

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value–Emission level.
- 2. 2478MHz: Fundamental frequency.

BT-LE_S2

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,353.000	45.48	74.0	28.52	5.59	н	359.1	1.0
1	2,390.000	44.74	74.0	29.26	5.77	н	149.9	1.0
1	2,402.500	96.05			5.86	н	355.1	2.0
$ \begin{array}{c} 11/15^6 \\ 7000 $								

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,385.500	30.65	54.0	23.35	5.74	н	211.3	2.0
1	2,390.000	30.6	54.0	23.4	5.77	н	359.0	1.0
1	2,402.000	91.88			5.85	н	359.0	1.0
III 125 120 125 121 125 121 125 121 125 121 125 121 125 121 125 121 125 121 107.5 125 97.5 97.5 97.5 97.5 97.5 97.5 55 55 55 55 55 50 100 120 100 120 100 120 100 120 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100								

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,382.000	45.59	74.0	28.41	5.71	v	353.7	2.0
1	2,390.000	44.44	74.0	29.56	5.77	v	77.0	1.0
1	2,402.500	96.03			5.86	v	359.0	2.0
$\begin{array}{c} 120\\ 120\\ 120\\ 120\\ 120\\ 120\\ 120\\ 120\\$						06 2 275 6 2 230 6 2 238		

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

Tel: +86 (0557) 368 1008

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,382.500	30.69	54.0	23.31	5.72	v	60.6	2.0
1	2,390.000	30.62	54.0	23.38	5.77	v	147.5	1.0
1	2,402.000	92.25			5.85	v	359.0	2.0
$\begin{array}{c} 125\\ 120\\ 120\\ 1175\\ 1175\\ 100\\ 115\\ 110\\ 100\\ 115\\ 110\\ 100\\ 10$						2375 G 2380 G 2381		2400 G 241

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value–Emission level.
- 2. 2402MHz: Fundamental frequency.

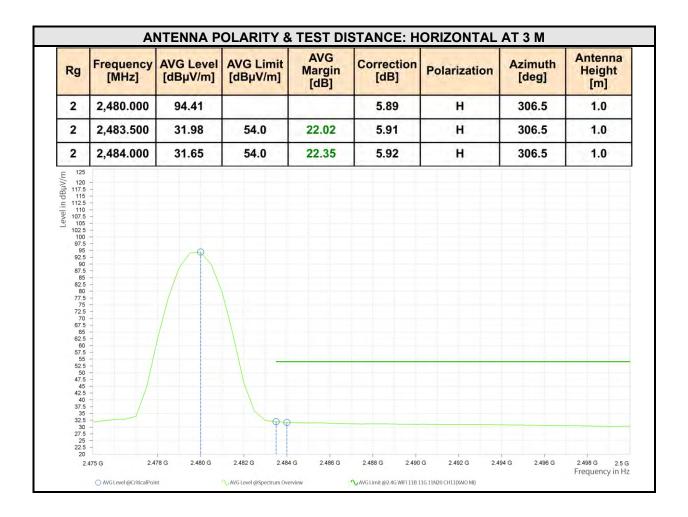
CHANNEL	TX Channel 19	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	4,880.000	49.48	74.0	24.52	37.75	54.0	16.25	13.54	н	359.0	1.0
2	7,320.000	53.33	74.0	20.67	42.9	54.0	11.1	18.9	н	105.6	1.0
E 80					[]						
Revel in dBµV/m 72.5 65 65											
H 72.6											
Q 67.5											
62.5											
57.5											
55											
52.5					-			φ			
50						φ					
47.5											
42.5								φ			
40											
37.5						Φ					
35											
32.5											
30 27.5											
25											
22.5								1			
20								(
17.5											
15 12.5]			
12.0											
7.5											
5											
2.5											
C	1 G		2 G		IG 40	5 G	6G 7G	8G 9G 1	1		20 G 25 0

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	4,880.000	48.99	74.0	25.01	37.54	54.0	16.46	13.54	v	2.2	2.0
2	7,320.000	55.59	74.0	18.41	42.76	54.0	11.24	18.9	v	359.0	1.0
E 8	0										
Level in dBµV/m 9 2 2 2 2 2	5 -										
₽ 72.					1		1 1				
. <u></u> 7											
evel 67.											
62.											
6											
57.								0			
5					<u>.</u>			φ	L		
52. 5											
47.						φ					
4	5 —										
42.								φ			
4						4					
37.						Υ					
32.											
3											
27.											
2								000000000000000000000000000000000000000			
22.											
17.											
1											
12.											
1											
	5 -										
2.											
	0				i d	1	1 1	1 1	i		1
	1 G		2 G	3	G 40	5 G	6G 7G	8G 9G 1	0 G		20 G 25 equency in H

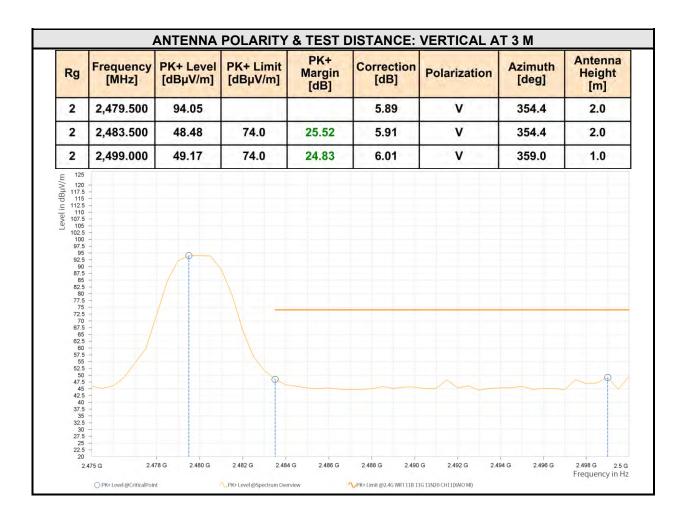
REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value–Emission level.
- 2. 2440MHz: Fundamental frequency.

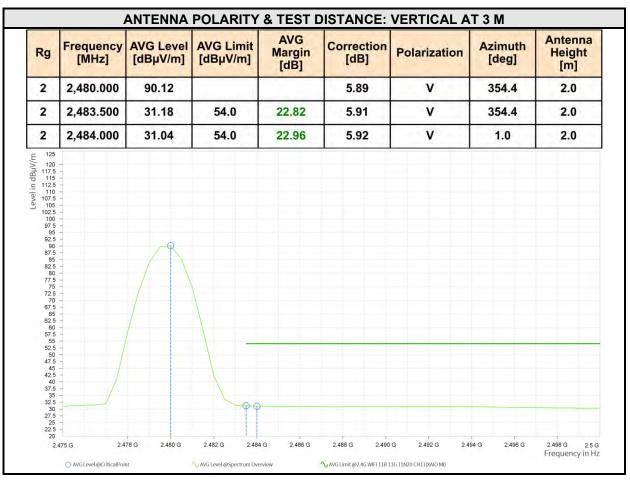

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,479.500	99.84			5.89	H	152.2	1.0
2	2,483.500	53.55	74.0	20.45	5.91	н	354.4	2.0
2	2,484.000	53.05	74.0	20.95	5.92	н	354.4	2.0
$\begin{array}{c} = 125\\ = 125\\ = 125\\ = 125\\ = 125\\ = 125\\ = 110$								

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province


Tel: +86 (0557) 368 1008

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province



Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

Tel: +86 (0557) 368 1008

REMARKS:

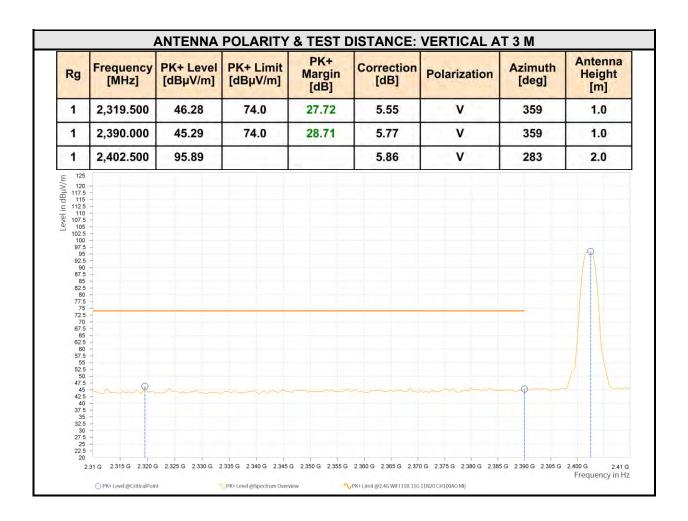
- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value–Emission level.
- 2. 2480MHz: Fundamental frequency.

BT-LE_S8

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,378.000	45.36	74.0	28.64	5.69	н	359.1	1.0
1	2,390.000	44.51	74.0	29.49	5.77	н	53.5	2.0
1	2,402.000	95.98		_	5.85	н	359.1	1.0
UL 120 120 120 121 120 121 120 121 115 115 115 110 111 110 110 111								

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province



Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,382.500	30.68	54.0	23.32	5.72	н	205.4	2.0
1	2,390.000	30.66	54.0	23.34	5.77	Н	310.0	1.0
1	2,402.000	94.46			5.85	Н	359.1	1.0
III 120 120 120 121 120 121 120 121 120 121 120 121 125 121 125 121 125 121 125 121 125 125 25 100 55 100 55 100 55 100 55 100 55 100 55 100 55 100 55 100 55 100 55 100 55 100 55 100 55 100 55 100 55 100 55 100 55 100 55 100 100 100 100 100 100 100 100					A DATE AND			

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

Tel: +86 (0557) 368 1008

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,384.500	30.82	54.0	23.18	5.73	v	205.4	2.0
1	2,390.000	30.69	54.0	23.31	5.77	v	76.9	1.0
1	2,402.000	94.13		_	5.85	v	281.8	2.0
$\begin{array}{c} 1/15^{-1} \\ 1/15^{-$	31 G 2315 G 2320 (2280.0. 2385.0. 237	DG 2.375 G 2.380 G 2.381		2400 G 241

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value–Emission level.
- 2. 2402MHz: Fundamental frequency.

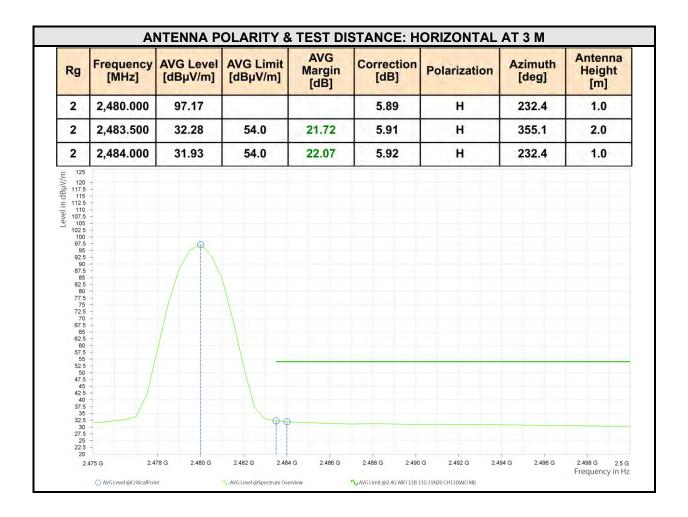
CHANNEL	TX Channel 19	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	4,880.000	48.18	74.0	25.82	37.66	54.0	16.34	13.54	н	359.1	1.0
2	7,320.000	52.9	74.0	21.1	42.7	54.0	11.3	18.9	н	260.3	2.0
E 8	0						1				
Level in dBµV/m 25 24 25 24 26											
10 72. U 70											
E 67.											
A 6											
62.											
6											
57.											
52.							3 50	0			
5											
47.	5 -					φ					
4											
42.								φ			
37.						0					
3											
32.	5 -										
3											
27.											
25								0.0000 001111110-01111			
22.											
17.											
1											
12.											
10 7.											
	5 -										
2.								1 1			
	0				i		- i - i	1	1		
	1 G		2 G	3	G 40	6 5 G	6G 7G	8G 9G 1	0 G		20 G 25 0 equency in H

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	4,880.000	48.64	74.0	25.36	37.5	54.0	16.5	13.54	v	359	1.0
2	7,320.000	53.71	74.0	20.29	42.76	54.0	11.24	18.9	v	1	2.0
E 8	0					1					
Level in dBµV/m 25 22 22 23 29 20	5 -										
gp 72.	5 -				1		- 1 - E				
E 70											
100 67.											
62.											
6											
57.											
53 52.								φ			
5						0					
47.						φ					
42.								6			
42.								Y			
37.						Φ		-			
3											
32.											
31											
2											
22.	5 -										
2											
17.											
12.											
10											
7.											
2.											
	1 G		2 G	3	G 40	G 5 G	6G 7G	8 G 9 G 1	0 G		20 G 25

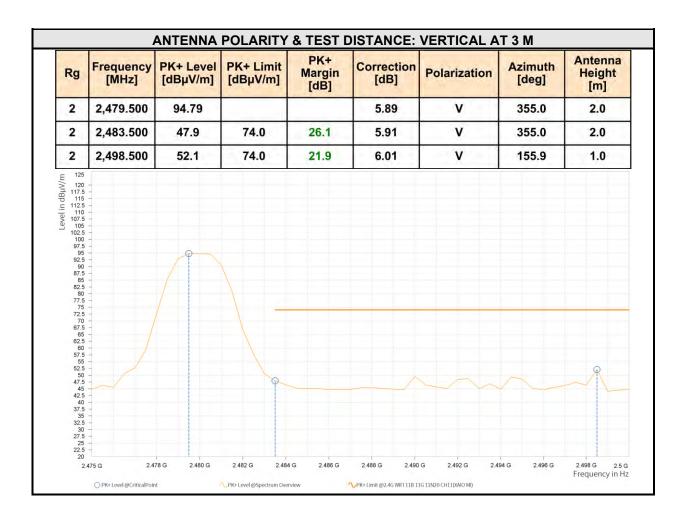
REMARKS:

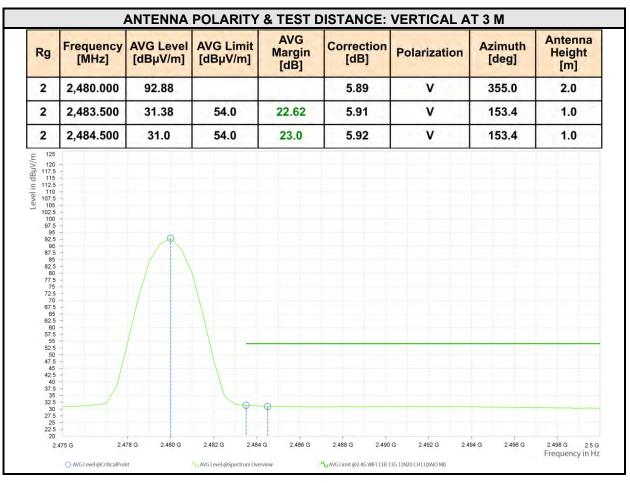
- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value–Emission level.
- 2. 2440MHz: Fundamental frequency.


CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,479.500	98.23			5.89	H	124.0	2.0
2	2,483.500	52.3	74.0	21.7	5.91	H	1.0	1.0
2	2,484.000	50.92	74.0	23.08	5.92	н	354.4	2.0
11 125 5 11 125 5 11 12 5 1								

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province


Tel: +86 (0557) 368 1008


Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value–Emission level.
- 2. 2480MHz: Fundamental frequency.

3.3 6 dB BANDWIDTH MEASUREMENT

3.3.1 LIMITS OF 6dB BANDWIDTH MEASUREMENT

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

3.3.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	R&S	ESW 44	101973	Mar.28,24	Mar.27,26
Open Switch and Control Unit	R&S	OSP-B157W8	100836	N/A	N/A
Vector Signal Generator	R&S	SMBV100B	102176	Mar.29,24	Mar.28,26
Signal Generator	R&S	SMB100A03	182185	Mar.29,24	Mar.28,26
WIDEBANDRADIO COMMUNICATION TESTER	R&S	CMW500	169399	Jun.19,24	Jun.18,26
Hygrothermograph	DELI	20210528	SZ015	Sep.06,22	Sep.05,24
Hygrothermograph	DELI	20210528	SZ015	Sep.05,24	Sep.04,26
PC	LENOVO	E14	HRSW0024	N/A	N/A
CABLE	R&S	J12J103539-00 -1	SEP-03-20-0 69	Apr.27,24	Apr.26,25
CABLE	R&S	J12J103539-00 -1	SEP-03-20-0 70	Apr.27,24	Apr.26,25
Test Software	EMC32	EMC32	N/A	N/A	N/A
Temperature Chamber	votsch	VT4002	5856607810 0050	May.30,24	May.29,26
Power Meter	R&S	NRX	102380	Mar.28,24	Mar.27,26
Power Meter probe	R&S	NRP6A	102942	Mar.28,24	Mar.27,26

NOTE:

- 1. The calibration interval of the above test instruments is 12 /24 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
- 2. The test was performed in RF Oven room.


3.3.3 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.3.4 DEVIATION FROM TEST STANDARD

No deviation.

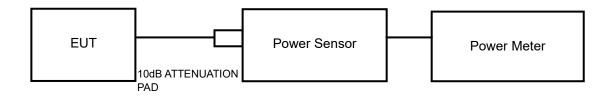
3.3.5 TEST SETUP

3.3.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

3.3.7 TEST RESULTS

Please Refer to Appendix1/2 Of this test report.



3.4 CONDUCTED OUTPUT POWER

3.4.1 LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT

For systems using digital modulation in the 2400–2483.5 MHz band: 1 Watt (30dBm)

3.4.2 TEST SETUP

3.4.3 TEST INSTRUMENTS

Refer to section 3.3.2 to get information of above instrument.

3.4.4 TEST PROCEDURES

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

3.4.5 DEVIATION FROM TEST STANDARD

No deviation.

3.4.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

- 3.4.7 TEST RESULTS
 - 3.4.7.1 MAXIMUM PEAK OUTPUT POWER

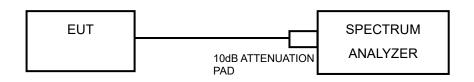
Please Refer to Appendix1/2 Of this test report.

3.4.7.2 AVERAGE OUTPUT POWER (FOR REFERENCE)

The average power sensor was used on the output port of the EUT. A power meter was used to read the response of the power sensor. Record the power level.

Please Refer to Appendix1/2 Of this test report.

1



3.5 POWER SPECTRAL DENSITY MEASUREMENT

3.5.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

The Maximum of Power Spectral Density Measurement is 8dBm/3KHz.

3.5.2 TEST SETUP

3.5.3 TEST INSTRUMENTS

Refer to section 3.3.2 to get information of above instrument.

3.5.4 TEST PROCEDURE

- 1. Set the span to 1.5 times the DTS bandwidth
- 2. Set the RBW = 3 kHz, VBW \ge 3 x RBW, Detector = peak.
- 3. Sweep time = auto couple, Trace mode = max hold, allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

3.5.5 DEVIATION FROM TEST STANDARD

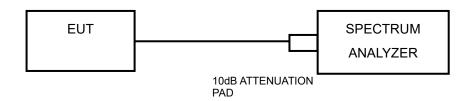
No deviation.

3.5.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

3.5.7 TEST RESULTS

Please Refer to Appendix1/2 Of this test report.



3.6 OUT OF BAND EMISSION MEASUREMENT

3.6.1 LIMITS OF OUT OF BAND EMISSION MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

3.6.2 TEST SETUP

3.6.3 TEST INSTRUMENTS

Refer to section 3.3.2 to get information of above instrument.

3.6.4 TEST PROCEDURE

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \ge 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Set span to encompass the spectrum to be examined
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.

3.6.5 DEVIATION FROM TEST STANDARD

No deviation.

3.6.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

3.6.7 TEST RESULTS

The spectrum plots are attached on the following images. D1 line indicates the highest level. D2 line indicates the 20dB offset below D1. It shows compliance to the requirement.

Please Refer to Appendix1/2 Of this test report.

Page 123 of 211

Tel: +86 (0557) 368 1008

3.7 ANTENNA REQUIREMENTS

3.7.1 STANDARD APPLICABLE

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.7.2 ANTENNA CONNECTED CONSTRUCTION

An embedded-in antenna design is used.

3.7.3 ANTENNA GAIN

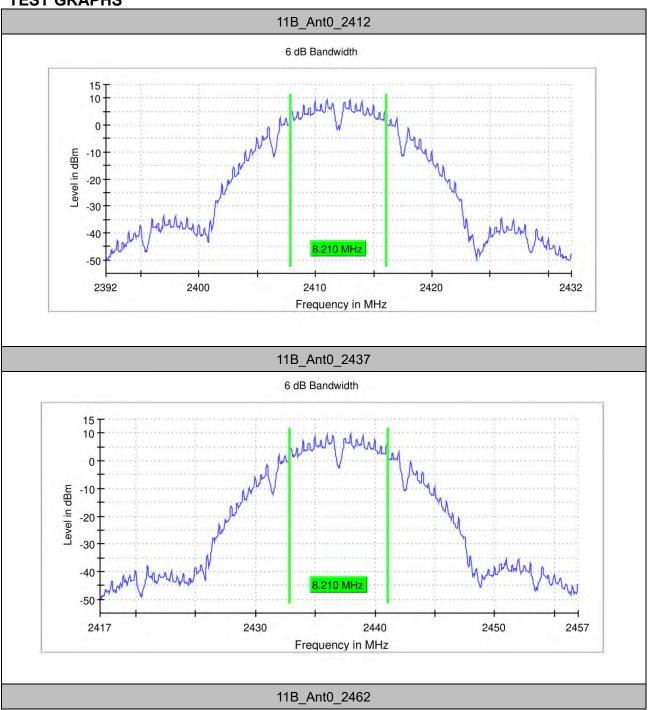
The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit and PSD limit.

4 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

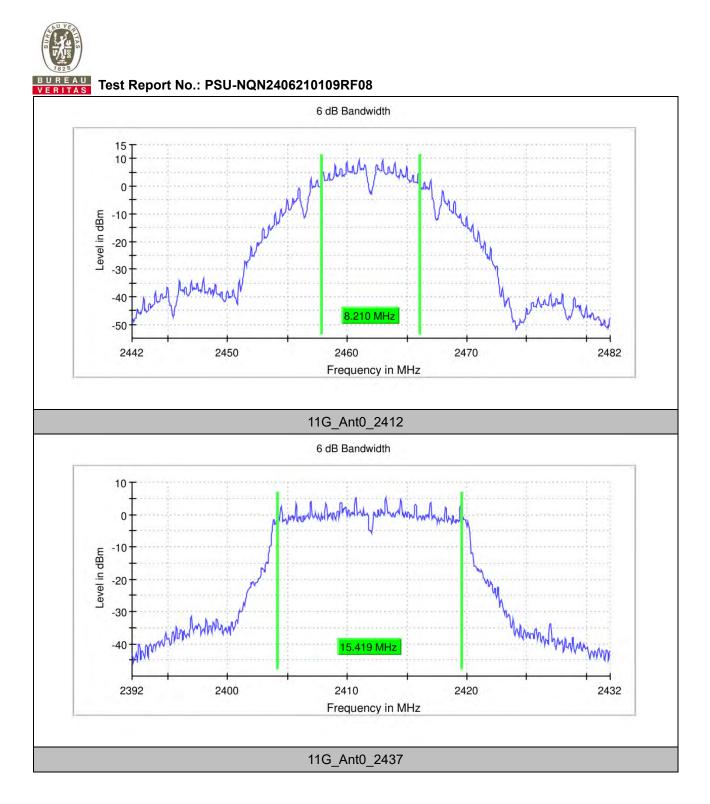
5 MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

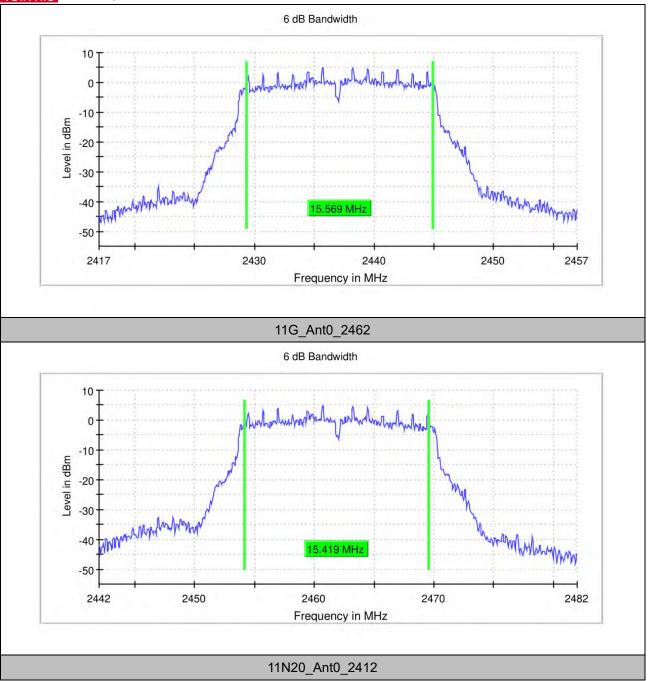
No any modifications are made to the EUT by the lab during the test.


6 APPENDIX 1:

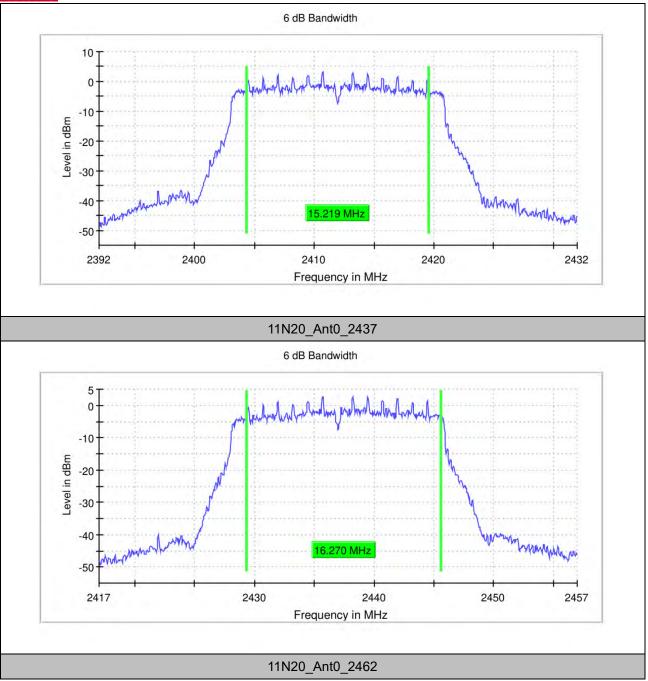
DTS BANDWIDTH

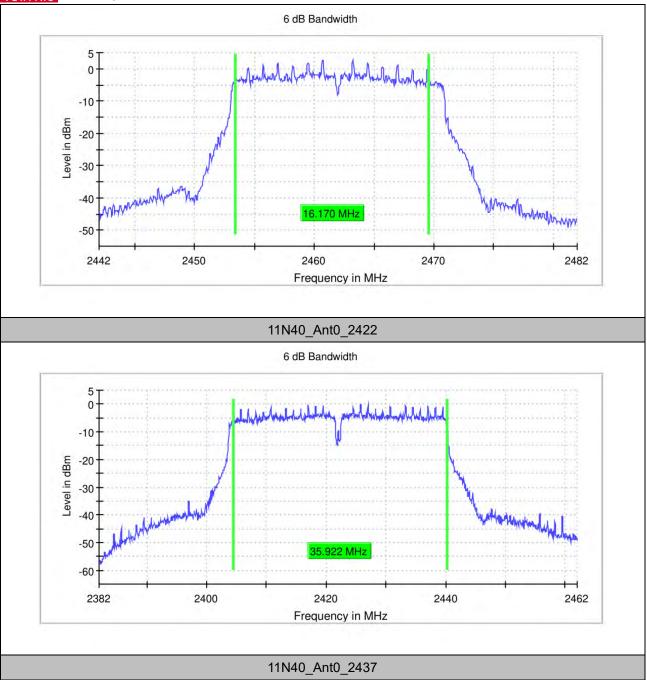
TEST RESULT

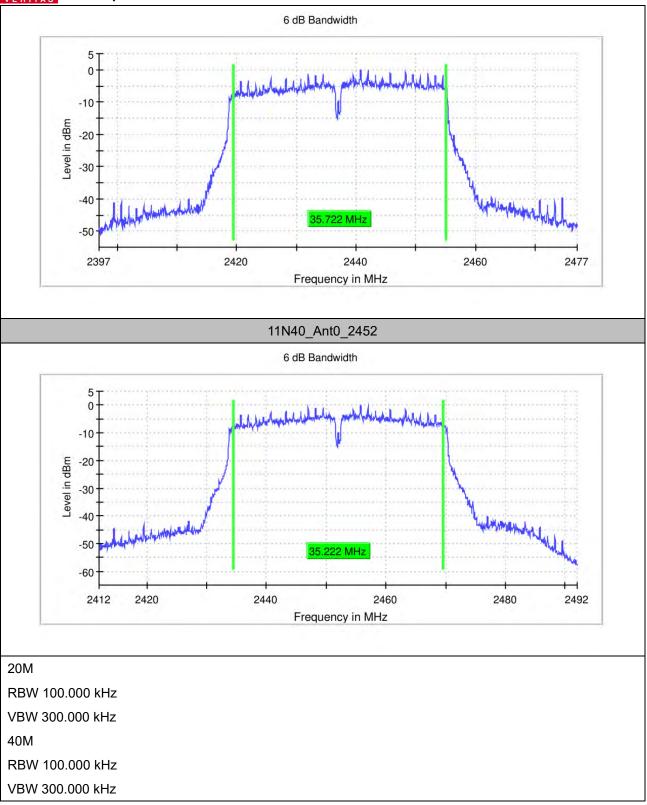

TestMode	Antenna	Frequency[MHz]	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	ANT0	2412	8.210	2407.870	2416.080	0.5	PASS
11B	ANT0	2437	8.210	2432.870	2441.080	0.5	PASS
	ANT0	2462	8.210	2457.870	2466.080	0.5	PASS
	ANT0	2412	15.419	2404.165	2419.584	0.5	PASS
11G	ANT0	2437	15.569	2429.365	2444.934	0.5	PASS
	ANT0	2462	15.419	2454.165	2469.584	0.5	PASS
	ANT0	2412	15.219	2404.365	2419.584	0.5	PASS
11N20	ANT0	2437	16.270	2429.365	2445.635	0.5	PASS
	ANT0	2462	16.170	2453.414	2469.584	0.5	PASS
	ANT0	2422	35.922	2404.364	2440.286	0.5	PASS
11N40	ANT0	2437	35.722	2419.414	2455.136	0.5	PASS
	ANT0	2452	35.222	2434.414	2469.636	0.5	PASS



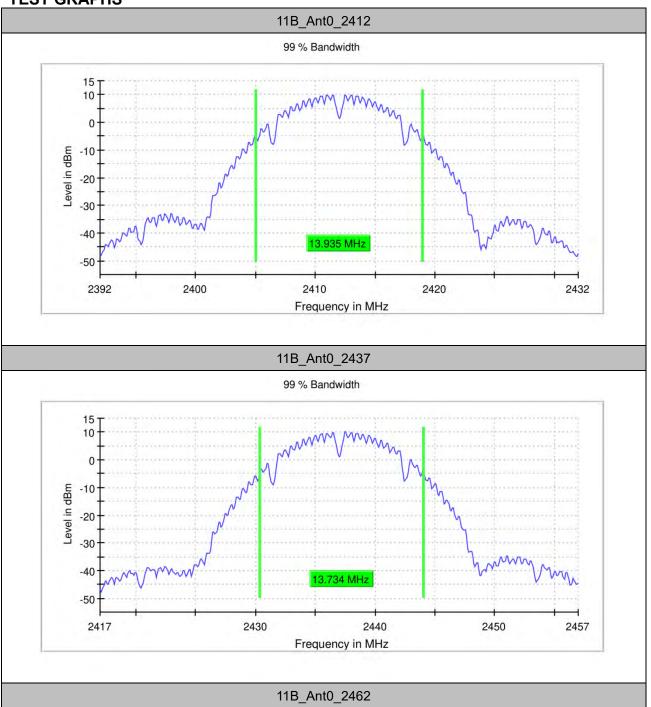
TEST GRAPHS


Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province





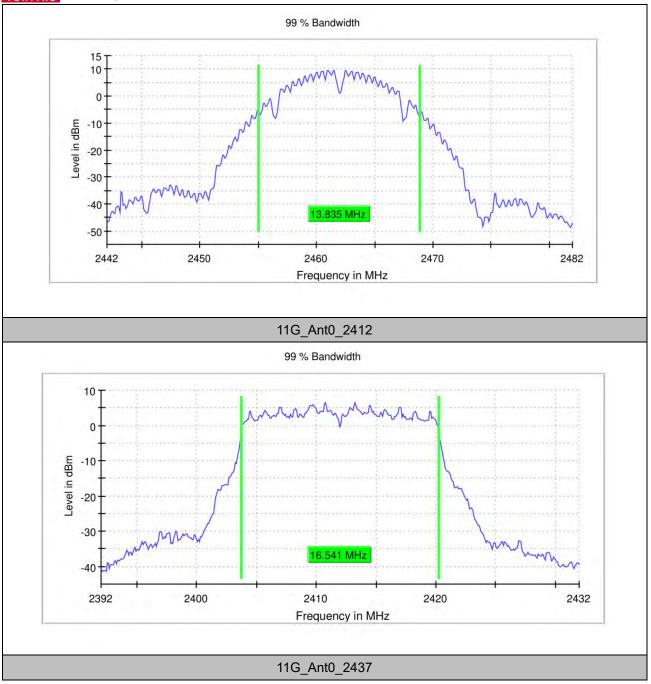
Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province



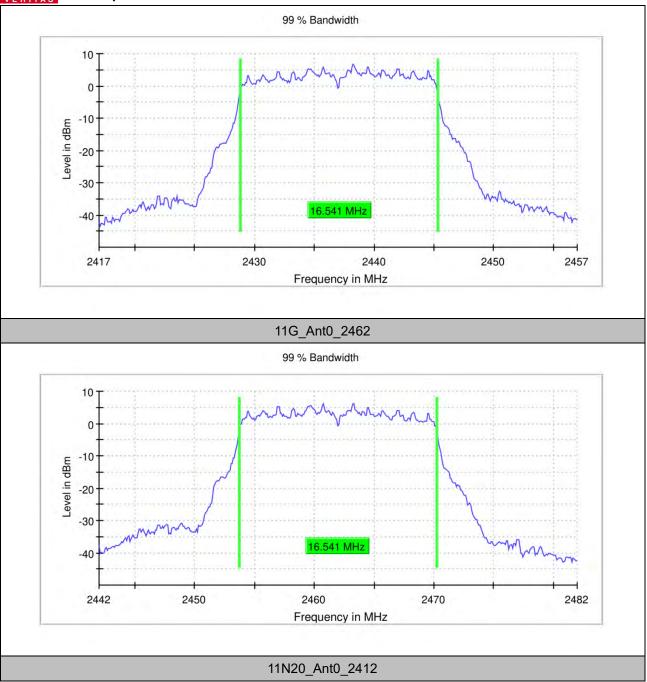
OBW BANDWIDTH

TEST RESULT

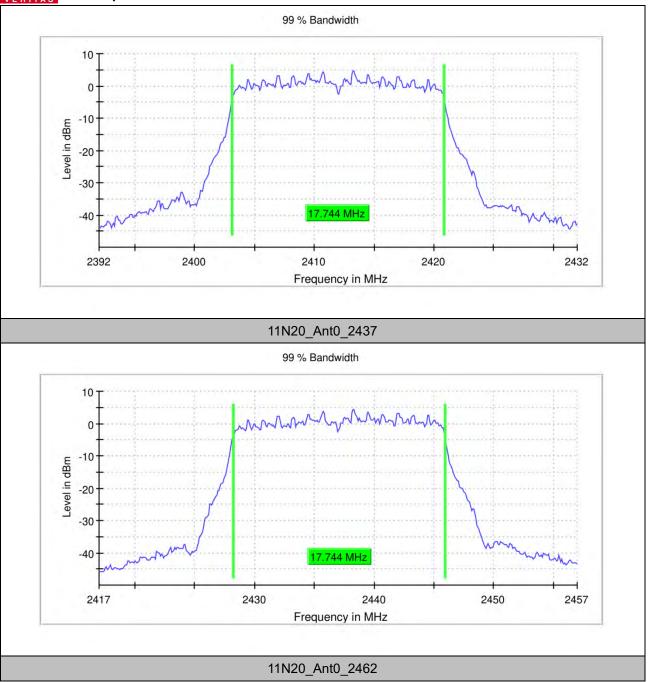
TestMode	Antenna	Frequency[MHz]	OBW BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
11B	ANT0	2412	13.935	2405.033	2418.968		PASS
	ANT0	2437	13.734	2430.333	2444.067		PASS
	ANT0	2462	13.835	2455.033	2468.868		PASS
11G	ANT0	2412	16.541	2403.729	2420.270		PASS
	ANT0	2437	16.541	2428.830	2445.371		PASS
	ANT0	2462	16.541	2453.729	2470.270		PASS
11N20	ANT0	2412	17.744	2403.128	2420.872		PASS
	ANT0	2437	17.744	2428.228	2445.972		PASS
	ANT0	2462	17.744	2453.128	2470.872		PASS
11N40	ANT0	2422	36.614	2403.818	2440.432		PASS
	ANT0	2437	36.614	2418.818	2455.432		PASS
	ANT0	2452	36.364	2433.818	2470.182		PASS

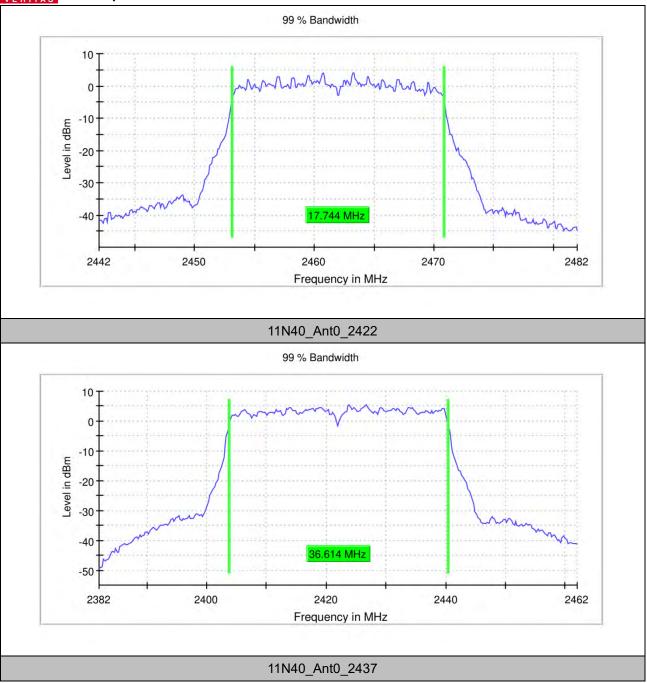


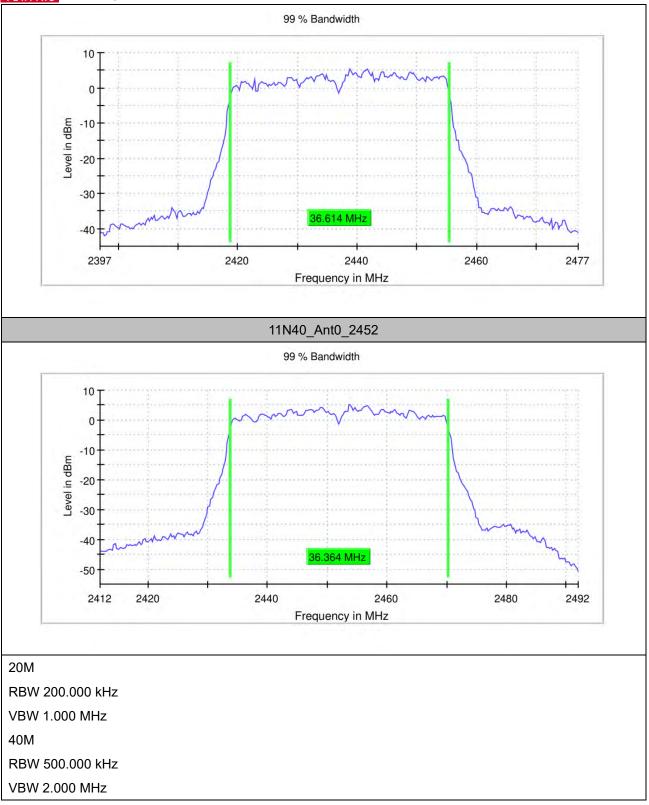
TEST GRAPHS


Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province





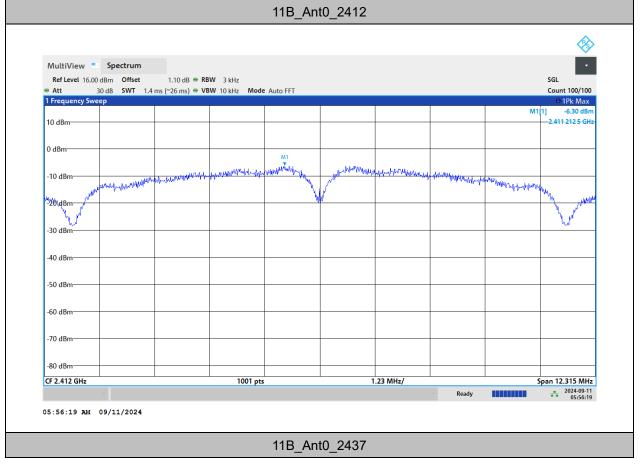


MAXIMUM CONDUCTED OUTPUT POWER

TEST RESULT

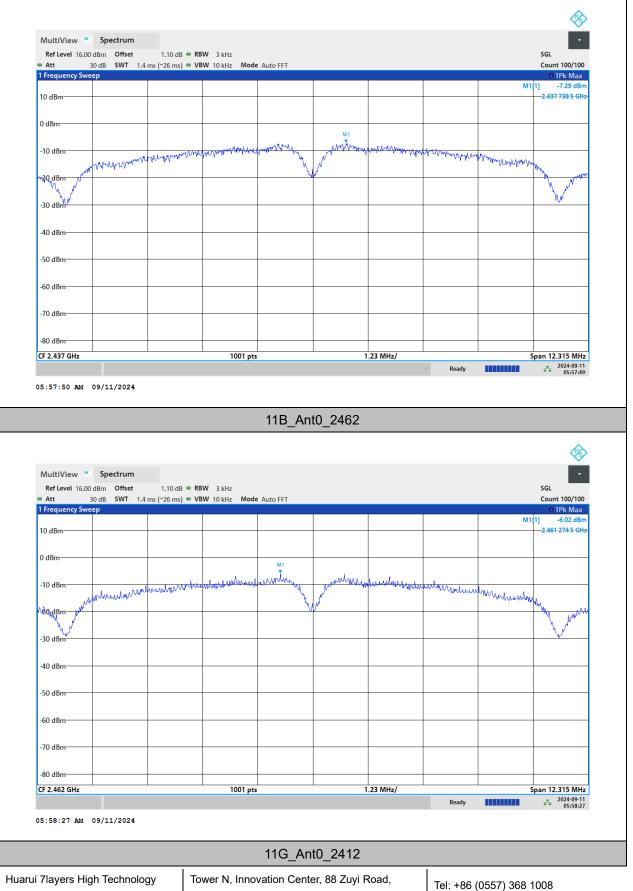
TestMode	TX Mod.	Frequency [MHz]	Peak power [dBm] Ant0	MAX Peak power [mw]	Limit [dBm]	Verdict	Power Setting
	SISO	2412	21.00	125.89	≤30.00	PASS	17
11B		2437	20.31	107.40	≤30.00	PASS	17
		2462	20.11	102.57	≤30.00	PASS	17
	SISO	2412	20.66	116.41	≤30.00	PASS	14
11g		2437	20.06	101.39	≤30.00	PASS	14
		2462	20.16	103.75	≤30.00	PASS	14
	SISO	2412	18.82	76.21	≤30.00	PASS	12
11N20		2437	18.01	63.24	≤30.00	PASS	12
		2462	18.00	63.10	≤30.00	PASS	12
	SISO	2422	20.31	107.40	≤30.00	PASS	12
11N40		2437	19.73	93.97	≤30.00	PASS	12
		2452	19.08	80.91	≤30.00	PASS	12

TestMode	TX Mod.	Freq. [MHz]	Avg.power [dBm] Ant0	Power Setting
	SISO	2412	18.10	17
11B		2437	17.51	17
		2462	17.22	17
	SISO	2412	14.90	14
11g		2437	14.15	14
		2462	14.19	14
	SISO	2412	12.77	12
11N20		2437	11.94	12
		2462	11.90	12
	SISO	2422	13.17	12
11N40		2437	12.45	12
		2452	12.13	12


MAXIMUM POWER SPECTRAL DENSITY

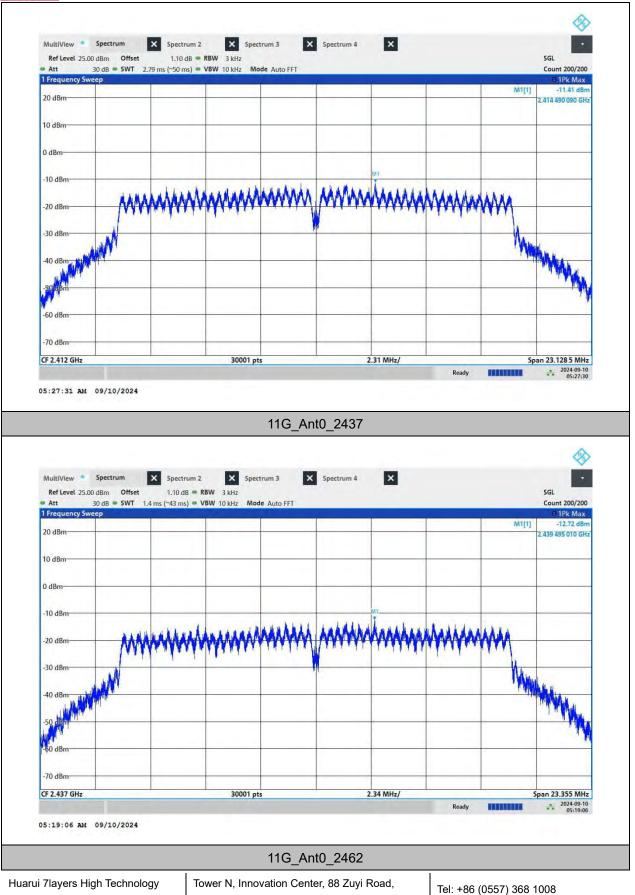
TEST RESULT

TestMode	Antenna	Frequency	Frequency Result		Verdict
		[MHz]	[dBm/3kHz]	[dBm/3kHz]	Verdiet
11B	ANT0	2412	-6.30	≤8.00	PASS
	ANT0	2437	-7.29	≤8.00	PASS
	ANT0	2462	-6.02	≤8.00	PASS
	ANT0	2412	-11.41	≤8.00	PASS
11G	ANT0	2437	-12.72	≤8.00	PASS
	ANT0	2462	-11.91	≤8.00	PASS
	ANT0	2412	-14.55	≤8.00	PASS
11N20	ANT0	2437	-14.71	≤8.00	PASS
	ANT0	2462	-14.94	≤8.00	PASS
11N40	ANT0	2422	-16.72	≤8.00	PASS
	ANT0	2437	-16.03	≤8.00	PASS
	ANT0	2452	-16.77	≤8.00	PASS


TEST GRAPHS

VERITAS

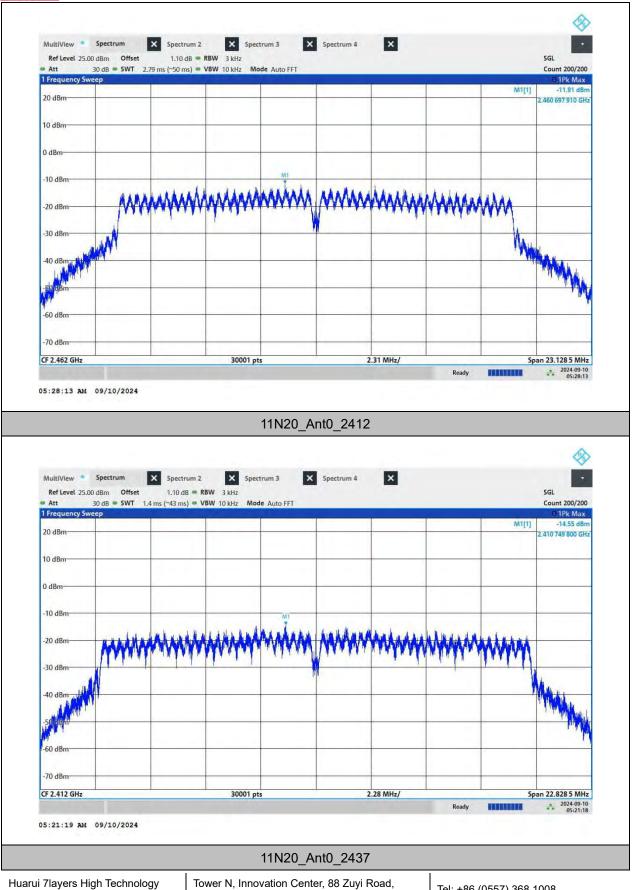
Test Report No.: PSU-NQN2406210109RF08



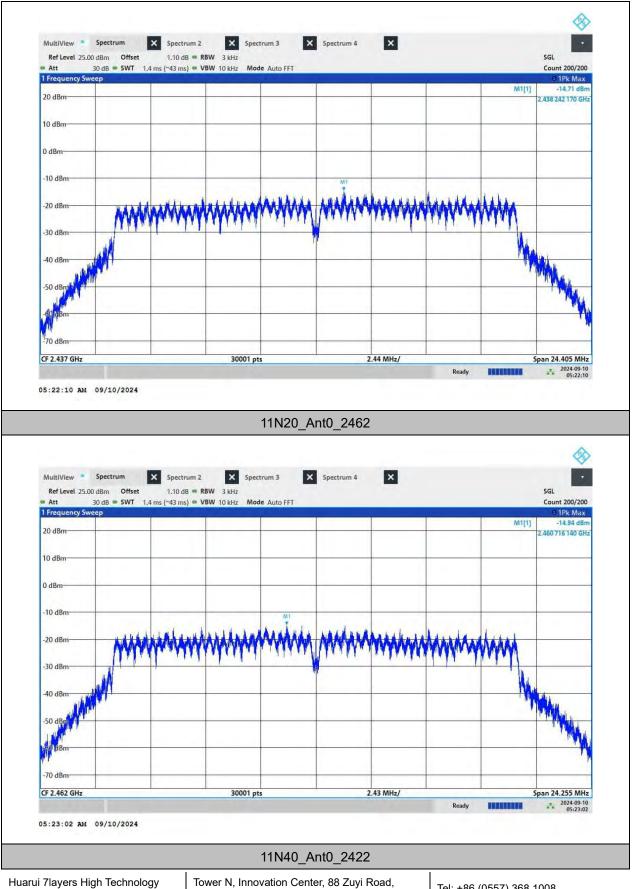
(Suzhou) Co., Ltd.

High-tech District, Suzhou City, Anhui Province

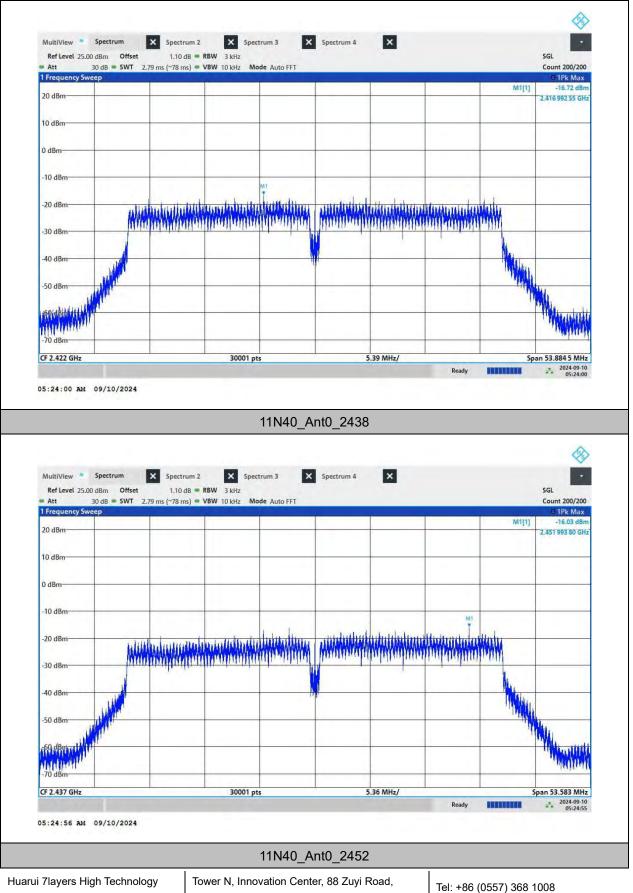
Page 145 of 211



(Suzhou) Co., Ltd.

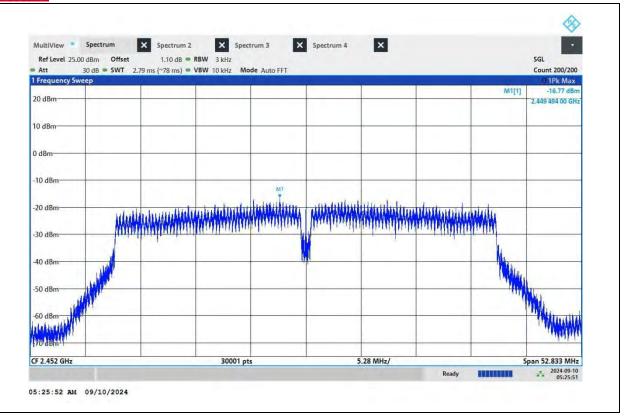

High-tech District, Suzhou City, Anhui Province

(Suzhou) Co., Ltd.



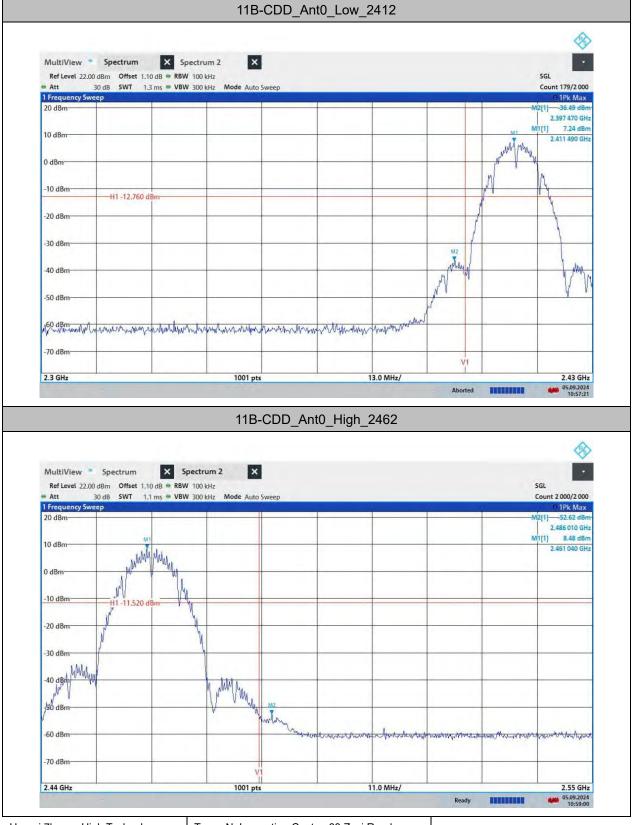
(Suzhou) Co., Ltd.

High-tech District, Suzhou City, Anhui Province



(Suzhou) Co., Ltd.

High-tech District, Suzhou City, Anhui Province


BAND EDGE MEASUREMENTS

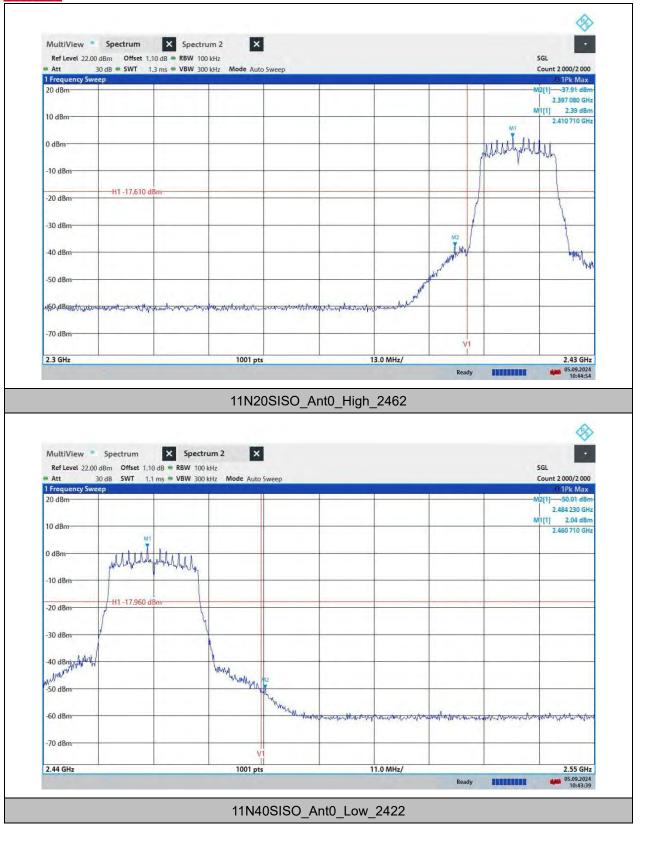
TEST RESULT

TestMode	Antenna	ChName	Frequency	Result	Limit	Verdict
Testimode			[MHz]	[dBm]	[dBm]	Verdict
	ANT0	Low	2412	See test	See test	PASS
11B	ANTO			graph	graph	
IID	ANT0	1 link	2462	See test	See test	PASS
	ANTO	High	2402	graph	graph	PA33
11G	ANT0	Low	2412	See test	See test	PASS
	ANTO		2412	graph	graph	
	ANT0	High	2462	See test	See test	PASS
				graph	graph	
	ANTO ANTO	Low High	2412 2462	See test	See test	PASS PASS
11N20				graph	graph	
111120				See test	See test	
				graph	graph	
11N40	ANT0	Low	2422	See test	See test	PASS
				graph	graph	1,00
	ANT0	High	2452	See test	See test	PASS
				graph	graph	1700



TEST GRAPHS

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province



Huarui 7layers High Technology (Suzhou) Co., Ltd.


Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

CONDUCTED SPURIOUS EMISSION

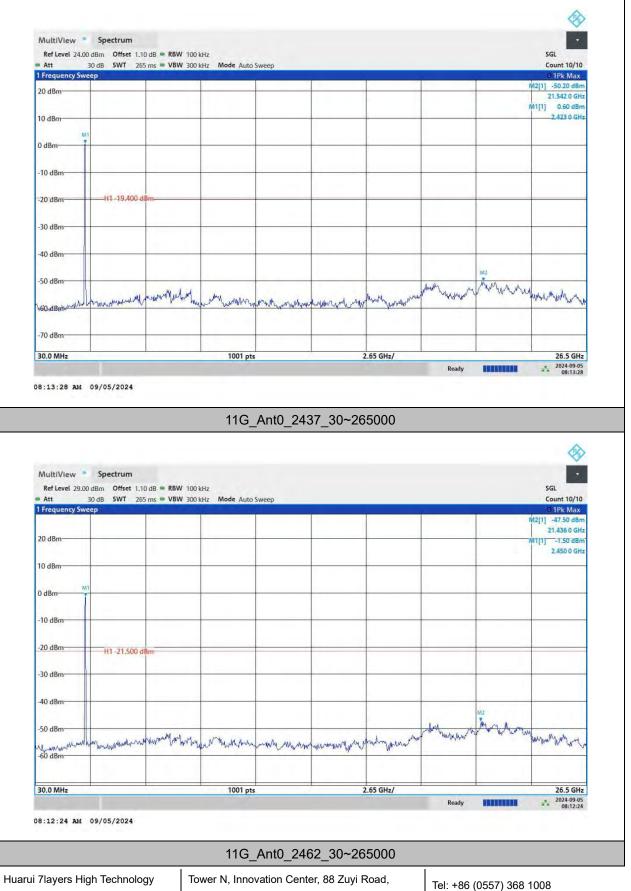
TEST RESULT

			FreqRange	Result	Limit	
TestMode	Antenna	Frequency[MHz]	[Mhz]	[dBm]	[dBm]	Verdict
11B	ANT0	2412	30~265000	See test	See test	PASS
				graph	graph	
		2437	30~265000	See test	See test	
	ANT0			graph	graph	PASS
	ANT0	2462	30~265000	See test	See test	PASS
	ANTO	2402	30/203000	graph	graph	FAGO
	ANT0	2412	30~265000	See test	See test	PASS
	ANTO	2412	30~203000	graph	graph	FA33
11G	ANT0	2437	30~265000	See test	See test	PASS
ПĞ				graph	graph	
	ANT0	2462	30~265000	See test	See test	PASS
				graph	graph	
	ANT0	2412	30~265000	See test	See test	PASS
				graph	graph	
11N20	ANT0	2437	30~265000	See test	See test	PASS
111120				graph	graph	FAGO
	ANT0	2462	30~265000	See test	See test	PASS
				graph	graph	FA00
	ANTO	2422	30~265000	See test	See test	PASS
				graph	graph	FA33
11N40	ANT0	2437	30~265000	See test	See test	PASS
1111140				graph	graph	FASS
	ANTO 2	2452	30~265000	See test	See test	PASS
				graph	graph	FA33

TEST GRAPHS

VERITAS

Test Report No.: PSU-NQN2406210109RF08


(Suzhou) Co., Ltd.

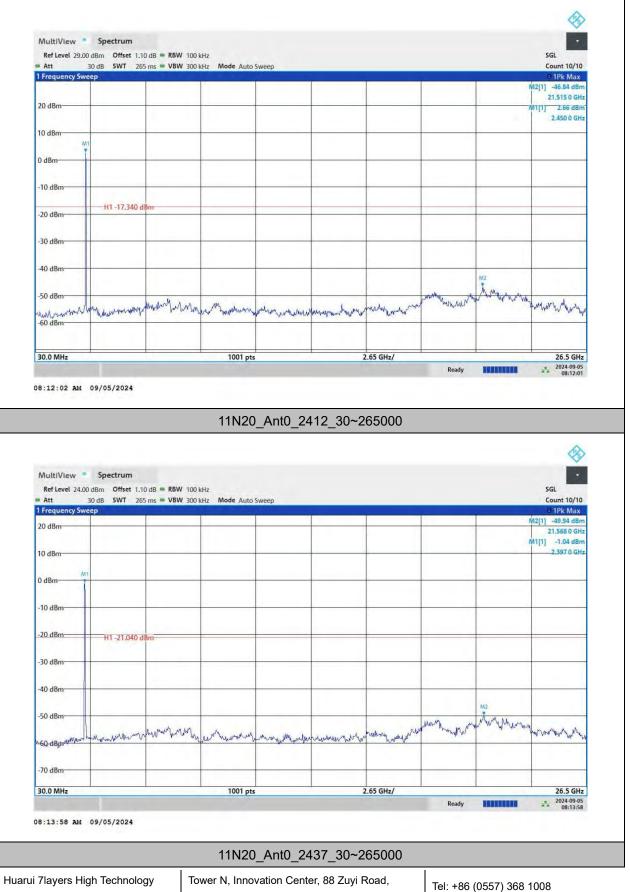
High-tech District, Suzhou City, Anhui Province

VERITAS

Test Report No.: PSU-NQN2406210109RF08

(Suzhou) Co., Ltd.

High-tech District, Suzhou City, Anhui Province

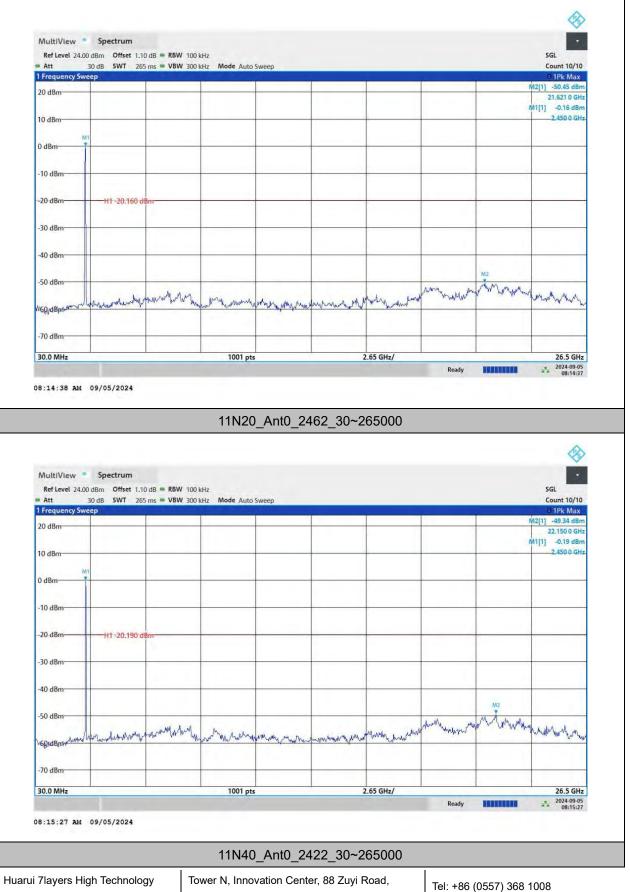

Page 159 of 211

1

VERITA

Test Report No.: PSU-NQN2406210109RF08

(Suzhou) Co., Ltd.


High-tech District, Suzhou City, Anhui Province

Page 160 of 211

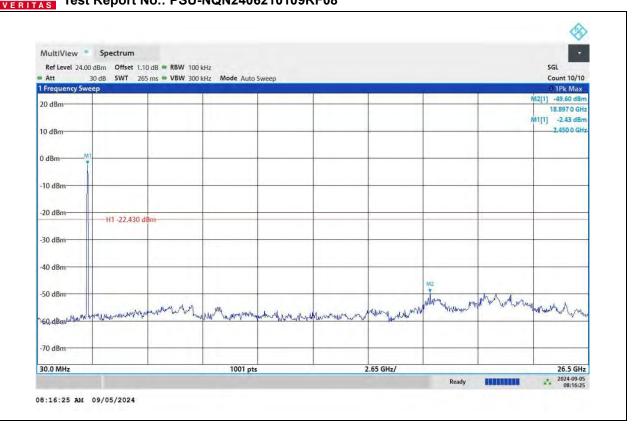
VERITAS

Test Report No.: PSU-NQN2406210109RF08

(Suzhou) Co., Ltd.

High-tech District, Suzhou City, Anhui Province

VERITAS


Test Report No.: PSU-NQN2406210109RF08

(Suzhou) Co., Ltd.

High-tech District, Suzhou City, Anhui Province

DUTY CYCLE

TEST RESULT

TestMode	Antenna	Frequency[MHz]	Transmission	Transmission	Duty Cycle	dutycycl
			Duration [ms]	Period [ms]	[%]	e factor
11B	ANT0	2412	12.465	12.645	98.51%	0.07
11G	ANT0	2412	2.0640	2.1040	98.10%	0.08
11N20	ANT0	2412	1.9280	1.9600	98.37%	0.07
11N40	ANT0	2422	0.9480	1.0000	94.80%	0.23

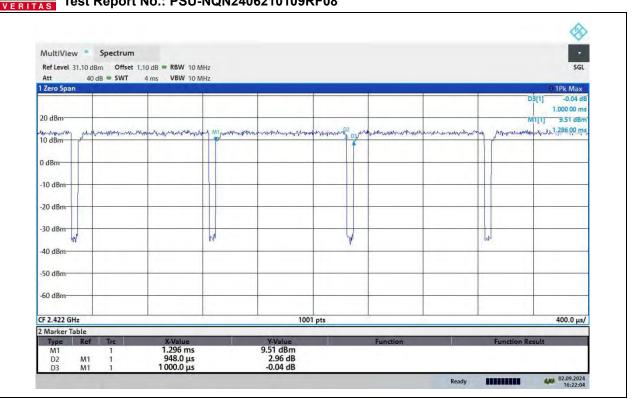
TEST GRAPHS

				(A)
MultiView Spe	Offset 1.10 dB = RBW 10 MHz			SGL
	SWT 45 ms VBW 10 MHz			Sul
1 Zero Span	P 1		4 4	O 1Pk Max
		M1		D3[1] 0.12 di 12.645 0 m
20 dBm				M1[1] 19.88 dBn 18.990 0 m
10 dBm				18.990 0 m
To upin				
0 dBm				
-10 dBm				
-20 dBm				
-30 dBm				
			Ĩ	
-40 dBm				
-50 dBm				-
-60 dBm				
-00 0011				
CF 2.412 GHz		1001 pts		4.5 ms/
2 Marker Table			-	Function Result
Type Ref Tr M1 1 1 D2 M1 1 D3 M1 1	18.99 ms 12.465 ms	Y-Value 19.88 dBm -0.10 dB 0.12 dB	Function	Function Result
,		2022	Ready	03.09.2024

AU VERMAN

BUREAU

Test Report No.: PSU-NQN2406210109RF08



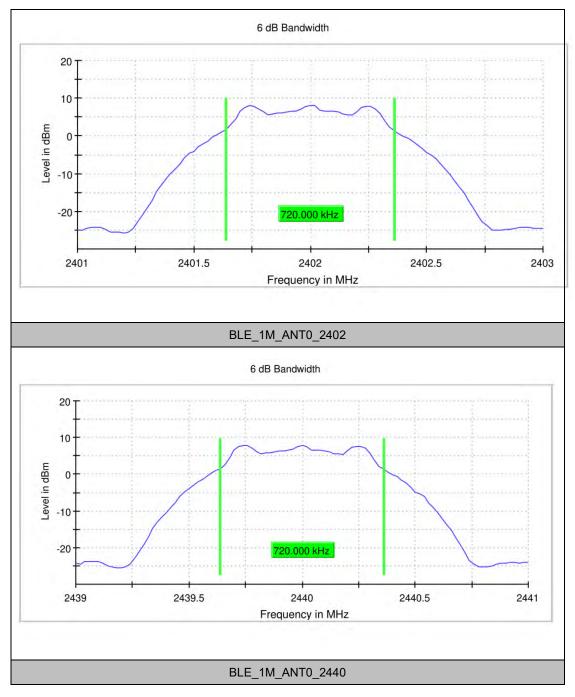
Huarui 7layers High Technology (Suzhou) Co., Ltd. Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

Tel: +86 (0557) 368 1008

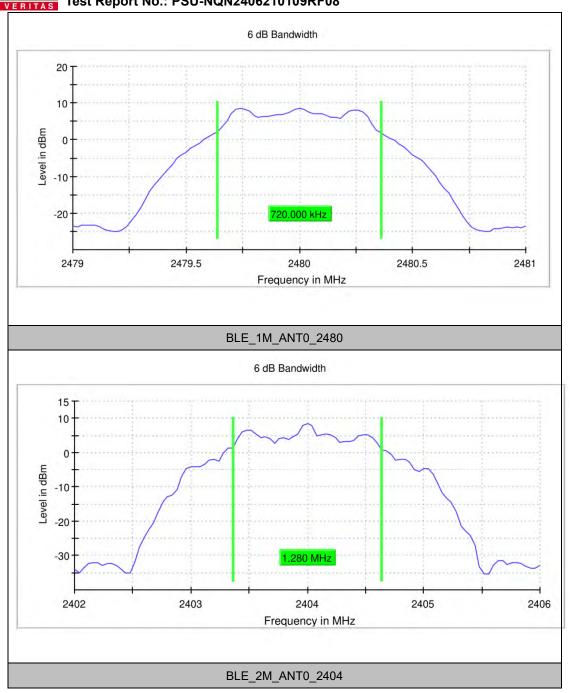
BUREAU

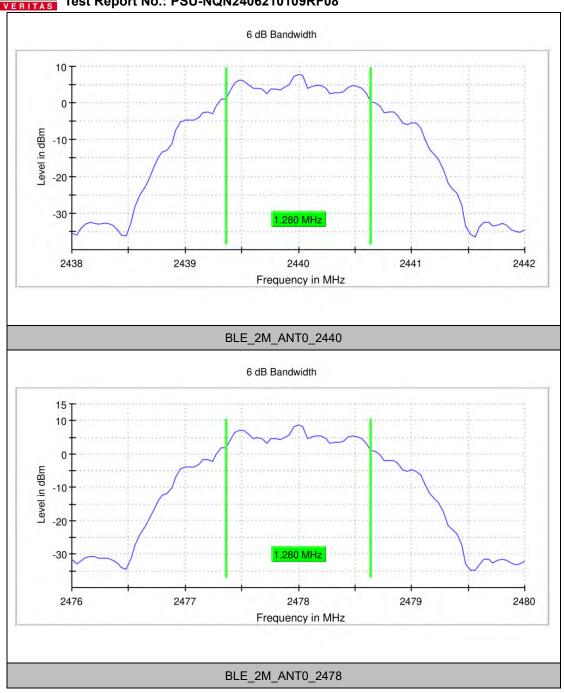
Test Report No.: PSU-NQN2406210109RF08

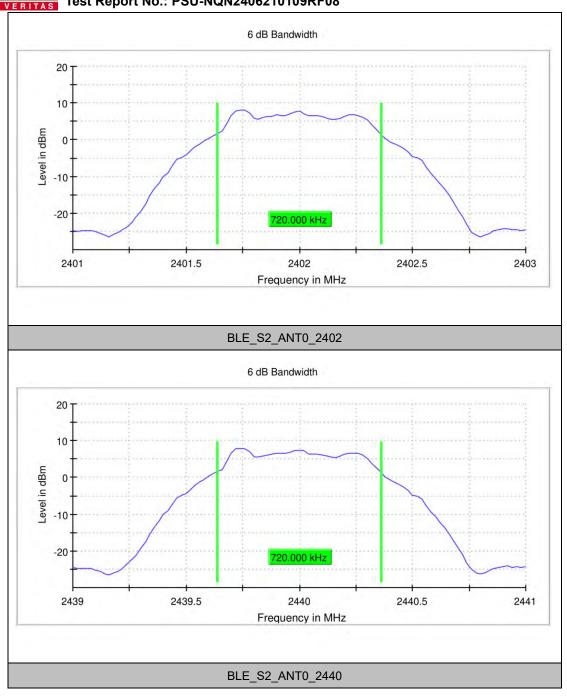
7 APPENDIX 2:BLE

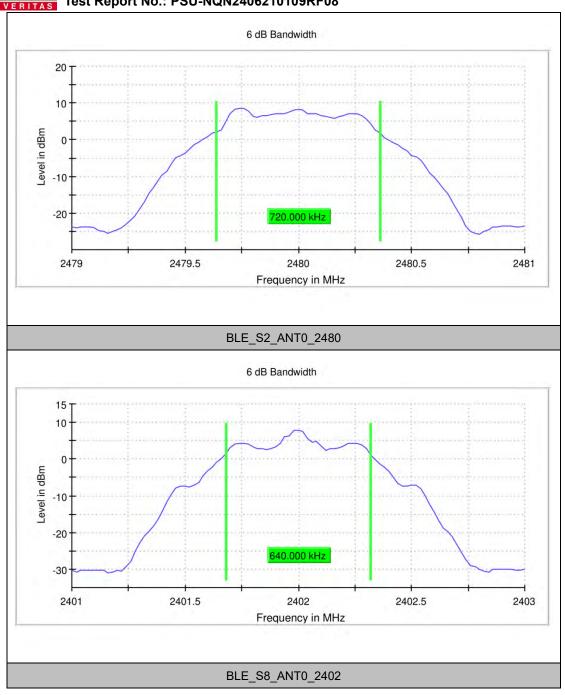

DTS BANDWIDTH

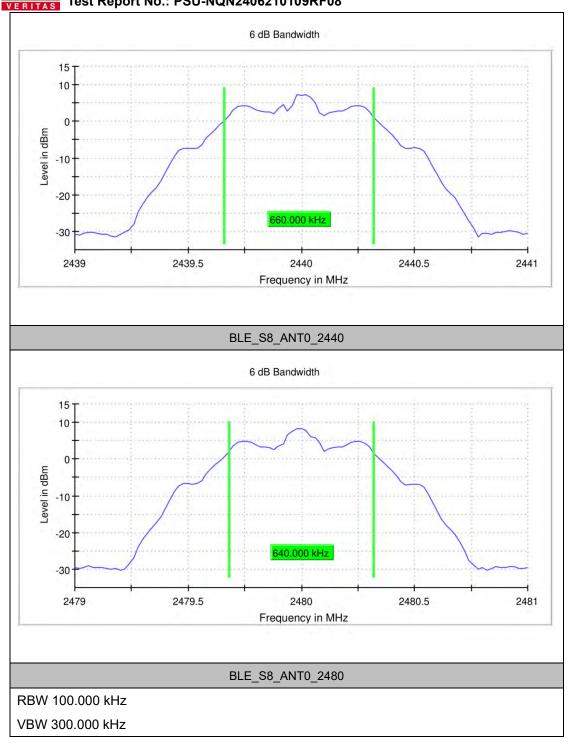
TEST RESULT

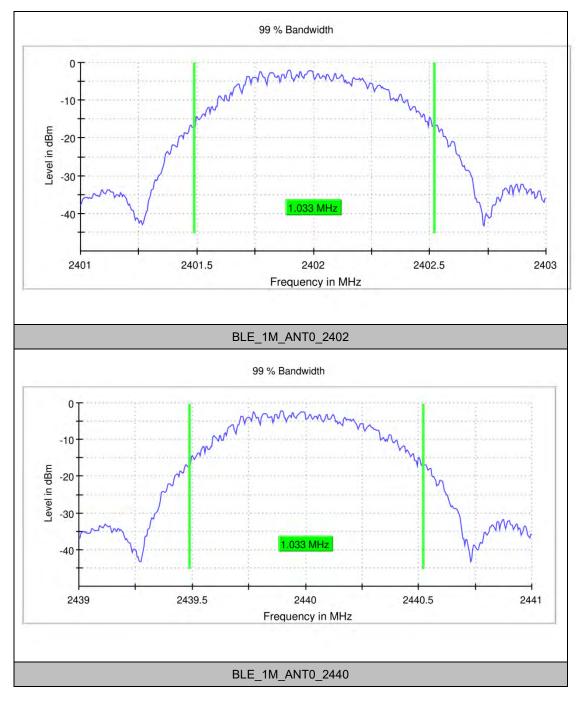

TestMode	Antenna	Channel	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
BLE_1M	ANT0	2402	0.720	2401.640	2402.360	0.5	PASS
		2440	0.720	2439.640	2440.360	0.5	PASS
		2480	0.720	2479.640	2480.360	0.5	PASS
BLE_2M	ANT0	2404	1.280	2403.360	2404.640	0.5	PASS
		2440	1.280	2439.360	2440.640	0.5	PASS
		2478	1.280	2477.360	2478.640	0.5	PASS
BLE-S2	ANT0	2402	0.720	2401.640	2402.360	0.5	PASS
		2440	0.720	2439.640	2440.360	0.5	PASS
		2480	0.720	2479.640	2480.360	0.5	PASS
BLE_S8	ANT0	2402	0.640	2401.680	2402.320	0.5	PASS
		2440	0.660	2439.660	2440.320	0.5	PASS
		2480	0.640	2479.680	2480.320	0.5	PASS





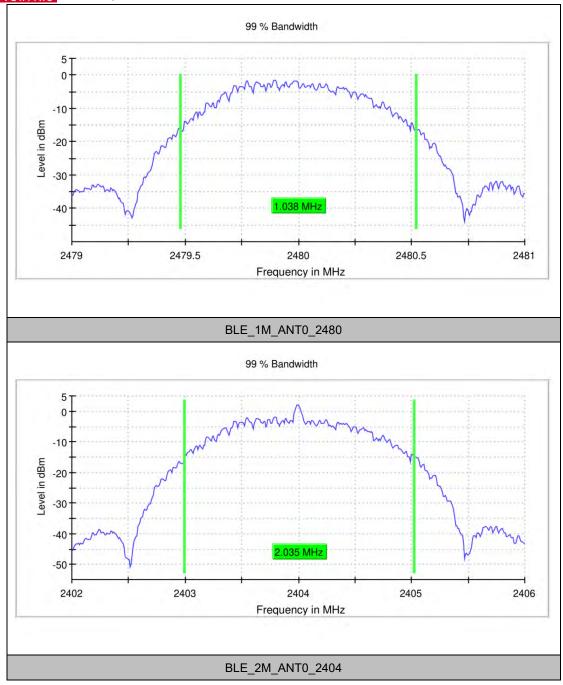


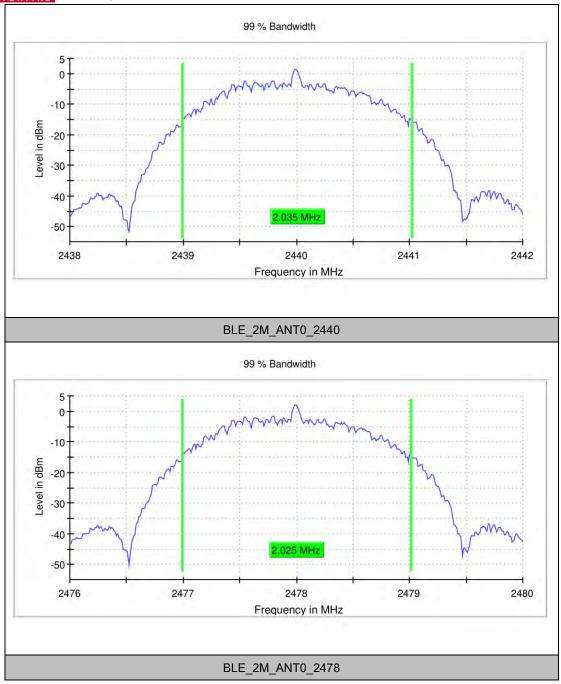



OCCUPIED CHANNEL BANDWIDTH

TEST RESULT

TestMode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
BLE_1M	ANT0	2402	1.033	2401.486	2402.519	2400-24835	PASS
		2440	1.033	2439.486	2440.519	2400-24835	PASS
		2480	1.038	2479.481	2480.519	2400-24835	PASS
BLE_2M	ANT0	2404	2.035	2402.993	2405.028	2400-24835	PASS
		2440	2.035	2438.993	2441.028	2400-24835	PASS
		2478	2.025	2476.993	2479.018	2400-24835	PASS
BLE-S2	ANT0	2402	1.013	2401.491	2402.504	2400-24835	PASS
		2440	1.013	2439.491	2440.504	2400-24835	PASS
		2480	1.018	2479.486	2480.504	2400-24835	PASS
BLE_S8	ANT0	2402	1.048	2401.476	2402.524	2400-24835	PASS
		2440	1.053	2439.471	2440.524	2400-24835	PASS
		2480	1.053	2479.471	2480.524	2400-24835	PASS


TEST GRAPHS



BURE

Test Report No.: PSU-NQN2406210109RF08

