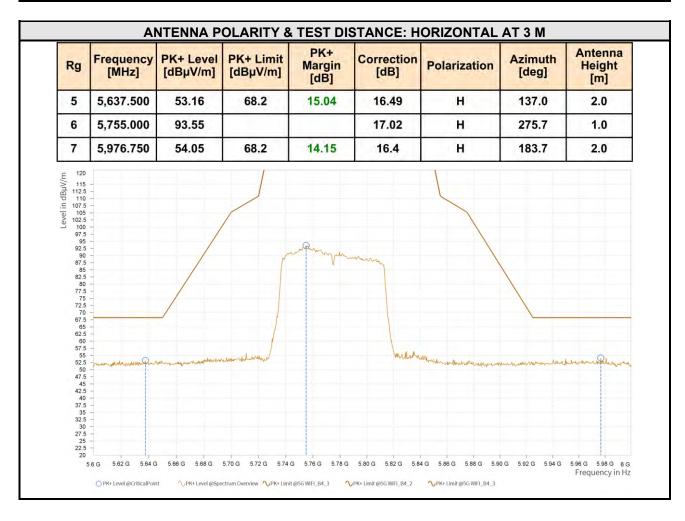


Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
10	5,604.063	53.55	68.2	14.65	16.25	٧	154.3	2.0
11	5,757.810	101.14			16.98	٧	50.5	1.0
12	5,955.375	53.62	68.2	14.58	16.41	٧	261.1	2.0
120 112.5 110.5 110.5 100.5 100.5 100.5 97.5 90.8 87.5 82.5 82.5 82.5 72.5 72.5 72.5 66.6 60.5 75.5 65.5 65.5 65.5 65.5		mareneueneur	Jan Administry W	way by	May	and who have have a some of the sound of the		
52.5 50 47.5 45 42.5 40 37.5 35 32.5 30 27.5 25 22.5								

- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 5755MHz: Fundamental frequency.

CHANNEL	TX Channel 159	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE		DETECTOR FUNCTION	Average (AV)


Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
10	5,642.813	54.17	68.2	14.03	16.54	٧	323.4	1.0
11	5,777.813	98.94			16.69	٧	267.2	1.0
12	5,961.000	53.97	68.2	14.23	16.45	٧	359.1	1.0
120 111.5 111.5 110.5 110.5 100.5 100.5 100.5 97.5 92.5 92.5 92.5 85.8 82.5 85.7 77.5 72.5 72.5 72.5 66.5 62.5 60.5 77.5					Lador Maria			
55 52.5 50 47.5 42.5 40 37.5 35 32.5 30 27.5 25 22.5 20	- Julyan Britan Jungstrands og W	and a second	en marie de la companya de la compa	G 576G 5.78G	5.80 G 5.82 G 5.8	4G 5.86G 5.88G 5.99	0	5,96 G 5,98 G

- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 5795MHz: Fundamental frequency.

802.11ac (80MHz)

CHANNEL	TX Channel 155	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	DETECTOR FUNCTION	Average (AV)

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	5,631.250	53.82	68.2	14.38	16.42	V	98.8	2.0
6	5,768.750	95.52			16.82	V	165.8	1.0
7	5,962.500	53.5	68.2	14.7	16.45	٧	359.1	1.0
120 115 116 112.5 110 110.5 102.5 100 97.5 92.5 92.5 92.5 82.5 82.5 82.5 82.5 80 77.5 70 67.5 65 62.5 60 57.5 55 55 55 50 47.5		Mark Mark Mark Mark	produkt		- Annother the state of the sta	hand house and work	who begand to rade ment to	of the Arrange Contract of the
45 42.5 40 37.5 35 32.5 30 27.5 25 22.5 20		5.66 G 5.88 G	5.70 G 5.72 G 5.74	G 576G 5.78G	5.80 G 5.82 G 5.8	4 5 8 6 5 8 8 6 5 9	0G 592G 594G	5.96 G 5.98 G

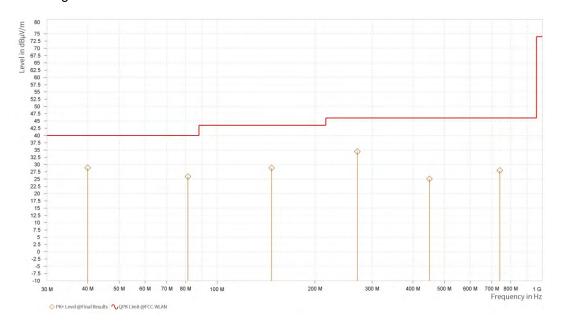
- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 5775MHz: Fundamental frequency.

RADIATED EMISSION

BELOW 1GHz WORST-CASE DATA:

30 MHz - 1GHz data:

Band 4

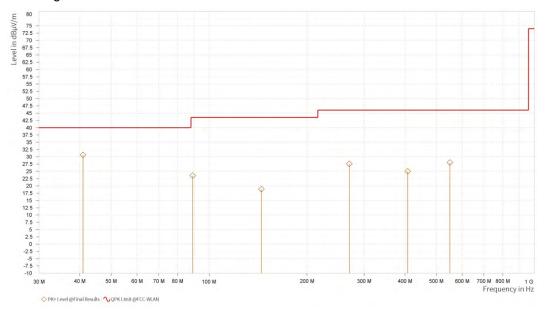

802.11n (40MHz):

CHANNEL	TX Channel 151	DETECTOR FUNCTION	Ouggi Book (OB)
FREQUENCY RANGE	30MHz ~ 1GHz	DETECTOR FUNCTION	Quasi-Feak (QF)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+: QPK Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	39.991	28.86	40.0	11.14	-12.73	н	359.1	1.0
1	81.362	25.86	40.0	14.14	-17.58	Н	88.1	2.0
1	147.079	28.81	43.5	14.69	-16.65	н	88.1	2.0
1	269.833	34.46	46.0	11.54	-11.66	Н	131.0	1.0
1	449.962	25.06	46.0	20.94	-9.45	н	354.2	2.0
1	740.234	27.96	46.0	18.04	-3.76	н	358.7	1.0

- 1. Emission level (dBuV/m) = Read level (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value- Emission level.

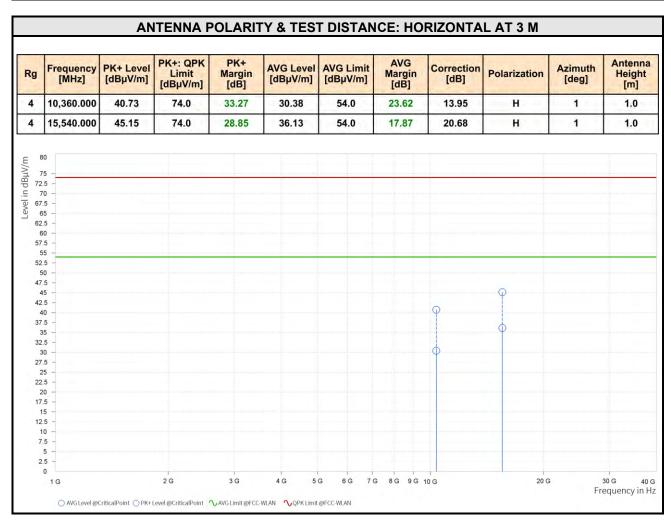


CHANNEL	Channel 151	DETECTOR FUNCTION	Oversi Darak (OD)
FREQUENCY RANGE	30MHz ~ 1GHz	DETECTOR FUNCTION	Quasi-Peak (QP)

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+: QPK Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	40.961	30.63	40.0	9.37	-12.49	٧	1.0	1.0
1	88.976	23.52	43.5	19.98	-15.81	V	279.2	1.0
1	144.897	18.85	43.5	24.65	-16.86	V	0.9	2.0
1	269.978	27.56	46.0	18.44	-11.66	V	229.0	2.0
1	407.961	25.01	46.0	20.99	-9.75	٧	229.0	2.0
1	550.017	28.0	46.0	18.0	-7.2	٧	355.5	2.0

- 1. Emission level (dBuV/m) = Read level (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value- Emission level.


ABOVE 1GHz WORST-CASE DATA:

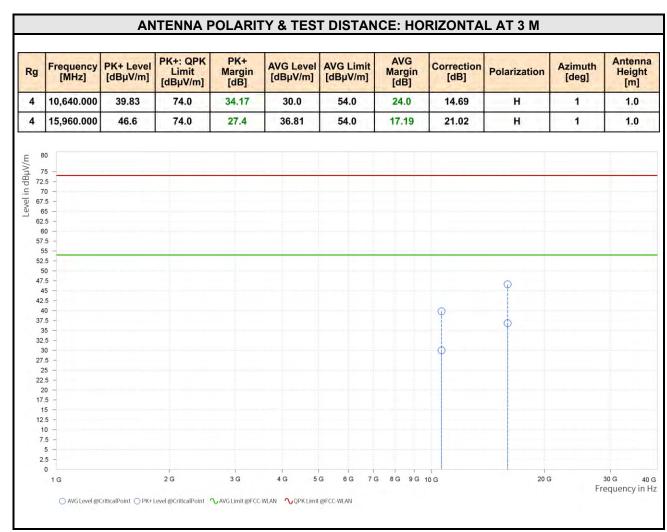
Note: For higher frequency, the emission is too low to be detected.

Band 1

802.11n (20MHz)

CHANNEL	TX Channel 36	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	DETECTOR FUNCTION	Average (AV)

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+: QPK Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
4	11,510.000	39.45	74.0	34.55	29.1	54.0	24.9	13.73	V	1	1.0
4	17,265.000	47.76	74.0	26.24	38.4	54.0	15.6	22.32	V	1	1.0
			•								
E 8											
72. 72. 67. 67.								<u> </u>			
7											
67.											
62.											
6											
57.											
5					usus hansus n						
52. 5											
47.									Q		
4											
42.											
37.								φ	Ф		
3											
32.									- 8		
27.								ф			
2											
22.	5 -								i i		
2								nijamu			
17.											
12.									1		
1	0										
7.									18		
2.	5 -										
	0										
	1 G		2 G	3 G	4 G 5	G 6G 7G	8 8 9 9 G	10 G	20 G	3	30 G 40

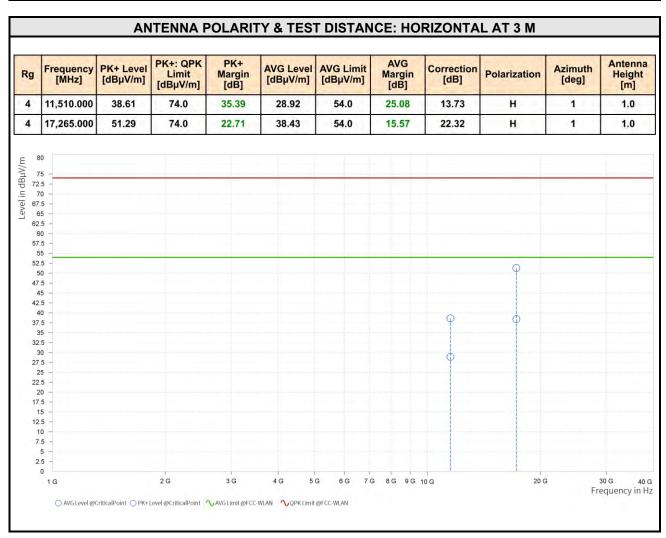

- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 5210MHz: Fundamental frequency.

Band 2:

802.11a

CHANNEL	TX Channel 64	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	DETECTOR FUNCTION	Average (AV)

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+: QPK Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
4	10,640.000	41.32	74.0	32.68	30.15	54.0	23.85	14.69	V	1	1.0
4	15,960.000	48.0	74.0	26.0	37.1	54.0	16.9	21.02	V	1	1.0
			•								
= 8)										
7: 72. 74 67. 67. 67.											<u> </u>
72.											
ラ 67.											
6											
62.	5 -										
6											
57.											
52.							1		ž		1
5											
47.	5 -								φ		
4											
42.								O			
37.								A Chia a Table a recommendation of			
37.									Ψ		
32.									8		
3) -							ф	anama kanamana ja		
27.											
2											
22.											
17.									1.		
1:	5 -							in film in a communication	monto nontranoni		
12.									1		
11											
7.									i i		
2.	5 -							1	8		
)		2 G	3 G	4 G 5	G 6G 7G	8 8 9 9 G	i	20 0		30 G 40


- Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 5290MHz: Fundamental frequency.

Band 4

802.11n (40MHz)

CHANNEL	TX Channel 151 DETECTOR FUNCTION		Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz		Average (AV)

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+: QPK Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
4	10,360.000	39.76	74.0	34.24	30.41	54.0	23.59	13.95	V	1	1.0
4	15,540.000	46.02	74.0	27.98	36.33	54.0	17.67	20.68	V	1	1.0
81 72 72 71 67 67											
71 72			i i				1 1				
= 7											
67.											
일 62.											
6											
57.											
5										ansintanonione	
52.											
47.											
4									φ		
42.	5 -										
4								φ	inarina) barrara inarina d		
37.									Ф		
32.											
3									and the commence of the		
27.	5 -										
2											
22.											
17.											
1:											
12.								1			
11											
7.											
2.											
	0		T			i	- i - i	1			1
	1 G		2 G	3 G	4 G 5	G 6G 7G	8 G 9 G	10 G	20 0		30 G 40

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor Margin value = Limit value- Emission level.
- 2. 5530MHz: Fundamental frequency.
- 3. #: Out of restricted band.

3.2 CONDUCTED EMISSION MEASUREMENT

3.2.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)			
	Quasi-peak	Average		
0.15 ~ 0.5	66 to 56	56 to 46		
0.5 ~ 5	56	46		
5 ~ 30	60	50		

NOTE: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

3.2.2 TEST INSTRUMENTS

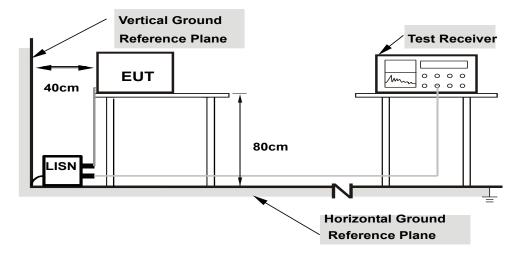
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESR3	102749	Mar.28,24	Mar.27,26
ELEKTRA test software	Rohde&Schwarz	ELEKTRA	NA	N/A	N/A
LISN network	Rohde&Schwarz	ENV216	102640	Mar.28,24	Mar.27,26
CABLE	Rohde&Schwarz	W61.01	N/A	Apr.27,24	Apr.26,25
CABLE	Rohde&Schwarz	W601	N/A	Apr.27,24	Apr.26,25

NOTE:

- 1. The test was performed in the CE shielded room.
- 2. The calibration interval of the above test instruments is 12 /24 months. And the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA, and NIM/CHINA.

3.2.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) were not recorded.


NOTE: All modes of operation were investigated, and the worst-case emissions are reported.

3.2.4 DEVIATION FROM TEST STANDARD

No deviation.

3.2.5 TEST SETUP

Note: 1.Support units were connected to second LISN.

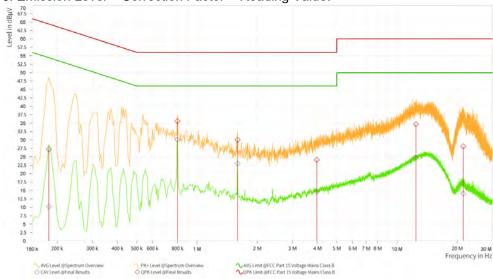
2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.2.6 EUT OPERATING CONDITIONS

Same as 3.1.7.

3.2.7 TEST RESULTS

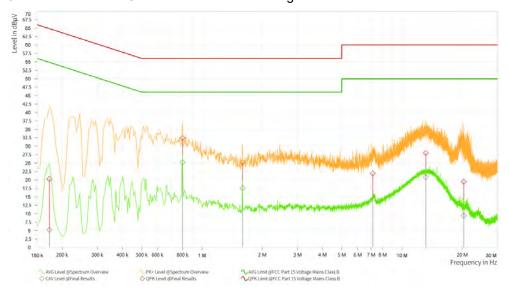

CONDUCTED WORST-CASE DATA:

Frequency Range	1150KH7~30MH7	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120Vac, 60Hz	Environmental Conditions	26deg. C, 51%RH
Tested By	Hanwen Xu		

Rg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	CAV Level [dBµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]	Correction [dB]	Line	Meas. BW [kHz]
1	0.182	27.22	64.42	37.20	10.23	54.42	44.19	12.21	L1	9.000
1	0.798	35.57	56.00	20.43	30.09	46.00	15.91	11.74	L1	9.000
1	1.595	30.04	56.00	25.96	23.00	46.00	23.00	11.75	L1	9.000
1	3.971	24.09	56.00	31.91	14.63	46.00	31.37	11.78	L1	9.000
1	12.440	34.65	60.00	25.35	24.68	50.00	25.32	11.84	L1	9.000
1	21.467	28.09	60.00	31.91	14.07	50.00	35.93	11.88	L1	9.000

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



Frequency Range	1 150K H7 ~ 30N/H7		Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120Vac, 60Hz	Environmental Conditions	26deg. C, 51%RH
Tested By	Hanwen Xu		

Rg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	CAV Level [dBµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]	Correction [dB]	Line	Meas. BW [kHz]
1	0.173	20.28	64.84	44.56	5.21	54.84	49.63	12.21	Ζ	9.000
1	0.798	32.38	56.00	23.62	25.25	46.00	20.75	12.74	Ν	9.000
1	1.595	25.24	56.00	30.76	17.55	46.00	28.45	12.74	N	9.000
1	7.143	21.88	60.00	38.12	14.30	50.00	35.70	12.78	Ν	9.000
1	13.155	27.97	60.00	32.03	20.86	50.00	29.14	12.81	Ν	9.000
1	20.369	19.47	60.00	40.53	9.44	50.00	40.56	12.85	Ν	9.000

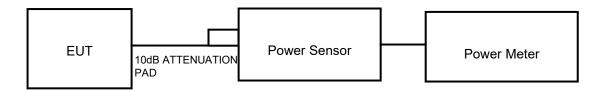
REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

3.3 MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT

3.3.1 LIMITS OF MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT

Operation Band		EUT Category	LIMIT		
			1 Watt (30 dBm) (Max. e.i.r.p ≤ 125mW(21 dBm) at any		
		Outdoor Access Point	elevation angle above 30 degrees as measured from the horizon)		
U-NII-1	Fixed point-to-point Access Point		1 Watt (30 dBm)		
		Indoor Access Point	1 Watt (30 dBm)		
	\checkmark	Client devices	250mW (24 dBm)		
U-NII-2A	· V		250mW (24 dBm) or 11 dBm+10 log B*		
U-NII-2C	$\sqrt{}$		250mW (24 dBm) or 11 dBm+10 log B*		
U-NII-3			1 Watt (30 dBm)		


NOTE: Where B is the 26dB emission bandwidth in MHz

3.3.2 TEST SETUP

FOR POWER OUTPUT MEASUREMENT

802.11a, 802.11n/ac (20MHz), 802.11 n/ac (40MHz), 802.11ac (80MHz) TEST CONFIGURATION

FOR 26dB BANDWIDTH

3.3.3 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	R&S	ESW 44	101973	Mar.28,24	Mar.27,26
Open Switch and Control Unit	R&S	OSP-B157W8	100836	N/A	N/A
Vector Signal Generator	R&S	SMBV100B	102176	Mar.29,24	Mar.28,26
Signal Generator	R&S	SMB100A03	182185	Mar.29,24	Mar.28,26
WIDEBANDRADIO COMMUNICATION TESTER	R&S	CMW500	169399	Jun.19,24	Jun.18,26
Hygrothermograph	DELI	20210528	SZ015	Sep.06,22	Sep.05,24
Hygrothermograph	DELI	20210528	SZ015	Sep.05,24	Sep.04,26
PC	LENOVO	E14	HRSW0024	N/A	N/A
CABLE	R&S	J12J103539-00 -1	SEP-03-20-0 69	Apr.27,24	Apr.26,25
CABLE	R&S	J12J103539-00 -1	SEP-03-20-0 70	Apr.27,24	Apr.26,25
Test Software	EMC32	EMC32	N/A	N/A	N/A
Temperature Chamber	votsch	VT4002	5856607810 0050	May.30,24	May.29,26
Power Meter	R&S	NRX	102380	Mar.28,24	Mar.27,26
Power Meter probe	R&S	NRP6A	102942	Mar.28,24	Mar.27,26

NOTE:

^{1.} The calibration interval of the above test instruments is 12 /24 months, and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

^{2.} The test was performed in the RF Oven room.

3.3.4 TEST PROCEDURE

FOR POWER MEASUREMENT

For 802.11a, 802.11 n/ac (20MHz), 802.11 n/ac (40MHz), 802.11ac (80MHz)

Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

FOR 99 PERCENT OCCUPIED BANDWIDTH

The following procedure shall be used for measuring (99 %) power bandwidth:

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1% to 5% of the OBW
- 4. Set VBW ≥ 3 · RBW
- 5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
 - 6. Use the 99 % power bandwidth function of the instrument (if available).
- 7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

FOR 26dB BANDWIDTH

- 1) Set RBW = approximately 1% of the emission bandwidth.
- 2) Set the VBW > RBW.
- 3) Detector = Peak.
- 4) Trace mode = max hold.
- 5) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

FOR 6dB BANDWIDTH

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) ≥ 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.3.5 DEVIATION FROM TEST STANDARD

No deviation.

3.3.6 EUT OPERATING CONDITIONS

The software provided by the client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

3.3.7 TEST RESULTS

Please Refer to Appendix Of this test report.

3.4 MAXIMUM POWER SPECTRAL DENSITY MEASUREMENT

3.4.1 LIMITS OF MAXIMUM POWER SPECTRAL DENSITY MEASUREMENT

Operation Band		EUT Category	LIMIT	
		Outdoor Access Point		
U-NII-1	Fixed point-to-point Access Point		17dBm/ MHz	
U-INII- I		Indoor Access Point		
	√ Client devices		11dBm/ MHz	
U-NII-2A		$\sqrt{}$	11dBm/ MHz	
U-NII-2C		$\sqrt{}$	11dBm/ MHz	
U-NII-3			30dBm/ 500kHz	

3.4.2 TEST SETUP

3.4.3 TEST INSTRUMENTS

Refer to section 3.3.3 to get information about the above instrument.

3.4.4 TEST PROCEDURES

Using method SA-2(Band1/2/3)

- 1) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- 2) Set RBW = 1 MHz, Set VBW ≥ 3 MHz, Detector = RMS
- 3) Set Channel power measure = 1MHz
- 4) Sweep time = auto, trigger set to "free run".
- 5) Trace average at least 100 traces in power averaging mode.
- 6) Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on and off times of the transmission).
- 7) Record the max value Using method SA-2 (Band4)
- 1) Set span to encompass the entire emission bandwidth (EBW) of the signal.
- 2) Set RBW = 300 KHz, Set VBW ≥ 1 MHz, Detector = RMS
- 3) Set Channel power measure = 1MHz
- 4) Sweep time = auto, trigger set to "free run".
- 5) Trace average at least 100 traces in power averaging mode.
- 6) Add 10 log(500kHz/RBW) to the test result. 10 log(500kHz/300KHZ) = 2.22dBm
- 7) Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on and off times of the transmission).
- 8) Record the max value

3.4.5 DEVIATION FROM TEST STANDARD

No deviation.

3.4.6 EUT OPERATING CONDITIONS

Same as 3.1.7.

3.4.7 TEST RESULTS

Please Refer to Appendix Of this test report.

3.5 AUTOMATICALLY DISCONTINUE TRANSMISSION

3.5.1 LIMIT OF AUTOMATICALLY DISCONTINUE TRANSMISSION

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.

3.5.2 TEST INSTRUMENTS

Refer to section 3.3.3 to get information about the above instrument.

3.5.3 TEST RESULT

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

3.6 ANTENNA REQUIREMENTS

3.6.1 STANDARD APPLICABLE

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmits power, and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.6.2 ANTENNA CONNECTED CONSTRUCTION

An embedded-in antenna design is used.

3.6.3 ANTENNA GAIN

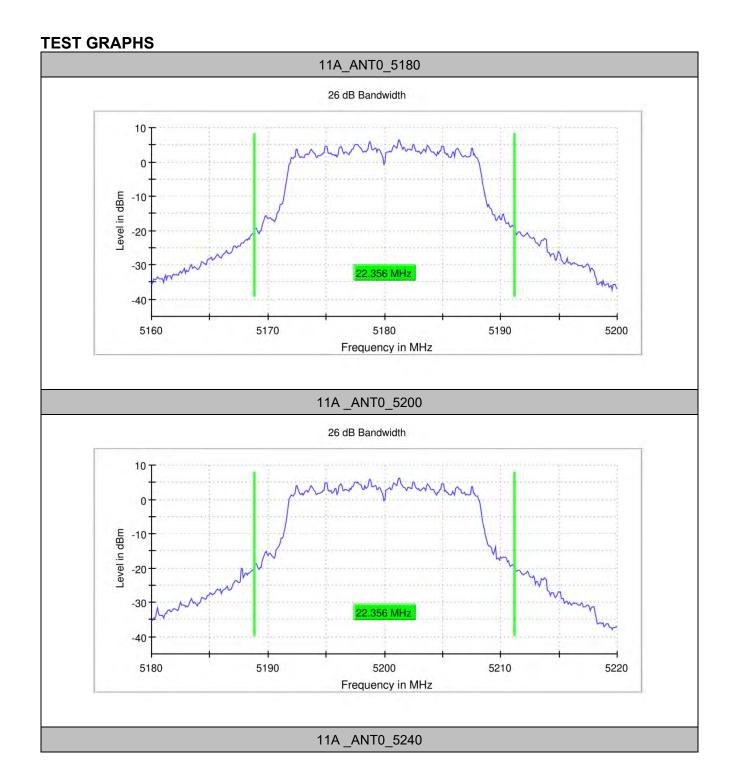
The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit and PSD limit.

4 PHOTOGRAPHS OF THE TEST CONFIGURATION

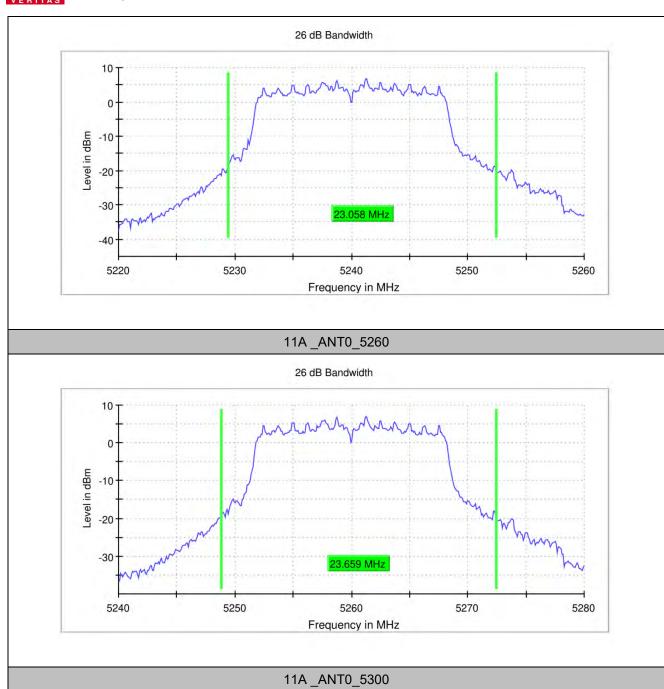
Please refer to the attached file (Test Setup Photo).

5 MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

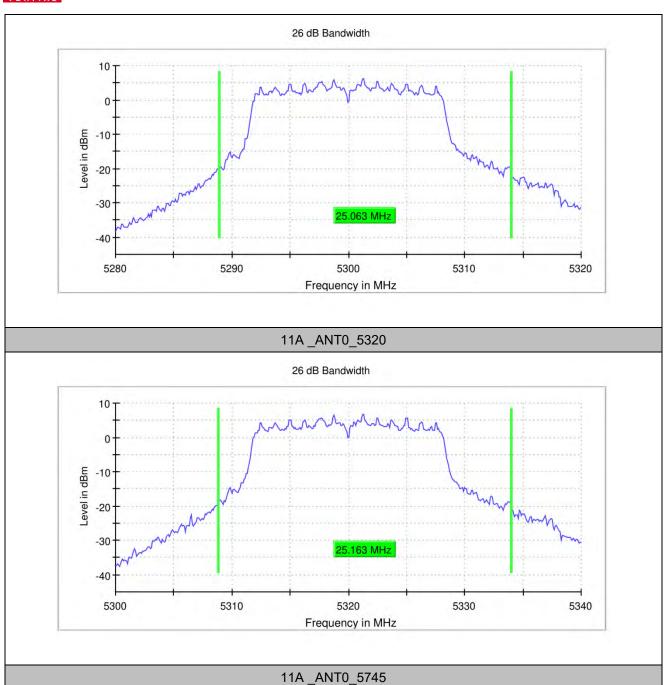
No modifications were made to the EUT by the lab during the test.

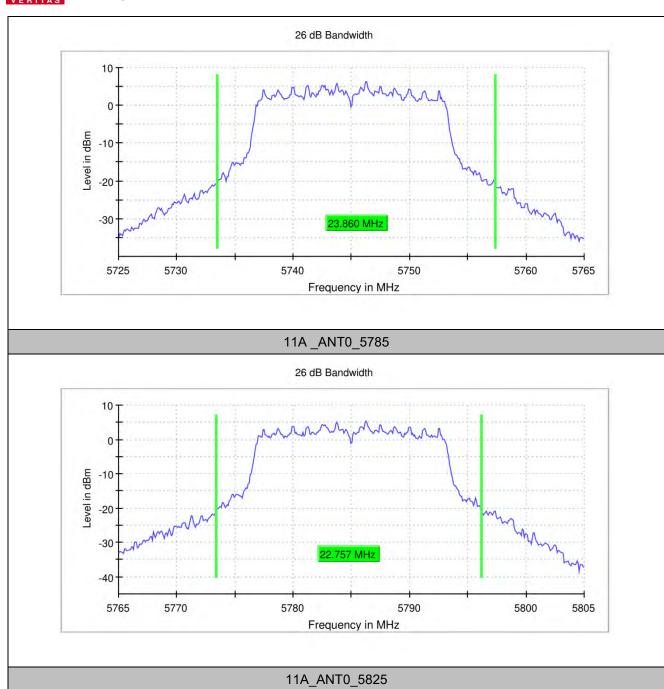

6 APPENDIX: RLAN

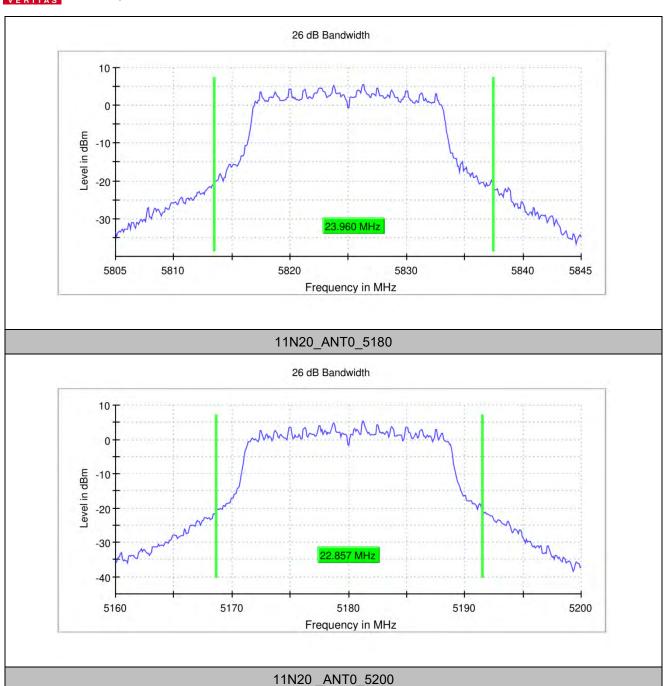
EMISSION BANDWIDTH

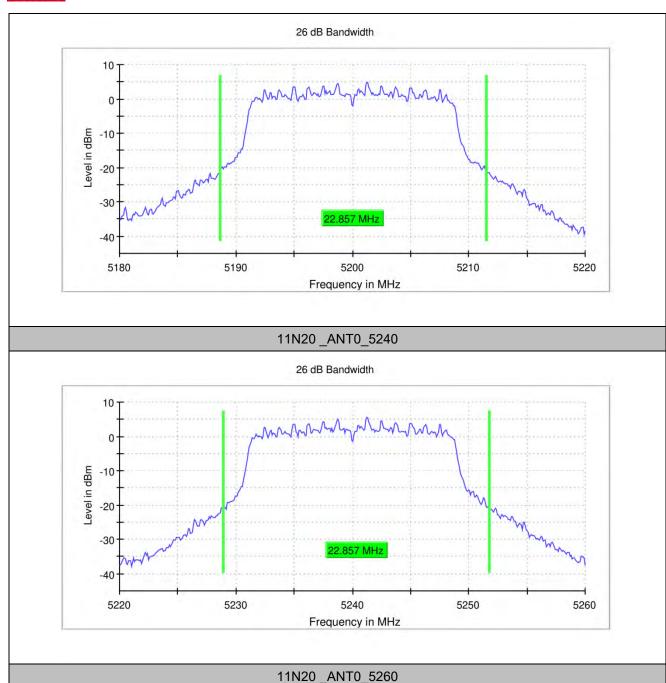

TEST RESULT

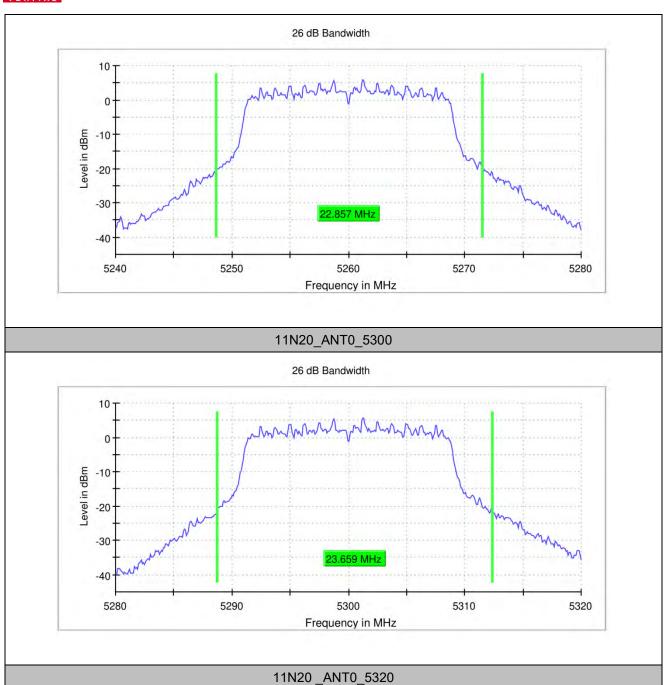
IESI KE			26db				
TestMode	Antenna	Frequency [MHz]	EBW	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
			[MHz]				
11A	ANT0	5180	22.356	5168.822	5191.178		
	ANT0	5200	22.356	5188.822	5211.178		
	ANT0	5240	23.058	5229.424	5252.482		
	ANT0	5260	23.659	5248.822	5272.481		
	ANT0	5300	25.063	5288.922	5313.985		
	ANT0	5320	25.163	5308.822	5333.985		
	ANT0	5745	23.860	5733.521	5757.381		
	ANT0	5785	22.757	5773.421	5796.178		
	ANT0	5825	23.960	5813.521	5837.481		
11N20	ANT0	5180	22.857	5168.622	5191.479		
	ANT0	5200	22.857	5188.622	5211.479		
	ANT0	5240	22.857	5228.922	5251.779		
	ANT0	5260	22.857	5248.622	5271.479		
	ANT0	5300	23.659	5288.722	5312.381		
	ANT0	5320	23.158	5308.722	5331.88		
	ANT0	5745	23.258	5733.622	5756.88		
	ANT0	5785	23.258	5773.622	5796.88		
	ANT0	5825	23.759	5813.622	5837.381		
11N40	ANT0	5190	41.053	5169.549	5210.602		
	ANT0	5230	41.053	5209.549	5250.602		
	ANT0	5270	41.053	5249.398	5290.451		
	ANT0	5310	41.053	5289.398	5330.451		
	ANT0	5755	41.053	5734.398	5775.451		
	ANT0	5795	41.504	5774.398	5815.902		
11AC80	ANT0	5210	85.266	5168.119	5253.385		
	ANT0	5290	84.765	5248.119	5332.884		
	ANT0	5775	84.765	5732.618	5817.383		

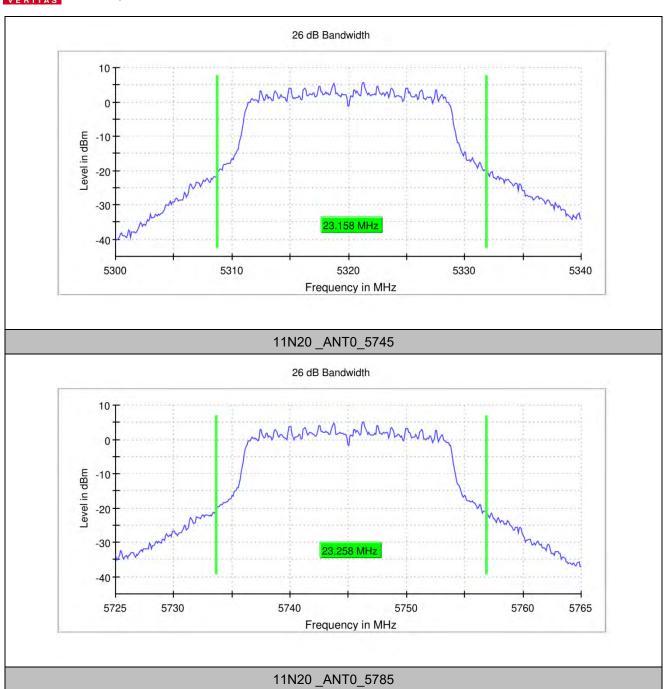


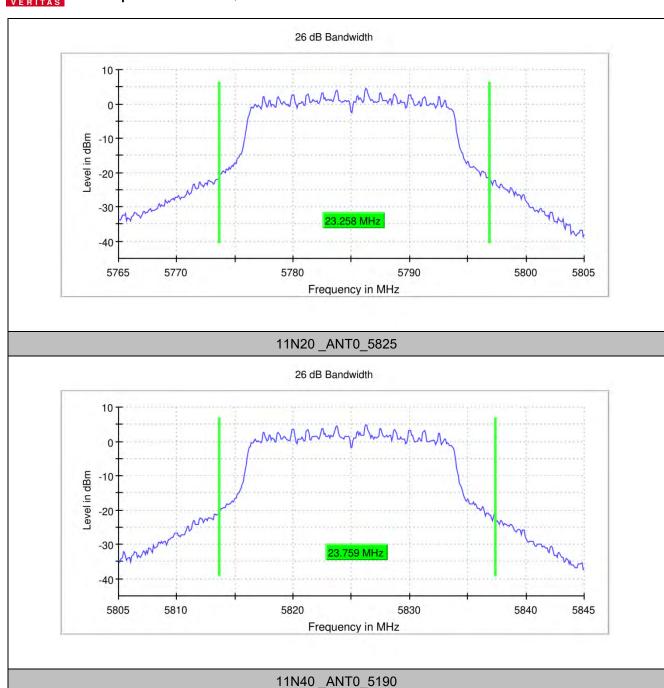


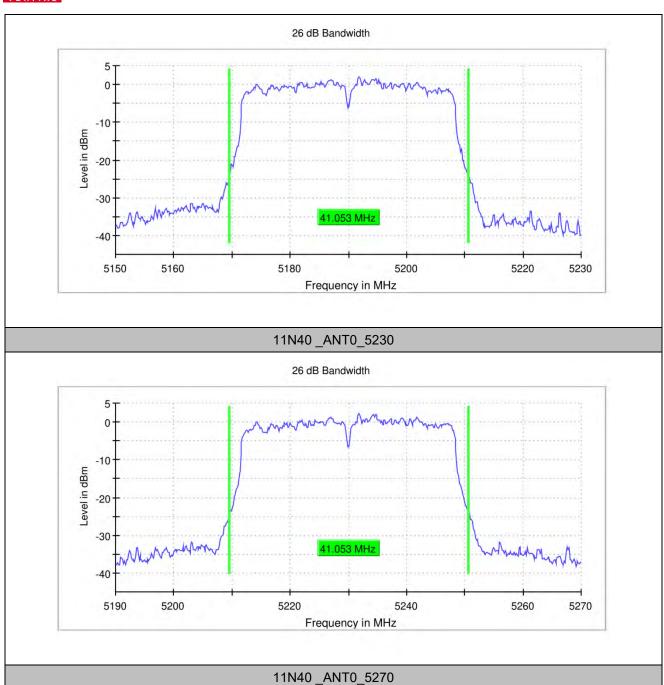


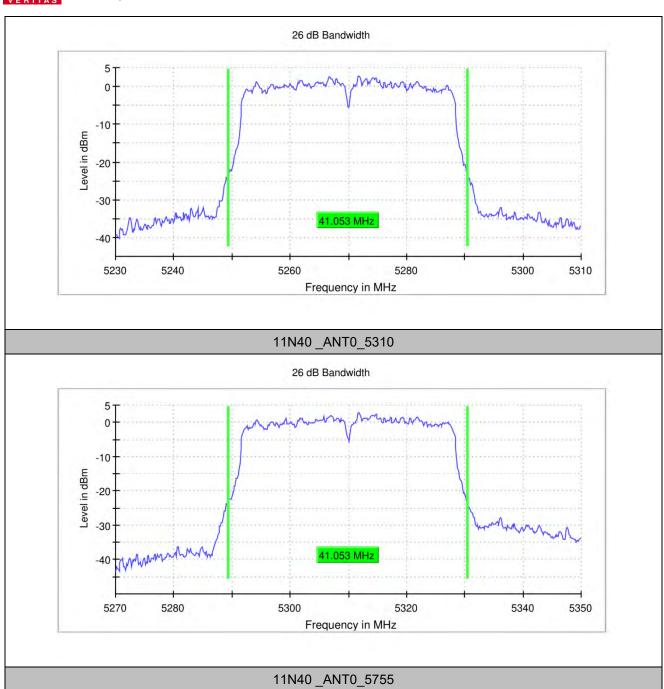


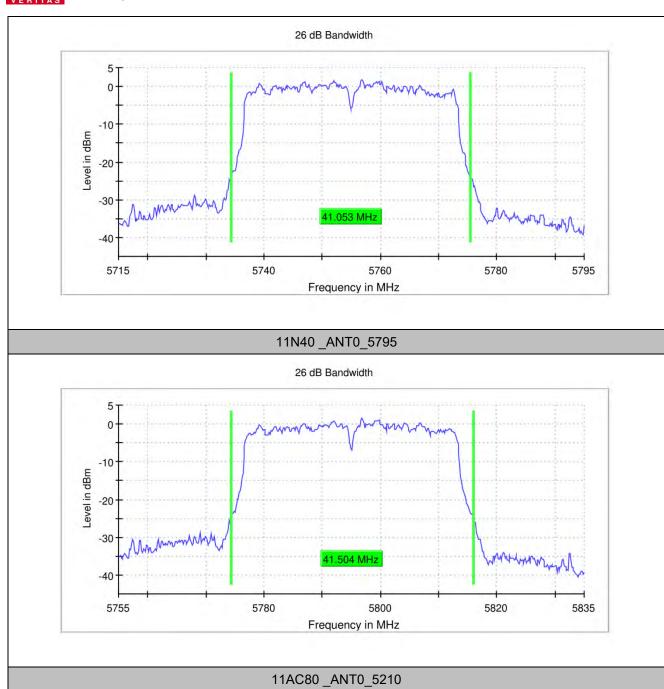


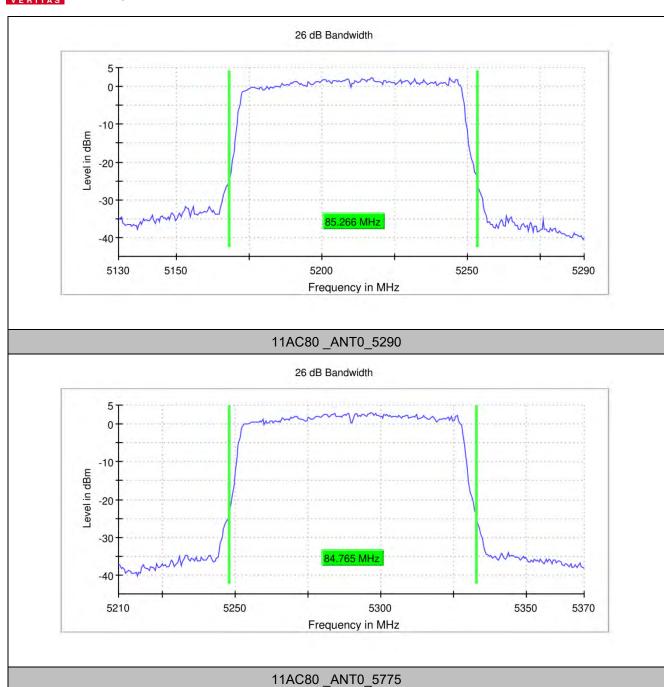


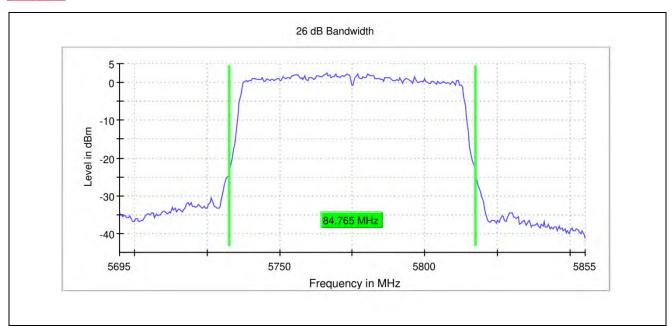












20M

RBW200 KHz

VBW 1 MHz

40M

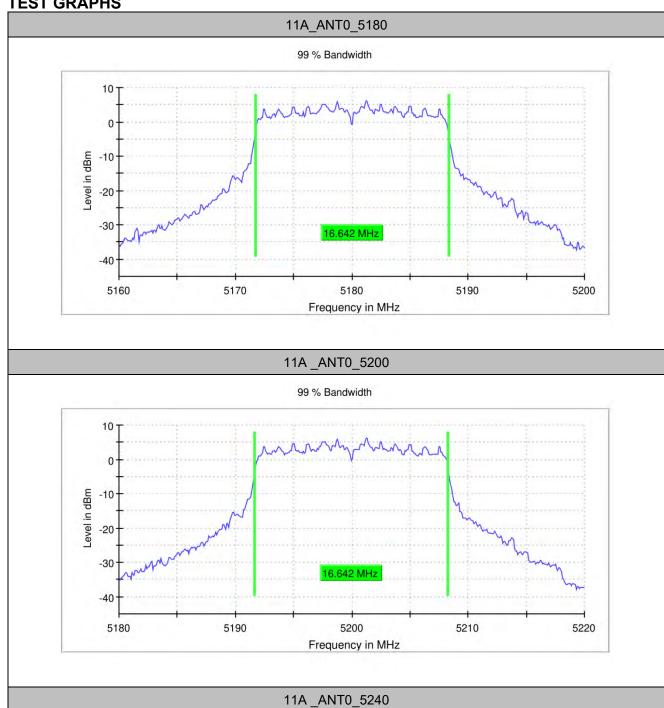
RBW500 KHz

VBW 2 MHz

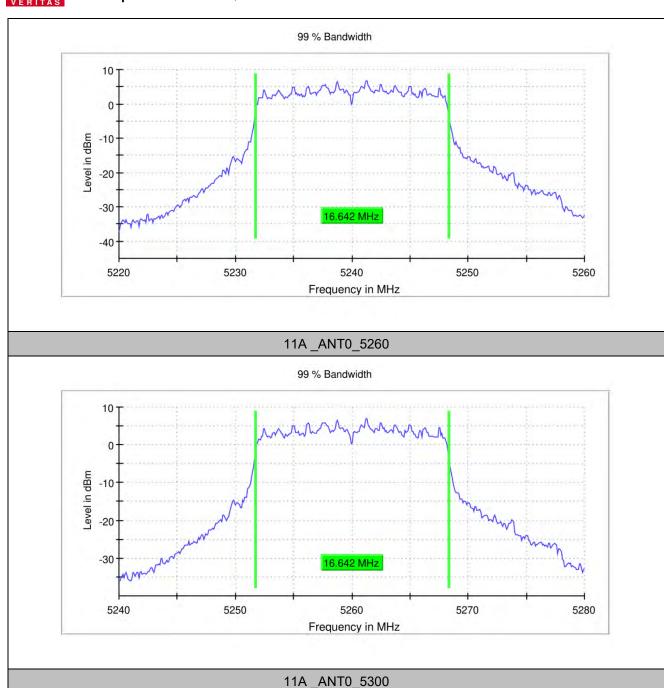
80M

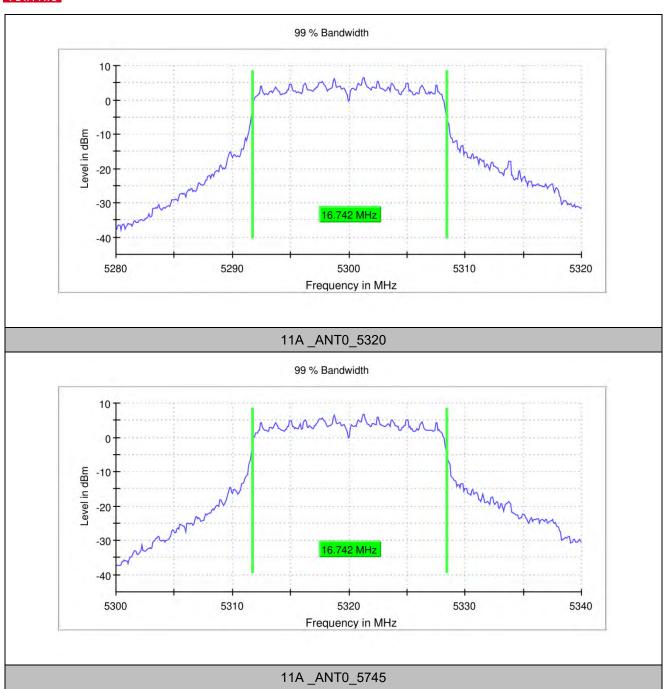
RBW 1.000 MHz

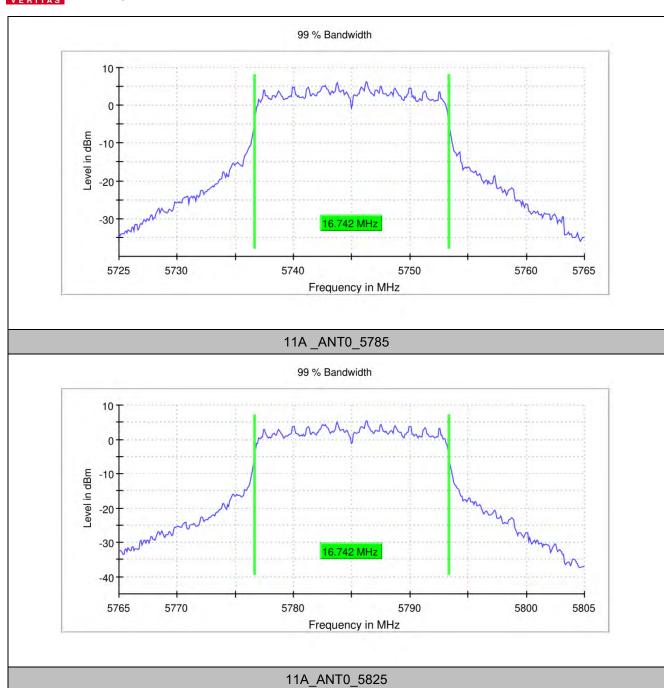
VBW 3.000 MHz

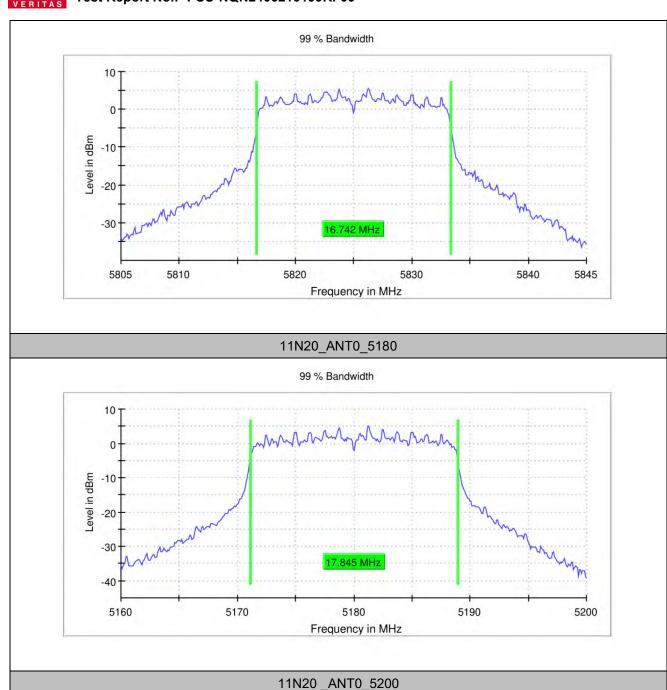

OCCUPIED CHANNEL BANDWIDTH

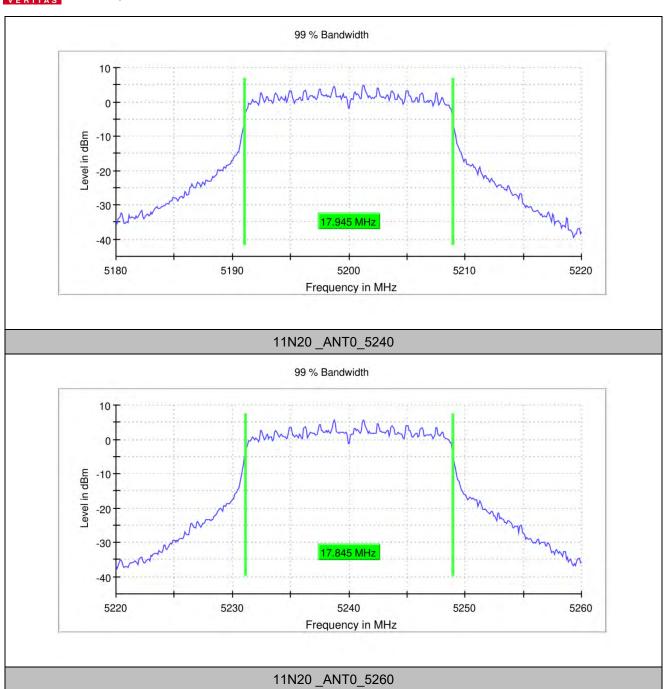
TEST RESULT

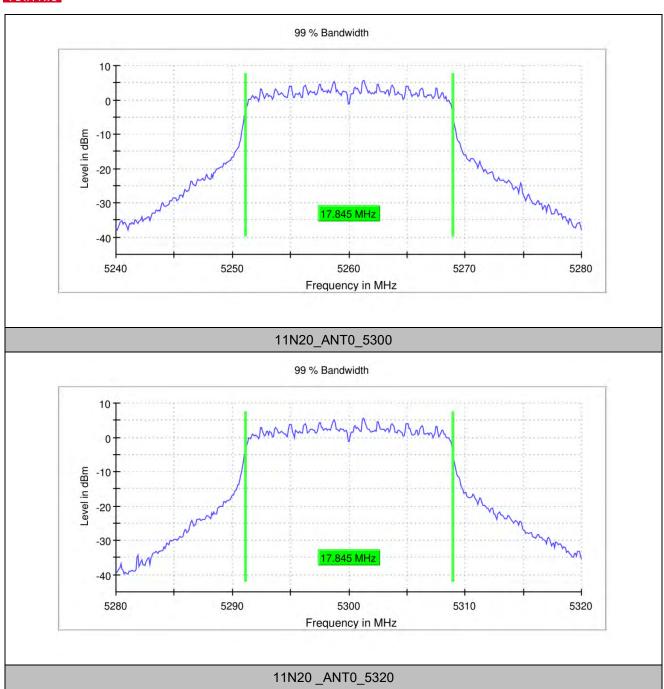

TestMode	Antenna	Frequency	ОСВ	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		[MHz]	[MHz]				
11A	ANT0	5180	16.642	5171.729	5188.371		
	ANT0	5200	16.642	5191.629	5208.271		
	ANT0	5240	16.642	5231.729	5248.371		
	ANT0	5260	16.642	5251.729	5268.371		
	ANT0	5300	16.742	5291.729	5308.471		
	ANT0	5320	16.742	5311.729	5328.471		
	ANT0	5745	16.742	5736.629	5753.371		
	ANT0	5785	16.742	5776.629	5793.371		
	ANT0	5825	16.742	5816.629	5833.371		
11N20	ANT0	5180	17.845	5171.128	5188.973		
	ANT0	5200	17.945	5191.028	5208.973		
	ANT0	5240	17.845	5231.128	5248.973		
	ANT0	5260	17.845	5251.128	5268.973		
	ANT0	5300	17.845	5291.128	5308.973		
	ANT0	5320	17.845	5311.128	5328.973		
	ANT0	5745	17.945	5736.028	5753.973		
	ANT0	5785	17.945	5776.028	5793.973		
	ANT0	5825	17.945	5816.028	5833.973		
11N40	ANT0	5190	36.364	5171.818	5208.182		
	ANT0	5230	36.614	5211.818	5248.432		
	ANT0	5270	36.364	5251.818	5288.182		
	ANT0	5310	36.364	5291.818	5328.182		
	ANT0	5755	36.614	5736.567	5773.181		
	ANT0	5795	36.364	5776.818	5813.182		
11AC80	ANT0	5210	76.238	5172.132	5248.370		
	ANT0	5290	76.238	5252.132	5328.370		
	ANT0	5775	76.238	5736.630	5812.868		

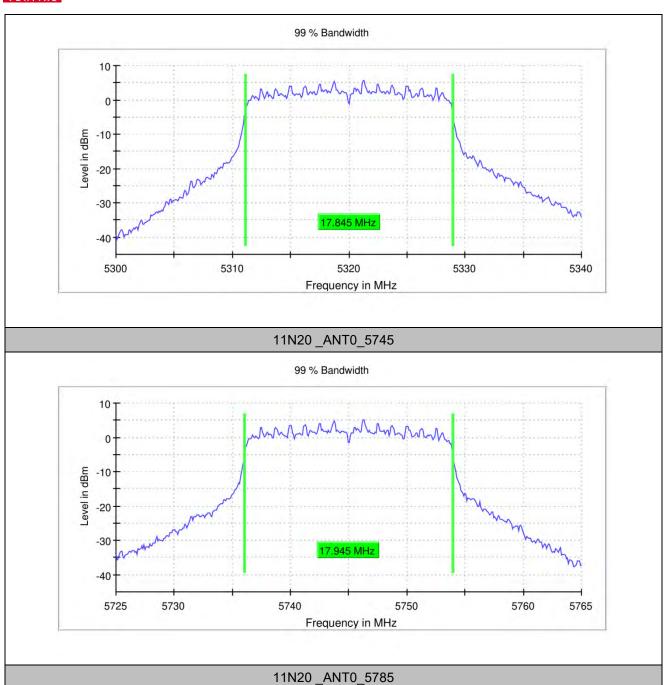

TEST GRAPHS

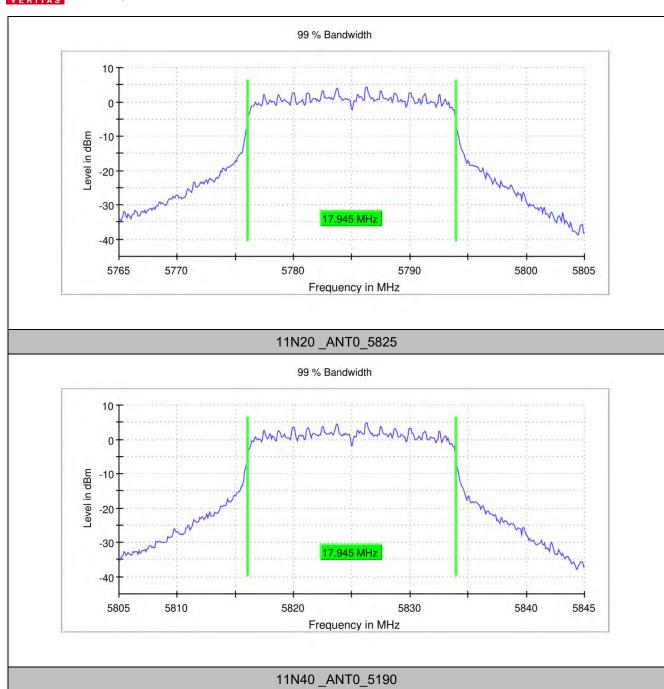


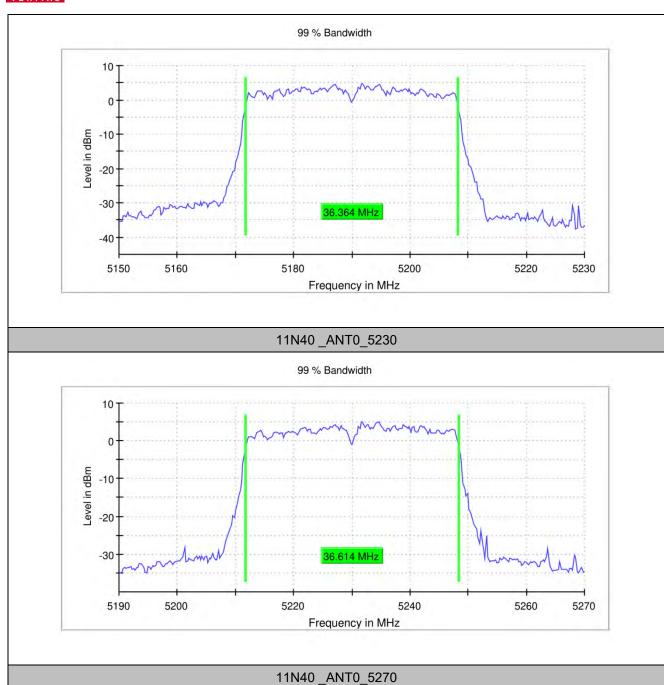


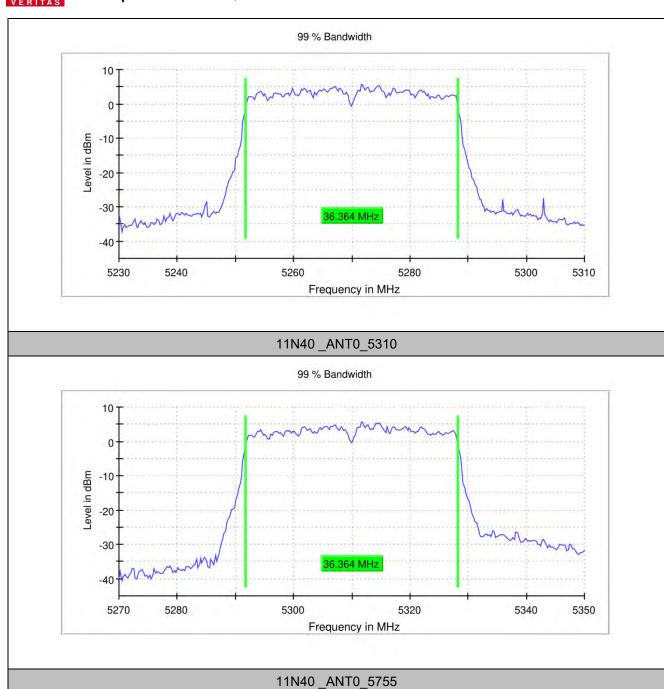


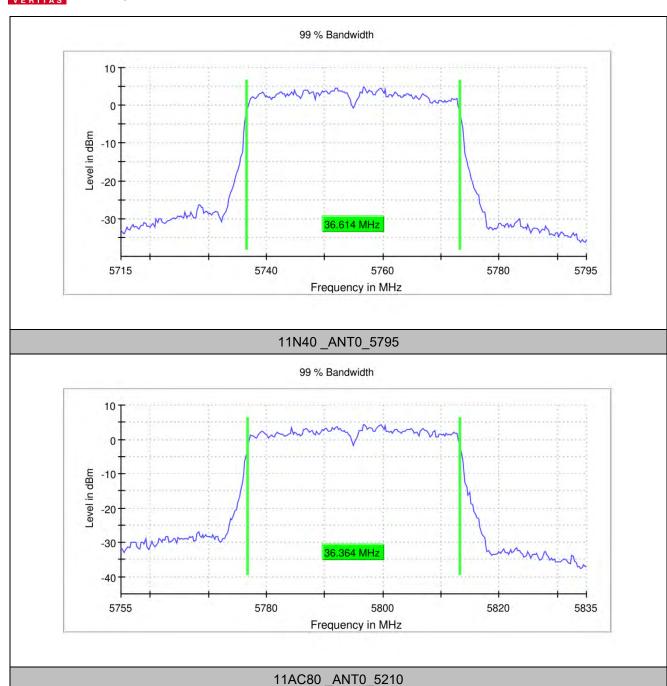


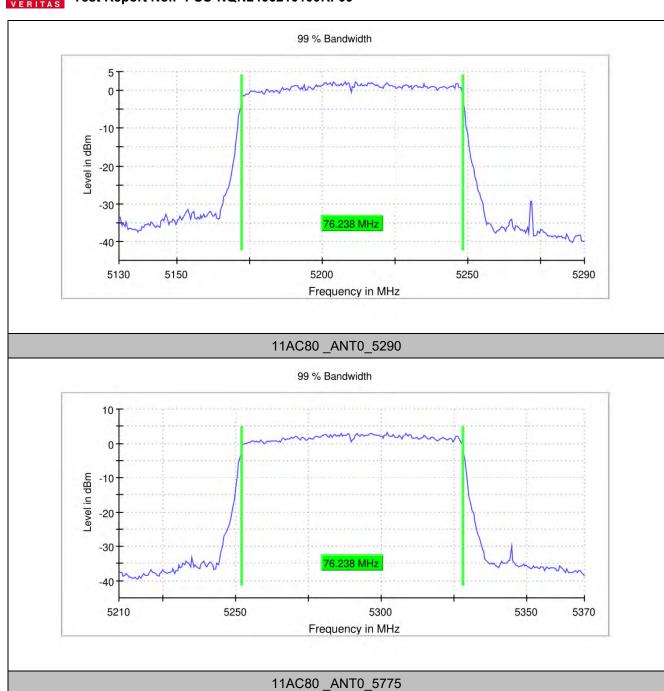


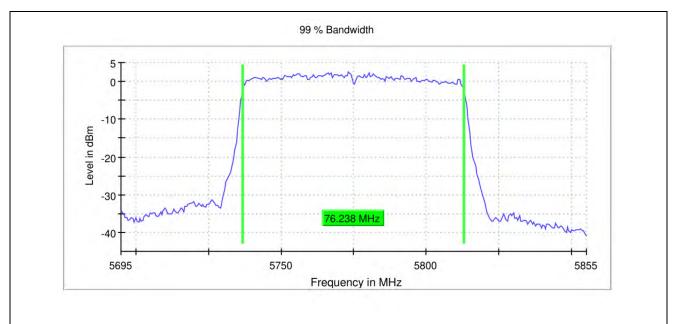












20M

RBW 200.000 kHz

VBW 1.000 MHz

40M

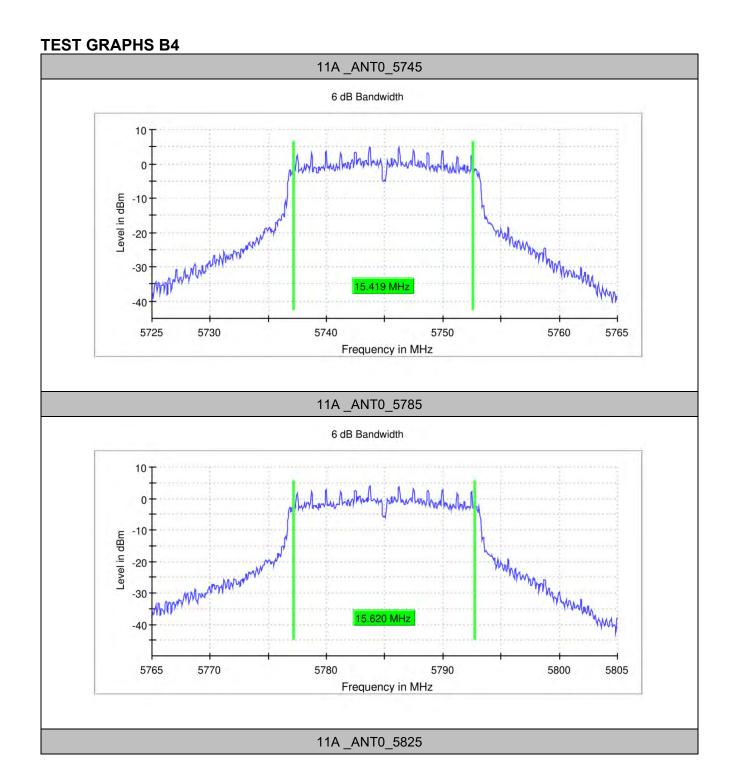
RBW 500.000 kHz

VBW 2.000 MHz

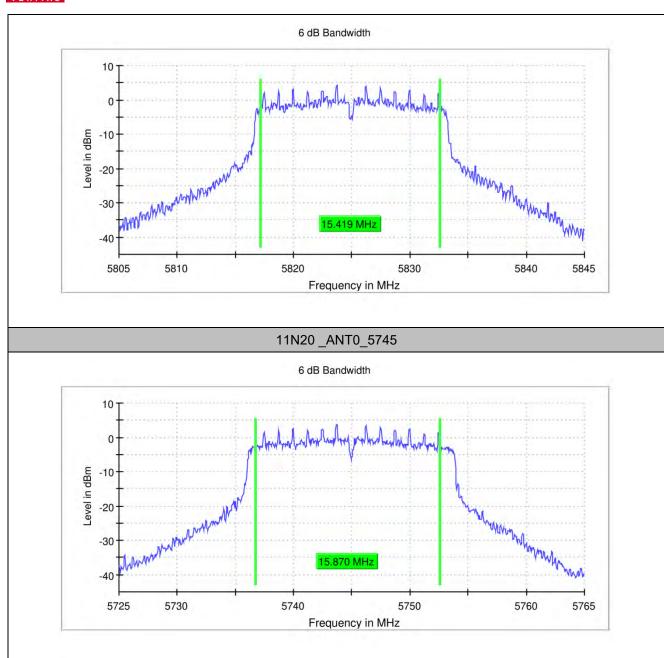
80M

RBW 1.000 MHz

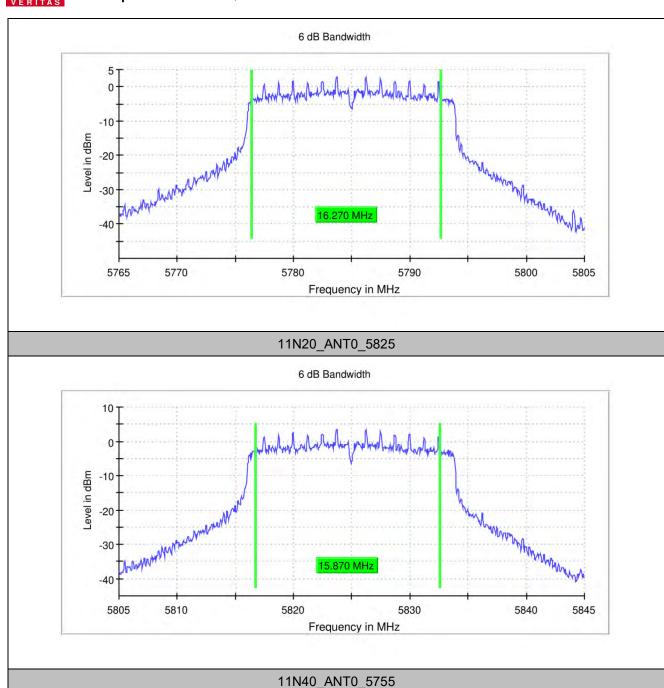
VBW 3.000 MHz

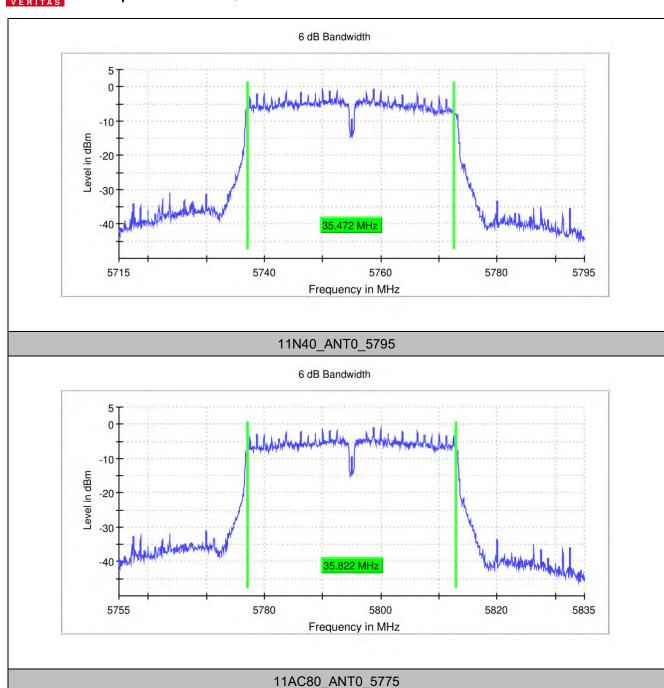


MIN EMISSION BANDWIDTH

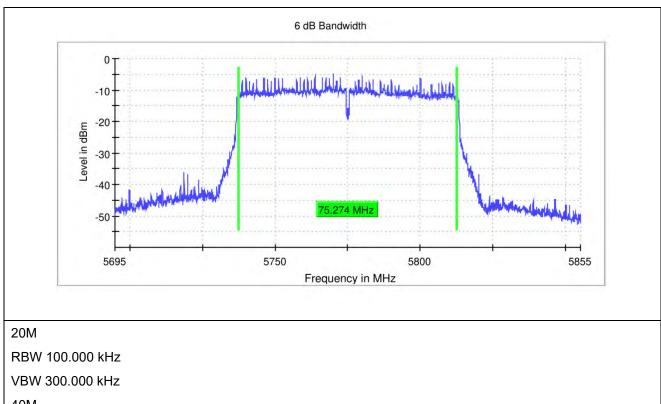

TEST RESULT B4

TEGI NEGGET B4								
TestMode	Antenna	Frequency [MHz]	6db EBW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict	
11A	ANT0	5745	15.419	5737.165	5752.584	0.5	PASS	
	ANT0	5785	15.620	5777.165	5792.785	0.5	PASS	
	ANT0	5825	15.419	5817.165	5832.584	0.5	PASS	
11N20	ANT0	5745	15.870	5736.715	5752.585	0.5	PASS	
	ANT0	5785	16.270	5776.414	5792.684	0.5	PASS	
	ANT0	5825	15.870	5816.715	5832.585	0.5	PASS	
11N40	ANT0	5755	35.472	5737.164	5772.636	0.5	PASS	
	ANT0	5795	35.822	5777.164	5812.986	0.5	PASS	
11AC80	ANT0	5775	75.274	5737.363	5812.637	0.5	PASS	





11N20_ANT0_5785



40M

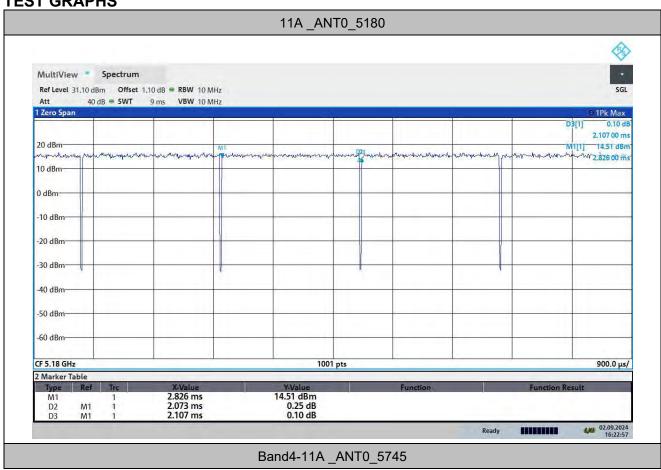
RBW 100.000 kHz

VBW 300.000 kHz

80M

RBW 100.000 kHz

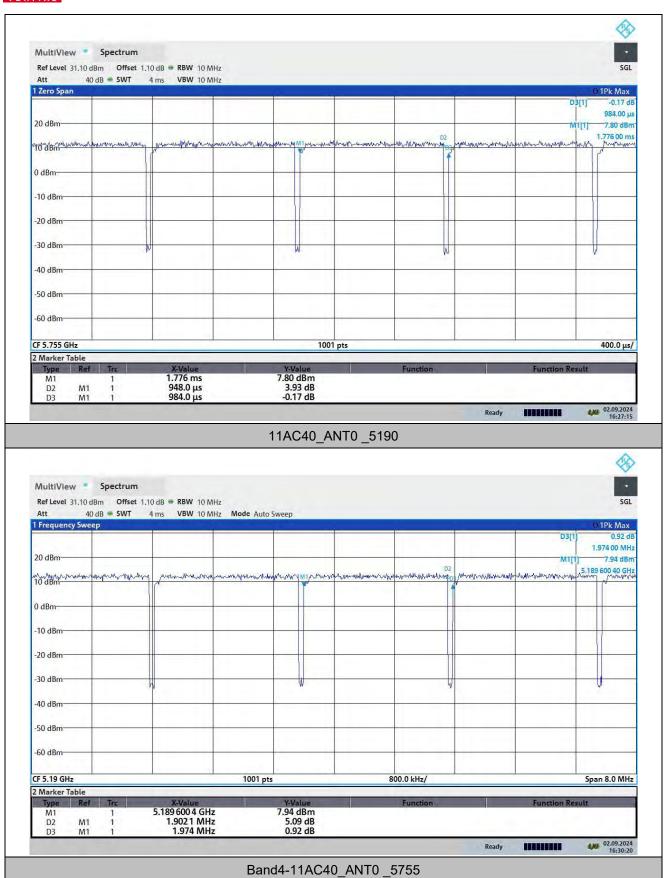
VBW 300.000 kHz

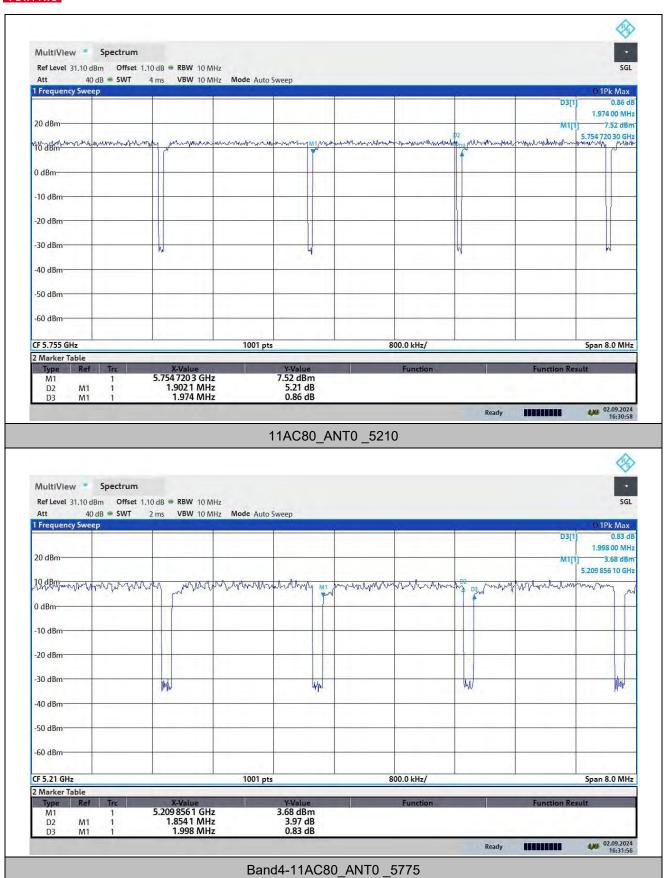

DUTY CYCLE

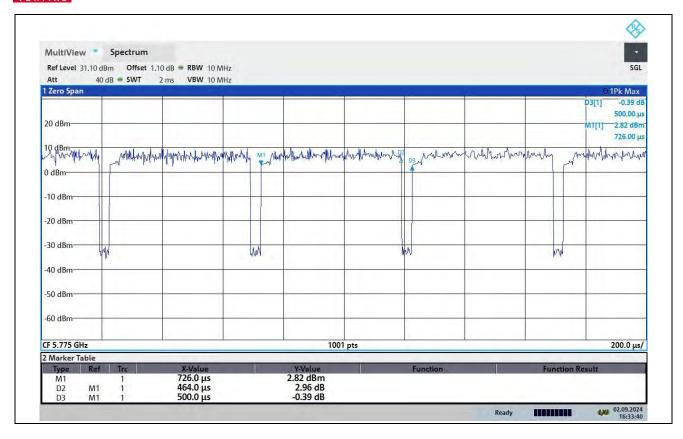
TEST RESULT

TestMode	Antenna	Frequency[MHz]	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	dutycycle factor
11A	ANT0	5180	2.073	2.107	98.39%	0.07
IIA	ANT0	5745	2.073	2.107	98.39%	0.07
1111200100	ANT0	5180	1.921	1.963	97.86%	0.09
11N20SISO	ANT0	5745	1.929	1.963	98.27%	0.08
11AC20SISO	ANT0	5180	1.926	1.966	96.35%	0.16
11AC205150	ANT0	5745	1.926	1.966	96.34%	0.16
44N408180	ANT0	5190	1.926	1.966	97.97%	0.09
11N40SISO	ANT0	5755	0.949	0.985	97.97%	0.09
11101000	ANT0	5190	0.948	0.984	96.36%	0.16
11AC40SISO	ANT0	5755	1.902	1.974	96.36%	0.16
11AC80SISO	ANT0	5210	1.902	1.974	92.80%	0.32
TIACOUSISO	ANT0	5775	1.854	1.998	92.80%	0.32

TEST GRAPHS







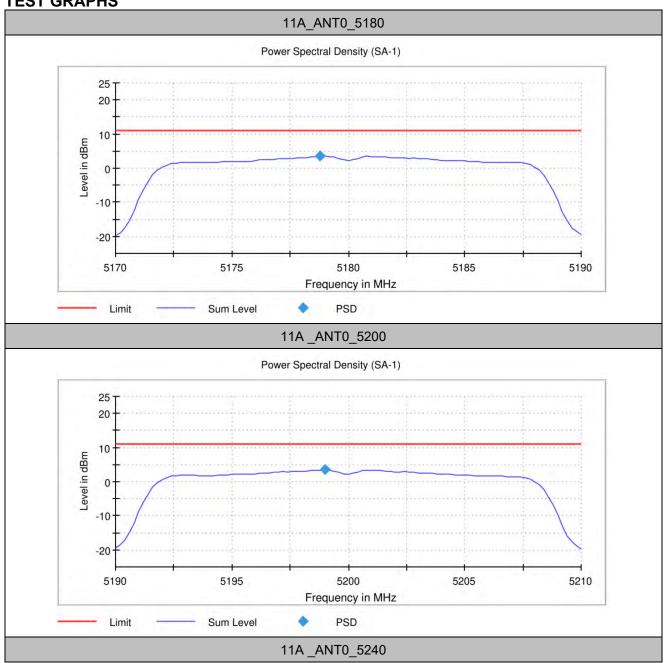
MAXIMUM CONDUCTED OUTPUT POWER

TEST RESULT

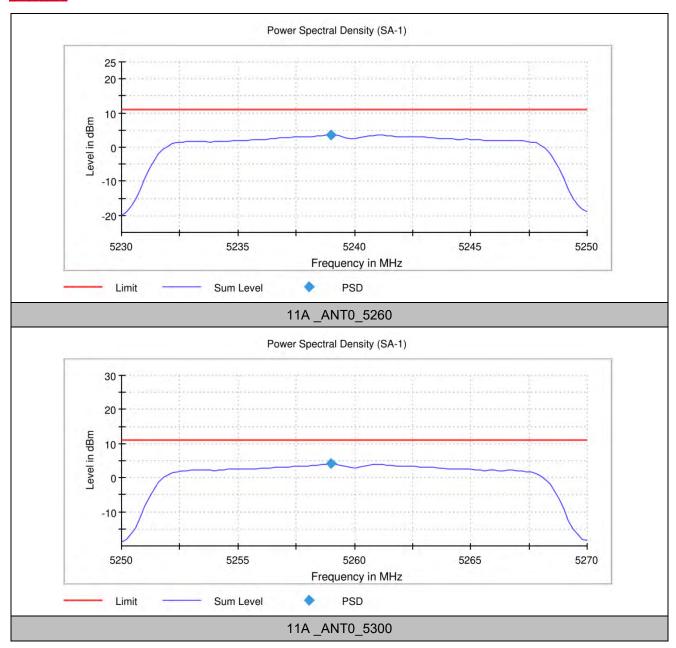
Power Table For_U-NII-1									
Test Mode	TX Mod.	Freq. (MHz)	Ant.	Maximum Conducted Power (dBm)	FCC Conducted Power Limit (dBm)	EIRP (dBm)	FCC EIRP Limit	Verdict	Power Setting
	SISO	5180	ANT0	13.02	≤24.00	13.82	≤36.00	Pass	14
11A		5200	ANT0	13.16	≤24.00	13.96	≤36.00	Pass	14
		5240	ANT0	14.71	≤24.00	15.51	≤36.00	Pass	14
11N20	SISO	5180	ANT0	11.82	≤24.00	12.62	≤36.00	Pass	13
		5200	ANT0	11.88	≤24.00	12.68	≤36.00	Pass	13
		5240	ANT0	13.45	≤24.00	14.25	≤36.00	Pass	13
441140	SISO	5190	ANT0	11.49	≤24.00	12.29	≤36.00	Pass	12
11N40		5230	ANT0	12.73	≤24.00	13.53	≤36.00	Pass	12
	SISO	5180	ANT0	10.91	≤24.00	11.71	≤36.00	Pass	12
11AC20		5200	ANT0	10.89	≤24.00	11.69	≤36.00	Pass	12
		5240	ANT0	12.44	≤24.00	13.24	≤36.00	Pass	12
11AC40	SISO	5190	ANT0	11.48	≤24.00	12.28	≤36.00	Pass	12
		5230	ANT0	12.67	≤24.00	13.47	≤36.00	Pass	12
11AC80	SISO	5210	ANT0	9.84	≤24.00	10.64	≤36.00	Pass	10

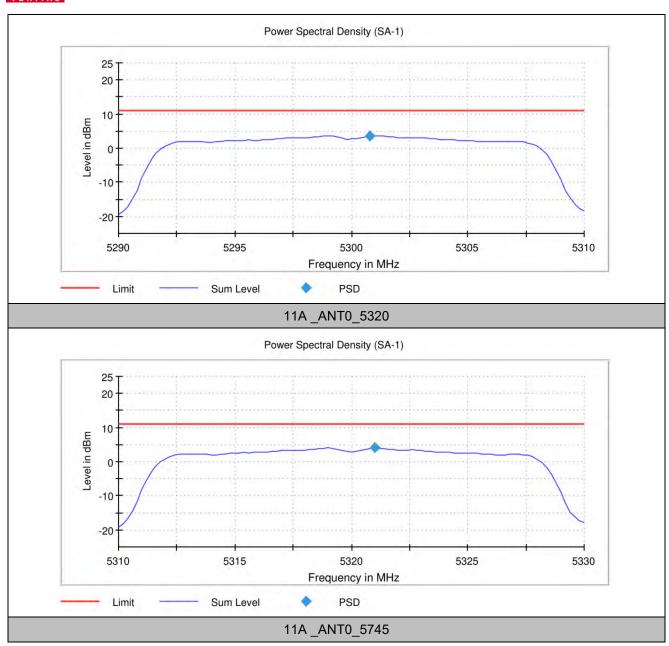
Power Table For_U-NII-2A									
Test Mode	TX Mod.	Freq. (MHz)	Ant.	Maximum Conducted Power (dBm)	FCC Conducted Power Limit (dBm)	EIRP (dBm)	FCC EIRP Limit	Verdict	Power Setting
	SISO	5260	ANT0	14.71	≤24.00	15.51	≤30.00	Pass	14
11A		5300	ANT0	14.92	≤24.00	15.72	≤30.00	Pass	14
		5320	ANT0	15.41	≤24.00	16.21	≤30.00	Pass	14
	SISO	5260	ANT0	13.37	≤24.00	14.17	≤30.00	Pass	13
11N20		5300	ANT0	13.81	≤24.00	14.61	≤30.00	Pass	13
		5320	ANT0	14.33	≤24.00	15.13	≤30.00	Pass	13
441140	SISO	5270	ANT0	13.03	≤24.00	13.83	≤30.00	Pass	12
11N40		5310	ANT0	13.74	≤24.00	14.54	≤30.00	Pass	12
	SISO	5260	ANT0	12.44	≤24.00	13.24	≤30.00	Pass	12
11AC20		5300	ANT0	12.80	≤24.00	13.60	≤30.00	Pass	12
		5320	ANT0	13.30	≤24.00	14.10	≤30.00	Pass	12
11AC40	SISO	5270	ANT0	12.90	≤24.00	13.70	≤30.00	Pass	12
		5310	ANT0	13.58	≤24.00	14.38	≤30.00	Pass	12
11AC80	SISO	5290	ANT0	11.04	≤24.00	11.84	≤30.00	Pass	10

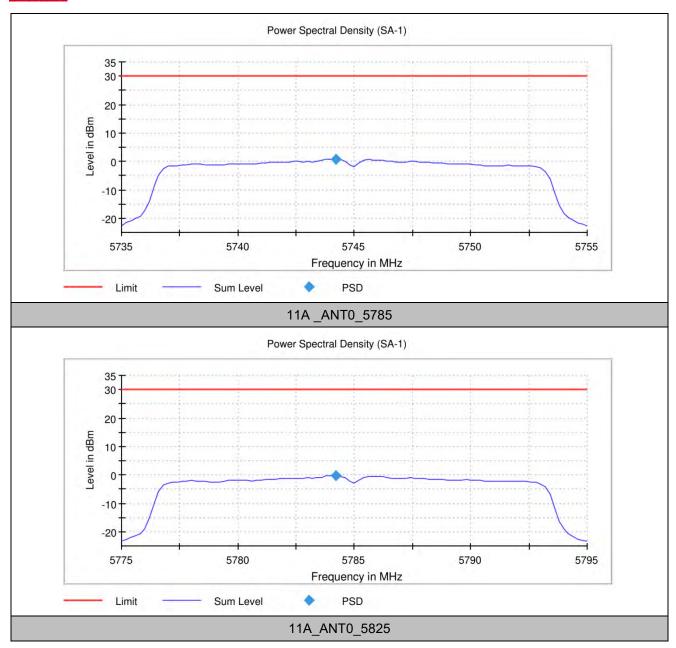
Power Table For_U-NII-3									
Test Mode	TX Mod.	Freq. (MHz)	Ant.	Maximum Conducted Power (dBm)	Conducted Power Limit (dBm)	EIRP (dBm)	IC EIRP Limit	Verdict	Power Setting
	SISO	5745	ANT0	14.86	≤30.00	15.66	≤36.00	Pass	14
11A		5785	ANT0	13.28	≤30.00	14.08	≤36.00	Pass	14
		5825	ANT0	14.51	≤30.00	15.31	≤36.00	Pass	14
	SISO	5745	ANT0	13.71	≤30.00	14.51	≤36.00	Pass	13
11N20		5785	ANT0	12.22	≤30.00	13.02	≤36.00	Pass	13
		5825	ANT0	13.35	≤30.00	14.15	≤36.00	Pass	13
11N40	SISO	5755	ANT0	13.10	≤30.00	13.90	≤36.00	Pass	12
111140		5795	ANT0	11.74	≤30.00	12.54	≤36.00	Pass	12
	SISO	5745	ANT0	12.76	≤30.00	13.56	≤36.00	Pass	12
11AC20		5785	ANT0	11.39	≤30.00	12.19	≤36.00	Pass	12
		5825	ANT0	12.43	≤30.00	13.23	≤36.00	Pass	12
11AC40	SISO	5755	ANT0	13.06	≤30.00	13.86	≤36.00	Pass	12
		5795	ANT0	11.66	≤30.00	12.46	≤36.00	Pass	12
11AC80	SISO	5775	ANT0	10.62	≤30.00	11.42	≤36.00	Pass	10
Note:The Maximum Conducted Power with duty cycle factor.									

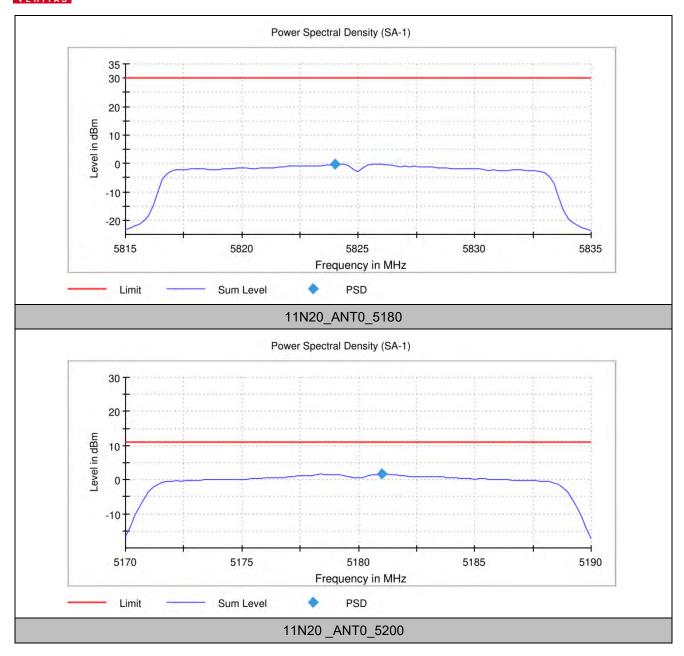

MAXIMUM POWER SPECTRAL DENSITY

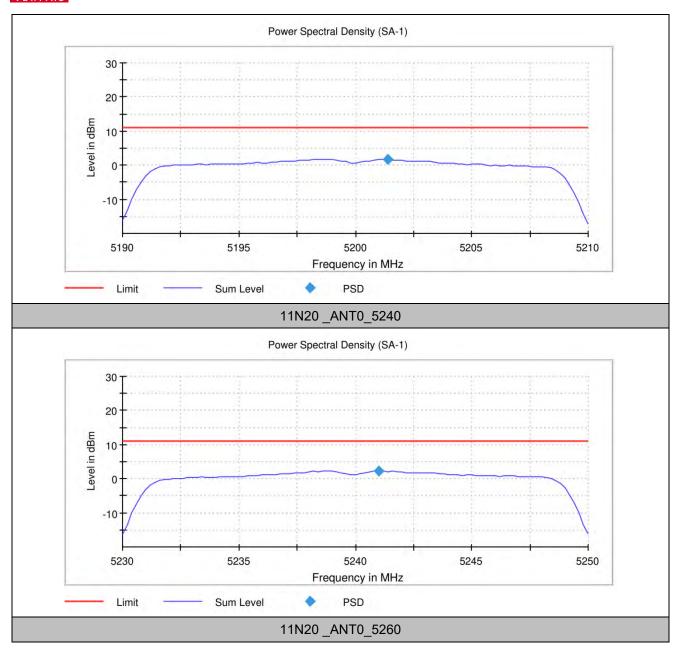
TEST RESULT

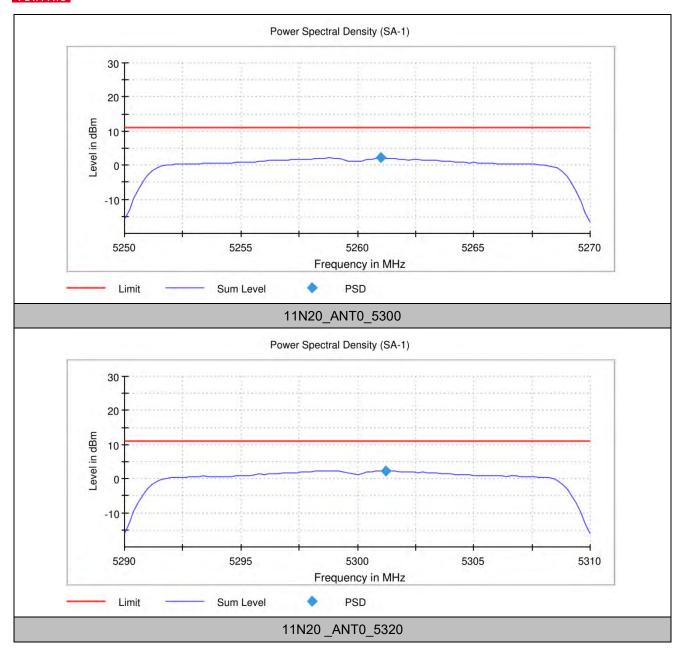

TestMode	Antenna	Frequency[MHz	Result [dBm/MHz]	PSD Limit [dBm/MHz]	Verdict
	ANT0	5180	3.467	≤11.00	Pass
	ANT0	5200	3.495	≤11.00	Pass
	ANT0	5240	3.577	≤11.00	Pass
	ANT0	5260	4.045	≤11.00	Pass
11A	ANT0	5300	3.608	≤11.00	Pass
	ANT0	5320	4.008	≤11.00	Pass
	ANT0	5745	0.791	≤30.00	Pass
	ANT0	5785	-0.374	≤30.00	Pass
	ANT0	5825	-0.251	≤30.00	Pass
	ANT0	5180	1.636	≤11.00	Pass
	ANT0	5200	1.719	≤11.00	Pass
	ANT0	5240	2.272	≤11.00	Pass
	ANT0	5260	2.181	≤11.00	Pass
11N20	ANT0	5300	2.376	≤11.00	Pass
	ANT0	5320	2.495	≤11.00	Pass
	ANT0	5745	-0.766	≤30.00	Pass
	ANT0	5785	-1.815	≤30.00	Pass
	ANT0	5825	-0.917	≤30.00	Pass
	ANT0	5190	-1.829	≤11.00	Pass
	ANT0	5230	-1.681	≤11.00	Pass
441140	ANT0	5270	-1.156	≤11.00	Pass
11N40	ANT0	5310	-1.189	≤11.00	Pass
	ANT0	5755	-4.852	≤30.00	Pass
	ANT0	5795	-5.228	≤30.00	Pass
	ANT0	5210	-7.522	≤11.00	Pass
11AC80	ANT0	5290	-6.536	≤11.00	Pass
	ANT0	5775	-10.218	≤30.00	Pass

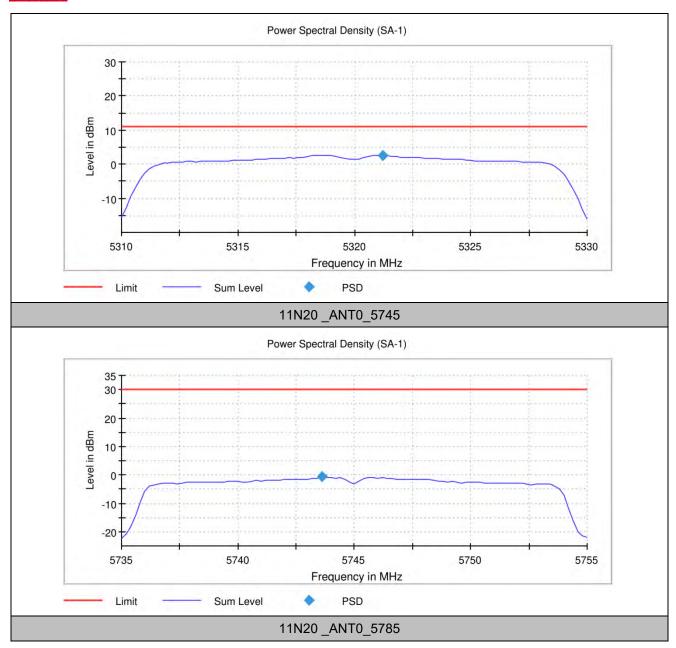

TEST GRAPHS

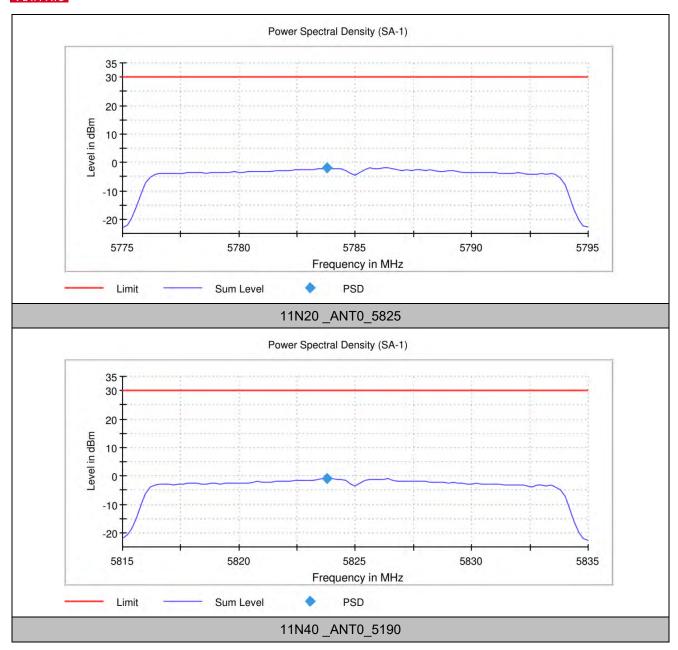


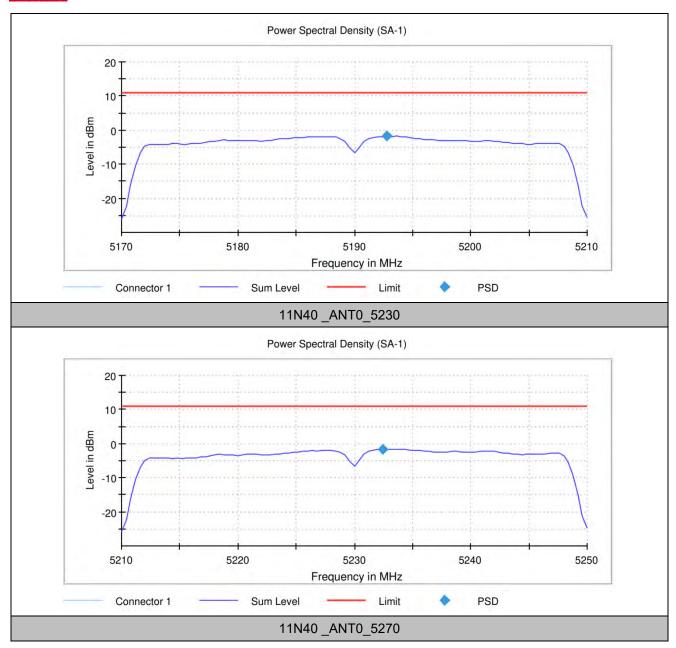


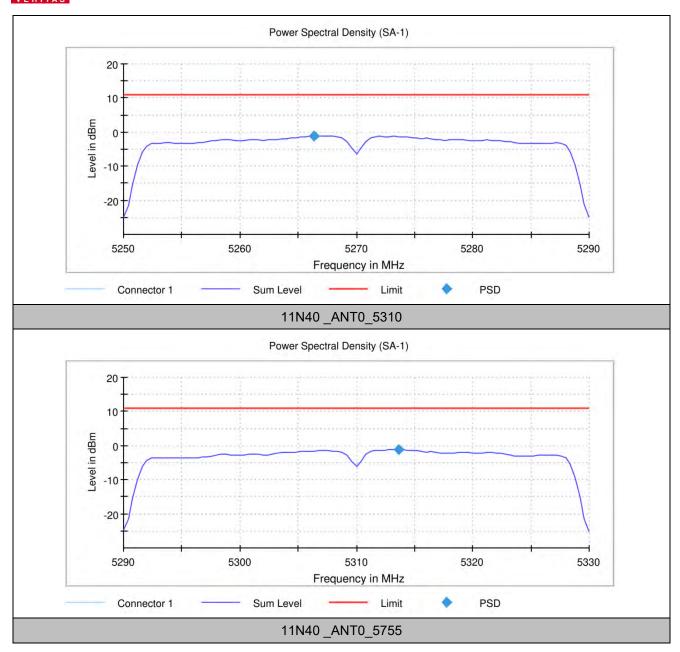


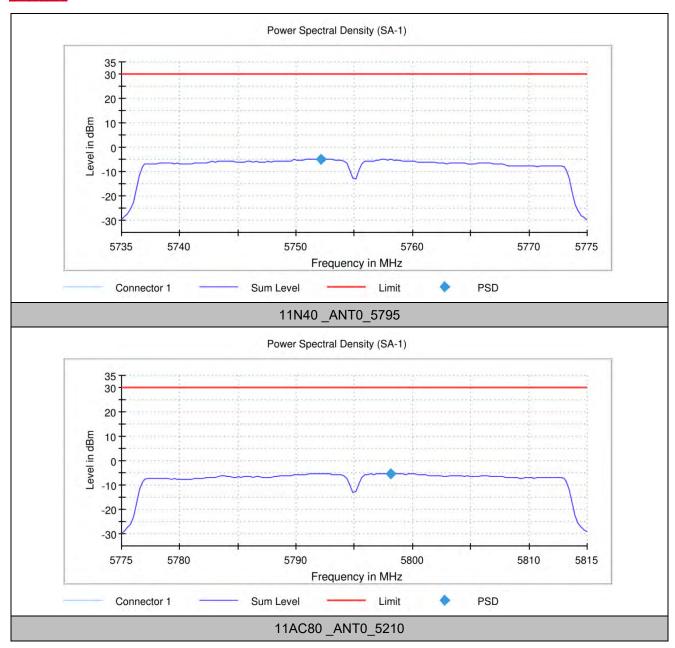


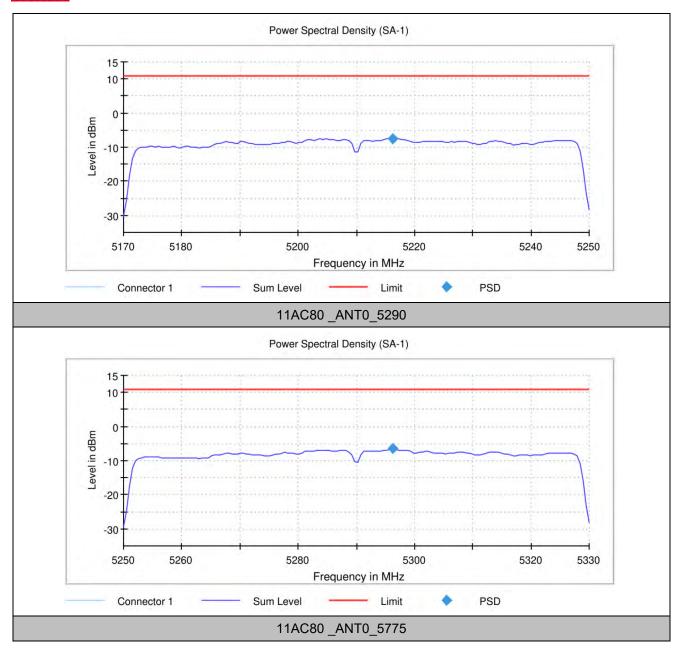


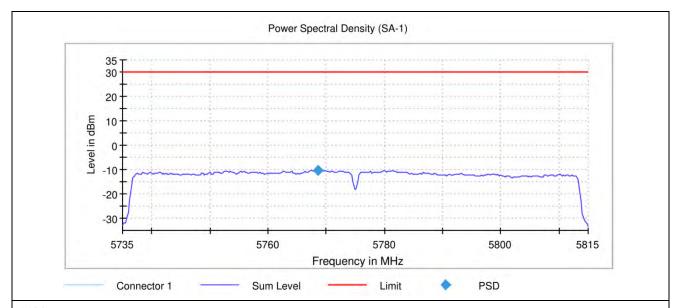












20M

RBW 1.000 MHz

VBW 3.000 MHz

40M

RBW 1.000 MHz

VBW 3.000 MHz

80M

RBW 1.000 MHz

VBW 3.000 MHz

160M

RBW 1.000 MHz

VBW 3.000 MHz

BAND4

20M

RBW 500.000 kHz

VBW 2.000 MHz

40M

RBW 500.000 kHz

VBW 2.000 MHz

80M

RBW 500.000 kHz

VBW 2.000 MHz

--END--