

# FCC TEST REPORT (PART 24)

REPORT NO.: RF150318C06-1

MODEL NO.: S50c

FCC ID: ZL5S50C

**RECEIVED:** Mar. 18, 2015

- **TESTED:** Apr. 01, 2015 ~ Apr. 02, 2015
- ISSUED: Apr. 21, 2015

#### APPLICANT: Bullitt Group

- ADDRESS: No. 4, The Aquarium, King Street, Reading, RG1 2AN United Kingdom
- **ISSUED BY:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
- LAB ADDRESS: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan (R.O.C.)
- **TEST LOCATION:** No. 19, Hwa Ya 2nd Rd, Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 333, Taiwan, R.O.C.

This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.



This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification



# TABLE OF CONTENTS

| RE | ELEASE CONTROL RECORD                                                     | 3   |
|----|---------------------------------------------------------------------------|-----|
|    | CERTIFICATION                                                             |     |
| 2  | SUMMARY OF TEST RESULTS                                                   | 5   |
|    | 2.1 MEASUREMENT UNCERTAINTY                                               | 5   |
|    | 2.2 TEST SITE AND INSTRUMENTS                                             | 6   |
| 3  | GENERAL INFORMATION                                                       | . 7 |
| -  | 3.1 GENERAL DESCRIPTION OF EUT                                            | 7   |
|    | 3.2 CONFIGURATION OF SYSTEM UNDER TEST.                                   |     |
|    | 3.3 DESCRIPTION OF SUPPORT UNITS                                          | o   |
|    | 3.4 TEST ITEM AND TEST CONFIGURATION                                      |     |
|    | 3.5 EUT OPERATING CONDITIONS                                              |     |
|    | 3.6 GENERAL DESCRIPTION OF APPLIED STANDARDS                              | 11  |
| 4  | TEST TYPES AND RESULTS                                                    | 10  |
| 4  | 4.1 OUTPUT POWER MEASUREMENT                                              | 12  |
|    | 4.1 LIMITS OF OUTPUT POWER MEASUREMENT                                    | 12  |
|    |                                                                           |     |
|    | 4.1.2 TEST PROCEDURES                                                     |     |
|    | 4.1.3 TEST SETUP                                                          |     |
|    | 4.1.4 TEST RESULTS                                                        |     |
|    | 4.2 FREQUENCY STABILITY MEASUREMENT                                       |     |
|    | 4.2.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT                           |     |
|    | 4.2.2 TEST PROCEDURE                                                      |     |
|    | 4.2.3 TEST SETUP                                                          |     |
|    | 4.2.4 TEST RESULTS                                                        | 16  |
|    | 4.3 OCCUPIED BANDWIDTH MEASUREMENT                                        | 17  |
|    | 4.3.1 TEST PROCEDURES                                                     | 17  |
|    | 4.3.2 TEST SETUP                                                          | 17  |
|    | 4.3.3 TEST RESULTS                                                        |     |
|    | 4.4 PEAK TO AVERAGE RATIO                                                 |     |
|    | 4.4.1 LIMITS OF PEAK TO AVERAGE RATIO MEASUREMENT                         |     |
|    | 4.4.2 TEST SETUP                                                          |     |
|    | 4.4.3 TEST PROCEDURES                                                     |     |
|    | 4.4.4 TEST RESULTS                                                        |     |
|    | 4.5 BAND EDGE MEASUREMENT                                                 |     |
|    | 4.5 BAND EDGE MEASUREMENT                                                 | 21  |
|    | 4.5.1 LIMITS OF BAND EDGE MEASUREMENT                                     | 21  |
|    |                                                                           |     |
|    | 4.5.3 TEST PROCEDURES                                                     |     |
|    | 4.5.4 TEST RESULTS                                                        |     |
|    |                                                                           |     |
|    | 4.6.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT                  |     |
|    | 4.6.2 TEST PROCEDURE                                                      |     |
|    | 4.6.3 TEST SETUP                                                          |     |
|    | 4.6.4 TEST RESULTS                                                        |     |
|    | 4.7 RADIATED EMISSION MEASUREMENT                                         |     |
|    | 4.7.1 LIMITS OF RADIATED EMISSION MEASUREMENT                             |     |
|    | 4.7.2 TEST PROCEDURES                                                     |     |
|    | 4.7.3 DEVIATION FROM TEST STANDARD                                        |     |
|    | 4.7.4 TEST SETUP                                                          | 24  |
|    | 4.7.5 TEST RESULTS                                                        | 25  |
| 5  | PHOTOGRAPHS OF THE TEST CONFIGURATION                                     | 27  |
| 6  | INFORMATION ON THE TESTING LABORATORIES                                   | 28  |
|    | APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT E |     |
|    | THE LAB                                                                   |     |
|    |                                                                           |     |



# **RELEASE CONTROL RECORD**

| ISSUE NO.     | REASON FOR CHANGE | DATE ISSUED   |
|---------------|-------------------|---------------|
| RF150318C06-1 | Original release  | Apr. 21, 2015 |



# 1 CERTIFICATION

PRODUCT: Rugged Smart Phone
MODEL: S50c
BRAND: CAT
APPLICANT: Bullitt Group
TESTED: Apr. 01, 2015 ~ Apr. 02, 2015
TEST SAMPLE: Identical Prototype
STANDARDS: FCC Part 24, Subpart E

The above equipment (model: S50c) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch,** and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

| PREPARED BY | . In m                             | , DATE : | Apr. 21, 2015 |
|-------------|------------------------------------|----------|---------------|
|             | Ivonne Wu / Supervisor             |          |               |
| APPROVED BY | : Sam chen                         | , DATE : | Apr. 21, 2015 |
|             | Sam Chen / Senior Project Engineer |          |               |
|             |                                    |          |               |
|             |                                    |          |               |



# 2 SUMMARY OF TEST RESULTS

|                                 | APPLIED STANDARD: FCC Part 24 & Part 2 |        |                                                                                       |  |  |  |  |
|---------------------------------|----------------------------------------|--------|---------------------------------------------------------------------------------------|--|--|--|--|
| STANDARD TEST TYPE              |                                        | RESULT | REMARK                                                                                |  |  |  |  |
| 2.1046<br>24.232                | Equivalent Isotropic Radiated Power    | PASS   | Meet the requirement of limit.                                                        |  |  |  |  |
| 2.1055<br>24.235                | Frequency Stability                    |        | Meet the requirement of limit.                                                        |  |  |  |  |
| 2.1049<br>24.238(b)             | Occupied Bandwidth                     | PASS   | Meet the requirement of limit.                                                        |  |  |  |  |
| 24.232(d) Peak to average ratio |                                        | PASS   | Meet the requirement of limit.                                                        |  |  |  |  |
| 24.238(b)                       | Band Edge Measurements                 | PASS   | Meet the requirement of limit.                                                        |  |  |  |  |
| 2.1051<br>24.238                | Conducted Spurious Emissions           | PASS   | Meet the requirement of limit.                                                        |  |  |  |  |
| 2.1053<br>24.238                | Radiated Spurious Emissions            | PASS   | Meet the requirement of limit.<br>Minimum passing margin is<br>-27.31dB at 167.70MHz. |  |  |  |  |

The EUT has been tested according to the following specifications:

### 2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

| MEASUREMENT             | FREQUENCY       | UNCERTAINTY |
|-------------------------|-----------------|-------------|
| Conducted emissions     | 9kHz~30MHz      | 2.44 dB     |
|                         | 30MHz ~ 200MHz  | 2.93 dB     |
| De diste d'ansis sis na | 200MHz ~1000MHz | 2.95 dB     |
| Radiated emissions      | 1GHz ~ 18GHz    | 2.26 dB     |
|                         | 18GHz ~ 40GHz   | 1.94 dB     |

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.



# 2.2 TEST SITE AND INSTRUMENTS

| DESCRIPTION &<br>MANUFACTURER                 | MODEL NO.      | SERIAL NO.          | DATE OF<br>CALIBRATION | DUE DATE OF<br>CALIBRATION |
|-----------------------------------------------|----------------|---------------------|------------------------|----------------------------|
| Test Receiver<br>Agilent                      | N9038A         | MY51210203          | Jan. 21, 2015          | Jan. 21, 2016              |
| Spectrum Analyzer<br>Agilent                  | N9010A         | MY52220314          | Sep. 03, 2014          | Sep. 02, 2015              |
| Spectrum Analyzer<br>ROHDE & SCHWARZ          | FSU43          | 101261              | Dec. 10, 2014          | Dec. 09, 2015              |
| BILOG Antenna<br>SCHWARZBECK                  | VULB9168       | 9168-472            | Feb. 04, 2015          | Feb. 04, 2016              |
| HORN Antenna<br>SCHWARZBECK                   | BBHA 9120 D    | 9120D-969           | Feb. 09, 2015          | Feb. 09, 2016              |
| HORN Antenna<br>SCHWARZBECK                   | BBHA 9170      | 9170-480            | Feb. 04, 2015          | Feb. 04, 2016              |
| Preamplifier<br>EMCI                          | EMC 012645     | 980115              | Dec. 12, 2014          | Dec. 11, 2015              |
| Preamplifier<br>EMCI                          | EMC 184045     | 980116              | Jan. 09, 2015          | Jan. 08, 2016              |
| Preamplifier<br>EMCI                          | EMC 330H       | 980112              | Dec. 27, 2014          | Dec. 26, 2015              |
| Power Meter<br>Anritsu                        | ML2495A        | 1232002             | Sep. 17, 2014          | Sep. 16, 2015              |
| Power Sensor<br>Anritsu                       | MA2411B        | 1207325             | Sep. 17, 2014          | Sep. 16, 2015              |
| RF signal cable<br>HUBER+SUHNNER              | SUCOFLEX 104   | 309219/4<br>2950114 | Oct. 18, 2014          | Oct. 17, 2015              |
| RF signal cable<br>HUBER+SUHNNER              | SUCOFLEX 104   | 250130/4            | Oct. 18, 2014          | Oct. 17, 2015              |
| RF Coaxial Cable<br>Worken                    | 8D-FB          | Cable-Ch10-01       | Nov. 07, 2014          | Nov. 06, 2015              |
| Software<br>BV ADT                            | E3<br>6.120103 | NA                  | NA                     | NA                         |
| Antenna Tower<br>MF                           | MFA-440H       | NA                  | NA                     | NA                         |
| Turn Table<br>MF                              | MFT-201SS      | NA                  | NA                     | NA                         |
| Antenna Tower &Turn Table<br>Controller<br>MF | MF-7802        | NA                  | NA                     | NA                         |
| Radio Communication<br>Analyzer               | MT8820C        | 6201300640          | Aug. 01, 2013          | Jul. 31, 2015              |

**NOTE:** 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 10.
- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 690701.
- 5. The IC Site Registration No. is IC 7450F-10.



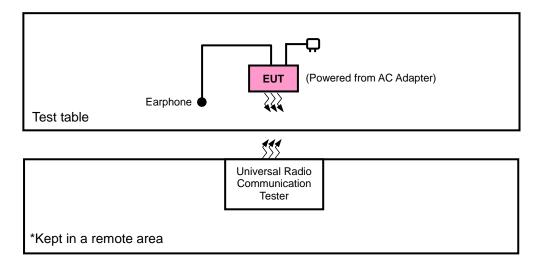
# **3 GENERAL INFORMATION**

# 3.1 GENERAL DESCRIPTION OF EUT

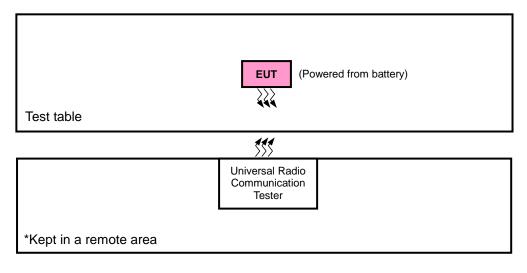
| EUT                    | Rugged Smart Phone                                      | Rugged Smart Phone |  |  |
|------------------------|---------------------------------------------------------|--------------------|--|--|
| MODEL NO.              | S50c                                                    |                    |  |  |
| POWER SUPPLY           | 5.0Vdc (adapter or host equipment)<br>3.75Vdc (battery) |                    |  |  |
| MODULATION TYPE        | CDMA                                                    | QPSK, OQPSK, HPSK  |  |  |
| FREQUENCY RANGE        | CDMA 1851.3MHz ~ 1908.8MHz                              |                    |  |  |
| MAX. EIRP POWER        | <b>CDMA</b> 202.30mW                                    |                    |  |  |
| EMISSION<br>DESIGNATOR | CDMA 1M27F9W                                            |                    |  |  |
| ANTENNA TYPE           | Fixed Internal Antenna                                  |                    |  |  |
| I/O PORTS              | Refer to users' manual                                  |                    |  |  |
| DATA CABLE             | Refer to NOTE as below                                  |                    |  |  |
| ACCESSORY<br>DEVICES   | Refer to NOTE as below                                  |                    |  |  |

#### NOTE:

1. The EUT contains following accessory devices.


| ITEM         | BRAND                | MODEL          | SPECIFICATION                          |
|--------------|----------------------|----------------|----------------------------------------|
| Adapter      | Liteon               | PA-1050-05L3   | I/P: 100-240Vac, 0.3A<br>O/P: 5Vdc, 1A |
| Battery      | Simplo<br>Technology | A09TA008H      | 3.75Vdc, 2680Ah                        |
| USB Cable    | BING<br>CHUANG       | BC-1.1M-AMCR5P | 1m cable                               |
| LCD Panel    | Truly                | BTFTSZ0192     |                                        |
| Photo Camera | Chicony              | CBAE821        |                                        |
| Video Camera | Chicony              | CIFDF31-1      |                                        |
| Main Board   | AT&S                 | 14H08          |                                        |
| eMMC         | Hynix                | H26M41103HPR   | 8GB                                    |
| CPU          | Qualcomm             | MSM 8926       | Pin: 784                               |

2. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.




# 3.2 CONFIGURATION OF SYSTEM UNDER TEST

#### FOR RADIATION EMISSION TEST



#### FOR E.I.R.P. TEST





# 3.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| NO. | PRODUCT  | BRAND  | MODEL NO. | SERIAL NO. | FCC ID |
|-----|----------|--------|-----------|------------|--------|
| 1   | Earphone | Funkey | N/A       | N/A        | N/A    |

| NO. | SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS |
|-----|-----------------------------------------------------|
| 1   | NA                                                  |

NOTE:

1. All power cords of the above support units are non shielded (1.8m).



# 3.4 TEST ITEM AND TEST CONFIGURATION

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports. The worst case was found when positioned on Z-plane for EIRP and X-axis for radiated emission. Following channel(s) was (were) selected for the final test as listed below:

#### CDMA MODE

| EUT<br>CONFIGURE<br>MODE | TEST ITEM             | AVAILABLE CHANNEL | TESTED CHANNEL | MODE  |
|--------------------------|-----------------------|-------------------|----------------|-------|
| -                        | EIRP                  | 25 to 1175        | 25, 600, 1175  | 1xRTT |
| -                        | FREQUENCY STABILITY   | 25 to 1175        | 600            | 1xRTT |
| -                        | OCCUPIED BANDWIDTH    | 25 to 1175        | 25, 600, 1175  | 1xRTT |
| -                        | PEAK TO AVERAGE RATIO | 25 to 1175        | 25, 600, 1175  | 1xRTT |
| -                        | BAND EDGE             | 25 to 1175        | 25, 1175       | 1xRTT |
| -                        | CONDUCTED EMISSION    | 25 to 1175        | 600            | 1xRTT |
| -                        | RADIATED EMISSION     | 25 to 1175        | 600            | 1xRTT |

#### **TEST CONDITION:**

| Test Item             | Environmental Conditions | Input Power  | Tested by  |
|-----------------------|--------------------------|--------------|------------|
| ERP                   | 26deg. C, 58%RH          | 3.75Vdc      | Taylor Liu |
| FREQUENCY STABILITY   | 26deg. C, 58%RH          | 3.75Vdc      | Taylor Liu |
| OCCUPIED BANDWIDTH    | 26deg. C, 58%RH          | 3.75Vdc      | Taylor Liu |
| PEAK TO AVERAGE RATIO | 26deg. C, 58%RH          | 3.75Vdc      | Taylor Liu |
| BAND EDGE             | 26deg. C, 58%RH          | 3.75Vdc      | Taylor Liu |
| CONDUCTED EMISSION    | 26deg. C, 58%RH          | 3.75Vdc      | Taylor Liu |
| RADIATED EMISSION     | 25deg. C, 65%RH          | 120Vac, 60Hz | Hwa Chiang |



# 3.5 EUT OPERATING CONDITIONS

The EUT makes a call to the communication simulator. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency

# 3.6 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2 FCC 47 CFR Part 24 ANSI/TIA/EIA-603-C 2004

**NOTE:** All test items have been performed and recorded as per the above standards.



# 4 TEST TYPES AND RESULTS

### 4.1 OUTPUT POWER MEASUREMENT

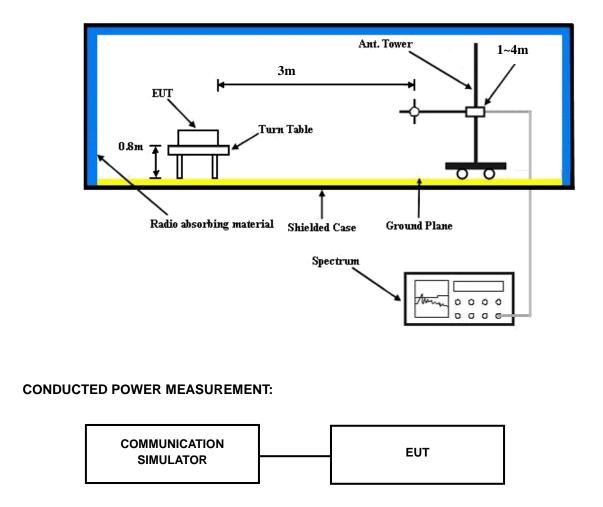
#### 4.1.1 LIMITS OF OUTPUT POWER MEASUREMENT

Mobile and portable stations are limited to 2 watts EIRP.

#### 4.1.2 TEST PROCEDURES

#### EIRP MEASUREMENT:

- All measurements were done at low, middle and high operational frequency range. RBW and VBW is 5MHz for CDMA mode.
- b. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step b. Record the power level of S.G
- d. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.


#### CONDUCTED POWER MEASUREMENT:

The EUT was set up for the maximum power with CDMA link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.



#### 4.1.3 TEST SETUP

#### **EIRP / ERP MEASUREMENT:**





#### 4.1.4 TEST RESULTS

# CONDUCTED OUTPUT POWER (dBm)

| Band              | CDMA    |       |         |  |  |  |  |
|-------------------|---------|-------|---------|--|--|--|--|
| Channel           | 25      | 600   | 1175    |  |  |  |  |
| Frequency (MHz)   | 1851.25 | 1880  | 1908.75 |  |  |  |  |
| RC1+SO55          | 23.88   | 23.55 | 23.85   |  |  |  |  |
| RC3+SO55          | 24.00   | 23.67 | 23.99   |  |  |  |  |
| RC3+SO32(+ F-SCH) | 23.89   | 23.52 | 23.86   |  |  |  |  |
| RC3+SO32(+SCH)    | 23.93   | 23.52 | 23.86   |  |  |  |  |
| RC1+SO3, 1/8 Rate | 23.90   | 23.53 | 23.83   |  |  |  |  |
| RTAP 153.6        | 23.80   | 23.42 | 23.86   |  |  |  |  |
| <b>RETAP 4096</b> | 23.82   | 23.44 | 23.90   |  |  |  |  |

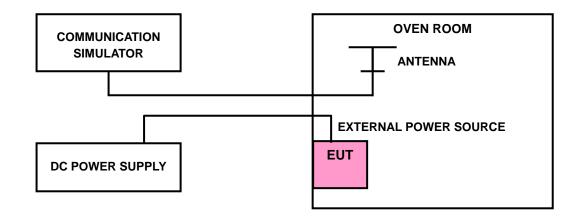
# EIRP POWER (dBm)

|       | СДМА    |                    |              |                          |           |          |                       |  |  |  |  |  |  |  |  |
|-------|---------|--------------------|--------------|--------------------------|-----------|----------|-----------------------|--|--|--|--|--|--|--|--|
| Plane | Channel | Frequency<br>(MHz) | LVL<br>(dBm) | Correction<br>Factor(dB) | EIRP(dBm) | EIRP(mW) | Polarization<br>(H/V) |  |  |  |  |  |  |  |  |
|       | 25      | 1851.25            | -23.28       | 44.70                    | 21.42     | 138.68   | Н                     |  |  |  |  |  |  |  |  |
|       | 600     | 1880.00            | -22.61       | 44.70                    | 22.09     | 161.81   | Н                     |  |  |  |  |  |  |  |  |
| z     | 1175    | 1908.75            | -22.89       | 44.57                    | 21.68     | 147.33   | Н                     |  |  |  |  |  |  |  |  |
| 2     | 25      | 1851.25            | -22.00       | 44.27                    | 22.27     | 168.66   | V                     |  |  |  |  |  |  |  |  |
|       | 600     | 1880.00            | -21.81       | 44.87                    | 23.06     | 202.30   | V                     |  |  |  |  |  |  |  |  |
|       | 1175    | 1908.75            | -21.65       | 44.61                    | 22.96     | 197.83   | V                     |  |  |  |  |  |  |  |  |



# 4.2 FREQUENCY STABILITY MEASUREMENT

#### 4.2.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT


The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

#### 4.2.2 TEST PROCEDURE

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the  $\pm 0.5^{\circ}$ C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

NOTE: The frequency error was recorded frequency error from the communication simulator.

#### 4.2.3 TEST SETUP





#### 4.2.4 TEST RESULTS

#### FREQUENCY ERROR vs. VOLTAGE

|                 | FREQUENCY ERROR (ppm) |             |
|-----------------|-----------------------|-------------|
| VOLTAGE (Volts) | CDMA                  | LIMIT (ppm) |
| 3.8             | 0.001                 | 2.5         |
| 3.6             | 0.002                 | 2.5         |
| 4.2             | 0.001                 | 2.5         |

**NOTE:** The applicant defined the normal working voltage of the battery is from 3.6Vdc to 4.2Vdc.

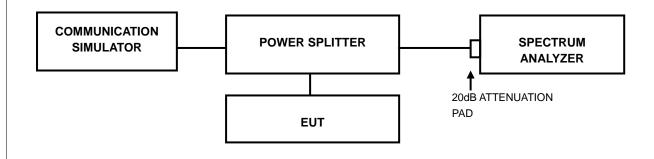
#### FREQUENCY ERROR vs. TEMPERATURE

| <b>TEMP. (℃)</b> | FREQUENCY ERROR (ppm) |             |
|------------------|-----------------------|-------------|
| TEMP.(C)         | CDMA                  | LIMIT (ppm) |
| -20              | 0.001                 | 2.5         |
| -10              | 0.001                 | 2.5         |
| 0                | -0.002                | 2.5         |
| 10               | -0.002                | 2.5         |
| 20               | -0.001                | 2.5         |
| 30               | -0.001                | 2.5         |
| 40               | -0.002                | 2.5         |
| 50               | 0.001                 | 2.5         |
| 60               | 0.001                 | 2.5         |

#### Note:

1. The applicant declared that the normal operating temperature of the EUT is from -20°C to 60°C.

2. The EUT would shut down automatically as below -20°C.




# 4.3 OCCUPIED BANDWIDTH MEASUREMENT

#### 4.3.1 TEST PROCEDURES

The EUT makes a call to the communication simulator. All measurements were done at low, middle and high operational frequency range. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.

#### 4.3.2 TEST SETUP

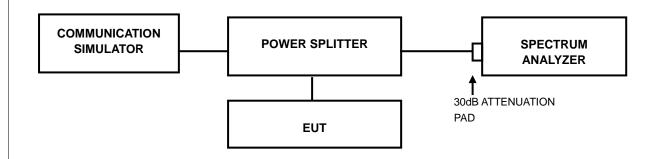




#### 4.3.3 TEST RESULTS

| CDMA    |           |                                 |                      |  |  |  |  |  |  |  |  |
|---------|-----------|---------------------------------|----------------------|--|--|--|--|--|--|--|--|
| CHANNEL | FREQUENCY | 99% OCCUPIED BANDWIDTH<br>(MHz) | 26dB BANDWIDTH (MHz) |  |  |  |  |  |  |  |  |
| 25      | 1851.25   | 1.2739                          | 1.430                |  |  |  |  |  |  |  |  |
| 600     | 1880.00   | 1.2725                          | 1.419                |  |  |  |  |  |  |  |  |
| 1175    | 1908.75   | 1.2725                          | 1.423                |  |  |  |  |  |  |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SPECTRUM                                                                                                        | PLOT OF WOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ST VALUE                 |                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | CDMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                    |
| Agilent Spectrum Analyzer - Occupied B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                    |
| κ         50 Ω         DC           Center Freq 1.851250000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 | Freq: 1.851250000 GHz<br>ee Run Avg Hold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Radio Std:               |                                    |
| Ref Offset 15 dB<br>10 dB/div <b>Ref 30.00 dB</b> m<br>Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ۱ <u> </u>                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and a second and a s | ali and a second state of the second state of | ~~~                      | Center Freq<br>1.851250000 GHz     |
| -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                    |
| -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | March Contract Party and | ma wola the                        |
| -50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | CF Step                            |
| Center 1.851 GHz<br>#Res BW 30 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | #V                                                                                                              | BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | an 3 MHz 300.000 kHz<br>300 ms Man |
| Occupied Bandwidt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Freq Offset<br>0 Hz                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                    |
| Transmit Freq Error<br>x dB Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -103 Hz<br>1.430 MHz                                                                                            | OBW Power<br>x dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 99.00 %<br>-26.00 dB     |                                    |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STATUS                   |                                    |




# 4.4 PEAK TO AVERAGE RATIO

#### 4.4.1 LIMITS OF PEAK TO AVERAGE RATIO MEASUREMENT

In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB.

#### 4.4.2 TEST SETUP



#### 4.4.3 TEST PROCEDURES

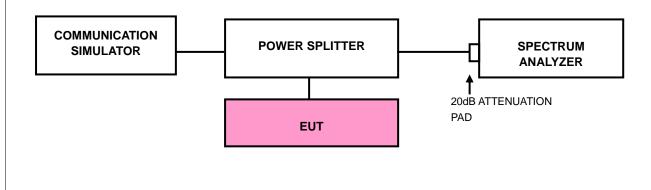
- 1. Set resolution/measurement bandwidth  $\geq$  signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Record the maximum PAPR level associated with a probability of 0.1%.



#### 4.4.4 TEST RESULTS

| CHANNEL | FREQUENCY | PEAK TO AVERAGE<br>RATIO (dB) |
|---------|-----------|-------------------------------|
|         | (MHz)     | CDMA                          |
| 25      | 1851.25   | 3.58                          |
| 600     | 1880.00   | 3.91                          |
| 1175    | 1908.75   | 3.91                          |

| SPECTRUM PLOT OF WORST VALUE                                                                         |                                                                                                                                                                                                                           |                                            |  |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| CDMA                                                                                                 |                                                                                                                                                                                                                           |                                            |  |  |  |  |  |  |  |  |  |  |
| Aglent Spectrum Analyzer - Power Stat CCDF<br>RF ISO 2 DC C<br>Center Freq 1.880000000 GHz<br>#IFGal | SPICEINT         & ALION CPF         12:055143M Agr 02; 2015           Center Freq:1.880000000 GHz         Radio Std: None           Trig: Free Run         Counts:1.00 M/1.00 Mpt           ind.ow         AALION: 20 dB | Frequency                                  |  |  |  |  |  |  |  |  |  |  |
| Average Power<br>23.39 dBm<br>49.85 % at 0dB                                                         | 100 %                                                                                                                                                                                                                     | Center Freq<br>1.88000000 GHz              |  |  |  |  |  |  |  |  |  |  |
| 10.0 % 1.95 dB<br>1.0 % 3.24 dB                                                                      | 0.1 %                                                                                                                                                                                                                     |                                            |  |  |  |  |  |  |  |  |  |  |
| 0.1 % 3.91 dB<br>0.01 % 4.30 dB                                                                      | 0.01 %                                                                                                                                                                                                                    | CF Step<br>5.000000 MHz<br><u>Auto</u> Man |  |  |  |  |  |  |  |  |  |  |
| 0.001 % 4.48 dB<br>0.0001 % 4.57 dB<br>Peak 4.57 dB                                                  | 0.001 %                                                                                                                                                                                                                   | Freq Offset<br>0 Hz                        |  |  |  |  |  |  |  |  |  |  |
| 27.96 dBm                                                                                            | 0.0001 % 0 dB 20 dB 1000 MHz                                                                                                                                                                                              |                                            |  |  |  |  |  |  |  |  |  |  |




### 4.5 BAND EDGE MEASUREMENT

#### 4.5.1 LIMITS OF BAND EDGE MEASUREMENT

Power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

#### 4.5.2 TEST SETUP



#### 4.5.3 TEST PROCEDURES

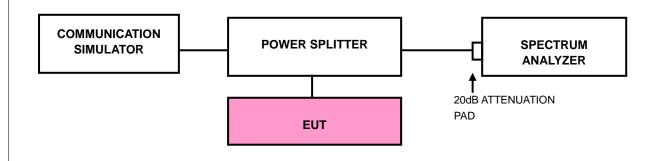
- a. All measurements were done at low and high operational frequency range.
- b. The center frequency of spectrum is the band edge frequency and span is 1MHz. RB of the spectrum is 13kHz and VB of the spectrum is 51kHz (CDMA).
- c. Record the max trace plot into the test report.

#### 4.5.4 TEST RESULTS

|                   |                                                                                   |                                  |                       |          |            |             |           |                            | Α         | M          | CD            |                                                               |                          |                                |                      |         |            |          |                  |                                         |          |
|-------------------|-----------------------------------------------------------------------------------|----------------------------------|-----------------------|----------|------------|-------------|-----------|----------------------------|-----------|------------|---------------|---------------------------------------------------------------|--------------------------|--------------------------------|----------------------|---------|------------|----------|------------------|-----------------------------------------|----------|
|                   |                                                                                   |                                  | 1175                  |          |            |             | L         | NNE                        | HAI       | С          |               |                                                               |                          |                                | 25                   |         |            |          | L                | NNE                                     | CHA      |
| Peak Search       | 11:58:24 PM Apr 01, 2015<br>TRACE 1 2 3 4 5 6<br>TYPE A WANNAW<br>DET A N N N N N | ALIGN OFF<br>e: RMS<br>: 100/100 | #Avg Type<br>Avg Hold | ENSE:INT | Trig: Free | PNO: Wide 🔸 |           | Analyzer - Sv<br>№ 9099550 |           | 1,00       | Peak Search   | M Apr 02, 2015<br>E 1 2 3 4 5 6<br>E A WWWWW<br>T A N N N N N | 12:01:40 A<br>TRAC<br>TV | ALIGN OFF<br>e: RMS<br>100/100 | #Avg Typ<br>Avg Hold | NSE:INT | Trig: Free | NO: Wide | 2 DC<br>100000 G | m Analyzer - Sv<br>NF 50 s<br>1.8500390 |          |
| NextPea           | 1.909 955 GHz<br>-33.572 dBm                                                      | Mkr1                             |                       | 30 dB    | #Atten: 30 | FGain:Low   | i<br>5 dB | Ref Offset 1<br>Ref 30.00  | B/div     | 10<br>Lo   | NextPeak      | 39 GHz<br>18 dBm                                              | 1.850 0                  | Mkr1                           |                      | ) dB    | #Atten: 30 | Gain:Low | II<br>5 dB       | Ref Offset 1<br>Ref 30.00               | 0 dB/div |
| Next Pk Rig       |                                                                                   |                                  |                       |          |            |             |           |                            |           | 20         | Next Pk Right |                                                               |                          |                                |                      |         |            |          |                  |                                         | 20.0     |
| Next Pk Le        |                                                                                   |                                  |                       |          |            |             |           |                            | -         | 10<br>0.0  | Next Pk Left  |                                                               |                          |                                |                      |         |            |          |                  |                                         | 0.00     |
| Marker De         | -13.00 dBm                                                                        |                                  |                       |          |            |             |           | $\land$                    |           | -10<br>-20 | Marker Delta  | -13.00 dBn                                                    | -                        |                                |                      |         |            |          |                  |                                         | 20.0     |
| Mkr→C             |                                                                                   |                                  | <b></b> 1             | _        |            |             | <u> </u>  |                            |           | -30<br>-40 | Mkr→CF        |                                                               | ]                        | ~                              | ~                    | ~       |            | <b>1</b> |                  |                                         | 40.0     |
| Mkr→RefL          |                                                                                   |                                  |                       |          |            |             |           |                            | ,<br>     | -50        | Mkr→RefLvl    |                                                               |                          |                                |                      |         |            |          |                  |                                         | 50.0     |
| <b>Mo</b><br>1 of | Span 1.000 MHz                                                                    |                                  |                       |          |            |             | z         | 98000 GH                   | nter 1.90 |            |               | .000 MHz                                                      |                          |                                |                      |         |            |          | Iz               | 502000 GH                               |          |
|                   | 1.00 s (1001 pts)                                                                 | #Sweep                           |                       | •        | / 51 kHz*  | #VBW        |           | 3 KHZ                      | es BW 1   | #R         | 1             | 1001 pts)                                                     | 1.00 s (                 | #Sweep                         |                      |         | 51 kHz*    | #VBW     |                  | 13 kHz                                  | Res BW   |



# 4.6 CONDUCTED SPURIOUS EMISSIONS


#### 4.6.1 LIMITS OF CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P) dB$ . The emission limit is equal to -13dBm.

#### 4.6.2 TEST PROCEDURE

- a. The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range.
- b. Measuring frequency range is from 30 MHz to 19.1GHz. 10dB attenuation pad is connected with spectrum. RBW=1MHz and VBW=3MHz is used for conducted emission measurement.

#### 4.6.3 TEST SETUP



#### 4.6.4 TEST RESULTS

|                              |                                   |            | C            | DN      | IA               |           |                                 |           |                |
|------------------------------|-----------------------------------|------------|--------------|---------|------------------|-----------|---------------------------------|-----------|----------------|
|                              |                                   |            | CHA          | NNE     | EL 6             | 00        |                                 |           |                |
| Agilent Spec                 | trum Analyzer - Swept S           |            | SEVIS        | r.n.et  |                  | ALIGN OFF | 12:05:33 AM Apr                 | 00.0015   |                |
| Marker '                     | 1 14.216882344                    |            | 1            |         | Avg Type         |           | TRACE 1                         | 3456      | Peak Search    |
| 10 dB/div                    | Ref Offset 15 dB<br>Ref 35.00 dBr | IFGain:Low | #Atten: 30 d | B       |                  | Mkr1      | <sup>روب</sup> 14.216<br>-30.48 | GHz       | NextPeak       |
| 25.0                         |                                   |            |              |         |                  |           |                                 |           | Next Pk Right  |
| 15.0<br>5.00                 |                                   |            |              |         |                  |           |                                 |           | Next Pk Lef    |
| -5.00                        |                                   |            |              |         |                  |           |                                 | 13.00 dBn | Marker Delta   |
| -25.0                        |                                   |            |              | (11)-11 | and I starters a | 1         | and the street                  |           | Mkr→CF         |
| -45.0                        |                                   |            |              |         |                  |           |                                 |           | Mkr→RefLv      |
| -55.0<br>Start 30<br>#Res BM | MHz<br>/ 1.0 MHz                  | #VBV       | ( 3.0 MHz    |         | #5               | weep 50   | Stop 19.100                     |           | More<br>1 of 2 |
| ASG DI                       |                                   | #101       |              |         | <i>"</i> σ       | STATUS    |                                 | · p.3)    |                |



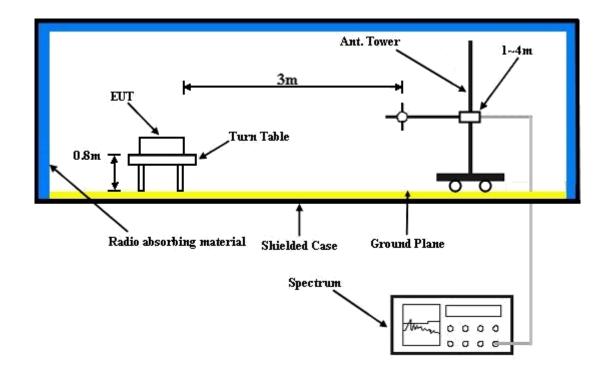
# 4.7 RADIATED EMISSION MEASUREMENT

#### 4.7.1 LIMITS OF RADIATED EMISSION MEASUREMENT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The emission limit is equal to -13dBm.

#### 4.7.2 TEST PROCEDURES

- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.R.P power 2.15dBi.


**NOTE:** The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

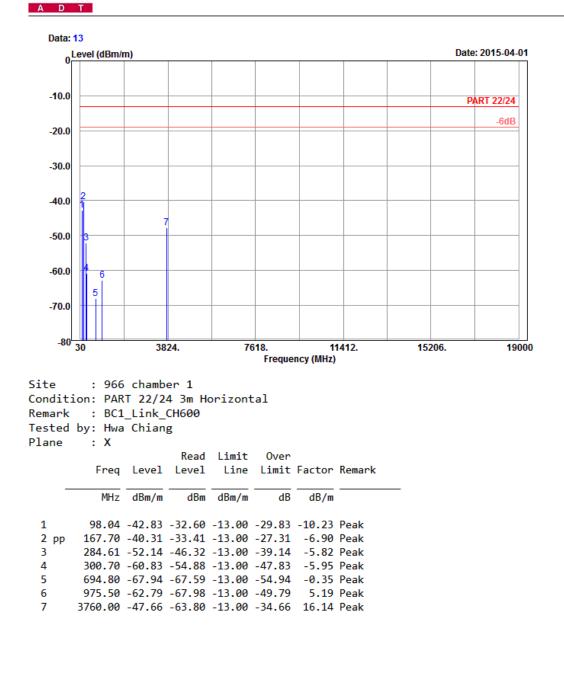
#### 4.7.3 DEVIATION FROM TEST STANDARD

No deviation



### 4.7.4 TEST SETUP




For the actual test configuration, please refer to the attached file (Test Setup Photo).



#### 4.7.5 TEST RESULTS

CDMA:


Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch







Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch



```
Site : 966 chamber 1
Condition: PART 22/24 3m Vertical
Remark : BC1_Link_CH600
Tested by: Hwa Chiang
Plane : X
```

|      | Freq    | Level  |        | Limit<br>Line |        | Factor | Remark |
|------|---------|--------|--------|---------------|--------|--------|--------|
|      | MHz     | dBm/m  | dBm    | dBm/m         | dB     | dB/m   |        |
|      |         |        |        |               |        |        |        |
| 1 pp | 97.77   | -47.75 | -37.52 | -13.00        | -34.75 | -10.23 | Peak   |
| 2    | 154.47  | -47.98 | -40.14 | -13.00        | -34.98 | -7.84  | Peak   |
| 3    | 188.22  | -47.76 | -42.06 | -13.00        | -34.76 | -5.70  | Peak   |
| 4    | 382.60  | -66.04 | -62.42 | -13.00        | -53.04 | -3.62  | Peak   |
| 5    | 689.90  | -67.92 | -67.59 | -13.00        | -54.92 | -0.33  | Peak   |
| 6    | 964.30  | -63.93 | -69.08 | -13.00        | -50.93 | 5.15   | Peak   |
| 7    | 3760.00 | -48.55 | -64.69 | -13.00        | -35.55 | 16.14  | Peak   |



# **5 PHOTOGRAPHS OF THE TEST CONFIGURATION**

Please refer to the attached file (Test Setup Photo).



# 6 INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Lab: Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.



# 7 APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications were made to the EUT by the lab during the test.

---END----