible combinations				
	between available modulations, work in modes	s and data rates. Selected for the final test as listed				
	below.					

Frequency	Work in Modes	Туре	Data Rate (Kbps)			
13.56 MHz	Card Emulation Reader/Writer Peer-to-Peer	□A □B ▼F □V	□ 106 ☑ 212 □ 424 □ 848			
Remark: The mark" " means is chosen for testing; The mark" " means is not chosen for testing.						



2.2 Test Configurations

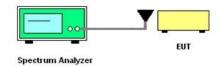
<AC Conducted Emissions>

< For Fundamental Emissions and Mask and Radiated Emissions Measurement >

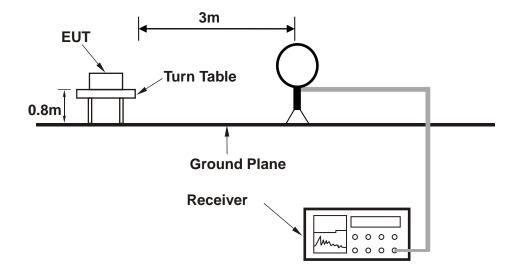
^{*} Kept in a remote area

Page 7 of 28

2.3 Support Equipment

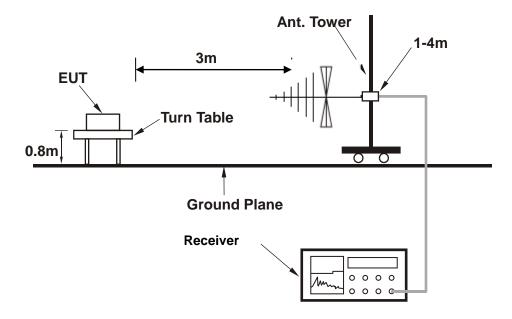

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	N/A	N/A	N/A	N/A	N/A

2.4 Test Setup

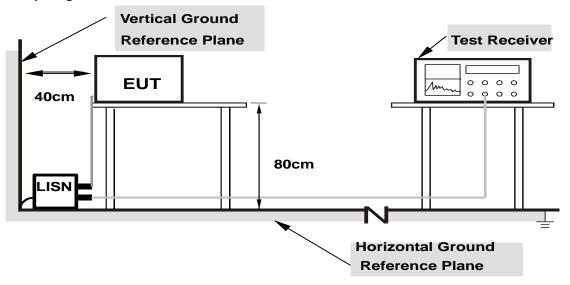

The EUT is continuously communicating during the tests.

EUT was set in the Hidden menu mode to enable NFC communications.

Setup diagram for Conducted Test



Setup diagram for Radiation(9KHz~30MHz) Test



Setup diagram for Radiation(Below 1G) Test

Setup diagram for AC Conducted Emission Test

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

Email: customerservice.sw@bureauveritas.com

2.5 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5 dB and 10dB attenuator.

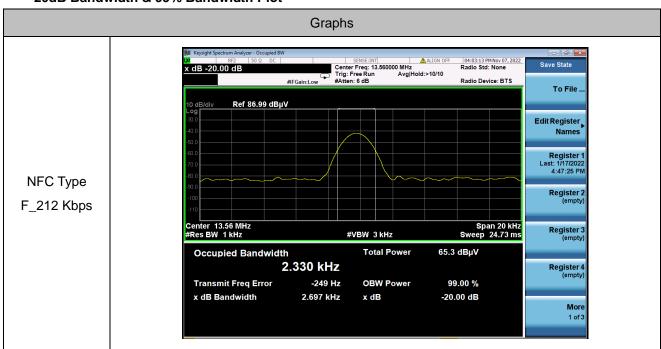
Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 5 + 10 = 15 (dB)

3. Test Result

3.1 20dB and 99% Bandwidth Measurement

3.1.1 Limit of 20dB and 99% Bandwidth

Intentional radiators must be designed to ensure that the 20dB and 99% emission bandwidth in the specific band 13.553~13.567MHz.


3.1.2 Test Procedures

- The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold mode.
- 2. The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.
- 4. Measured the 99% OBW.

3.1.3 Test Result of 20dB and 99% Bandwidth

Test Mode :	NFC		Temperature :		23 ℃	
Test Engineer :	Jace hu	Relative Hur		dity:	50%	
Mode	Frequency 20dB Band		dwidth [kHz]	99	% OBW[kHz]	Verdict
NFC Type F_212 Kbps	13.56MHz	2	.697		2.330	PASS

20dB Bandwidth & 99% Bandwidth Plot

Tel: +86 755 8869 6566 Fax: +86 755 8869 6577

Email: customerservice.sw@bureauveritas.com

3.2 Frequency Stability Measurement

3.2.1 Limit of Frequency Stability

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

3.2.2 Test Procedures

- The spectrum analyzer connected via a receive antenna placed near the EUT.
- 2. EUT have transmitted signal and fixed channelize.
- Set the spectrum analyzer span to view the entire emissions bandwidth. 3.
- Set RBW = 1 kHz, VBW = 3 kHz with peak detector and maxhold settings.
- The fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc × 10⁶ ppm and the limit is less than ±100ppm.
- Extreme temperature rule is -20°C~50°C.

3.2.3 Test Result of Frequency Stability

The NFC Type F_212 Kbps is the worst case, Only report worst mode data

Email: customerservice.sw@bureauveritas.com

NFC Type F_212 Kbps

Voltage (Vdc)	Temperature	Measurement Frequency (MHz)	Frequency Tolerance(ppm)	Limit(ppm)	Result
3.6	20	13.56006	4.42		Pass
4.35	20	13.56022	16.22		Pass
	-20	13.56023	16.96	±100	Pass
	-10	13.56026	19.17		Pass
	0	13.55989	-8.11		Pass
3.8	10	13.55995	-3.69		Pass
3.0	20	13.55996	-2.95		Pass
	30	13.55993	-5.16		Pass
	40	13.55985	-11.06		Pass
	50	13.56011	8.11		Pass

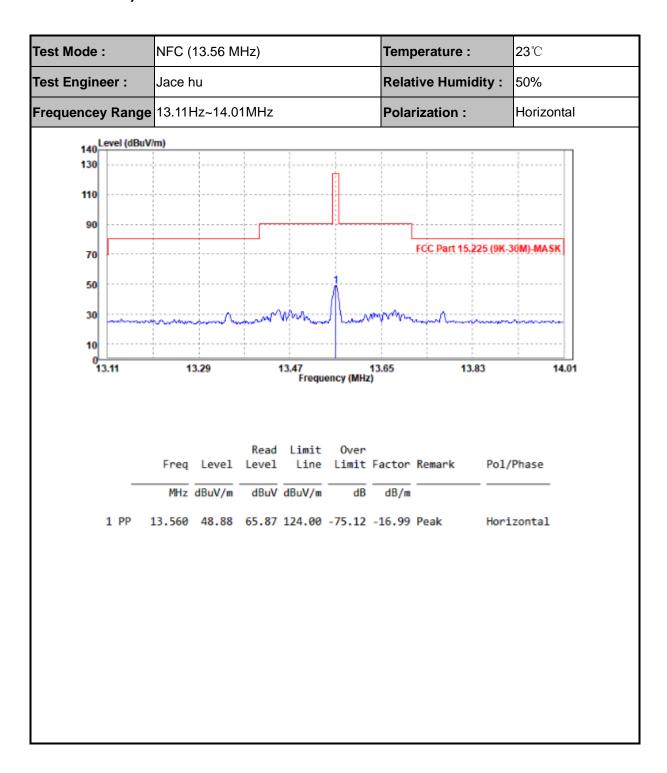
Page 13 of 28

Tel: +86 755 8869 6566

Fax: +86 755 8869 6577

(Shenzhen) Co., Ltd

3.3 Field Strength of Fundamental Emissions and Mask Measurement


3.3.1 Limit of Field Strength of Fundamental Emissions and Mask

Rules and specifications	FCC CFR 47 Part 15 section 15.225 IC RSS-210 B.6					
Description	Compliance with th	e spectrum mask is t	ested with RBW set t	o 9kHz.		
Frog of Emission (MUT)	Field Strength	Field Strength	Field Strength	Field Strength		
Freq. of Emission (MHz)	(µV/m) at 30m	(dBµV/m) at 30m	(dBµV/m) at 10m	(dBµV/m) at 3m		
1.705~13.110	30	29.5	48.58	69.5		
13.110~13.410	106	40.5	59.58	80.5		
13.410~13.553	334	50.5	69.58	90.5		
13.553~13.567	15848	84.0	103.08	124.0		
13.567~13.710	334	50.5	69.58	90.5		
13.710~14.010	106	40.5	59.58	80.5		
14.010~30.000	30	29.5	48.58	69.5		

3.3.2 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 6. Compliance with the spectrum mask is tested with RBW set to 9kHz. Note: Emission level ($dB\mu V/m$) = 20 log Emission level ($\mu V/m$).

3.3.3 Test Results of Field Strength of Fundamental Emissions and Mask (1.705 MHz ~ 30 MHz)

Polarization: Jace hu Relative Humidity: 50% requencey Range 13.11Hz-14.01MHz Polarization: Vertical 140 Level (dBuV/m) 130 110 90 13.11 13.29 13.47 Frequency (MHz) 13.65 13.83 14.01 Freq Level Limit Over Level Line Limit Factor Remark Pol/Phase MHz dBuV/m dBuV dBuV/m dB dB/m 1 PP 13.560 48.77 65.76 124.00 -75.23 -16.99 Peak Vertical	Test Mode :	NFC (1	13.56 M	Hz)			Temp	erature :	23℃
140 Level (dBuV/m) 130 110	Test Engineer :	Jace h	ace hu			Relat	ive Humidity	: 50%	
130 110 90 70 FCC Part 15.225 (9K.30M).MASK 50 10 13.11 13.29 13.47 Frequency (MHz) 13.65 13.83 14.01 Read Limit Over Freq Level Level Line Limit Factor Remark Pol/Phase MHz dBuV/m dBuV dBuV/m dB dB/m	requencey Range	13.11H	lz~14.01	1MHz			Polar	ization :	Vertical
130 110 90 70 FCC Part 15.225 (9K.30M).MASK 50 10 13.11 13.29 13.47 Frequency (MHz) 13.65 13.83 14.01 Read Limit Over Freq Level Level Line Limit Factor Remark Pol/Phase MHz dBuV/m dBuV dBuV/m dB dB/m		•							
The content of the		/m)							
FCC Part 15.225 (9K-30M)-MASK 50 30 10 13.11 13.29 13.47 Frequency (MHz) Freq Level Level Line Limit Factor Remark MHz dBuV/m dBuV dBuV/m dB dB/m						À			
FCC Part 15.225 (9K-30M)-MASK 10 13.11 13.29 13.47 Frequency (MHz) Read Limit Over Freq Level Level Line Limit Factor Remark Pol/Phase MHz dBuV/m dBuV dBuV/m dB dB/m									
To To To To To To To To								FCC Part 15.225 (9	K-30M)-MASK
30 10 13.11 13.29 13.47 13.65 13.83 14.01 Frequency (MHz) Read Limit Over Freq Level Level Line Limit Factor Remark Pol/Phase MHz dBuV/m dBuV dBuV/m dB dB/m						1			
10						À			
13.11 13.29 13.47 13.65 13.83 14.01 Read Limit Over Freq Level Level Line Limit Factor Remark Pol/Phase MHz dBuV/m dBuV dBuV/m dB dB/m		and the second		Marin Marin	www	1	MUNIN	- market Comment	nawajarandarjen,
Frequency (MHz) Read Limit Over Freq Level Level Line Limit Factor Remark Pol/Phase MHz dBuV/m dBuV dBuV/m dB dB/m			200	!	19.47		12.05	42.02	44.04
		Freq	Level				Factor	Remark Po	ol/Phase
1 PP 13.560 48.77 65.76 124.00 -75.23 -16.99 Peak Vertical	_	MHz	dBuV/m	dBuV	dBuV/m	dB	dB/m		
	1 PP	13.560	48.77	65.76	124.00	-75.23	-16.99	Peak Ve	ertical

Email: customerservice.sw@bureauveritas.com

3.4 Radiated Emissions Measurement

3.4.1 Limit

The field strength of any emissions which appear outside of 13.110 ~14.010MHz band shall not exceed the general radiated emissions limits.

Frequencies	Field Strength	Measurement Distance
(MHz)	(μV/m)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

3.4.2 Measuring Instrument Setting

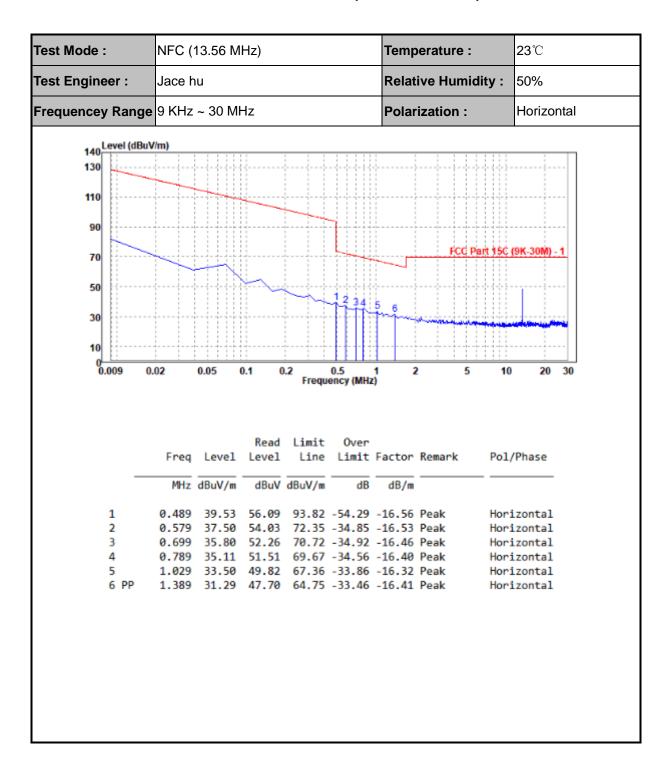
The following table is the setting of receiver.

Receiver Parameter	Setting
Attenuation	Auto
Frequency Range: 9kHz~150kHz	RBW 200Hz for QP
Frequency Range: 150kHz~30MHz	RBW 9kHz for QP
Frequency Range: 30MHz~1000MHz	RBW 120kHz for Peak

Note: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.

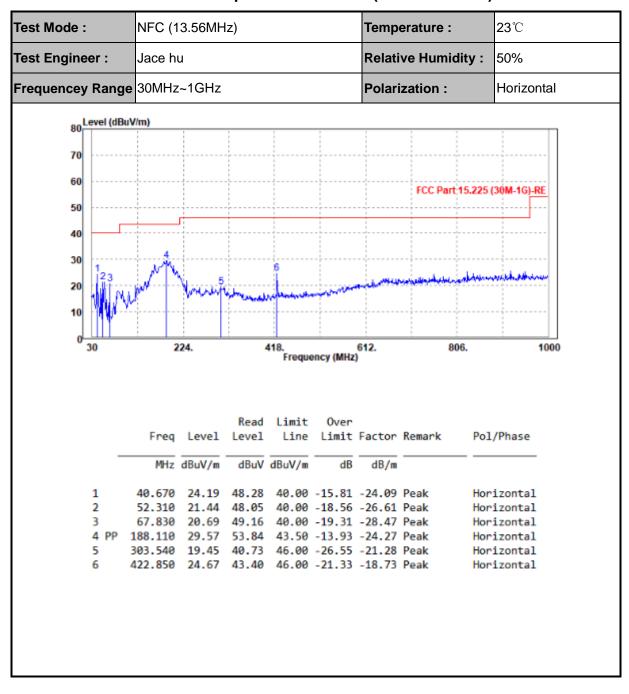
3.4.3 Test Procedures

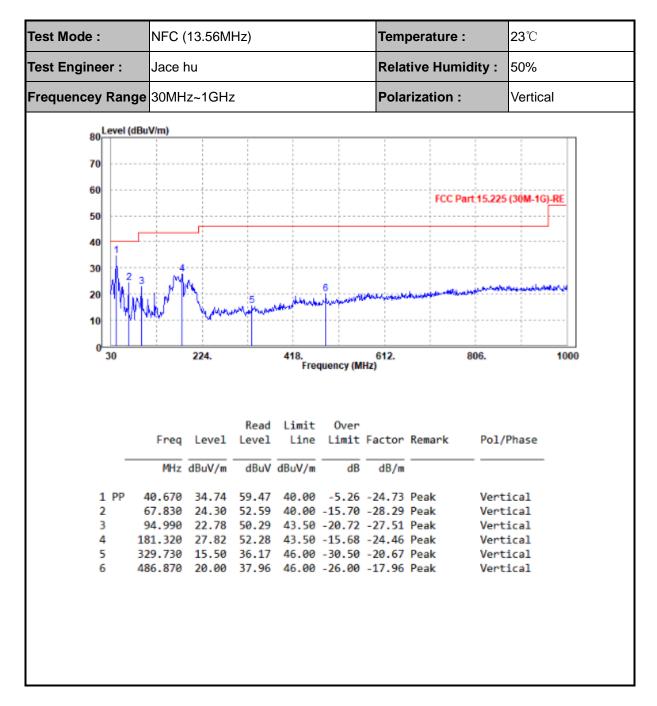
- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the


Email: customerservice.sw@bureauveritas.com

turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.

- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver.


3.4.4 Test Results of Radiated Emissions (9 KHz ~ 30 MHz)



Frequencey Range 9 KHz ~ 30 MHz Polarization: V Polarization: Read Limit Over Frequency (MHz) Read Limit Factor Remark MHz dBuV/m dBuV dBuV/m dB dB/m 1 0.549 38.21 54.76 72.82 -34.61 -16.55 Peak Vert	50% Vertical
140 130 110 90 70 FCC Part 15C (9K 50 30 10 10 10 10 10 10 1	
130 110 90 70 50 30 10 0.009 0.02 0.05 0.1 0.2 Frequency (MHz) Read Limit Over Freq Level Level Line Limit Factor Remark Pol/I MHz dBuV/m dBuV dBuV/m dB dB/m 1 0.549 38.21 54.76 72.82 -34.61 -16.55 Peak Vert	(-30M) - 1
130 110 90 70 50 30 110 0.009 0.02 0.05 0.1 0.2 0.5 0.5 1 2 5 10 Read Limit Over Freq Level Level Line Limit Factor Remark Pol/I MHz dBuV/m dBuV dBuV/m dB dB/m 1 0.549 38.21 54.76 72.82 -34.61 -16.55 Peak Vert	(-30M) - 1
90 70 50 30 10 0.009 0.02 0.05 0.1 0.2 0.5 1 2 5 10 Frequency (MHz) Read Limit Over Freq Level Level Line Limit Factor Remark Pol/I MHz dBuV/m dBuV dBuV/m dB dB/m 1 0.549 38.21 54.76 72.82 -34.61 -16.55 Peak Vert	(-30M) - 1
Read Limit Over Freq Level Level Line Limit Factor Remark Pol/lember Pol/le	(-30M) - 1
FCC Part 15C (9K 12 34 5 6	(-30M) - 1
Read Limit Over Freq Level Level Line Limit Factor Remark Pol/ MHz dBuV/m dBuV dBuV/m dB dB/m 1 0.549 38.21 54.76 72.82 -34.61 -16.55 Peak Vert	(-30M) - 1
30 10 0.009 0.02 0.05 0.1 0.2 0.5 1 2 5 10 Frequency (MHz) Read Limit Over Freq Level Level Line Limit Factor Remark Pol/Machine Address of the Pol/Machine	
30 10 0.009 0.02 0.05 0.1 0.2 0.5 1 2 5 10 Frequency (MHz) Read Limit Over Freq Level Level Line Limit Factor Remark Pol/Machine Address of the Pol/Machine	
Read Limit Over Freq Level Level Line Limit Factor Remark Pol/ MHz dBuV/m dBuV dBuV/m dB dB/m 1 0.549 38.21 54.76 72.82 -34.61 -16.55 Peak Vert	
0.009 0.02 0.05 0.1 0.2 0.5 1 2 5 10 Read Limit Over Freq Level Level Line Limit Factor Remark Pol/S	And the Control of th
0.009 0.02 0.05 0.1 0.2 0.5 1 2 5 10 Read Limit Over Frequency (MHz) Read Limit Factor Remark Pol/No. Pol	
Read Limit Over Freq Level Level Line Limit Factor Remark Pol/N MHz dBuV/m dBuV dBuV/m dB dB/m 1 0.549 38.21 54.76 72.82 -34.61 -16.55 Peak Vert	20 30
1 0.549 38.21 54.76 72.82 -34.61 -16.55 Peak Vert	/Phase
	ical
2 0.639 36.73 53.23 71.50 -34.77 -16.50 Peak Vert: 3 0.789 34.87 51.27 69.67 -34.80 -16.40 Peak Vert:	ical
4 0.909 33.39 49.75 68.44 -35.05 -16.36 Peak Vert	
5 1.119 32.19 48.53 66.63 -34.44 -16.34 Peak Vert	
6 PP 1.329 31.70 48.09 65.14 -33.44 -16.39 Peak Vert	ical

3.4.5 Test Result of Radiated Spurious Emission (30MHz ~ 1GHz)

Email: customerservice.sw@bureauveritas.com

3.5 AC Conducted Emission Measurement

3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBμV)				
(MHz)	Quasi-Peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*}Decreases with the logarithm of the frequency.

3.5.2 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

Tel: +86 755 8869 6566

Fax: +86 755 8869 6577

BV 7Layers Communications Technology

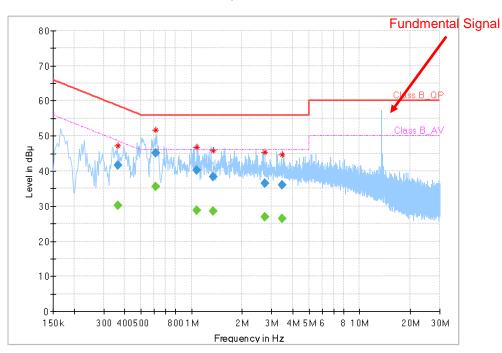
(Shenzhen) Co., Ltd

Test Report No.: W7L-P22110001RF09

3.5.3 Test Result of AC Conducted Emission

Test Mode :	NFC	Temperature :	26°C
Test Engineer :	Carl Xie	Relative Humidity :	51%
Test Voltage :	120Vac / 60Hz	Phase :	Line
Function Type :	NFC.		

80 Fundmental Signal 70 60 50 Level in dBµ 30 20 10 300 400 500 800 1M 30M 150k 2M 3M 4M 5M 6 8 10M 20M


Frequency in Hz

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)			(dB)
0.608000		36.96	46.00	9.04	L1	ON	9.7
0.608000	46.96		56.00	9.04	L1	ON	9.7
1.032000		29.49	46.00	16.51	L1	ON	9.7
1.032000	40.42		56.00	15.58	L1	ON	9.7
1.344000		28.81	46.00	17.19	L1	ON	9.7
1.344000	39.48		56.00	16.52	L1	ON	9.7
1.556000		28.17	46.00	17.83	L1	ON	9.7
1.556000	38.39		56.00	17.61	L1	ON	9.7
2.448000		28.03	46.00	17.97	L1	ON	9.7
2.448000	38.22		56.00	17.78	L1	ON	9.7
4.804000		26.97	46.00	19.03	L1	ON	9.7
4.804000	36.40		56.00	19.60	L1	ON	9.7

Test Mode :	NFC	Temperature :	26°C
Test Engineer :	Carl Xie	Relative Humidity :	51%
Test Voltage :	AC 120V/60Hz	Phase :	Neutral
Function Type:	NFC		

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dB µ V)	(dB μ V)	(dB μ	(dB)			(dB)
			\/\				
0.364000		30.29	48.64	18.35	N	ON	9.7
0.364000	41.68		58.64	16.96	Ν	ON	9.7
0.612000		35.57	46.00	10.43	Ν	ON	9.7
0.612000	45.17		56.00	10.83	Ν	ON	9.7
1.080000		28.87	46.00	17.13	N	ON	9.8
1.080000	40.24		56.00	15.76	Ν	ON	9.8
1.342000		28.47	46.00	17.53	Ν	ON	9.8
1.342000	38.38		56.00	17.62	Ν	ON	9.8
2.732000		26.88	46.00	19.12	Ν	ON	9.8
2.732000	36.58		56.00	19.42	Ν	ON	9.8
3.476000		26.39	46.00	19.61	Ν	ON	9.8
3.476000	36.00		56.00	20.00	N	ON	9.8

Tel: +86 755 8869 6566 Fax: +86 755 8869 6577

Email: customerservice.sw@bureauveritas.com

3.6 Antenna Requirements

3.6.1 Standard Applicable

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with

any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to

ensure that no antenna other than that furnished by the responsible party shall be used with the

device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to

the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The

manufacturer may design the unit so that the user can replace a broken antenna, but the use of a

standard antenna jack or electrical connector is prohibited.

3.6.2 Antenna Connected Construction

An Loop Antenna design is used.

3.6.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi.

Tel: +86 755 8869 6566 Fax: +86 755 8869 6577

Email: customerservice.sw@bureauveritas.com

Report Version 1

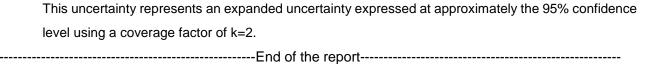
4 List of Measuring Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
3m Semi-anechoic Chamber	ETS-LINDGREN	9m*6m*6m	Euroshieldpn- CT0001143-1216	May. 19,20	May. 18,23
Bilog Antenna	ETS-LINDGREN	3143B	00161965	Mar. 04,22	Mar. 03,23
Test Software	E3	V 9.160323	N/A	N/A	N/A
10dB Attenuator	JFW/USA	50HF-010-SMA	1505	Jun. 02,22	Jun. 01,23
MXE EMI Receiver	KEYSIGHT	N9038A-544	MY54450026	Apr. 21,22	Apr. 20,23
Signal Pre-Amplifier	EMSI	EMC 9135	980249	Jun. 01,22	May. 31,23
Loop Antenna	SCHWARZBEC K	FMZB1519B	00173	Sep. 05,22	Sep. 04,23

NOTE: 1. The calibration interval of the above test instruments is 12 months or 36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

- 2. The test was performed in 3m Chamber.
- 3. The FCC Site Registration No. is 525120; The Designation No. is CN1171.

Tel: +86 755 8869 6566


Fax: +86 755 8869 6577

Uncertainty of Evaluation 5

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY
AC Power Conducted emissions	±2.70dB
Radiated emissions (9KHz~30MHz)	±2.68dB
Radiated emissions (30MHz~1GMHz)	±4.98dB
Occupied Channel Bandwidth	±43.58KHz
Frequency Stability	±76.97Hz

Page 28 of 28