

ACCREDITED

Certificate #6613.01

Test Report No.: PSU-NQN2406210109RF08

FCC TEST REPORT (Part 15, Subpart C)

Applicant:	Power Idea Technology (Shenzhen) Co., Ltd.
Address:	4th Floor, A Section, Languang Science&technology Building, No.7 Xinxi RD, Hi-Tech
	Industrial Park North, Nanshan District, ShenZhen, P.R.C.

Manufacturer or Supplier:	Power Idea Technology (Shenzhen) Co., Ltd.	
Address:	4th Floor, A Section, Languang Science&technology Building, No.7 Xinxi RD, Hi-Tech Industrial Park North, Nanshan District, ShenZhen, P.R.C.	
Product:	Smart Phone	
Brand Name:	RugGear	
Model Name:	PSM05G	
Marketing name :	RG880i	
FCC ID:	ZLE-PSM05G	
Date of tests:	Aug. 28, 2024 ~ Sep.27, 2024	

The tests have been carried out according to the requirements of the following standard:

ANSI C63.10-2020

CONCLUSION: The submitted sample was found to **COMPLY** with the test requirement

Prepared by Hanwen Xu	Approved by Peibo Sun
Engineer / Mobile Department	Manager / Mobile Department

Date: Sep.27, 2024

Xu Hannen

Date: Sep.27, 2024

Simpei bo

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/lems-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

VERITAS Test Report No.: PSU-NQN2406210109RF08

TABLE OF CONTENTS

RELE	EASE C	ONTROL RECORD	6
1	SUMM	IARY OF TEST RESULTS	7
1.1	MEA	SUREMENT UNCERTAINTY	8
2	GENE	RAL INFORMATION	9
2.1	GEN	ERAL DESCRIPTION OF EUT	9
2.2	DES	CRIPTION OF TEST MODES	12
	2.2.1	CONFIGURATION OF SYSTEM UNDER TEST	13
	2.2.2	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	13
2.3	DUT	Y CYCLE OF TEST SIGNAL	17
2.4	GEN	ERAL DESCRIPTION OF APPLIED STANDARDS	18
2.5	DES	CRIPTION OF SUPPORT UNITS	18
3	TEST	TYPES AND RESULTS	19
3.1	CON	DUCTED EMISSION MEASUREMENT	19
	3.1.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	19
	3.1.2	TEST INSTRUMENTS	19
	3.1.3	TEST PROCEDURES	20
	3.1.4	DEVIATION FROM TEST STANDARD	20
	3.1.5	TEST SETUP	21
	3.1.6	EUT OPERATING CONDITIONS	21
	3.1.7	TEST RESULTS	22
3.2	RAD	IATED EMISSION MEASUREMENT	24
	3.2.1	LIMITS OF RADIATED EMISSION MEASUREMENT	24
	3.2.2	TEST INSTRUMENTS	25
	3.2.3	TEST PROCEDURES	27
	3.2.4	DEVIATION FROM TEST STANDARD	27
	3.2.5	TEST SETUP	28
	3.2.6	EUT OPERATING CONDITIONS	29
	3.2.7	TEST RESULTS	30
3.3	6 DB	BANDWIDTH MEASUREMENT	114
	3.3.1	LIMITS OF 6DB BANDWIDTH MEASUREMENT	114
	3.3.2	TEST INSTRUMENTS	114
	3.3.3	TEST PROCEDURE	115
	3.3.4	DEVIATION FROM TEST STANDARD	115

	3.3.5	TEST SETUP	115
	3.3.6	EUT OPERATING CONDITIONS	115
	3.3.7	TEST RESULTS	116
3.4	CONE	DUCTED OUTPUT POWER	117
	3.4.1	LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT	117
	3.4.2	TEST SETUP	117
	3.4.3	TEST INSTRUMENTS	117
	3.4.4	TEST PROCEDURES	117
	3.4.5	DEVIATION FROM TEST STANDARD	117
	3.4.6	EUT OPERATING CONDITIONS	117
	3.4.7	TEST RESULTS	118
	3.4.7.1	MAXIMUM PEAK OUTPUT POWER	118
	3.4.7.2	AVERAGE OUTPUT POWER (FOR REFERENCE)	119
3.5	POWE	ER SPECTRAL DENSITY MEASUREMENT	120
	3.5.1	LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT	120
	3.5.2	TEST SETUP	120
	3.5.3	TEST INSTRUMENTS	120
	3.5.4	TEST PROCEDURE	120
	3.5.5	DEVIATION FROM TEST STANDARD	120
	3.5.6	EUT OPERATING CONDITION	120
	3.5.7	TEST RESULTS	12′
3.6	OUT	DF BAND EMISSION MEASUREMENT	122
	3.6.1	LIMITS OF OUT OF BAND EMISSION MEASUREMENT	122
	3.6.2	TEST SETUP	122
	3.6.3	TEST INSTRUMENTS	122
	3.6.4	TEST PROCEDURE	122
	3.6.5	DEVIATION FROM TEST STANDARD	123
	3.6.6	EUT OPERATING CONDITION	123
	3.6.7	TEST RESULTS	123
3.7	ANTE	NNA REQUIREMENTS	124
	3.7.1	STANDARD APPLICABLE	124
	3.7.2	ANTENNA CONNECTED CONSTRUCTION	124
	3.7.3	ANTENNA GAIN	124
4	РНОТС	GRAPHS OF THE TEST CONFIGURATION	125
5	MODIF	CATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB	126
6	APPEN	DIX 1:	127

DTS BANDWIDTH	127
TEST RESULT	127
TEST GRAPHS	128
OBW BANDWIDTH	134
TEST RESULT	134
TEST GRAPHS	135
MAXIMUM CONDUCTED OUTPUT POWER	141
TEST RESULT	141
MAXIMUM POWER SPECTRAL DENSITY	143
TEST RESULT	143
TEST GRAPHS	144
BAND EDGE MEASUREMENTS	151
TEST RESULT	151
TEST GRAPHS	152
CONDUCTED SPURIOUS EMISSION	156
TEST RESULT	156
TEST GRAPHS	157
DUTY CYCLE	164
TEST RESULT	164
TEST GRAPHS	165
7 APPENDIX 2:BLE	168
DTS BANDWIDTH	168
TEST RESULT	168
TEST GRAPHS	169
OCCUPIED CHANNEL BANDWIDTH	175
TEST RESULT	175
TEST GRAPHS	176
MAXIMUM CONDUCTED OUTPUT POWER	182
TEST RESULT	182
TEST GRAPHS	183
MAXIMUM POWER SPECTRAL DENSITY	189
TEST RESULT	189
TEST GRAPHS	190
BAND EDGE MEASUREMENTS	196
TEST RESULT	196
TEST GRAPHS	197

CONDUCTED SPURIOUS EMISSION	201
TEST RESULT	20 ²
TEST GRAPHS	202
DUTY CYCLE	209
TEST RESULT	209
TEST GRAPHS	210

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
PSU-NQN2406210109RF08	Original release	Sep.27, 2024

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC PART 15, SUBPART C (SECTION 15.247)		
STANDARD SECTION TEST TYPE AND LIMIT		RESULT
15.207	AC Power Conducted Emission	Compliance
15.205 15.209	Radiated Emissions Compliance	
15.247(d)	Out of band Emission Measurement	Compliance
15.247(a)(2)	6dB bandwidth Compliance	
15.247(b)	15.247(b) Conducted Output power Complian	
15.247(e)	Power Spectral Density	Compliance
15.203	Antenna Requirement	Compliance

Note: 1.Except RSE, other data please refer to Appendix 1 (for WIFI-2.4G) and Appendix 2 (for BLE).

*Test Lab Information Reference

Lab A:

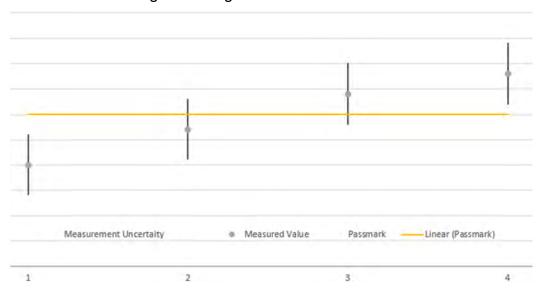
Huarui 7Layers High Technology (Suzhou) Co., Ltd.

Lab Address:

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

Accredited Test Lab Cert 6613.01

The FCC Site Registration No. is 434559; The Designation No. is CN1325.



1.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY
AC Power Conducted emissions	±2.70dB
Radiated emissions (9KHz~30MHz)	±2.68dB
Radiated emissions (30MHz~1GHz)	±4.98dB
Radiated emissions (1GHz ~6GHz)	±4.70dB
Radiated emissions (6GHz ~18GHz)	±4.60dB
Radiated emissions (18GHz ~40GHz)	±4.12dB
Conducted emissions	±4.01dB
Occupied Channel Bandwidth	±43.58KHz
Conducted Output power	±2.06dB
Power Spectral Density	±0.85 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

Tel: +86 (0557) 368 1008

VERITAS Test Report No.: PSU-NQN2406210109RF08

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

PRODUCT*	Smart Phone
BRAND NAME*	RugGear
MODEL NAME*	PSM05G
MARKETING NAME*	RG880i
NOMINAL VOLTAGE*	5.0Vdc/ 9.0Vdc/ 12.0Vdc(Adapter) 3.85Vdc (Battery)
MODULATION	DSSS, OFDM, GFSK
TRANSMISSION RATE	802.11b: 11/ 5.5/ 2.0 / 1.0 Mbps 802.11g: 54/ 48/ 36 / 24 / 18 / 9/ 6 Mbps 802.11n20: up to 72.2 Mbps 802.11n40: up to 150 Mbps BT_LE: 0.125 Mbps /0.5 Mbps /1 Mbps/2 Mbps
OPERATING FREQUENCY	2412-2462MHz for 11b/g/n(HT20/40) 2402-2480MHz for BT-LE(GFSK)
MAX. OUTPUT POWER	WLAN: 125.89mW (Maximum) BT-LE: 8.56mW (Maximum)
ANTENNA TYPE*	PIFA Antenna with 1.8dBi gain
HW VERSION*	V02
SW VERSION*	RG880i_EAA_00.00_1
I/O PORTS*	Refer to user's manual
CABLE SUPPLIED*	USB cable: non-shielded cable, with w/o ferrite core, 1.0 meter

NOTE

- 1. *Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, Test Lab is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 3. The EUT incorporates a SISO function. Physically, the EUT provides one transmitter and one receiver.

MODULATION MODE	TX/RX FUNCTION
802.11b	1TX /1RX
802.11g	1TX /1RX
802.11n (20MHz)	1TX /1RX
802.11n (40MHz)	1TX /1RX
BT_LE(1MHz)	1TX /1RX
BT_LE(2MHz)	1TX /1RX
BT_LE(S2)	1TX /1RX
BT_LE(S8)	1TX /1RX

- 4. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- 5. Antenna gain and EUT conducted cable loss are provided by the customer, and the laboratory will record the results based on these items that involve these two parameters.

6. List of Accessory:

ACCESSORIES	BRAND	MANUFACTUR ER	MODEL	SPECIFICATION
CPU	QUALCOMM	N/A	SM6225	N/A
eMMC 1 (=ROM 1)	SAMSUNG	N/A	KM2L9001CM-B518	N/A
eMMC 2 (=ROM 2)	Hynix	N/A	H9QT0GECN6X145R	N/A
RAM 1	N/A	N/A	N/A	N/A
RAM 2	N/A	N/A	N/A	N/A
BT/WLAN Module	N/A	N/A	N/A	N/A
NFC chipset	NXP	N/A	N/A	N/A
Battery	N/A	N/A	BL450AGP	Power Rating: 4.4V 4500mAh
Adapter	N/A	Huizhou Juwei Electronics Co.,Ltd	FG18AQC3.0UU	I/P: 100-240Vac, 50/60Hz, 0.5A, O/P:5.0V 3.0A or 9.0V 2.0A or 12.0V 1.5A
USB Cable	N/A	N/A	N/A	N/A

2.2 DESCRIPTION OF TEST MODES

11 channels are provided for 802.11b, 802.11g and 802.11n(HT20):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
1	2412 MHz	7	2442 MHz
2	2417 MHz	8	2447 MHz
3	2422 MHz	9	2452 MHz
4	2427 MHz	10	2457 MHz
5	2432 MHz	11	2462 MHz
6	2437 MHz		

7 channels are provided for 802.11n (HT40):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
3	2422 MHz	7	2442 MHz
4	2427 MHz	8	2447 MHz
5	2432 MHz	9	2452 MHz
6	2437 MHz		

40 channels are provided for BT-LE (GFSK):

(
CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)	CHANNEL	FREQ. (MHZ)	
0	2402	10	2422	20	2442	30	2462	
1	2404	11	2424	21	2444	31	2464	
2	2406	12	2426	22	2446	32	2466	
3	2408	13	2428	23	2448	33	2468	
4	2410	14	2430	24	2450	34	2470	
5	2412	15	2432	25	2452	35	2472	
6	2414	16	2434	26	2454	36	2474	
7	2416	17	2436	27	2456	37	2476	
8	2418	18	2438	28	2458	38	2478	
9	2420	19	2440	29	2460	39	2480	

2.2.1 CONFIGURATION OF SYSTEM UNDER TEST

Please see section 4 photographs of the test configuration for reference.

2.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports.

The worst case was found when positioned on Y axis for radiated emission. Following test modes were selected for the final test, and the final worst case is marked in boldface and recorded in the report:

EUT CONFIGURE		APPLIC	ABLE TO		MODE			
MODE	RE<1G	RE≥1G	PLC	APCM	WODE			
-	V	$\sqrt{}$	√	$\sqrt{}$	-			

Where

RE<1G: Radiated Emission below 1GHz

RE≥1G: Radiated Emission above 1GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

NOTE: No need to concern of Conducted Emission due to the EUT is powered by battery.

RADIATED EMISSION TEST (BELOW 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

☐ The following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11n HT20	1 to 11	6	OFDM	MCS0
BT-LE	1 to 38	19	GFSK	1.0

Page 13 of 211

RADIATED EMISSION TEST (ABOVE 1GHz):

☐ The following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABL E CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	1.0
802.11g	1 to 11	1, 6, 11	OFDM	6.0
802.11n HT20	1 to 11	1, 6, 11	OFDM	MCS0
802.11n HT40	3 to 9	3,6,9	OFDM	MCS0
BT-LE	0 to 39	0,19, 39	GFSK	0.125&0.5&1.0
BT-LE	1 to 38	1,19, 38	GFSK	2.0

POWER LINE CONDUCTED EMISSION TEST

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

☐ The following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11n HT20	1 to 11	6	OFDM	MCS0

Page 14 of 211

BANDEDGE MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

☐ The following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	1.0
802.11g	1 to 11	1, 6, 11	OFDM	6.0
802.11n HT20	1 to 11	1, 6, 11	OFDM	MCS0
802.11n HT40	3 to 9	3,6,9	OFDM	MCS0
BT-LE	0 to 39	0,19, 39	GFSK	0.125&0.5&1.0
BT-LE	1 to 38	1,19, 38	GFSK	2.0

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

The following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	DATA RATE (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	1.0
802.11g	1 to 11	1, 6, 11	OFDM	6.0
802.11n HT20	1 to 11	1, 6, 11	OFDM	MCS0
802.11n HT40	3 to 9	3,6,9	OFDM	MCS0
BT-LE	0 to 39	0,19, 39	GFSK	0.125&0.5&1.0
BT-LE	1 to 38	1,19, 38	GFSK	2.0

Page 15 of 211

VERITAS Test Report No.: PSU-NQN2406210109RF08

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	TEST VOLTAGE	TESTED BY
RE<1G	23deg. C, 70%RH	DC 5.0V/ 9.0V/ 12.0V By Adapter	Hanwen Xu
RE≥1G	23deg. C, 70%RH	DC 5.0V/ 9.0V/ 12.0V By Adapter	Hanwen Xu
PLC	25deg. C, 52%RH	DC 5.0V/ 9.0V/ 12.0V By Adapter	Hanwen Xu
APCM	25deg. C, 60%RH	DC 5.0V/ 9.0V/ 12.0V By Adapter	Hanwen Xu

2.3 DUTY CYCLE OF TEST SIGNAL

Please Refer to Appendix1/2 Of this test report.

WORST-CASE DATA:

Measured Duty Cycle					
Mode		Duty Cycle [%]			
Wiode	ANT0				
	11B	98.51			
	11G	98.10			
WIFI 2.4GHz	11N20	98.37			
	11N40	94.80			
	BT4.0	86.81			
BT LE	BT5.0	66.00			
DI LE	BTS2	81.21			
	BTS8	95.09			

Note:

Duty cycle of test signal is < 98%, duty factor shall be considered.

2.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C, Section 15.247

KDB 558074 D01 DTS Meas Guidance v05r02

ANSI C63.10-2020

Note:

- 1. All test items have been performed and recorded as per the above standards.
- 2. The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (Certification). The test report has been issued separately.

2.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	N/A	N/A	N/A	N/A	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	USB Line: Shielded, Detachable 1.0m;

Page 18 of 211

3 TEST TYPES AND RESULTS

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBμV)		
	Quasi-peak	Average	
0.15 ~ 0.5	66 to 56	56 to 46	
0.5 ~ 5	56	46	
5 ~ 30	60	50	

NOTE: 1.The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

3.1.2 TEST INSTRUMENTS

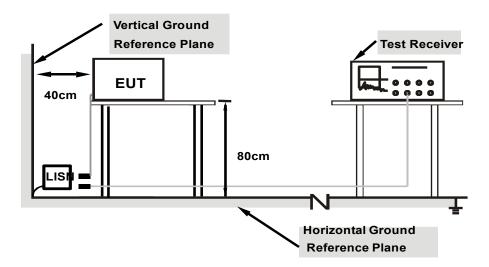
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESR3	102749	Mar.28,24	Mar.27,26
ELEKTRA test software	Rohde&Schwarz	ELEKTRA	NA	N/A	N/A
LISN network	Rohde&Schwarz	ENV216	102640	Mar.28,24	Mar.27,26
CABLE	Rohde&Schwarz	W61.01	N/A	Apr.27,24	Apr.26,25
CABLE	Rohde&Schwarz	W601	N/A	Apr.27,24	Apr.26,25

NOTE:

- 1. The test was performed in CE shielded room.
- 2. The calibration interval of the above test instruments is 12/24 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

3.1.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.


NOTE: All modes of operation were investigated and the worst-case emissions are reported.

3.1.4 DEVIATION FROM TEST STANDARD

No deviation.

3.1.5 TEST SETUP

Note: 1.Support units were connected to second LISN.

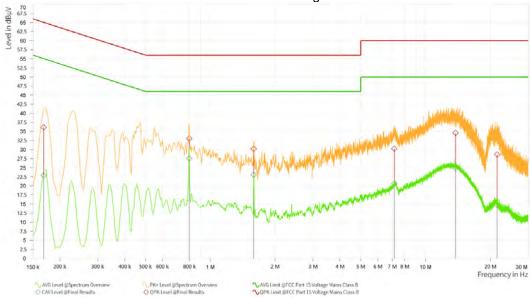
2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.1.6 EUT OPERATING CONDITIONS

- a. Turned on the power and connected of all equipment.
- b. EUT was operated according to the type used was description in manufacturer's specifications or the User's Manual.

3.1.7 TEST RESULTS

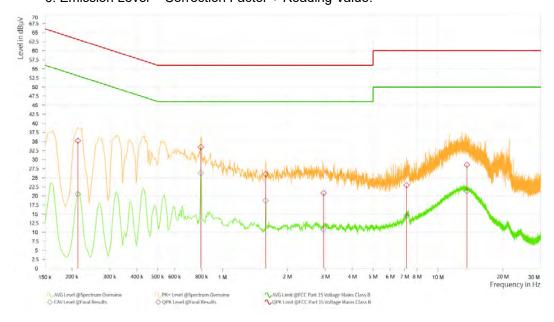

CONDUCTED WORST-CASE DATA:

Frequency Range	150KHz ~ 30MHz		Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120Vac, 60Hz	Environmental Conditions	26deg. C, 51%RH
Tested By	Hanwen Xu		

Rg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	CAV Level [dBµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]	Correction [dB]	Line	Meas. BW [kHz]
1	0.168	36.13	65.06	28.93	22.90	55.06	32.16	12.36	L1	9.000
1	0.798	33.03	56.00	22.97	27.56	46.00	18.44	11.74	L1	9.000
1	1.590	30.22	56.00	25.78	23.05	46.00	22.95	11.75	L1	9.000
1	7.161	30.24	60.00	29.76	20.64	50.00	29.36	11.81	L1	9.000
1	13.785	34.57	60.00	25.43	24.88	50.00	25.12	11.84	L1	9.000
1	21.512	28.66	60.00	31.34	14.77	50.00	35.23	11.88	L1	9.000

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



Frequency Range	150KHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120Vac, 60Hz	Environmental Conditions	26deg. C, 51%RH
Tested By	Hanwen Xu		

Rg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	CAV Level [dBµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]	Correction [dB]	Line	Meas. BW [kHz]
1	0.213	35.21	63.09	27.88	20.53	53.09	32.56	12.36	Ν	9.000
1	0.794	33.40	56.00	22.60	26.28	46.00	19.72	12.74	N	9.000
1	1.586	26.00	56.00	30.00	18.72	46.00	27.28	12.74	Ν	9.000
1	2.945	20.81	56.00	35.19	10.74	46.00	35.26	12.75	Ν	9.000
1	7.152	22.95	60.00	37.05	14.54	50.00	35.46	12.78	Ν	9.000
1	13.637	28.57	60.00	31.43	21.31	50.00	28.69	12.82	Ν	9.000

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

3.2.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Pre-Amplifier	R&S	SCU18F1	100815	Aug.29,24	Aug.28,26
Pre-Amplifier	R&S	SCU08F1	101028	Jan.22,24	Jan.21,26
Signal Generator	R&S	SMB100A	182185	Mar.29,24	Mar.28,26
3m Fully-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ-EMC- 01Chamber	Nov.25,22	Nov.24,25
3m Semi-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ-EMC- 02Chamber	Nov.25,22	Nov.24,25
EMI TEST Receiver	R&S	ESW44	101973	Mar.28,24	Mar.27,26
Bilog Antenna	SCHWARZBEC K	VULB 9163	1264	Dec.26,23	Dec.25,25
Horn Antenna	ETS-LINDGREN	3117	227836	Aug.21,24	Aug.20,26
Horn Antenna (18GHz-40GHz)	Steatite Q-par Antennas	QMS 00880	23486	Jul.15,24	Jul.14,26
Horn Antenna	Steatite Q-par Antennas	QMS 00208	23485	Aug.21,24	Aug.20,26
Loop Antenna	SCHWARZ	HFH2-Z2/Z2E	100976	Feb.22,24	Feb.21,26
WIDEBANDRADIO COMMUNICATION TESTER	R&S	CMW500	169399	Jun.19,24	Jun.18,26
Test Software	ELEKTRA	ELEKTRA4.32	N/A	N/A	N/A
Open Switch and Control Unit	R&S	OSP220	101964	N/A	N/A
DC Source	HYELEC	HY3010B	551016	Aug.31,22	Aug.30,24
DC Source	HYELEC	HY3010B	551016	Aug.30,24	Aug.29,26
Hygrothermograph	DELI	20210528	SZ014	Sep.06,22	Sep.05,24
Hygrothermograph	DELI	20210528	SZ014	Sep.05,24	Sep.04,26
6DB attenuator	Tonscend Technology Co., Ltd	N/A	23062787	N/A	N/A
PC	LENOVO	E14	HRSW0024	N/A	N/A
TMC-AMI18843A(CA BLE)	R&S	HF290-NMNM- 7.00M	N/A	N/A	N/A
TMC-AMI18843A(CA BLE)	R&S	HF290-NMNM- 4.00M	N/A	N/A	N/A
CABLE	R&S	W13.02	N/A	Apr.27,24	Apr.26,25
CABLE	R&S	W12.14	N/A	Apr.27,24	Apr.26,25

- NOTE: 1. The calibration interval of the above test instruments is 12/24/36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
 - 2. The test was performed in 3m Chamber.
 - 3. The FCC Site Registration No. is 434559; The Designation No. is CN1325.

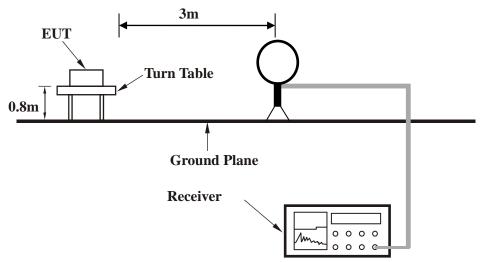
3.2.3 TEST PROCEDURES

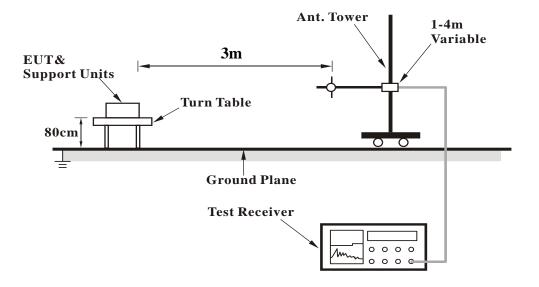
- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

Note:

- The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average (Duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 5. All modes of operation were investigated and the worst-case emissions are reported.

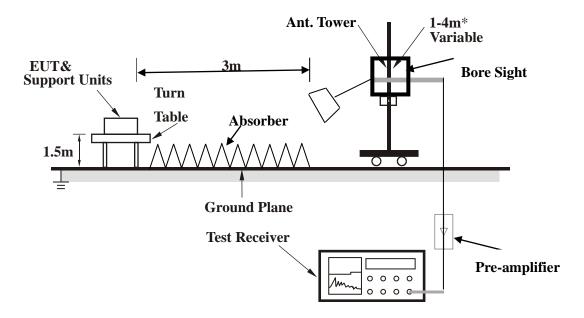
3.2.4 DEVIATION FROM TEST STANDARD


No deviation


BUREAU VERITAS Test Report No.: PSU-NQN2406210109RF08

3.2.5 TEST SETUP

<Frequency Range 9KHz~30MHz >



< Frequency Range 30MHz~1GHz >

<Frequency Range above 1GHz>

Note: Above 1G is a directional antenna

Depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.2.6 EUT OPERATING CONDITIONS

- a. Set the EUT under full load condition and placed them on a testing table.
- b. Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.
- c. The necessary accessories enable the EUT in full functions.

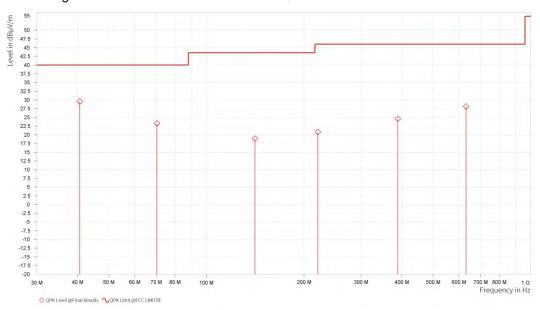
Tel: +86 (0557) 368 1008

3.2.7 TEST RESULTS

NOTE: The 9K~30MHz amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

BELOW 1GHz WORST-CASE DATA:

30 MHz - 1GHz data: 802.11n (20MHz):


CHANNEL	TX Channel 6	DETECTOR FUNCTION	Ouggi Pook (OP)
FREQUENCY RANGE		DETECTOR FUNCTION	Quasi-reak (QF)

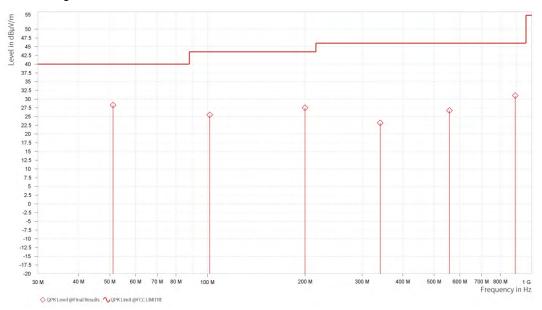
ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

Rg	Frequency [MHz]	QPK Level [dBµV/m]	QPK Limit [dBµV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]
1	40.67	29.54	40.0	10.46	-4.54	Н	1.0	2.0	120.0
1	70.352	23.3	40.0	16.7	-8.52	Н	319.7	1.0	120.0
1	141.162	18.87	43.5	24.63	-9.34	н	40.3	2.0	120.0
1	220.605	20.77	46.0	25.23	-4.56	н	40.3	2.0	120.0
1	388.852	24.6	46.0	21.4	2.22	н	319.7	1.0	120.0
1	632.128	28.08	46.0	17.92	2.73	Н	359.1	1.0	120.0

REMARKS:

 Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.

Page 30 of 211


CHANNEL	TX Channel 6	DETECTOR ELINCTION	Ouggi Book (OD)
FREQUENCY RANGE		DETECTOR FUNCTION	Quasi-reak (Qr)

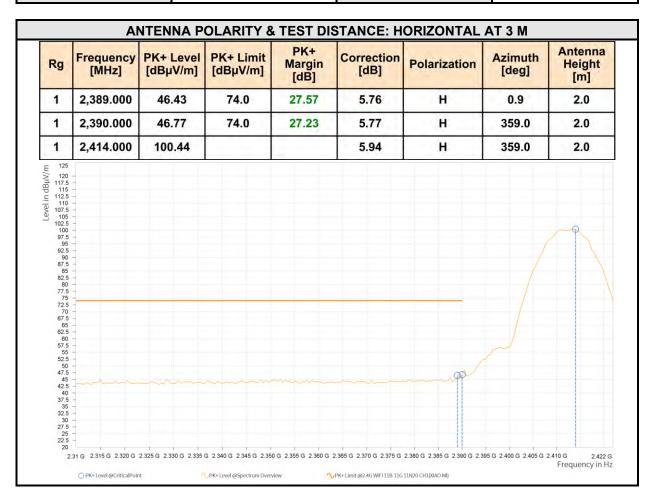
ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

Rg	Frequency [MHz]	QPK Level [dBµV/m]	QPK Limit [dBµV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]
1	51.146	28.29	40.0	11.71	-4.73	V	318.4	1.0	120.0
1	101.635	25.45	43.5	18.05	-6.04	٧	318.4	1.0	120.0
1	199.993	27.5	43.5	16.0	-5.7	٧	4.9	1.0	120.0
1	340.885	23.14	46.0	22.86	0.33	٧	1.0	2.0	120.0
1	557.583	26.72	46.0	19.28	1.95	V	359.0	1.0	120.0
1	889.711	30.99	46.0	15.01	6.91	٧	359.0	1.0	120.0

REMARKS:

 Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.

Tel: +86 (0557) 368 1008


ABOVE 1GHz WORST-CASE DATA:

Note: 1. For radiated emissions testing , the full testing range of different modes have been scanned , only the worst case harmonic data is reported in the sheet.

2. All other emissions were greater than 20dB below the limit was not recorded

802.11b:

CHANNEL	TX Channel 1	DETECTOR ELINCTION	Peak (PK)
FREQUENCY RANGE		DETECTOR FUNCTION	Average (AV)

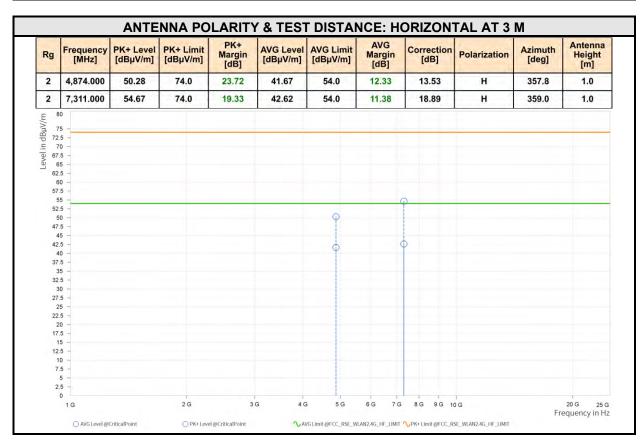
VERITAS Test Report No.: PSU-NQN2406210109RF08

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,389.000	31.7	54.0	22.3	5.76	н	1	2.0
1	2,390.000	32.34	54.0	21.66	5.77	H	1	2.0
1	2,413.000	96.16			5.93	Н	1	2.0
E /\(\frac{120}{120}\) 120 U 1 120 U 1 17.5 E 17.5								- 19 N

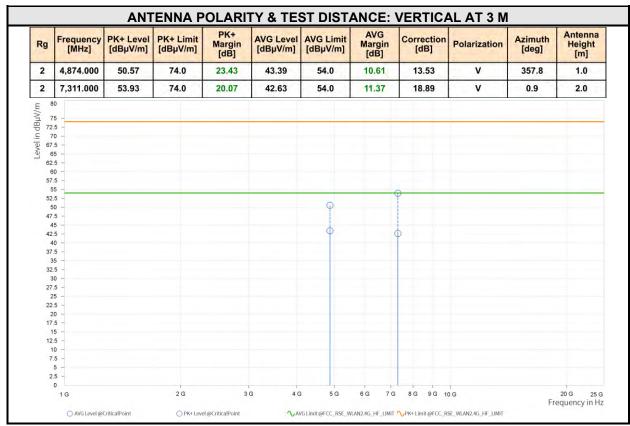
VERITAS Test Report No.: PSU-NQN2406210109RF08

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,389.000	46.87	74.0	27.13	5.76	ν	359.0	2.0
1	2,390.000	47.27	74.0	26.73	5.77	٧	2.5	2.0
1	2,413.500	100.34			5.93	٧	359.0	2.0
H 1/25 17 17 17 17 17 17 17 17 17 17 17 17 17								

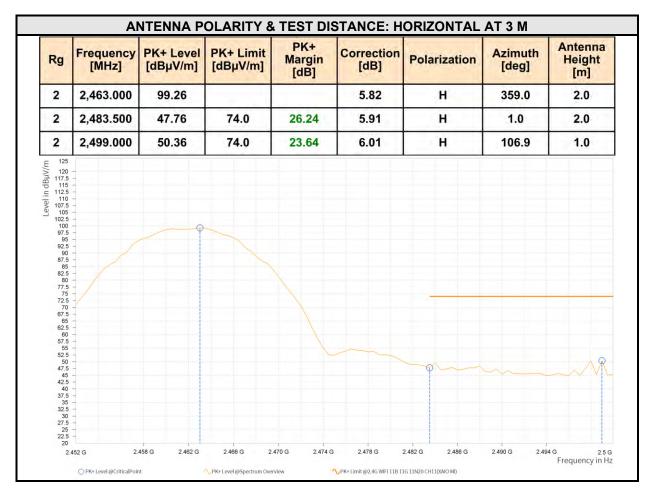
Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,389.500	32.01	54.0	21.99	5.77	V	1	2.0
1	2,390.000	32.3	54.0	21.7	5.77	٧	111	2.0
1	2,413.000	96.35			5.93	٧	359	2.0
E //2/12/20 12/20								- P


REMARKS:

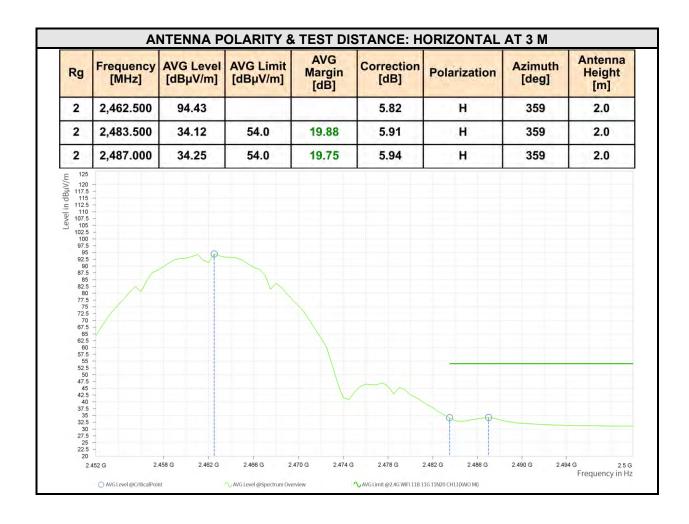
- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 2412MHz: Fundamental frequency.


Tel: +86 (0557) 368 1008

CHANNEL	TX Channel 6	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE			Average (AV)


REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 2437MHz: Fundamental frequency.


Tel: +86 (0557) 368 1008

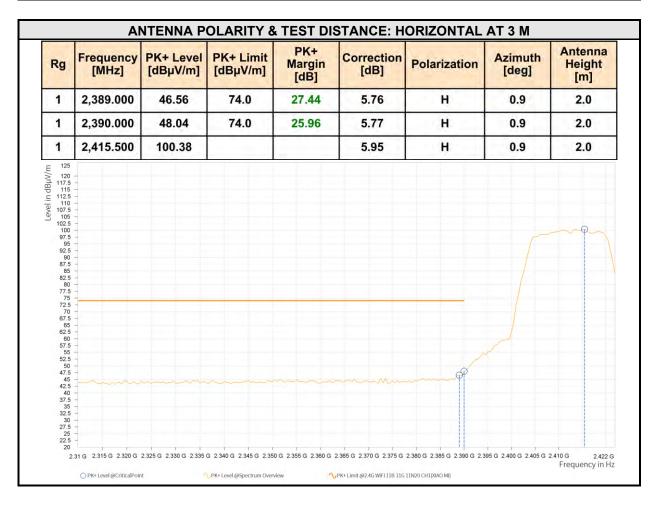
CHANNEL	TX Channel 11	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE			Average (AV)

VERITAS Test Report No.: PSU-NQN2406210109RF08

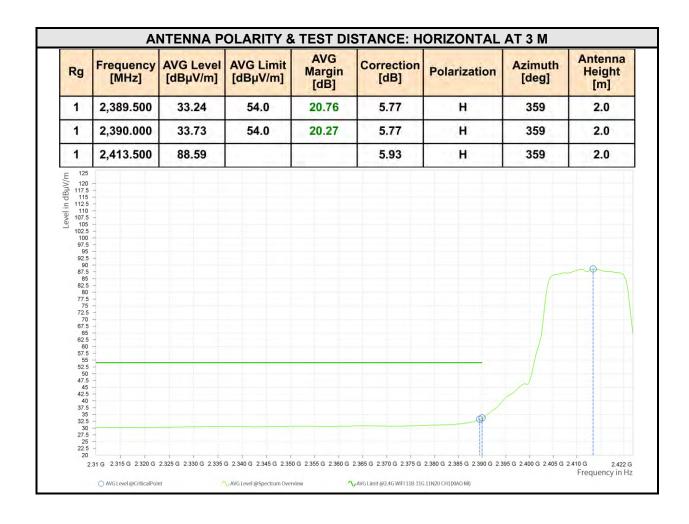
Rg Freque	PK+ Lev [dBµV/m		PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2 2,463.	500 99.22			5.81	٧	359.0	2.0
2 2,483.	500 48.54	74.0	25.46	5.91	٧	359.0	2.0
2 2,494.	000 50.24	74.0	23.76	5.98	٧	176.2	1.0
125 125		P					

Rg Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2 2,462.500	94.53			5.82	ν	268.7	2.0
2 2,483.500	34.0	54.0	20.0	5.91	٧	359.0	2.0
2 2,487.000	34.2	54.0	19.8	5.94	٧	359.0	2.0
125 125							

REMARKS:


- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 2462MHz: Fundamental frequency.

Tel: +86 (0557) 368 1008

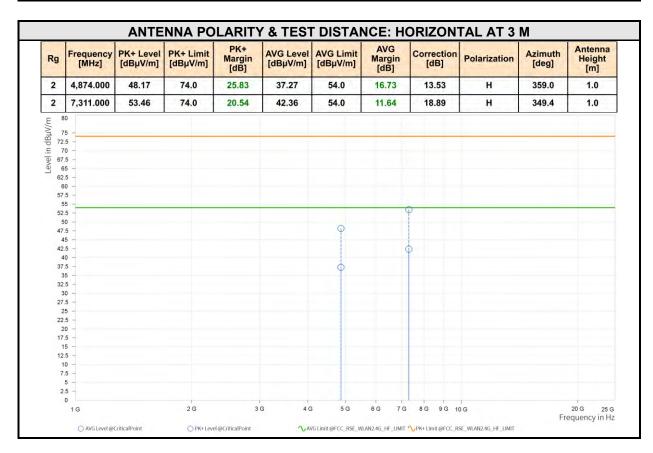

802.11g

CHANNEL	TX Channel 1	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz		Average (AV)

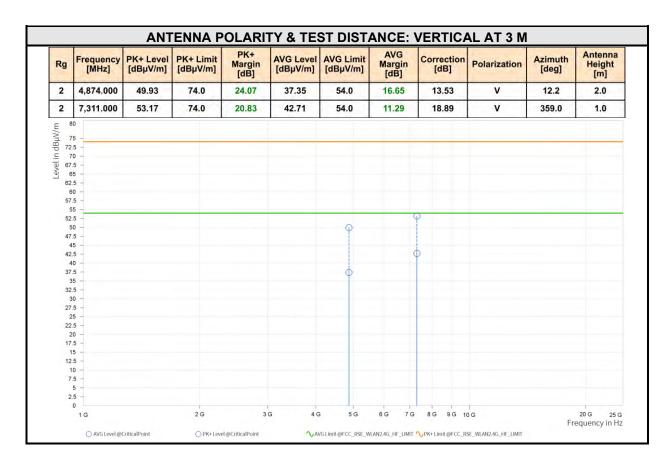
Page 42 of 211

VERITAS Test Report No.: PSU-NQN2406210109RF08

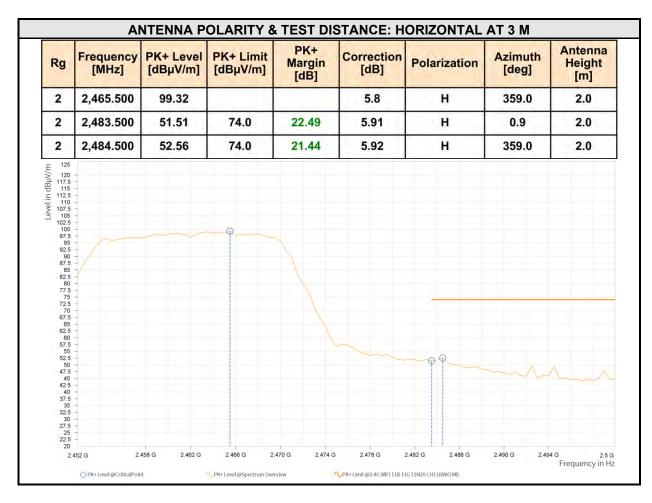
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,389.500	46.78	74.0	27.22	5.77	٧	17	2.0
1	2,390.000	48.28	74.0	25.72	5.77	٧	17	2.0
1	2,415.000	100.54			5.94	٧	17	2.0
E //1/14 pt //1/15 pt //1/14 pt //14 pt //1/14 pt //1/14 pt //1/14 pt //14 pt //14 pt //14 pt //								


Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,389.500	33.11	54.0	20.89	5.77	V	16.2	2.0
1	2,390.000	33.61	54.0	20.39	5.77	V	359.0	2.0
1	2,413.500	88.66			5.93	٧	359.0	2.0
□ //25 / 120.00 / 12				0.0 3355.0 3380.0		2.380 G 2.385 G 2.390 G 2.3		2410 G 2.42

REMARKS:

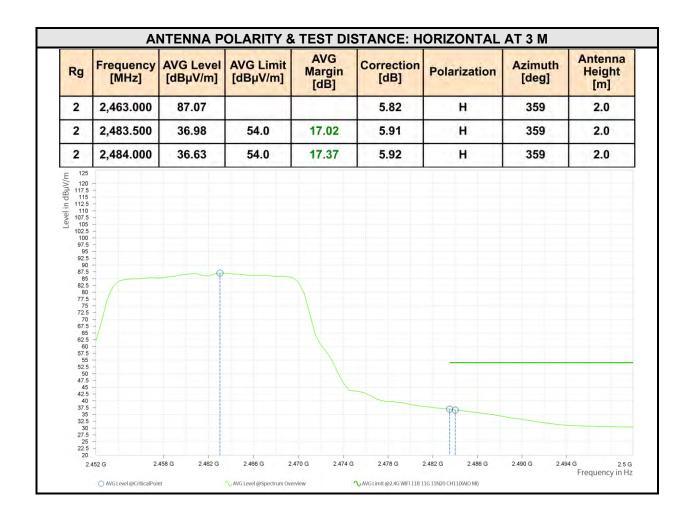

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 2412MHz: Fundamental frequency.

CHANNEL	TX Channel 6	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE			Average (AV)


REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 2437MHz: Fundamental frequency.

Tel: +86 (0557) 368 1008



CHANNEL	TX Channel 11	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE			Average (AV)

Report Version 1

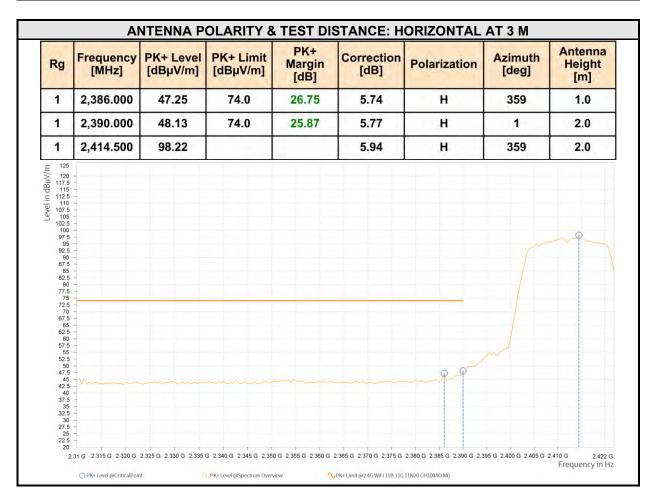
VERITAS Test Report No.: PSU-NQN2406210109RF08

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,463.500	98.98			5.81	ν	359.0	2.0
2	2,483.500	57.41	74.0	16.59	5.91	٧	278.2	2.0
2	2,484.500	53.02	74.0	20.98	5.92	٧	169.0	1.0
E 125 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		458 G 2.462 G		470 G 2474 G	3 2478 G	2.482 G 2.486 G	2490 G 2490	

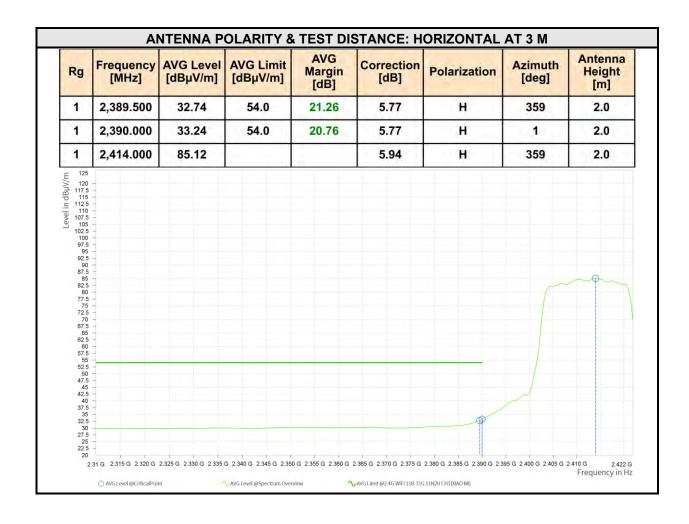
BUREAU VERITAS Test Report No.: PSU-NQN2406210109RF08

2 2,483.500 36.97 54.0 17.03 5.91 V 359.0 2.0 2 2,484.000 36.73 54.0 17.27 5.92 V 169.0 1.0 125 120 117.5 105 105 108 8.5 8.5 8.2.5 109 87.5 85 80.5 87.5 85 80.5 85 80.5 85 80.5 85 80.5 85 80.5 85 80.5 85 85 80.5 85 85 85 85 85 85 85 85 85 85 85 85 85	Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2 2,484.000 36.73 54.0 17.27 5.92 V 169.0 1.4 129 120 120 121 125 126 127 127 128 128 128 128 128 128 128 128 128 128	2	2,463.000	87.3			5.82	ν	20.5	2.0
125 120 117.5 117.5 112.5 112.0 110.5 10.5 10.5 10.5 10.5 10.5 10.5 1	2	2,483.500	36.97	54.0	17.03	5.91	٧	359.0	2.0
117.5	2	2,484.000	36.73	54.0	17.27	5.92	٧	169.0	1.0
22.5 20 2452G 2458G 2462G 2466G 2470G 2474G 2478G 2482G 2486G 2490G 2494G	112 d 117.5 d 112.5 d 117.5 d 112.5 d 117.5 d 112.5 d		•						46 2.

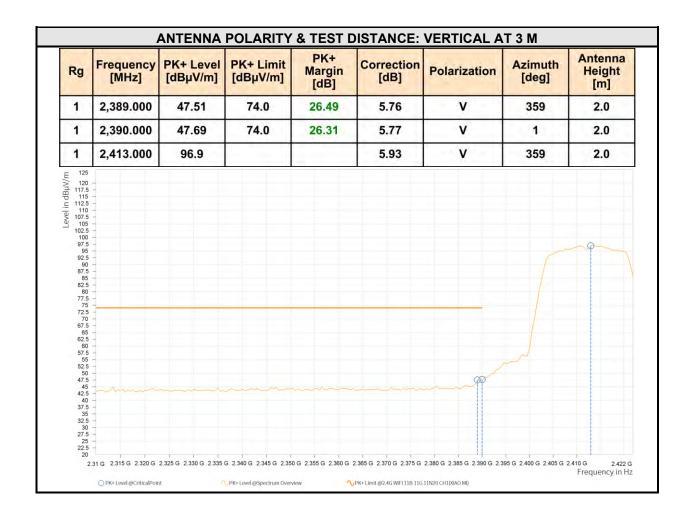
REMARKS:


- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 2462MHz: Fundamental frequency.

Tel: +86 (0557) 368 1008

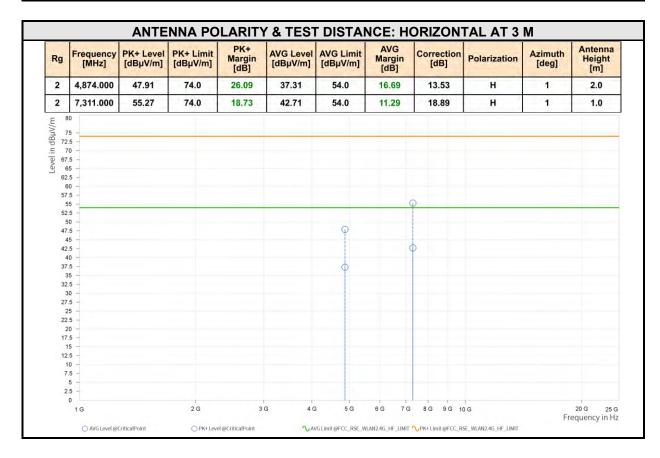


802.11n (20MHz)

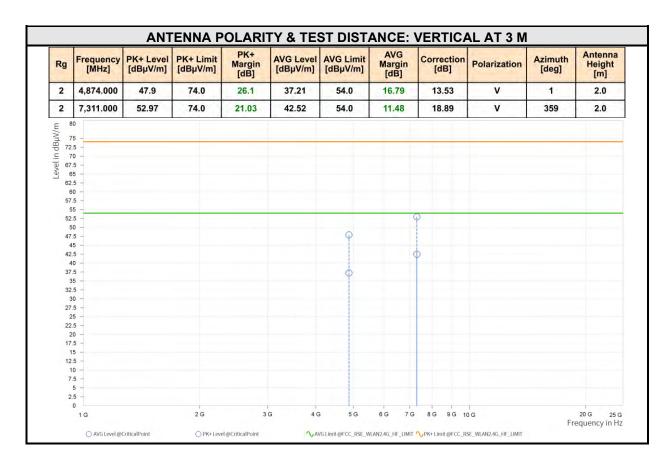

CHANNEL	TX Channel 1	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE			Average (AV)

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,389.500	32.77	54.0	21.23	5.77	٧	0.9	2.0
1	2,390.000	33.21	54.0	20.79	5.77	٧	0.9	2.0
1	2,413.500	84.96			5.93	٧	359.0	2.0
E //1/48 pt //1/20 20 20 20 20 20 20 20 20 20 20 20 20 2					2.365 G 2.370 G 2.375 G			Φ

REMARKS:


- 1 Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2 2412MHz: Fundamental frequency.

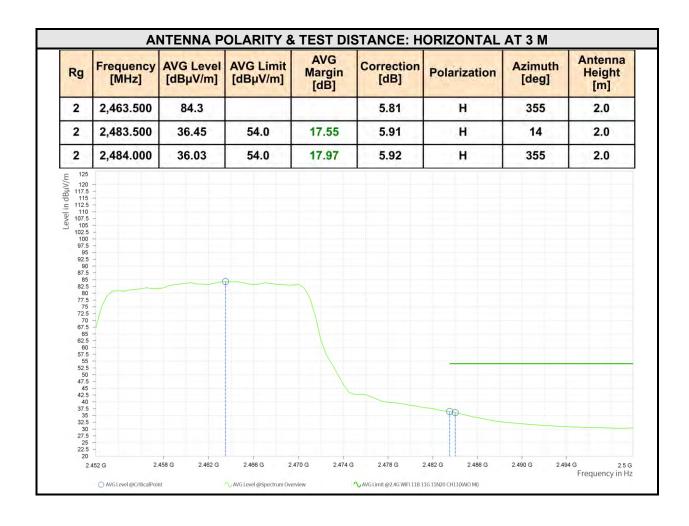
Page 55 of 211


Tel: +86 (0557) 368 1008

CHANNEL	TX Channel 6	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE			Average (AV)

REMARKS:

- 1 Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2 2437MHz: Fundamental frequency.



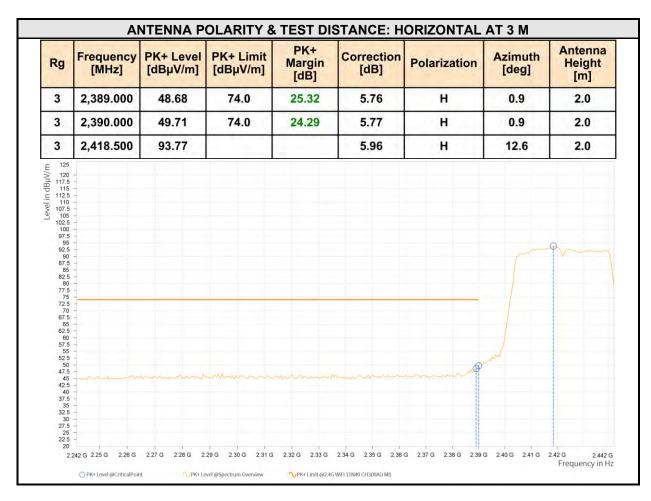
CHANNEL	TX Channel 11	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	DETECTOR FUNCTION	Average (AV)

Page 58 of 211

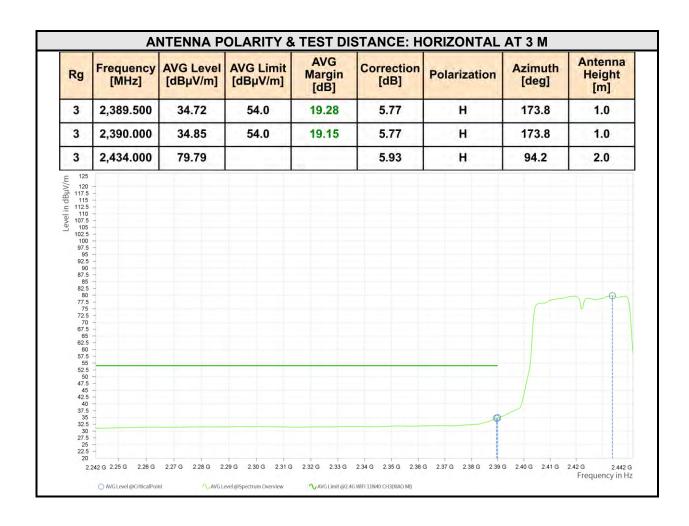
VERITAS Test Report No.: PSU-NQN2406210109RF08

Rg Fre	quency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2 2,4	160.500	99.41			5.83	ν	14.1	2.0
2 2,4	183.500	51.59	74.0	22.41	5.91	٧	1.0	2.0
2 2,4	184.500	51.26	74.0	22.74	5.92	٧	1.0	2.0
E 125	2.	458 G 2.462 G	2.466 G 2	470 G 2.474 C	S 2.478 G	₽ ⊕ 2.486 G	2490 G 249	46 2.9 Frequency in

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,463.500	84.35			5.81	V	355	2.0
2	2,483.500	36.41	54.0	17.59	5.91	٧	355	2.0
2	2,484.000	36.01	54.0	17.99	5.92	٧	355	2.0
E 1/2/14 17.15 17.								
2.	452 G 2.	458 G 2.462 G	2.466 G 2.	470 G 2.474 G	3 2.478 G	2.482 G 2.486 G	2.490 G 2.49	4 G 2.5 Frequency in


REMARKS:

- 1 Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2 2462MHz: Fundamental frequency.

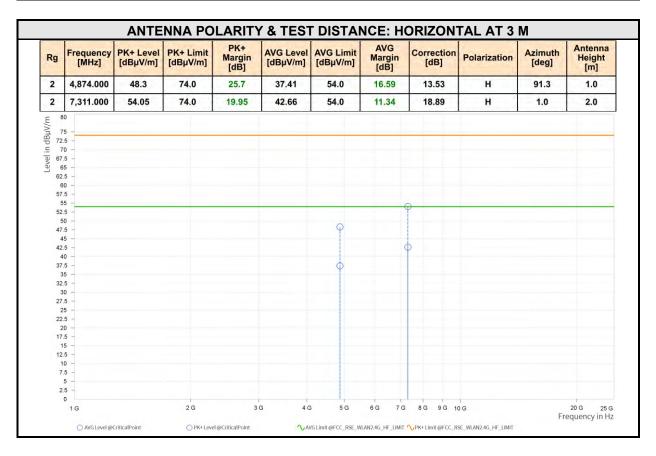


802.11n (40MHz)

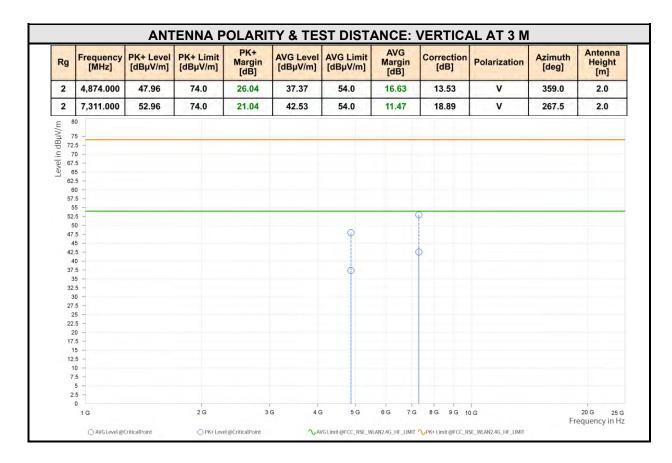
CHANNEL	TX Channel 3	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE			Average (AV)

VERITAS Test Report No.: PSU-NQN2406210109RF08

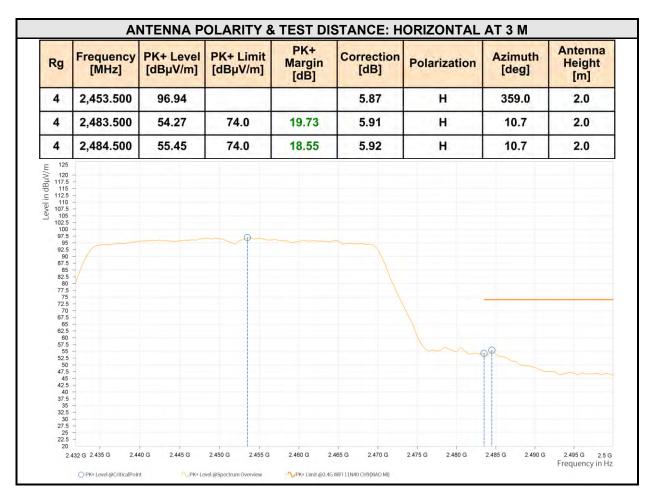
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	2,389.000	49.02	74.0	24.98	5.76	٧	0.9	2.0
3	2,390.000	50.14	74.0	23.86	5.77	٧	359.0	2.0
3	2,418.500	93.57			5.96	٧	359.0	2.0
E / 1/14 17.5								Φ /


Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	2,389.500	34.38	54.0	19.62	5.77	V	120.1	1.0
3	2,390.000	34.82	54.0	19.18	5.77	٧	120.1	1.0
3	2,420.000	80.66			5.95	٧	273.5	2.0
E/\(\)120 120 125 126								P

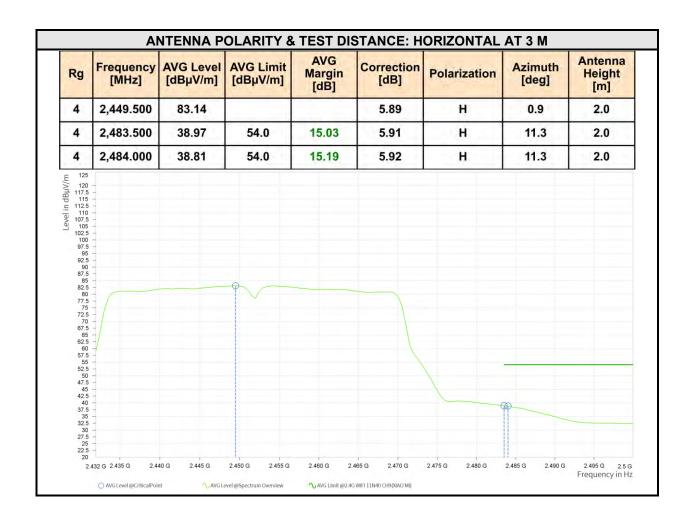
REMARKS:


- 1 Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2 2412MHz: Fundamental frequency.

CHANNEL	TX Channel 6	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE			Average (AV)



REMARKS:


- 1 Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2 2437MHz: Fundamental frequency.

CHANNEL	TX Channel 9	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE			Average (AV)

Page 69 of 211

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
4	2,449.000	83.14			5.9	V	359.0	2.0
4	2,483.500	38.59	54.0	15.41	5.91	٧	11.3	2.0
4	2,484.500	38.04	54.0	15.96	5.92	٧	11.3	2.0
E 1/20 1/20 1/20 1/20 1/20 1/20 1/20 1/20							PP	

REMARKS:

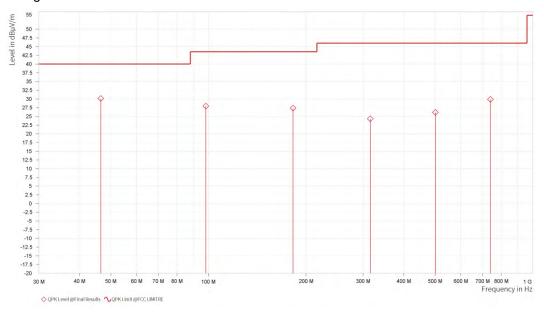
- 1 Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2 2452MHz: Fundamental frequency.

Tel: +86 (0557) 368 1008

BELOW 1GHz WORST-CASE DATA:

30 MHz - 1GHz data:

BT-LE _S2

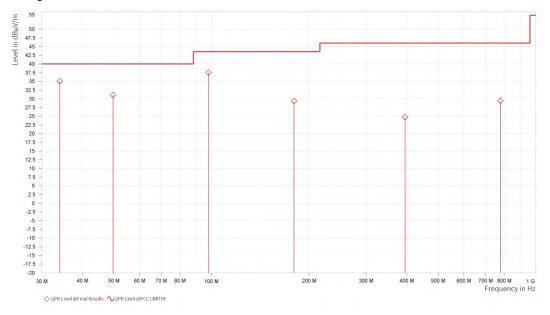

CHANNEL	TX Channel 19	0DETECTOR	Ouesi Beek (OD)
FREQUENCY RANGE	30MHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

Rg	Frequency [MHz]	QPK Level [dBµV/m]	QPK Limit [dBµV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]
1	46.539	30.1	40.0	9.9	-3.64	н	314.8	1.0	120.0
1	98.24	27.94	43.5	15.56	-6.25	H	355.7	2.0	120.0
1	182.387	27.33	43.5	16.17	-7.37	н	4.8	1.0	120.0
1	315.617	24.28	46.0	21.72	-1.37	н	4.8	1.0	120.0
1.	500.741	26.13	46.0	19.87	2.32	н	355.7	2.0	120.0
1	740.137	29.85	46.0	16.15	4.64	н	154.6	1.0	120.0

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

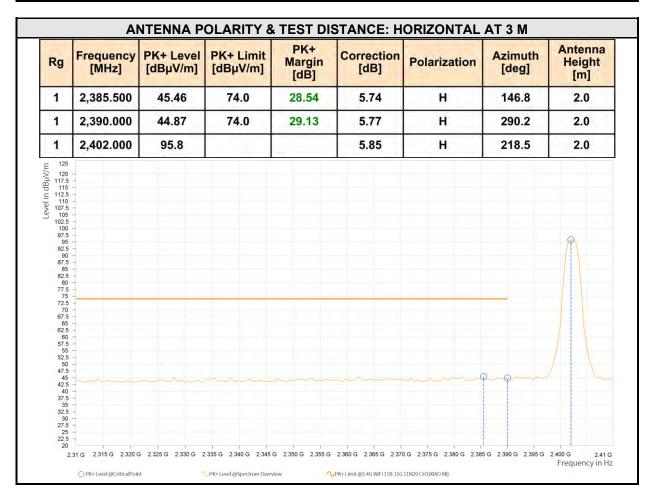

CHANNEL	TX Channel 19	DETECTOR	Ouggi Pagk (OD)
FREQUENCY RANGE	30MHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

Rg	Frequency [MHz]	QPK Level [dBµV/m]	QPK Limit [dBµV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]
1	34.074	35.01	40.0	4.99	-8.39	V	1.0	1.0	120.0
1	49.691	31.04	40.0	8.96	-4.53	٧	4.9	1.0	120.0
1	97.852	37.53	43.5	5.97	-6.46	٧	316.0	1.0	120.0
1	179.72	29.35	43.5	14.15	-7.21	٧	1.0	1.0	120.0
1	395.351	24.71	46.0	21.29	2.24	V	316.0	1.0	120.0
1	778.404	29.4	46.0	16.6	4.92	٧	154.6	1.0	120.0

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value


ABOVE 1GHz TEST DATA

Note: 1. For radiated emissions testing , the full testing range of different modes have been scanned , only the worst case harmonic data is reported in the sheet.

2. All other emissions were greater than 20dB below the limit was not recorded

BT-LE _1M

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

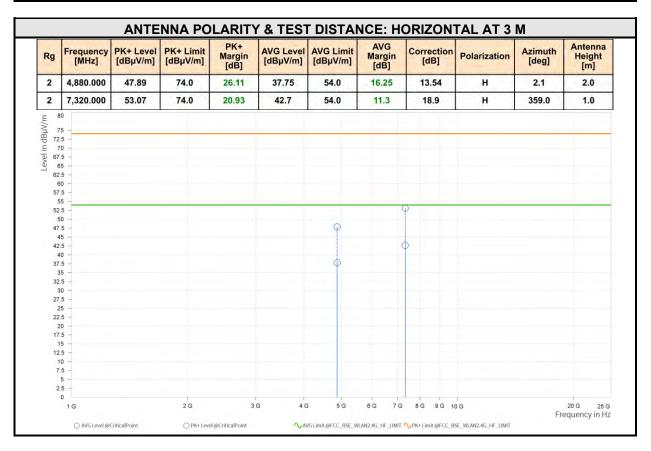
VERITAS Test Report No.: PSU-NQN2406210109RF08

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,383.500	30.65	54.0	23.35	5.73	н	359.0	1.0
1	2,390.000	30.61	54.0	23.39	5.77	H	355.7	1.0
1	2,402.000	74.38			5.85	H	355.7	1.0
E 1/25 17.5. 12.5.						DG 2375G 2380G 238		

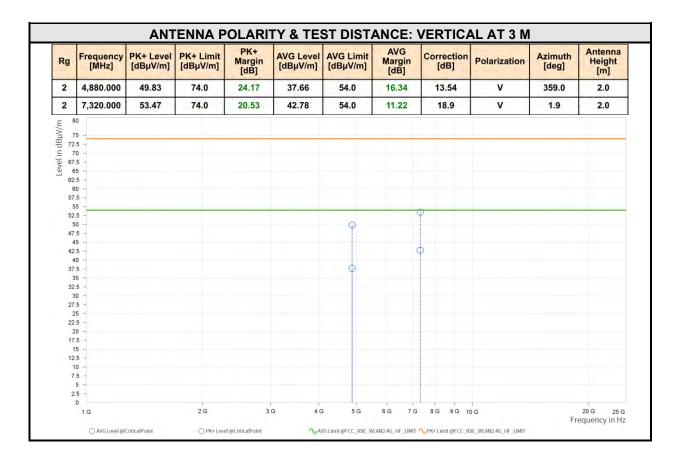
VERITAS Test Report No.: PSU-NQN2406210109RF08

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,388.000	46.39	74.0	27.61	5.76	٧	359	2.0
1	2,390.000	47.03	74.0	26.97	5.77	٧	289	2.0
1	2,402.500	96.57			5.86	٧	289	2.0
E / 125 / 12							- R.A.	

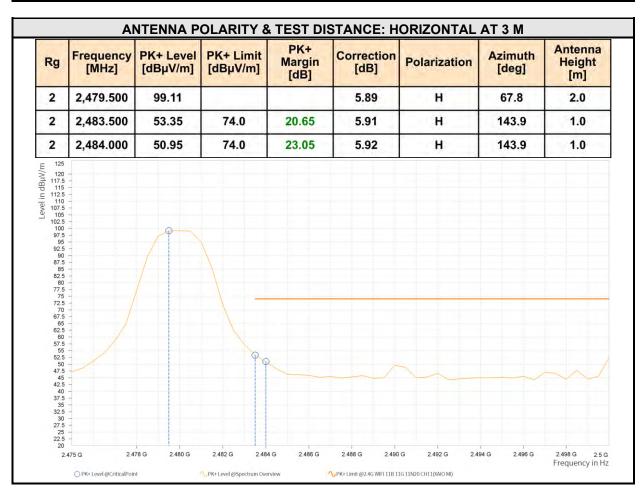
Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,383.500	30.69	54.0	23.31	5.73	V	73.4	1.0
1	2,390.000	30.69	54.0	23.31	5.77	٧	73.4	1.0
1	2,402.000	74.84			5.85	٧	359.0	2.0
E 12b 12b 17b 17b 17b 17b 17b 17b 17b 17b 17b 17						Φ		9


REMARKS:

- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value-Emission level.
- 2. 2402MHz: Fundamental frequency.

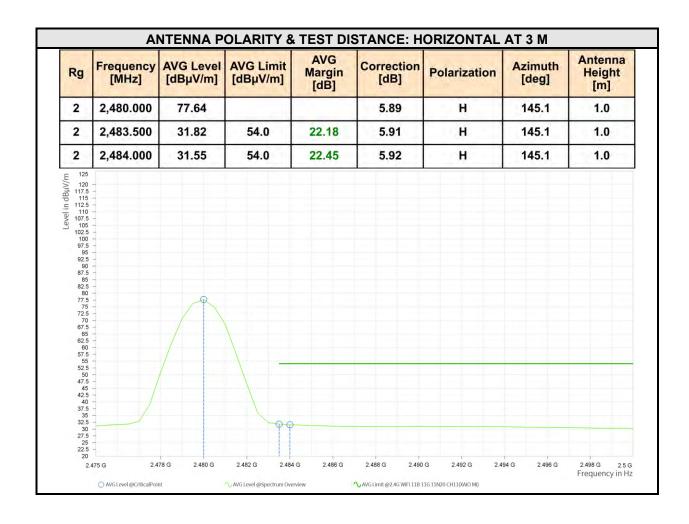

Page 77 of 211

CHANNEL	TX Channel 19	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)



REMARKS:

- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value—Emission level.
- 2. 2440MHz: Fundamental frequency.



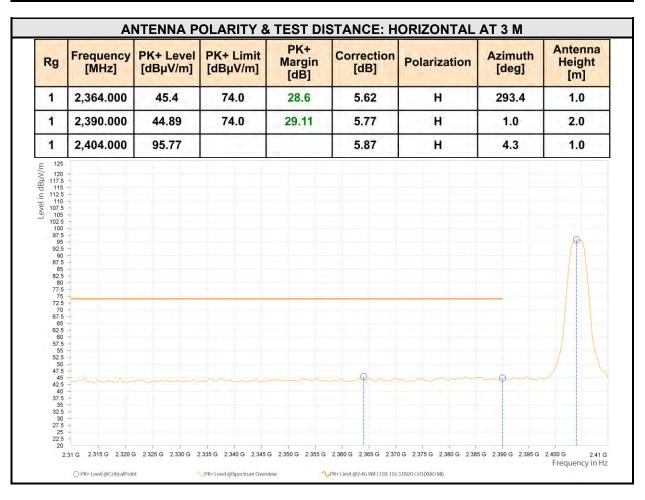
CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

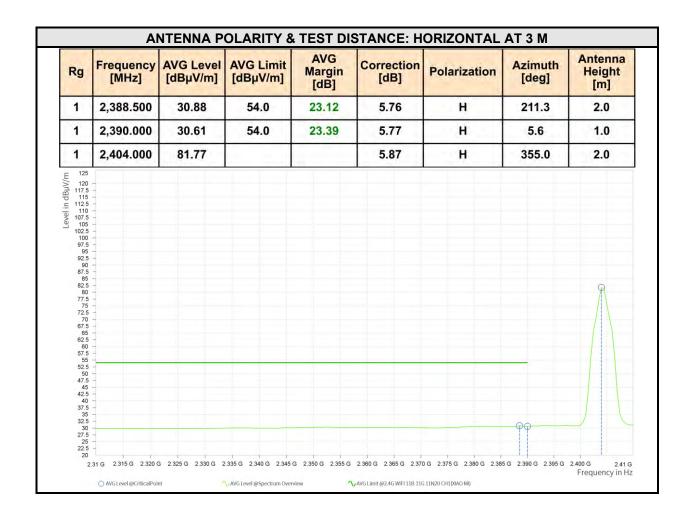
Page 80 of 211

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
2	2,480.000	74.26			5.89	٧	355.1	2.0
2	2,483.500	31.12	54.0	22.88	5.91	٧	355.1	2.0
2	2,490.000	30.84	54.0	23.16	5.96	٧	216.2	2.0
E / 1/14 pt / 1/20 pt / 1/			2.482.6 2.484	IG 2486 G	2.488 G 2.490	G 2492G 24	94 G 2496 G	

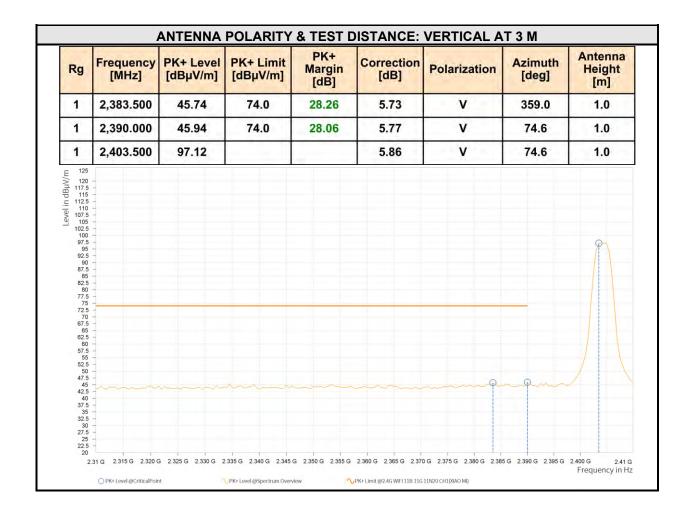
REMARKS:

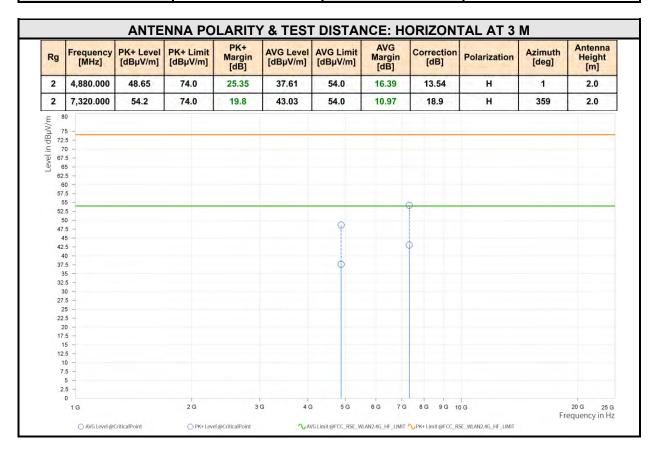
- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value-Emission level.
- 2. 2480MHz: Fundamental frequency.


Page 83 of 211

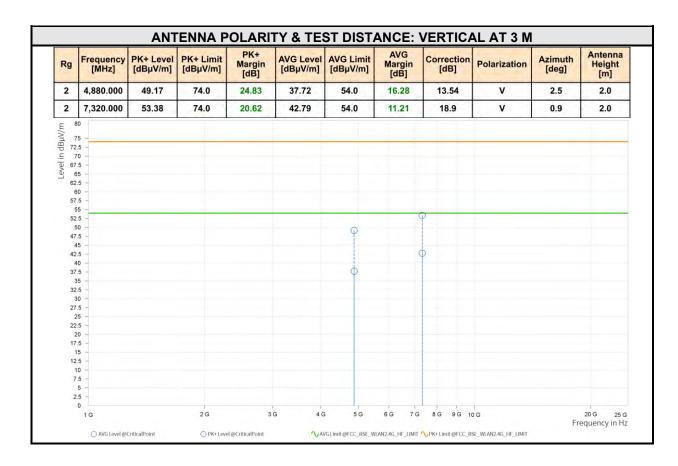

VERITAS Test Report No.: PSU-NQN2406210109RF08

BT-LE _2M

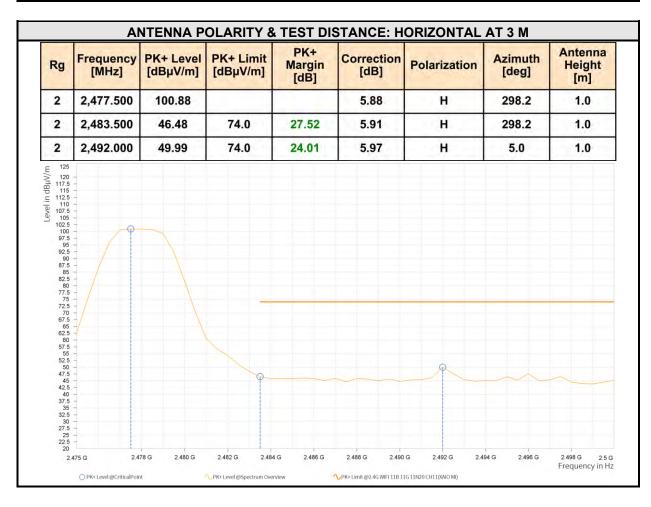

CHANNEL	TX Channel 1	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)


Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	2,381.000	30.69	54.0	23.31	5.71	ν	72.2	1.0
1	2,390.000	30.65	54.0	23.35	5.77	٧	72.2	1.0
1	2,404.000	80.87			5.87	٧	359.0	2.0
E /12/2 / 12/2 /						OG 2375 G 2380 G 238		2400 G 24

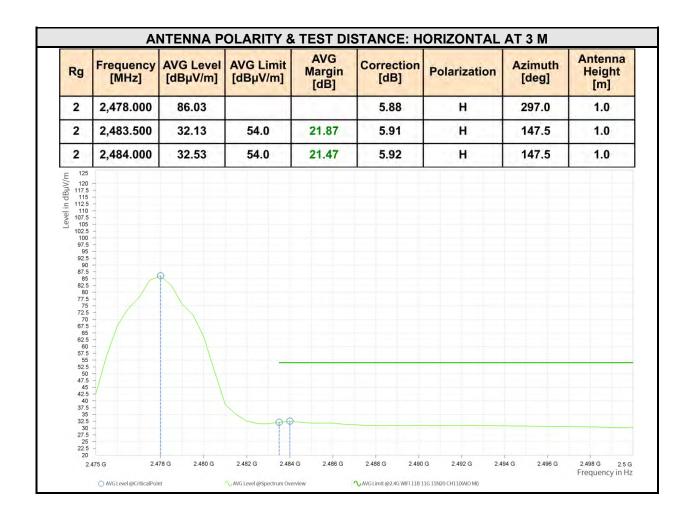
REMARKS:


- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value—Emission level.
- 2. 2404MHz: Fundamental frequency.

CHANNEL	TX Channel 19	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)


REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value—Emission level.
- 2. 2440MHz: Fundamental frequency.


Page 89 of 211

CHANNEL	TX Channel 38	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

