Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton-TW (Auden)
Certificate No: DAE4-1399_Nov16
CALIBRATION CERTIFICATE

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

* Service suisse d'étalonnage

Servizio svizzero di taratura
5 Swiss Calibration Service

Accreditation No.: SCS 0108

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics
Connector angle
information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
- DC Voltage Measurement Linearity: Verification of the Linearity at $+10 \%$ and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
- Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
- Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
- $A D$ Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
- Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
- Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
- Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
- Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
- Power consumption: Typical value for information. Supply currents in various operating modes.

AD - Converter Resolution nominal
High Range: $\quad 1 \mathrm{LSB}=\quad 6.1 \mu \mathrm{~V}, \quad$ full range $=-100 \ldots+300 \mathrm{mV}$
Low Range: $\quad 1 \mathrm{LSB}=\quad 61 \mathrm{nV}, \quad$ full range $=-1 \ldots \ldots+3 \mathrm{mV}$
DASY measurement parameters: Auto Zero Time: 3 sec ; Measuring time: 3 sec

Calibration Factors	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
High Range	$403.601 \pm 0.02 \%(\mathrm{k}=2)$	$403.860 \pm 0.02 \%(\mathrm{k}=2)$	$403.715 \pm 0.02 \%(\mathrm{k}=2)$
Low Range	$3.98192 \pm 1.50 \%(\mathrm{k}=2)$	$3.99210 \pm 1.50 \%(\mathrm{k}=2)$	$3.98028 \pm 1.50 \%(\mathrm{k}=2)$

Connector Angle

Connector Angle to be used in DASY system $302.5^{\circ} \pm 1^{\circ}$

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading $(\mu \mathrm{V})$	Difference $(\mu \mathrm{V})$	Error (\%)	
Channel X	+ Input	199995.88	1.05	0.00
Channel X \quad + Input	20002.28	0.87	0.00	
Channel X	- Input	-19998.50	2.29	-0.01
Channel Y	+ Input	199993.59	-1.44	-0.00
Channel Y	+ Input	20000.11	-1.26	-0.01
Channel Y	- Input	-20001.82	-0.91	0.00
Channel Z	+ Input	199995.29	-0.07	-0.00
Channel Z	+ Input	19998.72	-2.63	-0.01
Channel Z	- Input	-20002.93	-1.99	0.01

Low Range	Reading $(\mu \mathrm{V})$	Difference $(\mu \mathrm{V})$	Error (\%)	
Channel X	+ Input	2001.09	-0.18	-0.01
Channel X	+ Input	201.99	0.26	0.13
Channel X	- Input	-197.66	0.46	-0.23
Channel Y	+ Input	2001.13	-0.06	-0.00
Channel Y	+ Input	200.58	-0.99	-0.49
Channel Y	- Input	-198.74	-0.44	0.22
Channel Z	+ Input	2001.38	0.15	0.01
Channel Z	+ Input	200.84	-0.68	-0.34
Channel Z	- Input	-199.07	-0.83	0.42

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading ($\mu \mathrm{V})$	Low Range Average Reading $(\mu \mathrm{V})$
Channel X	200	-4.94	-6.62
	-200	8.38	6.51
Channel Y	200	-6.22	-6.54
	-200	5.04	4.27
Channel Z	200	-6.68	-6.74
	-200	4.86	5.05

3. Channel separation

DASY measurement parameters; Auto Zero Time: 3 sec ; Measuring time: 3 sec

	Input Voltage (mV)	Channel $\mathbf{X}(\mu \mathrm{V})$	Channel $\mathrm{Y}(\mu \mathrm{V})$	Channel $Z(\mu \mathrm{~V})$
Channel \mathbf{X}	200	-	4.65	-1.72
Channel Y	200	9.38	-	6.88
Channel Z	200	8.80	6.72	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15826	16053
Channel Y	16118	16526
Channel Z	15887	15918

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec ; Measuring time: 3 sec Input 10M Ω

	Average ($\mu \mathrm{V}$)	min. Offset ($\mu \mathrm{V}$)	max. Offset $(\mu \mathrm{V})$	Std. Deviation $(\mu \mathrm{V})$
Channel \mathbf{X}	0.11	-0.73	0.73	0.27
Channel Y	-0.19	-1.32	1.76	0.44
Channel Z	-0.78	-2.06	0.51	0.41

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA
7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	
Supply (- Vcc)	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzeriand

Accredited by the Swiss Accreditation Service (SAS)

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S
Swiss Calibration Service

Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client Sporton-TW (Auden)
CALIBRATION CERTIFICATE

[References

[1] ANSI-C63.19-2007
American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.
[2] ANSI-C63.19-2011
American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.
[3] DASY5 manual, Chapter: Hearing Aid Compatibility (HAC) T-Coil Extension

Description of the AM1D probe

The AM1D Audio Magnetic Field Probe is a fully shielded magnetic field probe for the frequency range from 100 Hz to 20 kHz . The pickup coil is compliant with the dimensional requirements of $[1+2]$. The probe includes a symmetric low noise amplifier for the signal available at the shielded 3 pin connector at the side. Power is supplied via the same connector (phantom power supply) and monitored via the LED near the connector. The 7 pin connector at the end of the probe does not carry any signals, but determines the angle of the sensor when mounted on the DAE. The probe supports mechanical detection of the surface.
The single sensor in the probe is arranged in a tilt angle allowing measurement of 3 orthogonal field components when rotating the probe by 120° around its axis. It is aligned with the perpendicular component of the field, if the probe axis is tilted nominally 35.3° above the measurement plane, using the connector rotation and sensor angle stated below.
The probe is fully RF shielded when operated with the matching signal cable (shielded) and allows measurement of audio magnetic fields in the close vicinity of RF emitting wireless devices according to $[1+2]$ without additional shielding.

Handling of the item

The probe is manufactured from stainless steel. In order to maintain the performance and calibration of the probe, it must not be opened. The probe is designed for operation in air and shall not be exposed to humidity or liquids. For proper operation of the surface detection and emergency stop functions in a DASY system, the probe must be operated with the special probe cup provided (larger diameter).

Methods Applied and Interpretation of Parameters

- Coordinate System: The AM1D probe is mounted in the DASY system for operation with a HAC Test Arch phantom with AMCC Helmholtz calibration coil according to [3], with the tip pointing to "southwest" orientation.
- Functional Test: The functional test preceding calibration includes test of Noise level
RF immunity (1 kHz AM modulated signal). The shield of the probe cable must be well connected. Frequency response verification from 100 Hz to 10 kHz .
- Connector Rotation: The connector at the end of the probe does not carry any signals and is used for fixation to the DAE only. The probe is operated in the center of the AMCC Helmholtz coil using a 1 kHz magnetic field signal. Its angle is determined from the two minima at nominally $+120^{\circ}$ and 120° rotation, so the sensor in the tip of the probe is aligned to the vertical plane in z-direction, corresponding to the field maximum in the AMCC Helmholtz calibration coil.
- Sensor Angle: The sensor tilting in the vertical plane from the ideal vertical direction is determined from the two minima at nominally $+120^{\circ}$ and -120°. DASY system uses this angle to align the sensor for radial measurements to the x and y axis in the horizontal plane.
Sensitivity: With the probe sensor aligned to the z-field in the AMCC, the output of the probe is compared to the magnetic field in the AMCC at 1 kHz . The field in the AMCC Helmholtz coil is given by the geometry and the current through the coil, which is monitored on the precision shunt resistor of the coil.

AM1D probe identification and configuration data

Item	AM1DV3 Audio Magnetic 1D Field Probe
Type No	SP AM1 001 BA
Serial No	$\mathbf{3 1 3 0}$

Overall length	296 mm
Tip diameter	6.0 mm (at the tip)
Sensor offset	3.0 mm (centre of sensor from tip)
Internal Amplifier	20 dB

Manufacturer / Origin	Schmid \& Partner Engineering AG, Zürich, Switzerland
Manufacturing date	July 9, 2012
Last calibration date	November 10,2015

Calibration data

Connector rotation angle	(in DASY system)	82.3°	$+/-3.6^{\circ}(\mathrm{k}=2)$
Sensor angle	(in DASY system)	1.12°	$+/-0.5^{\circ}(\mathrm{k}=2)$
Sensitivity at 1 kHz	(in DASY system)	$0.00743 \mathrm{~V} /(\mathrm{A} / \mathrm{m})$	$+/-2.2 \%(\mathrm{k}=2)$

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

