

Report No. : FR042406-02E

FCC RADIO TEST REPORT

FCC ID	: ZL5S62PROE
Equipment	: Rugged Smart Phone
Brand Name	: CAT
Model Name	: S62 Pro
Applicant	: Bullitt Group
	One Valpy, Valpy Street, Reading, Berkshire, England RG1 1AR
Standard	: FCC Part 15 Subpart E §15.407

The product was received on May 05, 2020 and testing was started from May 22, 2020 and completed on Jun. 25, 2020. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

His	story o	of this test report	3
Su	mmar	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency and Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	.10
	2.4	Support Unit used in test configuration and system	.10
	2.5	EUT Operation Test Setup	
	2.6	Measurement Results Explanation Example	.11
3	Test	Result	.12
	3.1	26dB & 99% Occupied Bandwidth Measurement	.12
	3.2	Maximum Conducted Output Power Measurement	
	3.3	Power Spectral Density Measurement	
	3.4	Unwanted Emissions Measurement	.19
	3.5	AC Conducted Emission Measurement	
	3.6	Automatically Discontinue Transmission	
	3.7	Antenna Requirements	
4	List	of Measuring Equipment	.28
5	Unce	rtainty of Evaluation	.30
Ар	pendi	x A. Conducted Test Results	
Ap	pendi	x B. AC Conducted Emission Test Result	
Ар	pendi	x C. Radiated Spurious Emission	
Ap	pendi	x D. Radiated Spurious Emission Plots	
Ар	pendi	x E. Duty Cycle Plots	

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issued Date
FR042406-02E	01	Initial issue of report	Jul. 28, 2020

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.403(i)	26dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.407(a)	Maximum Conducted Output Power	Pass	-
3.3	15.407(a)	Power Spectral Density	Power Spectral Density Pass	
3.4	3.4 15.407(b) Unwanted Emissions		Pass	Under limit 1.14 dB at 10640.000 MHz
3.5	15.207 AC Conducted Emission		Pass	Under limit 18.35 dB at 0.502 MHz
3.6	15.407(c)	Automatically Discontinue Transmission Pass		-
3.7	15.203 15.407(a)	Antenna Requirement	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang Report Producer: Vivian Hsu

1 General Description

1.1 Product Feature of Equipment Under Test

GSM/WCDMA/LTE, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n/ac, NFC and GNSS.

Product Specification subjective to this standard			
Sample 1	Dual SIM		
Sample 2	Single SIM		
	WWAN		
	<main 1="">: PIFA Antenna</main>		
	<main 2="">: PIFA Antenna</main>		
	<diversity 1="">: PIFA Antenna</diversity>		
Antonno Tumo	<diversity 2="">: Loop Antenna</diversity>		
Antenna Type	WLAN 2.4GHz: PIFA Antenna		
	WLAN 5GHz: Mono Pole Antenna		
	Bluetooth: PIFA Antenna		
	GPS / Glonass / BDS / Galileo / SBAS: PIFA Antenna		
	NFC: Loop Antenna		

Remark:

- 1. The samples have same layout, circuit and components but different SIM tray. The phone software will identify the loaded sim card combinations whether with single sim card or dual sim cards.
- 2. The tests were performed with Sample 1.

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978		
Test Site No.		Sporton Site No.	
	TH05-HY	CO05-HY	03CH07-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	36	5180	44	5220
5150-5250 MHz Band 1	38*	5190	46*	5230
(U-NII-1)	40	5200	48	5240
	42 [#]	5210		
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	52	5260	60	5300
5250-5350 MHz	54*	5270	62*	5310
Band 2 (U-NII-2A)	56	5280	64	5320
	58 [#]	5290		
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	100	5500	112	5560
	102*	5510	116	5580
5470-5725 MHz	104	5520	132	5660
Band 3 (U-NII-2C)	106 [#]	5530	134*	5670
(0 111 20)	108	5540	136	5680
	110*	5550	140	5700
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
Straddle Channel	138 [#]	5690	144	5720

2.1 Carrier Frequency and Channel

Note:

1. The above Frequency and Channel in "*" were 802.11n HT40 and 802.11ac VHT40.

2. The above Frequency and Channel in "#" were 802.11ac VHT80.

2.2 Test Mode

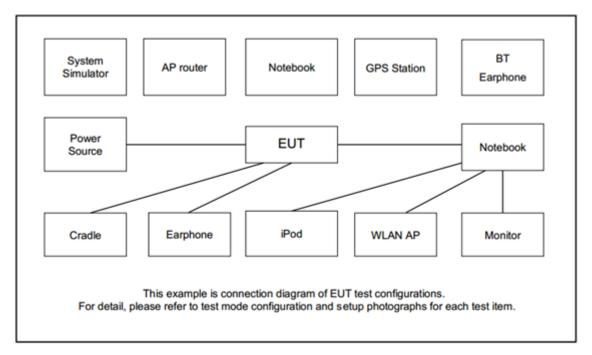
Final test modes are considering the modulation and worse data rates as below table.

Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11ac VHT20 (Covered by HT20)	MCS0
802.11ac VHT40 (Covered by HT40)	MCS0
802.11ac VHT80	MCS0

Test Cases				
AC Conducted	AC Conducted Mode 1 : GSM 850 Idle + Bluetooth Link + WLAN (5GHz) Link + NFC On			
Emission	MPEG4 + USB Cable (Charging from AC Adapter) + SIM 1			

Ch. #		Band I:5150-5250 MHz	Band II : 5250-5350 MHz	Band III:5470-5725MHz
		802.11a	802.11a	802.11a
L	Low	36	52	100
М	Middle	44	60	116
н	High	48	64	140
ę	Straddle	-	-	144

Ch. #		Band I:5150-5250 MHz	Band II:5250-5350 MHz	Band III:5470-5725MHz
		802.11n HT20	802.11n HT20	802.11n HT20
L	Low	36	52	100
М	Middle	44	60	116
н	High	48	64	140
5	Straddle	-	-	144


	Ch #	Band I:5150-5250 MHz	Band II:5250-5350 MHz	Band III:5470-5725MHz
Ch. #		802.11n HT40	802.11n HT40	802.11n HT40
L	Low	38	54	102
М	Middle	-	-	110
Н	High	46	62	134
S	Straddle	-	-	142

Ch. #		Band I:5150-5250 MHz	Band II:5250-5350 MHz	Band III:5470-5725MHz
		802.11ac VHT80	802.11ac VHT80	802.11ac VHT80
L	Low	-	-	106
М	Middle	42	58	-
н	High	-	-	-
5	Straddle	-	-	138

Remark: For radiation spurious emission, the final modulation and the worst data rate was reference the max RF conducted power.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
3.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
4.	Notebook	DELL	Latitude E3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
5.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT v4.0 00142.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

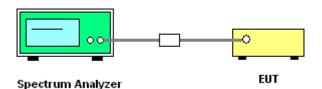
3.1 26dB & 99% Occupied Bandwidth Measurement

3.1.1 Description of 26dB & 99% Occupied Bandwidth

This section is for reporting purpose only.

There is no restriction limits for bandwidth.

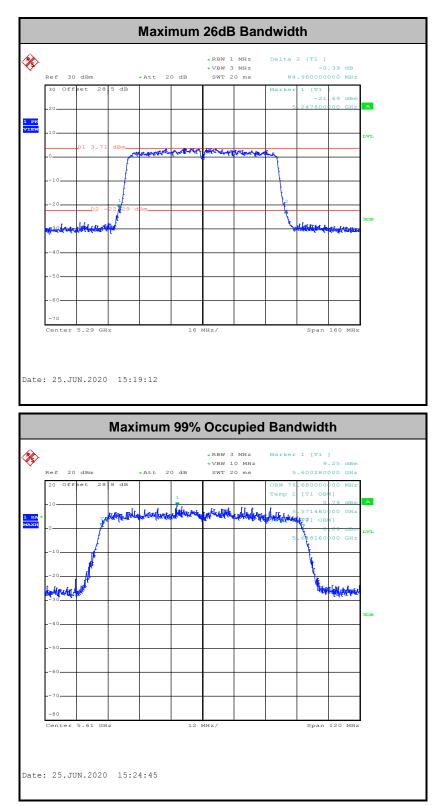
For Straddle Channel, according to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, if the power and PSD of the devices are uniform and comply with the lower limits specified for the U-NII-2 bands, a single measurement over the entire emission bandwidth can be performed to show compliance.


3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section C) Emission bandwidth
- 2. Set RBW = approximately 1% of the emission bandwidth.
- 3. Set the VBW > RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 8. Measure and record the results in the test report.


3.1.4 Test Setup

3.1.5 Test Result of 26dB & 99% Occupied Bandwidth

Please refer to Appendix A.

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

<FCC 14-30 CFR 15.407>

For the 5.15–5.25 GHz bands:

■ For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW. For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

For the 5.25–5.725 GHz bands:

■ The maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz.

For Straddle Channel, according to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, if the power and PSD of the devices are uniform and comply with the lower limits specified for the U-NII-2 bands, a single measurement over the entire emission bandwidth can be performed to show compliance.

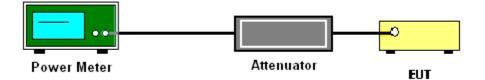
If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note that U-NII-2 band, devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures


The testing follows Method PM-G of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Method PM-G (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit at its maximum power control level.
- 3. Measure the average power of the transmitter
- 4. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

For Straddle Channel, according to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, if the power and PSD of the devices are uniform and comply with the lower limits specified for the U-NII-2 bands, a single measurement over the entire emission bandwidth can be performed to show compliance.

3.2.4 Test Setup

3.2.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

<FCC 14-30 CFR 15.407>

For the 5.15–5.25 GHz bands:

For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1.0 MHz band. For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1.0 MHz band.

For the 5.25–5.725 GHz bands:

The maximum power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

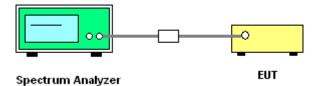
For Straddle Channel, according to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, if the power and PSD of the devices are uniform and comply with the lower limits specified for the U-NII-2 bands, a single measurement over the entire emission bandwidth can be performed to show compliance.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

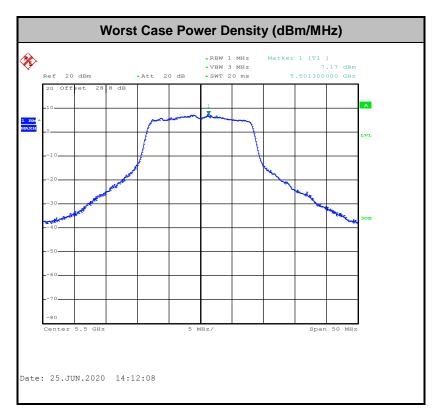
3.3.3 Test Procedures


The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section F) Maximum power spectral density.

Method SA-3

(power averaging (rms) detection with max hold):

- Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 1 MHz.
- Set VBW ≥ 3 MHz
- Number of points in sweep \geq 2 Span / RBW.
- Sweep time ≤ (number of points in sweep) × T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
- Detector = power averaging (rms).
- Trace mode = max hold.
- Allow max hold to run for at least 60 seconds, or longer as needed to allow the trace to stabilize.
- 1. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 2. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.


3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

Note: Average Power Density (dB) = Measured value+ Duty Factor

3.4 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

3.4.1 Limit of Unwanted Emissions

 For transmitters operating in the 5150-5250 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of –27dBm/MHz.

For transmitters operating in the 5250-5350 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band must meet all applicable technical requirements for operation in the 5150-5250 MHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5150-5250 MHz band.

For transmitters operating in the 5470-5600 MHz and 5650-5725MHz band: all emissions outside of the 5470-5600 MHz and 5650-5725MHz band shall not exceed an EIRP of -27 dBm/MHz.

(2) Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table:

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30P}}{3} \quad \mu V/m, \text{ where P is the eirp (Watts)}$$

EIRP (dBm)	Field Strength at 3m (dBµV/m)
- 27	68.3

- (3) KDB789033 D02 v02r01 G)2)c)
 - (i) Sections 15.407(b)(1-3) specifies the unwanted emissions limit for the U-NII-1 and U-NII-2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of −27 dBm/MHz.
 - (ii) Section 15.407(b)(4) specifies the unwanted emissions limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b)(4)(i). The emission limits are based on the use of a peak detector.

3.4.2 Measuring Instruments

See list of measuring equipment of this test report.

3.4.3 Test Procedures

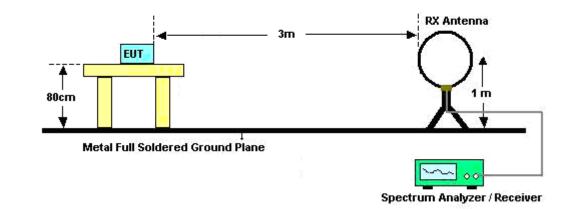
 The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section G) Unwanted emissions measurement.

(1) Procedure for Unwanted Emissions Measurements Below 1000MHz

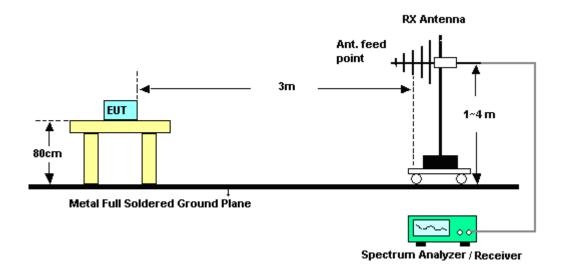
- RBW = 120 kHz
- VBW = 300 kHz
- Detector = Peak
- Trace mode = max hold

(2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz

- RBW = 1 MHz
- VBW ≥ 3 MHz
- Detector = Peak
- Sweep time = auto
- Trace mode = max hold

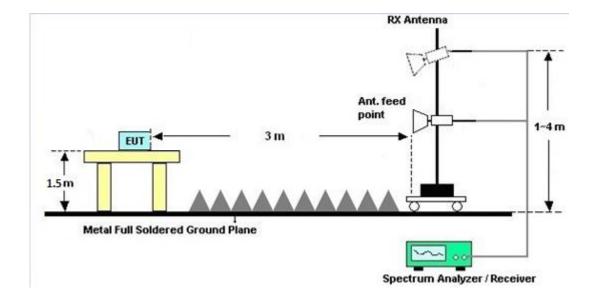

(3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz

- RBW = 1 MHz
- VBW = 10 Hz, when duty cycle is no less than 98 percent.
- VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
- 2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.



3.4.4 Test Setup

For radiated emissions below 30MHz



For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

3.4.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.4.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.4.7 Duty Cycle

Please refer to Appendix E.

3.4.8 Test Result of Radiated Spurious Emissions (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.5 AC Conducted Emission Measurement

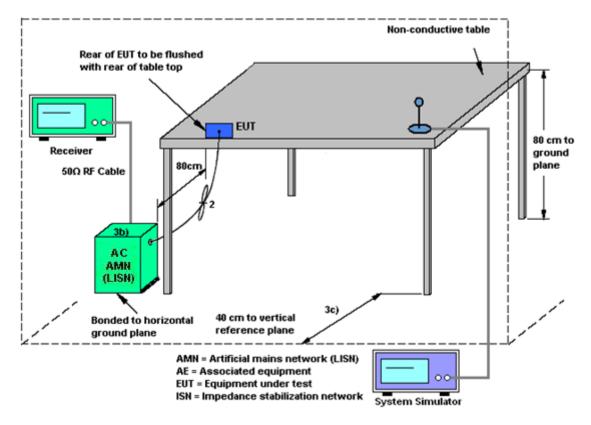
3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)			
Frequency of emission (MHZ)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

3.5.2 Measuring Instruments


See list of measuring equipment of this test report.

3.5.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

3.5.4 Test Setup

3.5.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.6 Automatically Discontinue Transmission

3.6.1 Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

3.6.2 Measuring Instruments

See list of measuring equipment of this test report.

3.6.3 Test Result of Automatically Discontinue Transmission

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

3.7 Antenna Requirements

3.7.1 Standard Applicable

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	May 22, 2020	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Nov. 15, 2019	May 22, 2020	Nov. 14, 2020	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Nov. 07, 2019	May 22, 2020	Nov. 06, 2020	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 15, 2019	May 22, 2020	Nov. 14, 2020	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	May 22, 2020	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Jan. 02, 2020	May 22, 2020	Jan. 01, 2021	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Jan. 02, 2020	May 22, 2020	Jan. 01, 2021	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34893241	N/A	Mar. 02, 2020	May 29, 2020~ Jun. 25, 2020	Mar. 01, 2021	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	16I00054SN O10	10MHz~6GHz	Dec. 23, 2019	May 29, 2020~ Jun. 25, 2020	Dec. 22, 2020	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100055	9kHz-40GHz	Aug. 14, 2019	May 29, 2020~ Jun. 25, 2020	Aug. 13, 2020	Conducted (TH05-HY)
Switch Box & RF Cable	Burgeon	ETF-058	EC1300484	N/A	Aug. 22, 2019	May 29, 2020~ Jun. 25, 2020	Aug. 21, 2020	Conducted (TH05-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01 N-06	35419 & 03	30MHz~1GHz	Apr. 29, 2020	Jun. 16, 2020~ Jun. 22, 2020	Apr. 28, 2021	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	00075962	1GHz ~ 18GHz	Dec. 06, 2019	Jun. 16, 2020~ Jun. 22, 2020	Dec. 05, 2020	Radiation (03CH07-HY)
EMI Test Receiver	Agilent	N9038A(MXE)	MY5329005 3	20Hz~26.5GHz	May 21, 2020	Jun. 16, 2020~ Jun. 22, 2020	May 20, 2021	Radiation (03CH07-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Dec. 26, 2019	Jun. 16, 2020~ Jun. 22, 2020	Dec. 25, 2020	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590075	1GHz~18GHz	Apr. 23, 2020	Jun. 16, 2020~ Jun. 22, 2020	Apr. 22, 2021	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz~1GHz	May 19, 2020	Jun. 16, 2020~ Jun. 22, 2020	May 18, 2021	Radiation (03CH07-HY)
Preamplifier	Agilent	8449B	3008A02362	1GHz~26.5GHz	Nov. 01, 2019	Jun. 16, 2020~ Jun. 22, 2020	Oct. 31, 2020	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2858/2,8 01606/2	18GHz~40GHz	Feb. 25, 2020	Jun. 16, 2020~ Jun. 22, 2020	Feb. 24, 2021	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24971/4, MY28655/4	9kHz~30MHz	Feb. 25, 2020	Jun. 16, 2020~ Jun. 22, 2020	Feb. 24, 2021	Radiation (03CH07-HY)

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY28655/4, MY24971/4, MY15682/4	30MHz~1GHz	Feb. 25, 2020	Jun. 16, 2020~ Jun. 22, 2020	Feb. 24, 2021	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY28655/4, MY24971/4, MY15682/4	1GHz~18GHz	Feb. 25, 2020	Jun. 16, 2020~ Jun. 22, 2020	Feb. 24, 2021	Radiation (03CH07-HY)
Controller	ChainTek	Chaintek 3000	N/A	Control Turn table	N/A	Jun. 16, 2020~ Jun. 22, 2020	N/A	Radiation (03CH07-HY)
Controller	Max-Full	MF7802	MF7802083 68	Control Ant Mast	N/A	Jun. 16, 2020~ Jun. 22, 2020	N/A	Radiation (03CH07-HY)
Antenna Mast	Max-Full	MFA520BS	N/A	1m~4m	N/A	Jun. 16, 2020~ Jun. 22, 2020	N/A	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Jun. 16, 2020~ Jun. 22, 2020	N/A	Radiation (03CH07-HY)
USB Data Logger	TECPEL	TR-32	HE17XB249 5	N/A	N/A	Jun. 16, 2020~ Jun. 22, 2020	N/A	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA91702 51	18GHz~40GHz	Nov. 26, 2019	Jun. 16, 2020~ Jun. 22, 2020	Nov. 25, 2020	Radiation (03CH07-HY)
Software	Audix	E3 6.2009-8-24	N/A	N/A	N/A	Jun. 16, 2020~ Jun. 22, 2020	N/A	Radiation (03CH07-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz~40GHz	Dec. 13, 2019	Jun. 16, 2020~ Jun. 22, 2020	Dec. 12, 2020	Radiation (03CH07-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of Confidence	2.2
of 95% (U = 2Uc(y))	2.3

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	4.6
0195% (0 = 20C(y))	

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.2
of 95% (U = 2Uc(y))	5.2

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.3
of 95% (U = 2Uc(y))	5.5

Report Number : FR042406-02A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Shiming Liu / Rebecca Li	Temperature:	21.5~24.1	°C
Test Date:	2020/5/28 ~ 2020/6/25	Relative Humidity:	51~55.6	%

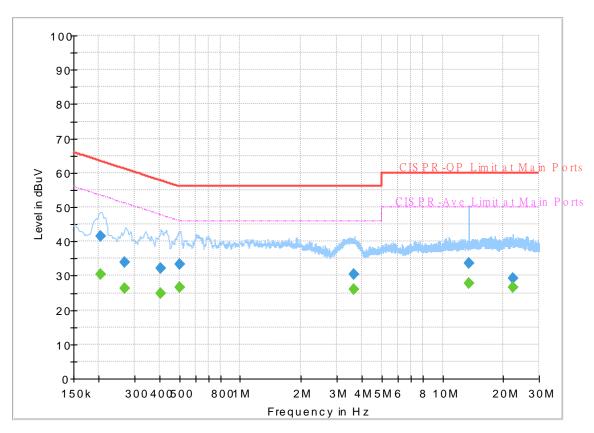
	<u>TEST RESULTS DATA</u> 20dB and 99% Occupied Bandwidth and Hopping Channel Separation										
Mod.	Data Rate	NTX		Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail		
DH	1Mbps	1	0	2402	0.876	0.816	0.846	0.5840	Pass		
DH	1Mbps	1	39	2441	0.896	0.840	1.008	0.5973	Pass		
DH	1Mbps	1	78	2480	0.896	0.840	1.002	0.5973	Pass		
2DH	2Mbps	1	0	2402	1.266	1.168	1.302	0.8440	Pass		
2DH	2Mbps	1	39	2441	1.266	1.168	1.302	0.8440	Pass		
2DH	2Mbps	1	78	2480	1.266	1.168	1.008	0.8440	Pass		
3DH	3Mbps	1	0	2402	1.236	1.144	0.996	0.8240	Pass		
3DH	3Mbps	1	39	2441	1.230	1.144	1.002	0.8200	Pass		
3DH	3Mbps	1	78	2480	1.230	1.144	1.008	0.8200	Pass		

			<u>TES</u>	T RESULTS Dwell Time		
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Nomal	79	106.67	2.90	0.31	0.4	Pass
AFH	20	53.33	2.90	0.15	0.4	Pass

	<u>TEST RESULTS DATA</u> Peak Power Table									
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result					
	0	1	11.19	20.97	Pass					
DH1	39	1	11.21	20.97	Pass					
	78	1	11.58	20.97	Pass					
	0	1	11.11	20.97	Pass					
2DH1	39	1	10.36	20.97	Pass					
	78	1	11.54	20.97	Pass					
	0	1	11.13	20.97	Pass					
3DH1	39	1	11.10	20.97	Pass					
	78	1	11.57	20.97	Pass					

<u>TEST RESULTS DATA</u> <u>Average Power Table</u> (Reporting Only)										
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)						
	0	1	10.96	5.16						
DH1	39	1	11.04	5.16						
	78	1	11.41	5.16						
	0	1	8.22	5.12						
2DH1	39	1	7.94	5.12						
	78	1	8.80	5.12						
	0	1	8.23	5.12						
3DH1	39	1	7.89	5.12						
	78	1	8.82	5.12						

<u>TEST RESULTS DATA</u> Number of Hopping Frequency								
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail					
79	20	> 15	Pass					

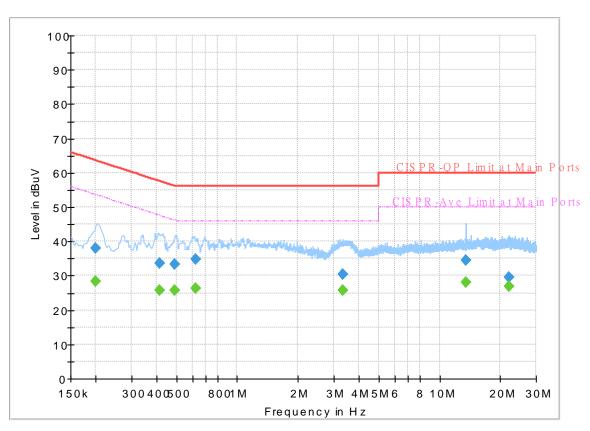


Appendix B. AC Conducted Emission Test Results

Test Engineer :	Tom Loo	Temperature :	21~25 ℃
	Tom Lee	Relative Humidity :	42~50%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 042406-02 Mode 1 120Vac/60Hz Line


Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.202920		30.42	53.49	23.07	L1	OFF	19.6
0.202920	41.63		63.49	21.86	L1	OFF	19.6
0.267000		26.27	51.21	24.94	L1	OFF	19.6
0.267000	34.03		61.21	27.18	L1	OFF	19.6
0.402000		24.95	47.81	22.86	L1	OFF	19.6
0.402000	32.18		57.81	25.63	L1	OFF	19.6
0.503250		26.70	46.00	19.30	L1	OFF	19.6
0.503250	33.27		56.00	22.73	L1	OFF	19.6
3.664500		26.04	46.00	19.96	L1	OFF	19.7
3.664500	30.32		56.00	25.68	L1	OFF	19.7
13.560000		27.85	50.00	22.15	L1	OFF	20.2
13.560000	33.53		60.00	26.47	L1	OFF	20.2
22.326000		26.71	50.00	23.29	L1	OFF	20.5
22.326000	29.38		60.00	30.62	L1	OFF	20.5

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 042406-02 Mode 1 120Vac/60Hz Neutral

FullSpectrum

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.200400		28.43	53.59	25.16	Ν	OFF	19.6
0.200400	38.13		63.59	25.46	Ν	OFF	19.6
0.412440		25.72	47.60	21.88	Ν	OFF	19.6
0.412440	33.51		57.60	24.09	Ν	OFF	19.6
0.492720		25.73	46.12	20.39	Ν	OFF	19.6
0.492720	33.29		56.12	22.83	Ν	OFF	19.6
0.620250		26.17	46.00	19.83	Ν	OFF	19.6
0.620250	34.79		56.00	21.21	Ν	OFF	19.6
3.309000		25.87	46.00	20.13	Ν	OFF	19.7
3.309000	30.28		56.00	25.72	Ν	OFF	19.7
13.560000		28.00	50.00	22.00	Ν	OFF	20.2
13.560000	34.41		60.00	25.59	Ν	OFF	20.2
22.085970		26.79	50.00	23.21	Ν	OFF	20.5
22.085970	29.45		60.00	30.55	Ν	OFF	20.5

Appendix C. Radiated Spurious Emission

Test Engineer :	Andy Yang, Karl Hou and CR Liao	Temperature :	20~25°C
Test Engineer :		Relative Humidity :	50~65%

2.4GHz 2400~2483.5MHz

					BT (Band B	uge 🦉	511)						
ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		2338.56	46.24	-27.76	74	40.06	27.85	8.09	29.76	114	111	Р	Н
		2338.56	21.45	-32.55	54	-	-	-	-	-	-	А	Н
	*	2402	107.31	-	-	101.31	27.6	8.19	29.79	114	111	Р	Н
вт	*	2402	82.52	-	-	-	-	-	-	-	-	A	Н
CH00													Н
2402MHz		2335.83	46.55	-27.45	74	40.37	27.86	8.08	29.76	374	84	P A	V
2402111112		2335.83	21.76	-32.24	54	-	-	-	-	-	-	А	V
	*	2402	104.84	-	-	98.84	27.6	8.19	29.79	374	84	Р	V
	*	2402	80.05	-	-	-	-	-	-	-	-	А	V
													V
		2334.64	46.86	-27.14	74	40.68	27.86	8.08	29.76	111	115	Р	Н
		2334.64	22.07	-31.93	54	-	-	-	-	-	-	Α	Н
	*	2441	108.18	-	-	102.13	27.6	8.26	29.81	111	115	(P/A) (I P A P A P A P A P A P A P A P A P A P A P A P	Н
	*	2441	83.39	-	-	-	-	-	-	-	-		Н
DT		2493.98	46.32	-27.68	74	40.3	27.51	8.34	29.83	111	115		Н
ВТ СН 39		2493.98	21.53	-32.47	54	-	-	-	-	-	-	А	Н
2441MHz		2378.18	46.56	-27.44	74	40.5	27.69	8.15	29.78	365	84	Р	V
277 I WI IZ		2378.18	21.77	-32.23	54	-	-	-	-	-	-	А	V
	*	2441	105.4	-	-	99.35	27.6	8.26	29.81	365	84	Ρ	V
	*	2441	80.61	-	-	-	-	-	-	-	-	А	V
		2494.12	46.82	-27.18	74	40.8	27.51	8.34	29.83	365	84	Р	V
		2494.12	22.03	-31.97	54	-	-	-	-	-	-	А	V

BT (Band Edge @ 3m)

	*	2480	106.73	-	-	100.69	27.54	8.32	29.82	100	108	Р	Н
	*	2480	81.94	-	-	-	-	-	-	-	-	А	Н
		2483.6	56.72	-17.28	74	50.69	27.53	8.32	29.82	100	108	Р	Н
		2483.6	31.93	-22.07	54	-	-	-	-	-	-	А	Н
вт													Н
сн 78													Н
2480MHz	*	2480	104.6	-	-	98.56	27.54	8.32	29.82	347	70	Р	V
240011112	*	2480	79.81	-	-	-	-	-	-	-	-	А	V
		2483.56	54.35	-19.65	74	48.32	27.53	8.32	29.82	347	70	Р	V
		2483.56	29.56	-24.44	54	-	-	-	-	-	-	А	V
													V
													V
Remark		o other spurious		Peak and	Average lir	nit line.							

2.4GHz 2400~2483.5MHz

		-			BI (Harmo		-					[[
BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant		Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg.	(нлл
		4804	43.67	-30.33	τα ο ματική γ 74	59.24	31.11	12.4	59.08	100	0	P	(1 , 7 , 7) H
		4804	18.88	-35.12	54	-	-		-	-	-	A	Н
		1001	10.00	00.12	01							~	н
вт													н
CH 00		4804	44.54	-29.46	74	60.11	31.11	12.4	59.08	100	0	Р	V
2402MHz		4804						-	- 59.00			-	V
		4804	19.75	-34.25	54	-	-	-	-	-	-	A	
													V
		4000	40.40	07.54	74	00.04	04.07	40.40	50.40	100			V
		4882	46.46	-27.54	74	62.04	31.07	12.48	59.13	100	0	P	H
		4882	21.67	-32.33	54	-	-	-	-	-	-	A	H
вт		7323	47.26	-26.74	74	53.64	36.49	15.68	58.55	100	0	Р	Н
CH 39		7323	22.47	-31.53	54	-	-	-	-	-	-	A	Н
2441MHz		4882	45.75	-28.25	74	61.33	31.07	12.48	59.13	100	0	Р	V
		4882	20.96	-33.04	54	-	-	-	-	-	-	A	V
		7323	47.9	-26.1	74	54.28	36.49	15.68	58.55	100	0	Р	V
		7323	23.11	-30.89	54	-	-	-	-	-	-	А	V
		4960	40.93	-33.07	74	56.29	31.26	12.56	59.18	100	0	Р	Н
		4960	16.14	-37.86	54	-	-	-	-	-	-	Α	Н
вт		7440	48.03	-25.97	74	54.05	36.58	15.78	58.38	100	0	Р	Н
CH 78		7440	23.24	-30.76	54	-	-	-	-	-	-	А	Н
2480MHz		4960	40.64	-33.36	74	56	31.26	12.56	59.18	100	0	Р	V
240011112		4960	15.85	-38.15	54	-	-	-	-	-	-	А	V
		7440	46.83	-27.17	74	52.85	36.58	15.78	58.38	100	0	Р	V
		7440	22.04	-31.96	54	-	-	-	-	-	-	А	V
Remark	1. No	o other spurious	s found.										
Kemark	2. All	results are PA	SS against F	eak and	Average lim	it line.							

BT (Harmonic @ 3m)

Emission above 18GHz

2.4GHz BT (SHF)

вт	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		23922	39.16	-34.84	74	39.18	40.29	12.99	53.3	150	0	Р	Н
													Н
													н
													Н
													Н
2.4GHz													Н
BT SHF		21913	38.48	-35.52	74	41.39	37.92	12.59	53.42	150	0	Р	V
511													V
													V
													V
													V
													V
	1. No	o other spurious	s found.										
Remark		results are PA		mit line.									

Emission below 1GHz

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		49.4	26.43	-13.57	40	43.22	14.47	1.16	32.42	-	-	Р	Н
		83.35	32.82	-7.18	40	49.82	13.77	1.54	32.31	100	0	Р	Н
		99.84	27.8	-15.7	43.5	42.6	15.76	1.69	32.25	-	-	Р	Н
		149.31	36.23	-7.27	43.5	49.3	17.05	2.16	32.28	-	-	Ρ	Н
		165.8	32.94	-10.56	43.5	47.11	15.85	2.28	32.3	-	-	Р	Н
		262.8	32.08	-13.92	46	41.52	20.07	2.84	32.35	-	-	Ρ	Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BT													н
LF		49.4	35.67	-4.33	40	52.46	14.47	1.16	32.42	100	217	Q	V
		66.86	32.27	-7.73	40	51.43	11.83	1.38	32.37	-	-	Ρ	V
		83.35	38.79	-1.21	40	55.79	13.77	1.54	32.31	100	335	Q	V
		99.84	29.32	-14.18	43.5	44.12	15.76	1.69	32.25	-	-	Ρ	V
		149.31	32.26	-11.24	43.5	45.33	17.05	2.16	32.28	-	-	Ρ	V
		166.77	32.48	-11.02	43.5	46.73	15.77	2.28	32.3	-	-	Ρ	V
													V
													V
													V
													V
													V
													V

2.4GHz BT (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
вт		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00												-	
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

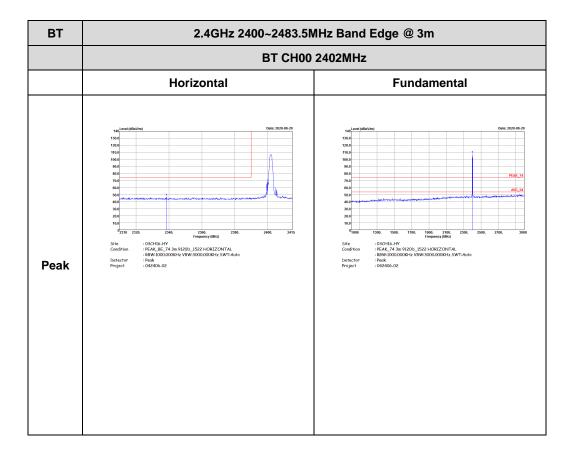
For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

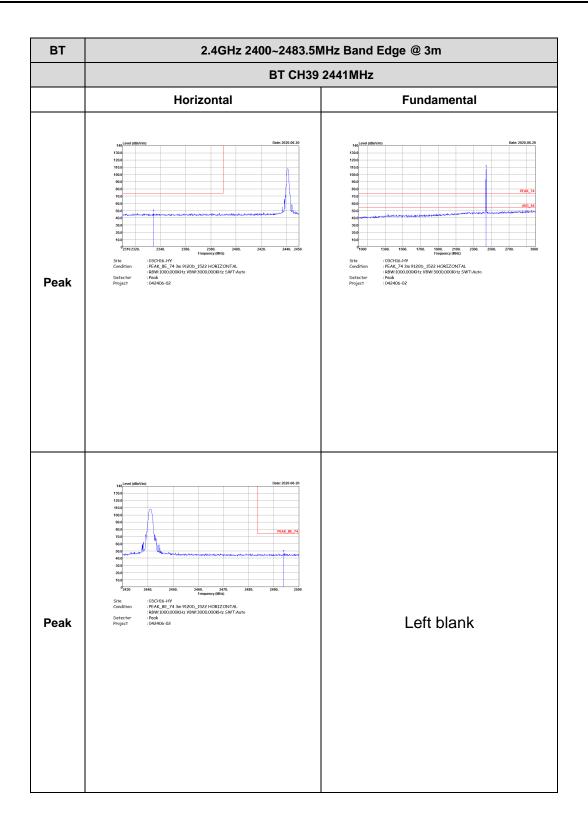
Both peak and average measured complies with the limit line, so test result is "PASS".

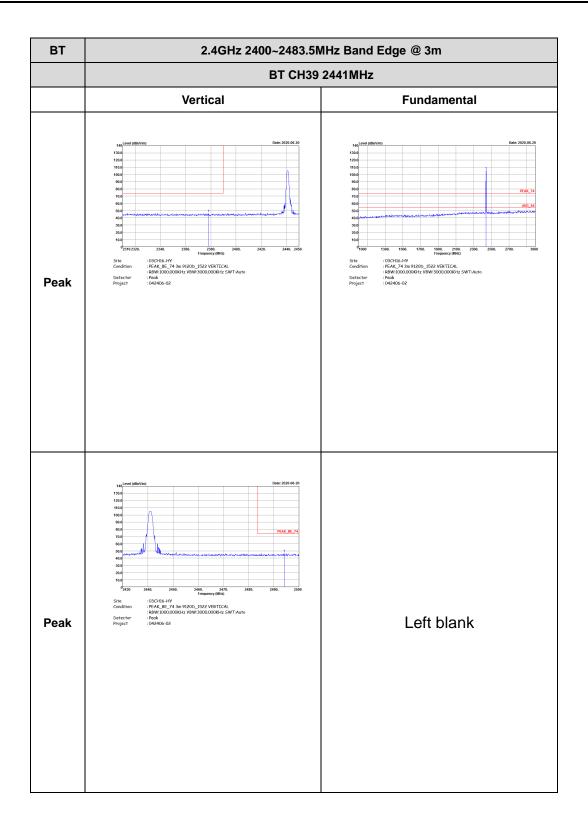


Appendix D. Radiated Spurious Emission Plots

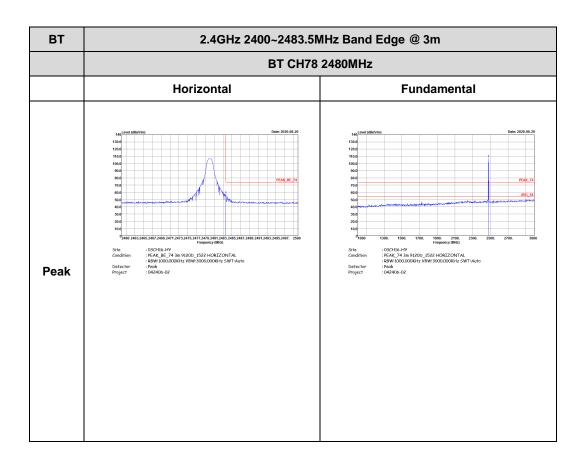
Test Engineer		Temperature :	20~25°C
Test Engineer :	Andy Yang, Karl Hou and CR Liao	Relative Humidity :	50~65%

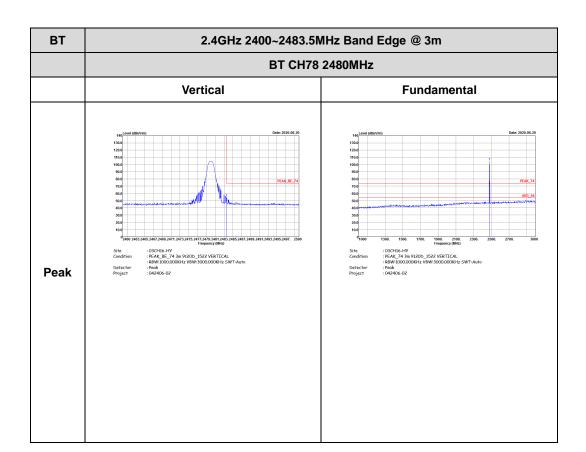
2.4GHz 2400~2483.5MHz

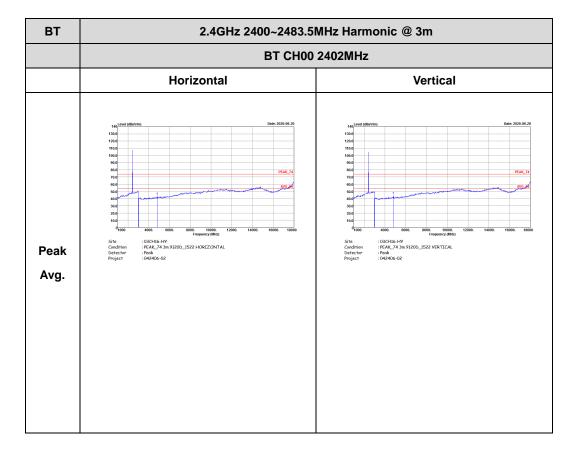

BT (Band Edge @ 3m)

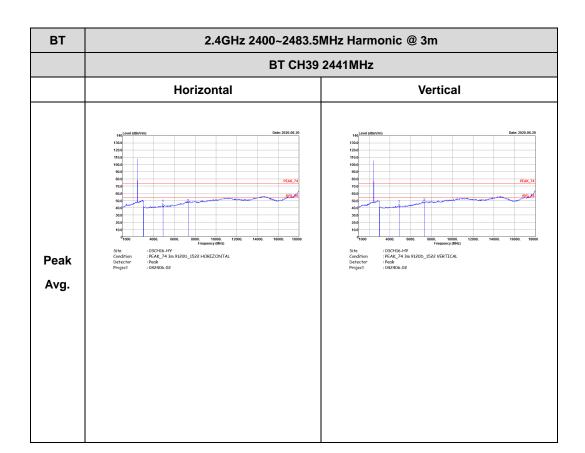


вт	2.4GHz 2400~2483.5N	IHz Band Edge @ 3m
	BT CH00	2402MHz
	Vertical	Fundamental
Peak	<pre>image in the image in the</pre>	1 International internatina internationa international international international i

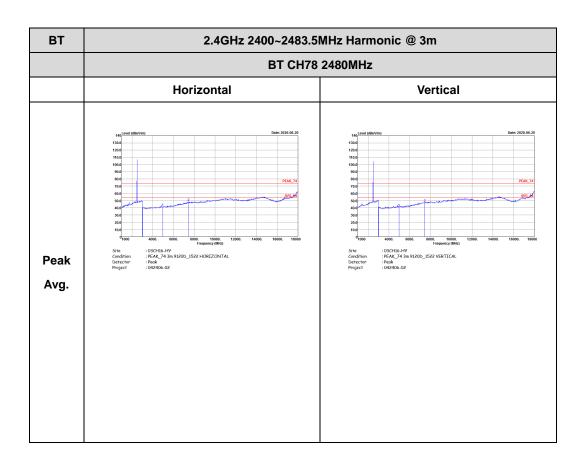


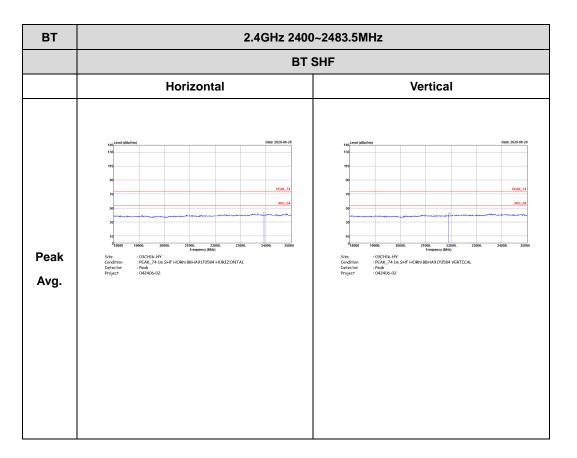


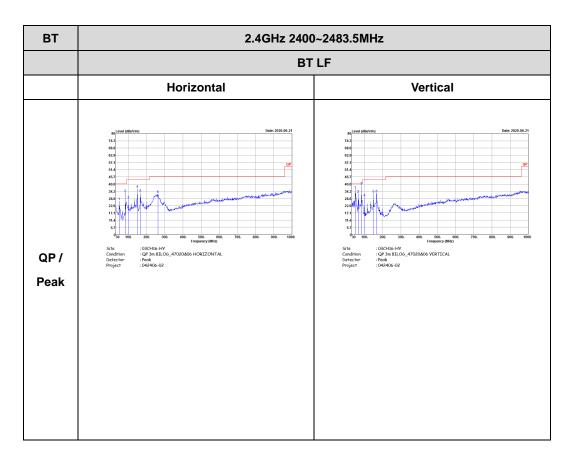




2.4GHz 2400~2483.5MHz


BT (Harmonic @ 3m)

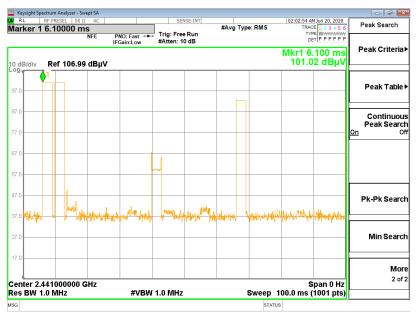



Emission above 18GHz

2.4GHz BT (SHF)

Emission below 1GHz

2.4GHz BT (LF)



Appendix E. Duty Cycle Plots

- 2							er - Swept SA				
Marker	02:01:22 AM Jun 20, 2020 TRACE 1 2 3 4 5 6	Type: RMS		SENSE:II				PRESEL			RI
Select Marke	DET P P P P P	.,,		Trig: Free Rui #Atten: 20 dB	Fast 🔸	PNO: Fa IFGain:L	NFE	.0000	4 1	VCI	an
2	Mkr4 1.860 ms 100.93 dBµV					٧ı	6.99 dBµ	Ref 1'		3/div	d
Norm			∕ <mark>3∆4</mark>	^1 <u>∆2</u>			• •	-			91 07
								_			.0
Del											.0 .0
											0.0
Fixed	hallthatella		oyl	hilderrik			hun	wp/4			0. 0.
c	Span 0 Hz 10.00 ms (1001 pts)	Sweep 1		1.0 MHz	#VBW	#	00 GHz	1000 MHz			
	FUNCTION VALUE	FUNCTION WIDTH	FUNCTIO	Y 0.03 dB	ms (Λ)	2.880 m	x	SCL t (Δ)	TRC	MODE A2	
Properties	E			100.93 dBµV 0.00 dB 100.93 dBµV	ms ms (Δ)	1.860 m 3.750 m 1.860 m		t t (Δ t		N A4 N	
Mo 1 of											
				III							
	10	STATU									

DH5 on time (One Pulse) Plot on Channel 39

on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = $2 \times 2.88 / 100 = 5.76 \%$
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. **DH5** has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

2.88 ms x 20 channels = 57.6 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.6 ms] = 2 hops

Thus, the maximum possible ON time:

2.88 ms x 2 = 5.76 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times \log(5.76 \text{ ms}/100 \text{ ms}) = -24.79 \text{ dB}$