

# FCC RF Test Report

| APPLICANT      | : | Bullitt Group                     |
|----------------|---|-----------------------------------|
| EQUIPMENT      | : | Rugged Smart Phone                |
| BRAND NAME     | : | Motorola                          |
| MODEL NAME     | : | BM2S1E                            |
| FCC ID         | : | ZL5BM2S1EE                        |
| STANDARD       | : | FCC Part 15 Subpart C §15.247     |
| CLASSIFICATION | : | (DTS) Digital Transmission System |
| TEST DATE(S)   | : | Nov. 08, 2022 ~ Dec. 23, 2022     |

We, Sporton International Inc. (Shenzhen), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Shenzhen), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia



Sporton International Inc. (ShenZhen) 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China



# TABLE OF CONTENTS

|     |       | N HISTORY                                              | -  |
|-----|-------|--------------------------------------------------------|----|
| SUI | MMAR  | Y OF TEST RESULT                                       | 4  |
| 1   | GENE  | ERAL DESCRIPTION                                       | 5  |
|     | 1.1   | Applicant                                              | 5  |
|     | 1.2   | Manufacturer                                           | 5  |
|     | 1.3   | Product Feature of Equipment Under Test                | 5  |
|     | 1.4   | Product Specification of Equipment Under Test          | 5  |
|     | 1.5   | Modification of EUT                                    | 5  |
|     | 1.6   | Testing Location                                       | 6  |
|     | 1.7   | Test Software                                          | 6  |
|     | 1.8   | Applicable Standards                                   | 6  |
| 2   | TEST  | CONFIGURATION OF EQUIPMENT UNDER TEST                  | 7  |
|     | 2.1   | Carrier Frequency Channel                              | 7  |
|     | 2.2   | Test Mode                                              | 8  |
|     | 2.3   | Connection Diagram of Test System                      | 9  |
|     | 2.4   | Support Unit used in test configuration and system     | 9  |
|     | 2.5   | EUT Operation Test Setup                               | 10 |
|     | 2.6   | Measurement Results Explanation Example                | 10 |
| 3   | TEST  | RESULT                                                 | 11 |
|     | 3.1   | 6dB and 99% Bandwidth Measurement                      | 11 |
|     | 3.2   | Output Power Measurement                               | 18 |
|     | 3.3   | Power Spectral Density Measurement                     | 19 |
|     | 3.4   | Conducted Band Edges and Spurious Emission Measurement | 26 |
|     | 3.5   | Radiated Band Edges and Spurious Emission Measurement  | 35 |
|     | 3.6   | AC Conducted Emission Measurement                      | 39 |
|     | 3.7   | Antenna Requirements                                   | 41 |
| 4   | LIST  | OF MEASURING EQUIPMENT                                 | 42 |
| 5   | UNCE  | ERTAINTY OF EVALUATION                                 | 43 |
| AP  | PEND  | X A. CONDUCTED TEST RESULTS                            |    |
| AP  | PENDI | X B. AC CONDUCTED EMISSION TEST RESULT                 |    |
| AP  | PENDI | X C. RADIATED SPURIOUS EMISSION                        |    |
| AP  | PENDI | X D. DUTY CYCLE PLOTS                                  |    |

**APPENDIX E. SETUP PHOTOGRAPHS** 



# **REVISION HISTORY**

| REPORT NO.   | VERSION | DESCRIPTION             | ISSUED DATE   |
|--------------|---------|-------------------------|---------------|
| FR322807-01B | Rev. 01 | Initial issue of report | Mar. 13, 2023 |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |
|              |         |                         |               |



| Report<br>Section | FCC Rule              | Description                                   | Limit                    | Result      | Remark                                 |
|-------------------|-----------------------|-----------------------------------------------|--------------------------|-------------|----------------------------------------|
| 3.1               | 15.247(a)(2)          | 6dB Bandwidth                                 | ≥ 0.5MHz                 | Pass        | -                                      |
| 3.1               | -                     | 99% Bandwidth                                 | -                        | Report only | -                                      |
| 3.2               | 15.247(b)(3)          | Peak Output Power                             | ≤ 30dBm                  | Pass        | -                                      |
| 3.3               | 15.247(e)             | Power Spectral Density                        | ≤ 8dBm/3kHz              | Pass        | -                                      |
| 3.4               | 15.247(d)             | Conducted Band Edges<br>and Spurious Emission | ≤ 20dBc                  | Pass        | -                                      |
| 3.5               | 15.247(d)             | Radiated Band Edges<br>and Spurious Emission  | 15.209(a) &<br>15.247(d) | Pass        | Under limit<br>9.35 dB at<br>33.88 MHz |
| 3.6               | 15.207                | AC Conducted Emission                         | 15.207(a)                | Pass        | Under limit<br>13.33 dB at<br>0.19 MHz |
| 3.7               | 15.203 &<br>15.247(b) | Antenna Requirement                           | 15.203 &<br>15.247(b)    | Pass        | -                                      |

# SUMMARY OF TEST RESULT

**Note:** This is the change FCC ID report. Since no changes have been made to this device, all test cases were leveraged from original report (FR2O1410-01B).

#### Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

#### **Comments and Explanations:**

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.



# **1** General Description

### 1.1 Applicant

### **Bullitt Group**

One Valpy, Valpy Street, Reading, Berkshire, RG1 1AR, United Kingdom

### 1.2 Manufacturer

### **Bullitt Mobile Limited**

One Valpy, Valpy Street, Reading, Berkshire, RG1 1AR, United Kingdom

### **1.3 Product Feature of Equipment Under Test**

| Product Feature |                                                                                                                                         |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Equipment       | Rugged Smart Phone                                                                                                                      |  |  |
| Brand Name      | Motorola                                                                                                                                |  |  |
| Model Name      | BM2S1E                                                                                                                                  |  |  |
| FCC ID          | ZL5BM2S1EE                                                                                                                              |  |  |
| IMEI Code       | Conducted: 351416010000076/351416010002072<br>Conduction: 351416010000043/351416010002049<br>Radiation: 351416010000050/351416010002056 |  |  |
| EUT Stage       | Identical Prototype                                                                                                                     |  |  |

**Remark:** The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

# **1.4 Product Specification of Equipment Under Test**

| Standards-related Product Specification |                                                 |  |  |
|-----------------------------------------|-------------------------------------------------|--|--|
| Tx/Rx Frequency Range                   | 2402 MHz ~ 2480 MHz                             |  |  |
| Number of Channels                      | 40                                              |  |  |
| Carrier Frequency of Each Channel       | 40 Channel (37 hopping + 3 advertising channel) |  |  |
| Meximum Output Dewerte Antenne          | Bluetooth LE 1Mbps: -0.10 dBm (0.0010 W)        |  |  |
| Maximum Output Power to Antenna         | Bluetooth LE 2Mbps: -0.07 dBm (0.0010 W)        |  |  |
| 00% Occupied Bandwidth                  | Bluetooth LE 1Mbps: 1.027 MHz                   |  |  |
| 99% Occupied Bandwidth                  | Bluetooth LE 2Mbps: 2.046 MHz                   |  |  |
| Antenna Type / Gain                     | IFA Antenna type with gain -1.50 dBi            |  |  |
| Type of Modulation                      | Bluetooth LE : GFSK                             |  |  |

# **1.5 Modification of EUT**

No modifications are made to the EUT during all test items.



### **1.6 Testing Location**

Sporton International Inc. (ShenZhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

| Test Firm                            | Sporton International Inc. (ShenZhen)                                                                                                                                                           |                     |                        |  |  |  |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------|--|--|--|
| Test Site Location                   | 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan,<br>Shenzhen, 518055 People's Republic of China<br>TEL: +86-755-86379589<br>FAX: +86-755-86379595                      |                     |                        |  |  |  |
| Sporton Site No. FCC Designation No. |                                                                                                                                                                                                 |                     |                        |  |  |  |
| Test Site No.                        | CO01-SZ<br>TH01-SZ                                                                                                                                                                              | CN1256              | Registration No.421272 |  |  |  |
|                                      |                                                                                                                                                                                                 |                     |                        |  |  |  |
| Test Firm                            | Sporton International Inc.                                                                                                                                                                      | (ShenZhen)          |                        |  |  |  |
| Test Site Location                   | 101, 1st Floor, Block B, Building 1, No. 2, Tengfeng 4th Road, Fenghuang<br>Community, Fuyong Street, Baoan District, Shenzhen City Guangdong Province<br>China 518103<br>TEL: +86-755-33202398 |                     |                        |  |  |  |
|                                      | On onton Oito No                                                                                                                                                                                |                     | FCC Test Firm          |  |  |  |
| Test Site No.                        | Sporton Site No.                                                                                                                                                                                | FCC Designation No. | Registration No.       |  |  |  |
|                                      | 03CH01-SZ                                                                                                                                                                                       | CN1256              | 421272                 |  |  |  |

### 1.7 Test Software

| Item Site |           | Manufacturer | Name | Version     |
|-----------|-----------|--------------|------|-------------|
| 1.        | 03CH01-SZ | AUDIX        | E3   | 6.2009-8-24 |
| 2.        | CO01-SZ   | AUDIX        | E3   | 6.120613b   |

### **1.8 Applicable Standards**

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

### Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.



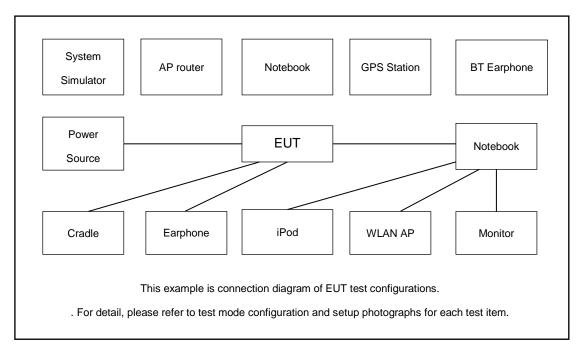
# 2 Test Configuration of Equipment Under Test

# 2.1 Carrier Frequency Channel

| Frequency Band  | Channel | Freq.<br>(MHz) | Channel | Freq.<br>(MHz) |
|-----------------|---------|----------------|---------|----------------|
|                 | 0       | 2402           | 21      | 2444           |
|                 | 1       | 2404           | 22      | 2446           |
|                 | 2       | 2406           | 23      | 2448           |
|                 | 3       | 2408           | 24      | 2450           |
|                 | 4       | 2410           | 25      | 2452           |
|                 | 5       | 2412           | 26      | 2454           |
|                 | 6       | 2414           | 27      | 2456           |
|                 | 7       | 2416           | 28      | 2458           |
|                 | 8       | 2418           | 29      | 2460           |
|                 | 9       | 2420           | 30      | 2462           |
| 2400-2483.5 MHz | 10      | 2422           | 31      | 2464           |
|                 | 11      | 2424           | 32      | 2466           |
|                 | 12      | 2426           | 33      | 2468           |
|                 | 13      | 2428           | 34      | 2470           |
|                 | 14      | 2430           | 35      | 2472           |
|                 | 15      | 2432           | 36      | 2474           |
|                 | 16      | 2434           | 37      | 2476           |
|                 | 17      | 2436           | 38      | 2478           |
|                 | 18      | 2438           | 39      | 2480           |
|                 | 19      | 2440           | -       | -              |
|                 | 20      | 2442           | -       | -              |



### 2.2 Test Mode


- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

|               | Summary table of Test Cases                                                          |  |  |  |  |
|---------------|--------------------------------------------------------------------------------------|--|--|--|--|
| Test Item     | Data Rate / Modulation                                                               |  |  |  |  |
| rest item     | Bluetooth – LE / GFSK                                                                |  |  |  |  |
| Conducted     | Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps & 2Mbps                                     |  |  |  |  |
| TCs           | Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps & 2Mbps                                     |  |  |  |  |
| 105           | Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps & 2Mbps                                     |  |  |  |  |
| Radiated      | Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps & 2Mbps                                     |  |  |  |  |
| TCs           | Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps & 2Mbps                                     |  |  |  |  |
| TCS           | Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps & 2Mbps                                     |  |  |  |  |
| AC            | Made 1, CSM 950 Idle , Divetesth Link , USD Coble1 (Charging from Adoptor)           |  |  |  |  |
| Conducted     | Mode 1: GSM 850 Idle + Bluetooth Link + USB Cable1 (Charging from Adapter) +         |  |  |  |  |
| Emission      | Battery 1                                                                            |  |  |  |  |
| Simultaneous  | Bluetooth LE Tx Ch39_2480MHz + GSM 850 Link for Sample 1                             |  |  |  |  |
| transmission  | Bluetooth LE Tx Ch39_2480MHz + NTN Band 23 Link for Sample 1                         |  |  |  |  |
| transmission  | Bluetooth LE Tx Ch39_2480MHz + GSM 850 Link for Sample 2                             |  |  |  |  |
| Remark:       |                                                                                      |  |  |  |  |
| 1. For Radiat | ed Test Cases, The tests were performance with Adapter , Battery 1 and USB Cable1    |  |  |  |  |
| 2. RSE Co-lo  | 2. RSE Co-location mode is assessed from the worst case of WWAN RSE and BLE TX mdoe. |  |  |  |  |



### 2.3 Connection Diagram of Test System



### 2.4 Support Unit used in test configuration and system

| ltem | Equipment             | Trade Name | Model Name | FCC ID      | Data Cable | Power Cord      |
|------|-----------------------|------------|------------|-------------|------------|-----------------|
| 1.   | Base Station          | Anritsu    | MT8820C    | N/A         | N/A        | Unshielded,1.8m |
| 2.   | Base Station          | R&S        | CMW500     | Fcc DoC     | N/A        | Shielded, 1.5m  |
| 3.   | Base Station          | R&S        | CBT32      | N/A         | N/A        | Unshielded,1.8m |
| 4.   | WLAN AP               | Dlink      | DIR-820L   | KA2IR820LA1 | N/A        | Unshielded,1.8m |
| 5.   | Bluetooth<br>Earphone | Samsung    | EO-MG900   | PYAHS-107W  | N/A        | N/A             |



### 2.5 EUT Operation Test Setup

For BLE function, the engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

### 2.6 Measurement Results Explanation Example

### For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 1.50 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 1.50 + 10 = 11.50 (dB)

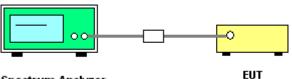


# 3 Test Result

### 3.1 6dB and 99% Bandwidth Measurement

### 3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.


### **3.1.2 Measuring Instruments**

The section 4.0 of List of Measuring Equipment of this test report is used for test.

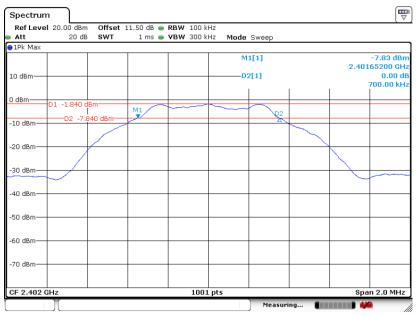
### 3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 11.8
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1% to 5% of the 99% OBW and the VBW is set to 3 times of the RBW.
- 6. Measure and record the results in the test report.

### 3.1.4 Test Setup

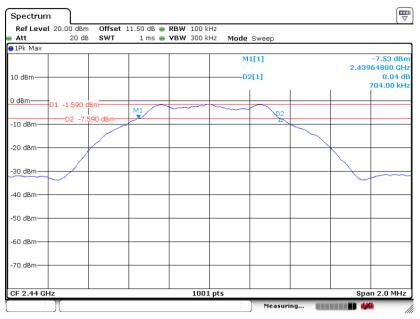


Spectrum Analyzer



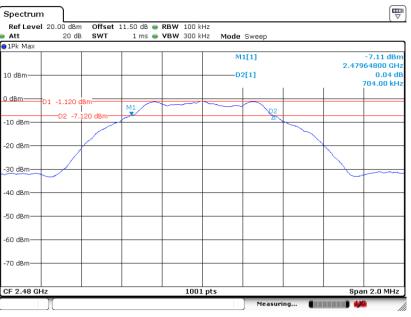

### 3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.


#### **Bluetooth LE 1Mbps**

#### 6 dB Bandwidth Plot on Channel 00



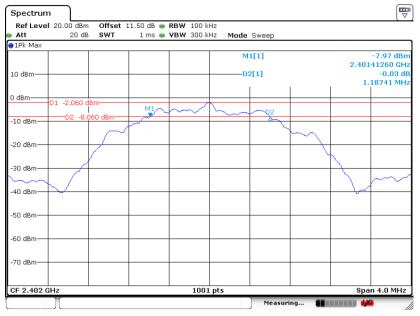

Date: 10.NOV.2022 16:09:50

#### 6 dB Bandwidth Plot on Channel 19



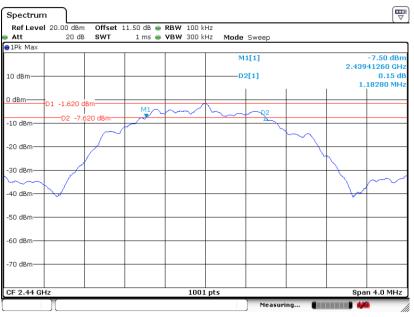
Date: 10.NOV.2022 16:22:19






#### 6 dB Bandwidth Plot on Channel 39

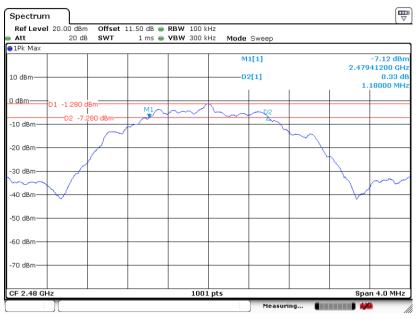
Date: 10.NOV.2022 16:32:21


### **Bluetooth LE 2Mbps**

#### 6 dB Bandwidth Plot on Channel 00



Date: 10.NOV.2022 16:40:50





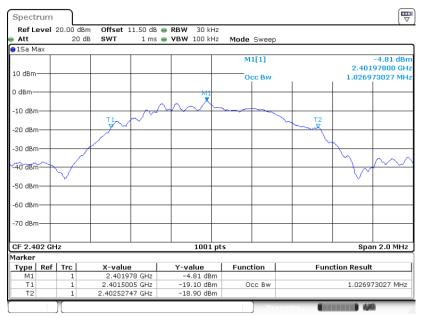

### 6 dB Bandwidth Plot on Channel 19

Date: 10.NOV.2022 16:46:19

#### 6 dB Bandwidth Plot on Channel 39

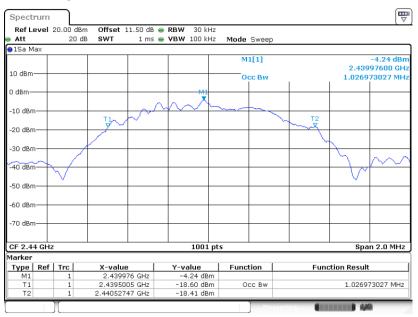


Date: 10.NOV.2022 16:49:14



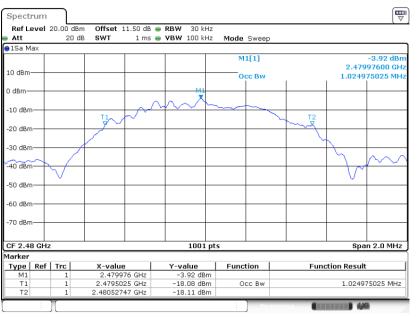

### 3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.


#### **Bluetooth LE 1Mbps**

#### 99% Occupied Bandwidth Plot on Channel 00



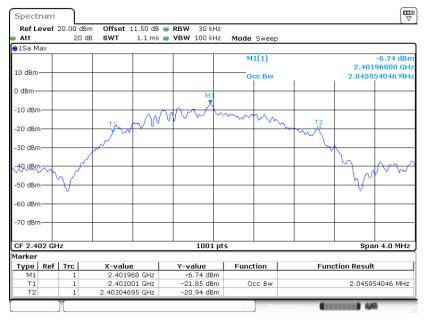

Date: 10.NOV.2022 16:17:39

#### 99% Occupied Bandwidth Plot on Channel 19



Date: 10.NOV.2022 16:28:56

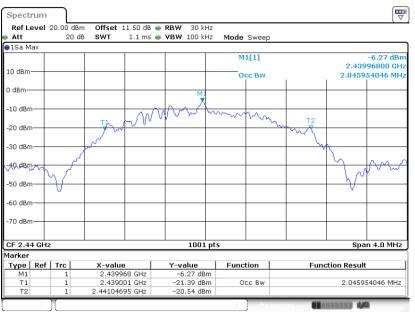





### 99% Occupied Bandwidth Plot on Channel 39

Date: 10.NOV.2022 16:34:51

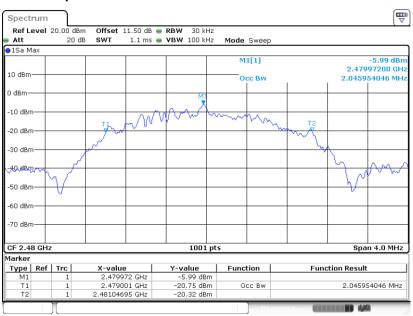
#### **Bluetooth LE 2Mbps**


#### 99% Occupied Bandwidth Plot on Channel 00



Date: 10.NOV.2022 16:43:53

**Sporton International Inc. (ShenZhen)** TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: ZL5BM2S1EE






### 99% Occupied Bandwidth Plot on Channel 19

Date: 10.NOV.2022 16:47:50

#### 99% Occupied Bandwidth Plot on Channel 39



Date: 10.NOV.2022 16:50:47

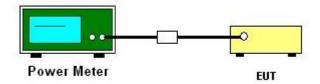
Note : The occupied channel bandwidth is maintained within the band of operation for all of the modulations.



### 3.2 Output Power Measurement

### 3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6 dBi.


### **3.2.2 Measuring Instruments**

The section 4.0 of List of Measuring Equipment of this test report is used for test.

### 3.2.3 Test Procedures

- The testing follows the Measurement Procedure of ANSI C63.10-2013 clause 11.9.1.3 PKPM1 Peak power meter or ANSI C63.10-2013 clause 11.9.2.3.1 Method AVGPM method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

### 3.2.4 Test Setup



### 3.2.5 Test Result of Peak Output Power

Please refer to Appendix A.

### 3.2.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.



### 3.3 Power Spectral Density Measurement

### 3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

### 3.3.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

### 3.3.3 Test Procedures

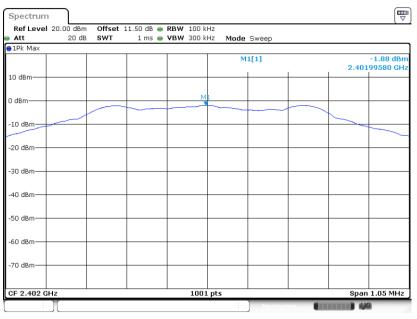
- 1. The testing follows Measurement Procedure of ANSI C63.10-2013 clause 11.10.2 Method PKPSD.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
  Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

### 3.3.4 Test Setup



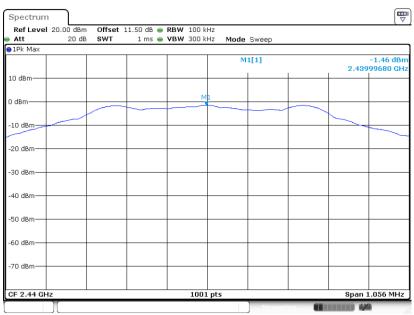
### 3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.





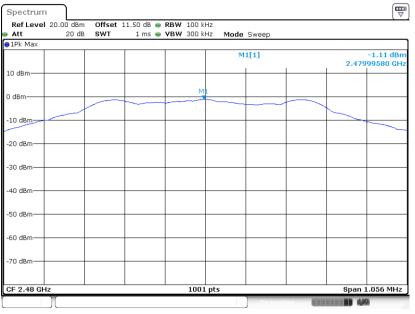

### 3.3.6 Test Result of Power Spectral Density Plots (100kHz)


### Bluetooth LE 1Mbps

### PSD 100kHz Plot on Channel 00



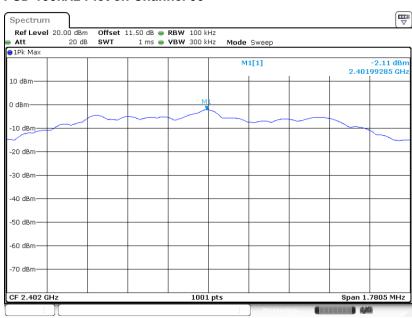
Date: 10.NOV.2022 16:11:02


### PSD 100kHz Plot on Channel 19



Date: 10.NOV.2022 16:24:06

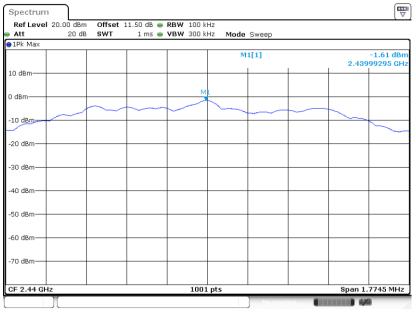



#### PSD 100kHz Plot on Channel 39



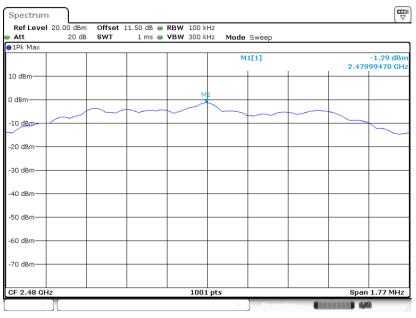
Date: 10.NOV.2022 16:32:42

#### **Bluetooth LE 2Mbps**


#### PSD 100kHz Plot on Channel 00



Date: 10.NOV.2022 16:41:17



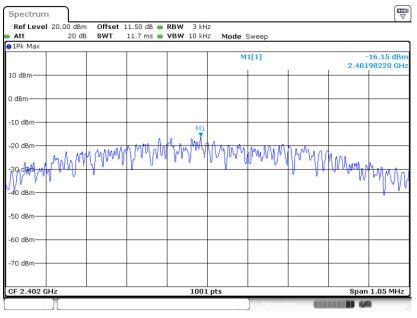

#### PSD 100kHz Plot on Channel 19



Date: 10.NOV.2022 16:47:04

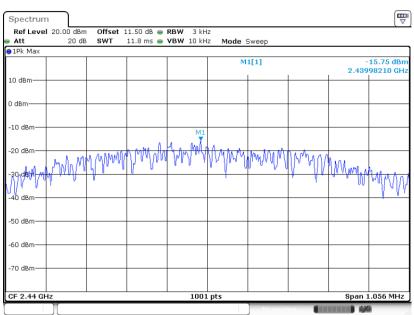
#### PSD 100kHz Plot on Channel 39




Date: 10.NOV.2022 16:49:41



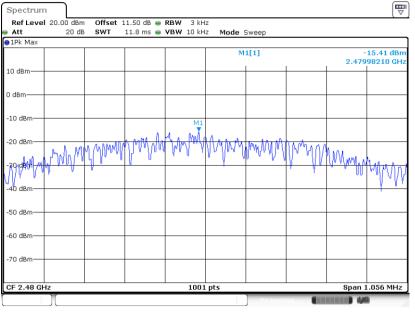
### 3.3.7 Test Result of Power Spectral Density Plots (3kHz)


### Bluetooth LE 1Mbps

### PSD 3kHz Plot on Channel 00



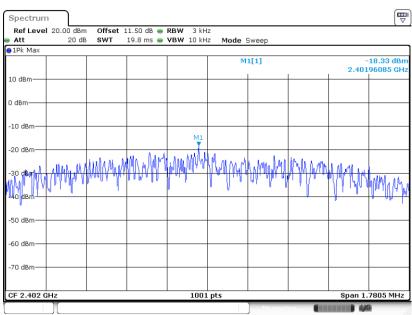
Date: 10.NOV.2022 16:10:46


### PSD 3kHz Plot on Channel 19



Date: 10.NOV.2022 16:22:45

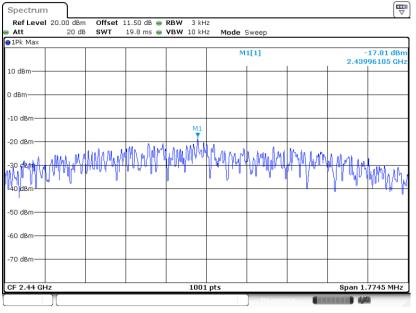



#### PSD 3kHz Plot on Channel 39



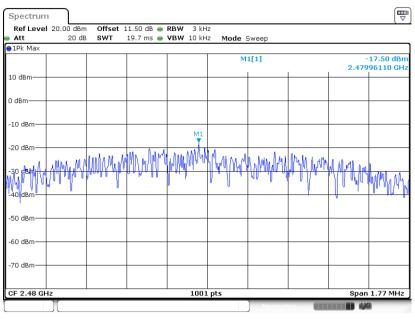
Date: 10.NOV.2022 16:32:33

#### **Bluetooth LE 2Mbps**


### PSD 3kHz Plot on Channel 00



Date: 10.NOV.2022 16:41:04




#### PSD 3kHz Plot on Channel 19



Date: 10.NOV.2022 16:46:52

#### PSD 3kHz Plot on Channel 39



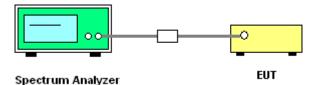
Date: 10.NOV.2022 16:49:28



### 3.4 Conducted Band Edges and Spurious Emission Measurement

### 3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

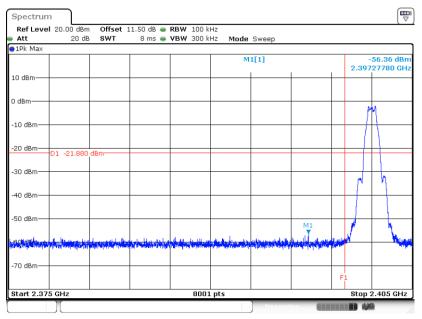

### 3.4.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

### 3.4.3 Test Procedure

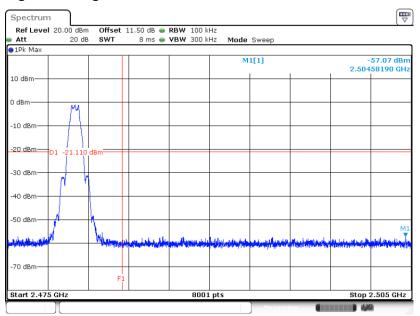
- 1. The testing follows ANSI C63.10-2013 clause 11.13
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

### 3.4.4 Test Setup






### 3.4.5 Test Result of Conducted Band Edges Plots

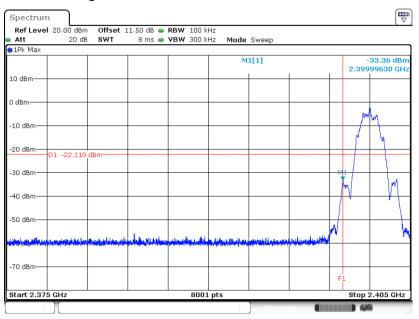

### Bluetooth LE 1Mbps

#### Low Band Edge Plot on Channel 00



Date: 10.NOV.2022 16:11:33

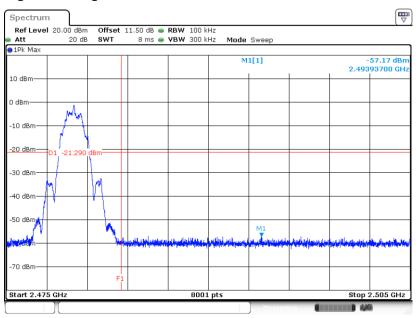
#### High Band Edge Plot on Channel 39




Date: 10.NOV.2022 16:32:54






### Bluetooth LE 2Mbps



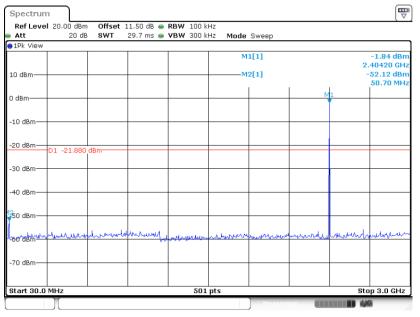
#### Low Band Edge Plot on Channel 00

Date: 10.NOV.2022 16:42:05

#### High Band Edge Plot on Channel 39



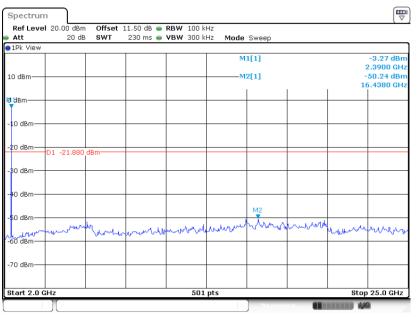
Date: 10.NOV.2022 16:49:58




### 3.4.6 Test Result of Conducted Spurious Emission Plots

### Bluetooth LE 1Mbps

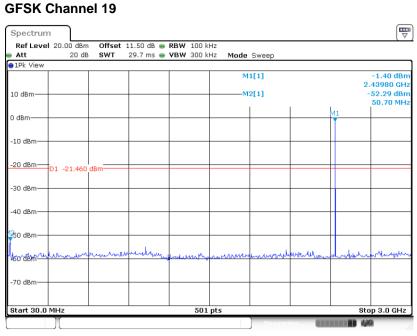
#### Conducted Spurious Emission Plot on Bluetooth LE 1Mbps


#### GFSK Channel 00



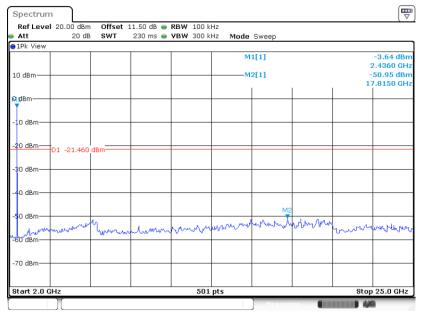
Date: 10.NOV.2022 16:53:08

# Conducted Spurious Emission Plot on Bluetooth LE 1Mbps


### GFSK Channel 00



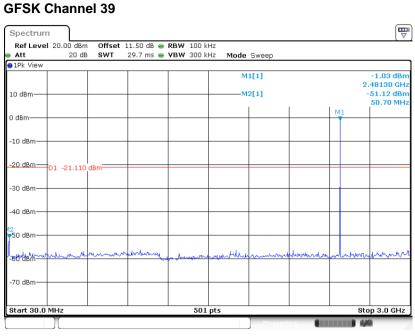
Date: 10.NOV.2022 16:53:20




### Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

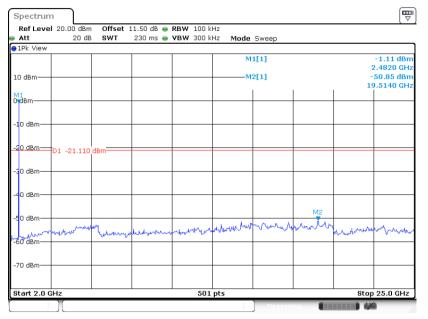


Date: 10.NOV.2022 16:54:31


### Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19



Date: 10.NOV.2022 16:54:42

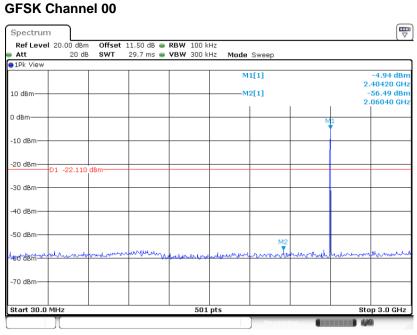



### Conducted Spurious Emission Plot on Bluetooth LE 1Mbps



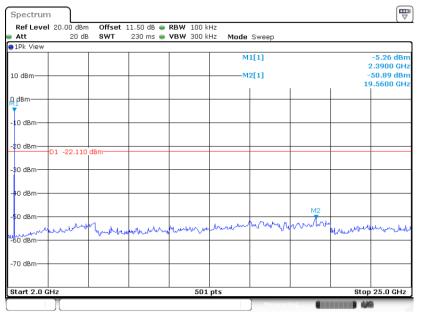
Date: 10.NOV.2022 16:55:35

### Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39




Date: 10.NOV.2022 16:55:45

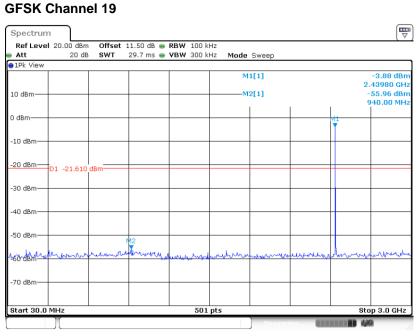



#### **Bluetooth LE 2Mbps**

### **Conducted Spurious Emission Plot on Bluetooth LE 2Mbps**

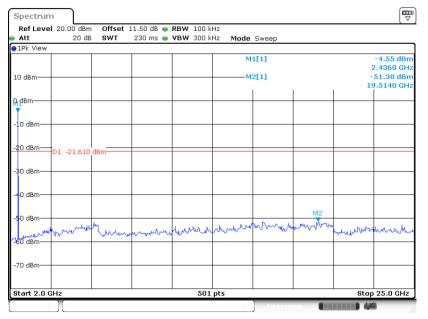


Date: 10.NOV.2022 16:43:29


### Conducted Spurious Emission Plot on Bluetooth LE 2Mbps GFSK Channel 00



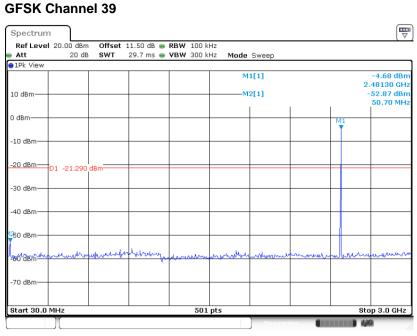
Date: 10.NOV.2022 16:43:40




### Conducted Spurious Emission Plot on Bluetooth LE 2Mbps

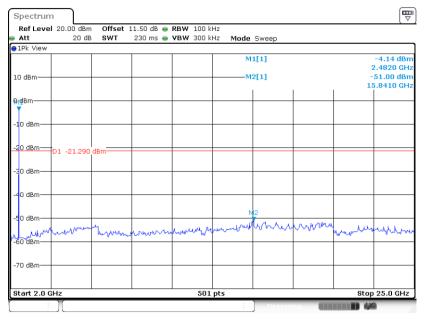


Date: 10.NOV.2022 16:47:27


### Conducted Spurious Emission Plot on Bluetooth LE 2Mbps GFSK Channel 19



Date: 10.NOV.2022 16:47:38




### Conducted Spurious Emission Plot on Bluetooth LE 2Mbps



Date: 10.NOV.2022 16:50:18

### Conducted Spurious Emission Plot on Bluetooth LE 2Mbps GFSK Channel 39



Date: 10.NOV.2022 16:50:30



### 3.5 Radiated Band Edges and Spurious Emission Measurement

### 3.5.1 Limit of Radiated Band Edges and Spurious Emission

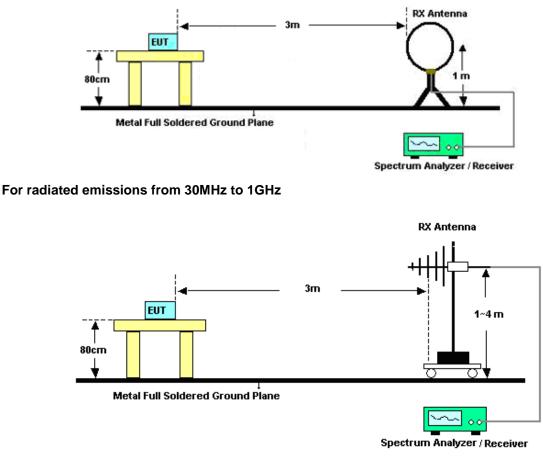
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

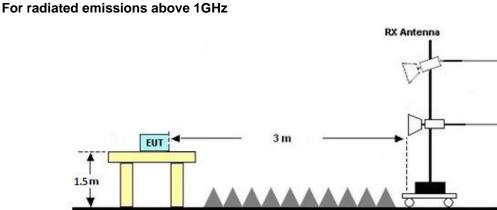
| Frequency     | Field Strength     | Measurement Distance |
|---------------|--------------------|----------------------|
| (MHz)         | (microvolts/meter) | (meters)             |
| 0.009 - 0.490 | 2400/F(kHz)        | 300                  |
| 0.490 – 1.705 | 24000/F(kHz)       | 30                   |
| 1.705 – 30.0  | 30                 | 30                   |
| 30 – 88       | 100                | 3                    |
| 88 – 216      | 150                | 3                    |
| 216 - 960     | 200                | 3                    |
| Above 960     | 500                | 3                    |

### 3.5.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.




### 3.5.3 Test Procedures


- 1. The testing follows ANSI C63.10-2013 clause 11.11 & 11.12
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 8. Use the following spectrum analyzer settings:
  - (1) Span shall wide enough to fully capture the emission being measured;
  - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
  - (3) Set RBW = 1 MHz, VBW= 3MHz for  $f \ge 1$  GHz for peak measurement. For average measurement:
    - VBW = 10 Hz, when duty cycle is no less than 98 percent.
    - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.



# 3.5.4 Test Setup

For radiated emissions below 30MHz





Metal Full Soldered Ground Plane

Spectrum Analyzer / Receiver

**Sporton International Inc. (ShenZhen)** TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: ZL5BM2S1EE 1~4 m



### 3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

### 3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

#### 3.5.7 Duty Cycle

Please refer to Appendix D.

# 3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C.



# 3.6 AC Conducted Emission Measurement

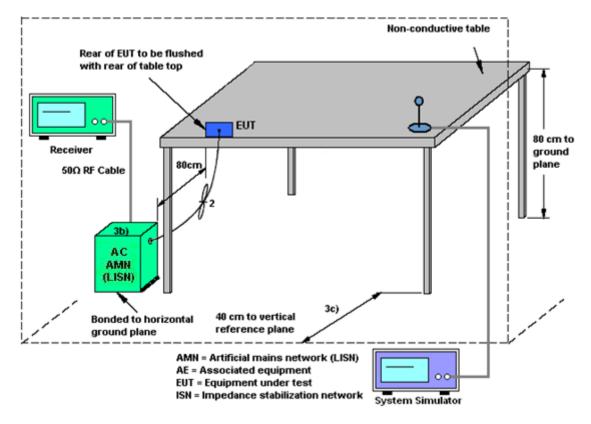
### 3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

| Frequency of emission (MHz) | Conducted limit (dBµV) |           |  |  |  |  |
|-----------------------------|------------------------|-----------|--|--|--|--|
| Frequency of emission (MHZ) | Quasi-peak             | Average   |  |  |  |  |
| 0.15-0.5                    | 66 to 56*              | 56 to 46* |  |  |  |  |
| 0.5-5                       | 56                     | 46        |  |  |  |  |
| 5-30                        | 60                     | 50        |  |  |  |  |

\*Decreases with the logarithm of the frequency.

#### 3.6.2 Measuring Instruments


The section 4.0 of List of Measuring Equipment of this test report is used for test.

#### 3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.



# 3.6.4 Test Setup



# 3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.



# 3.7 Antenna Requirements

### 3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

# 3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

# 3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.



# 4 List of Measuring Equipment

| Instrument                              | Manufacturer | Model No.                        | Serial No.       | Characteristics    | Calibration<br>Date | Test Date                       | Due Date       | Remark                   |
|-----------------------------------------|--------------|----------------------------------|------------------|--------------------|---------------------|---------------------------------|----------------|--------------------------|
| Spectrum<br>Analyzer                    | R&S          | FSV40                            | 101078           | 10Hz~40GHz         | Apr. 07, 2022       | Nov. 10, 2022~<br>Dec. 07, 2022 | Apr. 08, 2023  | Conducted<br>(TH01-SZ)   |
| Pulse Power<br>Senor                    | Anritsu      | MA2411B                          | 1339473          | 30MHz~40GHz        | Dec. 28, 2021       | Nov. 10, 2022~<br>Dec. 07, 2022 | Dec. 27, 2022  | Conducted<br>(TH01-SZ)   |
| Power Meter                             | Anritsu      | ML2495A                          | 1542004          | 50MHz<br>Bandwidth | Dec. 28, 2021       | Nov. 10, 2022~<br>Dec. 07, 2022 | Dec. 27, 2022  | Conducted<br>(TH01-SZ)   |
| EMI Test<br>Receiver&SA                 | Agilent      | N9038A                           | MY522601<br>85   | 20Hz~26.5GHz       | Dec.27, 2021        | Nov. 08, 2022~<br>Dec. 23, 2022 | Dec.26, 2022   | Radiation<br>(03CH01-SZ) |
| EXA Spectrum<br>Analyzer                | KEYSIGHT     | N9010A                           | MY551502<br>13   | 10Hz~44GHz         | Jul. 07, 2022       | Nov. 08, 2022~<br>Dec. 23, 2022 | Jul. 06, 2023  | Radiation<br>(03CH01-SZ) |
| Loop Antenna                            | R&S          | HFH2-Z2                          | 100354           | 9kHz~30MHz         | Jul. 28, 2022       | Nov. 08, 2022~<br>Dec. 23, 2022 | Jun. 27, 2024  | Radiation<br>(03CH01-SZ) |
| Bilog Antenna                           | TeseQ        | CBL6112D                         | 35407            | 30MHz-2GHz         | Sep. 28, 2021       | Nov. 08, 2022~<br>Dec. 23, 2022 | Sep. 27, 2023  | Radiation<br>(03CH01-SZ) |
| Double Ridge<br>Horn Antenna            | ETS-Lindgren | 3117                             | 00119436         | 1GHz~18GHz         | Jul. 07, 2022       | Nov. 08, 2022~<br>Dec. 23, 2022 | Jul. 06, 2023  | Radiation<br>(03CH01-SZ) |
| SHF-EHF Horn                            | com-power    | AH-840                           | 101071           | 18Ghz-40GHz        | Apr.10, 2022        | Nov. 08, 2022~<br>Dec. 23, 2022 | Apr.09 2023    | Radiation<br>(03CH01-SZ) |
| LF Amplifier                            | Burgeon      | BPA-530                          | 102209           | 0.01~3000Mhz       | Apr. 06, 2022       | Nov. 08, 2022~<br>Dec. 23, 2022 | Apr. 05, 2023  | Radiation<br>(03CH01-SZ) |
| HF Amplifier                            | MITEQ        | AMF-7D-0010<br>1800-30-10P-<br>R | 1943528          | 1GHz~18GHz         | Oct.19,2022         | Nov. 08, 2022~<br>Dec. 23, 2022 | Oct.18,2023    | Radiation<br>(03CH01-SZ) |
| HF Amplifier                            | KEYSIGHT     | 83017A                           | MY532701<br>05   | 0.5GHz~26.5Gh<br>z | Oct.19,2022         | Nov. 08, 2022~<br>Dec. 23, 2022 | Oct.18,2023    | Radiation<br>(03CH01-SZ) |
| HF Amplifier                            | MITEQ        | TTA1840-35-<br>HG                | 1871923          | 18GHz~40GHz        | Jul. 06. 2022       | Nov. 08, 2022~<br>Dec. 23, 2022 | Jul. 05. 2023  | Radiation<br>(03CH01-SZ) |
| AC Power Source                         | Chroma       | 61601                            | 616010001<br>985 | N/A                | Nov.10.2022         | Nov. 08, 2022~<br>Dec. 23, 2022 | Nov.09.2023    | Radiation<br>(03CH01-SZ) |
| Turn Table                              | EM           | EM1000                           | N/A              | 0~360 degree       | NCR                 | Nov. 08, 2022~<br>Dec. 23, 2022 | NCR            | Radiation<br>(03CH01-SZ) |
| Antenna Mast                            | EM           | EM1000                           | N/A              | 1 m~4 m            | NCR                 | Nov. 08, 2022~<br>Dec. 23, 2022 | NCR            | Radiation<br>(03CH01-SZ) |
| EMI Receiver                            | R&S          | ESR7                             | 101630           | 9kHz~7GHz;         | Jul. 07, 2022       | Nov. 17, 2022~<br>Nov. 18, 2022 | Jul. 06 2023   | Conduction<br>(CO01-SZ)  |
| AC LISN                                 | R&S          | ENV216                           | 100063           | 9kHz~30MHz         | Sept. 15, 2022      | Nov. 17, 2022~<br>Nov. 18, 2022 | Sept. 14, 2023 | Conduction<br>(CO01-SZ)  |
| AC LISN<br>(for auxiliary<br>equipment) | EMCO         | 3816/2SH                         | 00103892         | 9kHz~30MHz         | Oct. 17, 2022       | Nov. 17, 2022~<br>Nov. 18, 2022 | Oct. 16, 2023  | Conduction<br>(CO01-SZ)  |

NCR: No Calibration Required



# 5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

#### **Uncertainty of Conducted Measurement**

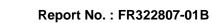
| Test Item                        | Uncertainty |
|----------------------------------|-------------|
| Conducted Power                  | ±1.34 dB    |
| Conducted Emissions              | ±1.34 dB    |
| Occupied Channel Bandwidth       | ±0.13 %     |
| Conducted Power Spectral Density | ±1.32 dB    |

#### Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

| Measuring Uncertainty for a Level of Confidence | 2.2dB |
|-------------------------------------------------|-------|
| of 95% (U = 2Uc(y))                             | 2.208 |

#### Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

| Measuring Uncertainty for a Level of Confidence | 4.248 |
|-------------------------------------------------|-------|
| of 95% (U = 2Uc(y))                             | 4.2dB |


#### Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

| Measuring Uncertainty for a Level of Confidence | 5.0dB |
|-------------------------------------------------|-------|
| of 95% (U = 2Uc(y))                             | 5.00B |

#### Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

| Measuring Uncertainty for a Level of Confidence | 4.3dB |
|-------------------------------------------------|-------|
| of 95% (U = 2Uc(y))                             | 4.308 |

----- THE END ------





# **Appendix A. Conducted Test Results**

| Test Engineer: | Chen Ran   | Temperature:       | 21~25 | °C |
|----------------|------------|--------------------|-------|----|
| Test Date:     | 2022/11/22 | Relative Humidity: | 51~54 | %  |

|      | <u>TEST RESULTS DATA</u><br>6dB and 99% Occupied Bandwidth |     |     |                |                                |                 |                          |           |  |  |  |  |
|------|------------------------------------------------------------|-----|-----|----------------|--------------------------------|-----------------|--------------------------|-----------|--|--|--|--|
| Mod. | Data<br>Rate                                               | NTX | CH. | Freq.<br>(MHz) | 99%<br>Occupied<br>BW<br>(MHz) | 6dB BW<br>(MHz) | 6dB BW<br>Limit<br>(MHz) | Pass/Fail |  |  |  |  |
| BLE  | 1Mbps                                                      | 1   | 0   | 2402           | 1.027                          | 0.700           | 0.50                     | Pass      |  |  |  |  |
| BLE  | 1Mbps                                                      | 1   | 19  | 2440           | 1.027                          | 0.704           | 0.50                     | Pass      |  |  |  |  |
| BLE  | 1Mbps                                                      | 1   | 39  | 2480           | 1.025                          | 0.704           | 0.50                     | Pass      |  |  |  |  |

| <u>TEST RESULTS DATA</u><br><u>Peak Power Table</u> |              |     |     |                |                                     |                                      |             |                        |                                 |               |  |  |
|-----------------------------------------------------|--------------|-----|-----|----------------|-------------------------------------|--------------------------------------|-------------|------------------------|---------------------------------|---------------|--|--|
| Mod.                                                | Data<br>Rate | NTX | CH. | Freq.<br>(MHz) | Peak<br>Conducted<br>Power<br>(dBm) | Conducted<br>Power<br>Limit<br>(dBm) | DG<br>(dBi) | EIRP<br>Power<br>(dBm) | EIRP<br>Power<br>Limit<br>(dBm) | Pass<br>/Fail |  |  |
| BLE                                                 | 1Mbps        | 1   | 0   | 2402           | -0.46                               | 30.00                                | -1.50       | -1.96                  | 36.00                           | Pass          |  |  |
| BLE                                                 | 1Mbps        | 1   | 19  | 2440           | -0.33                               | 30.00                                | -1.50       | -1.83                  | 36.00                           | Pass          |  |  |
| BLE                                                 | 1Mbps        | 1   | 39  | 2480           | -0.10                               | 30.00                                | -1.50       | -1.60                  | 36.00                           | Pass          |  |  |

|     | <u>TEST RESULTS DATA</u><br><u>Average Power Table</u> |     |     |                |                        |                                        |                                      |             |                        |                                 |               |
|-----|--------------------------------------------------------|-----|-----|----------------|------------------------|----------------------------------------|--------------------------------------|-------------|------------------------|---------------------------------|---------------|
| Mod | Data<br>Rate                                           | NTX | СН. | Freq.<br>(MHz) | Duty<br>Factor<br>(dB) | Average<br>Conducted<br>Power<br>(dBm) | Conducted<br>Power<br>Limit<br>(dBm) | DG<br>(dBi) | EIRP<br>Power<br>(dBm) | EIRP<br>Power<br>Limit<br>(dBm) | Pass<br>/Fail |
| BLE | 1Mbps                                                  | 1   | 0   | 2402           | 2.12                   | -1.40                                  | 30.00                                | -1.50       | -2.90                  | 36.00                           | Pass          |
| BLE | 1Mbps                                                  | 1   | 19  | 2440           | 2.12                   | -0.90                                  | 30.00                                | -1.50       | -2.40                  | 36.00                           | Pass          |
| BLE | 1Mbps                                                  | 1   | 39  | 2480           | 2.12                   | -0.70                                  | 30.00                                | -1.50       | -2.20                  | 36.00                           | Pass          |

| Peak Power Density |              |     |     |                |                              |                            |             |                                     |           |  |  |
|--------------------|--------------|-----|-----|----------------|------------------------------|----------------------------|-------------|-------------------------------------|-----------|--|--|
| Mod.               | Data<br>Rate | NTX | CH. | Freq.<br>(MHz) | Peak PSD<br>(dBm<br>/100kHz) | Peak PSD<br>(dBm<br>/3kHz) | DG<br>(dBi) | Peak PSD<br>Limit<br>(dBm<br>/3kHz) | Pass/Fail |  |  |
| BLE                | 1Mbps        | 1   | 0   | 2402           | -1.88                        | -16.15                     | -1.50       | 8.00                                | Pass      |  |  |
| BLE                | 1Mbps        | 1   | 19  | 2440           | -1.46                        | -15.75                     | -1.50       | 8.00                                | Pass      |  |  |
| BLE                | 1Mbps        | 1   | 39  | 2480           | -1.11                        | -15.41                     | -1.50       | 8.00                                | Pass      |  |  |

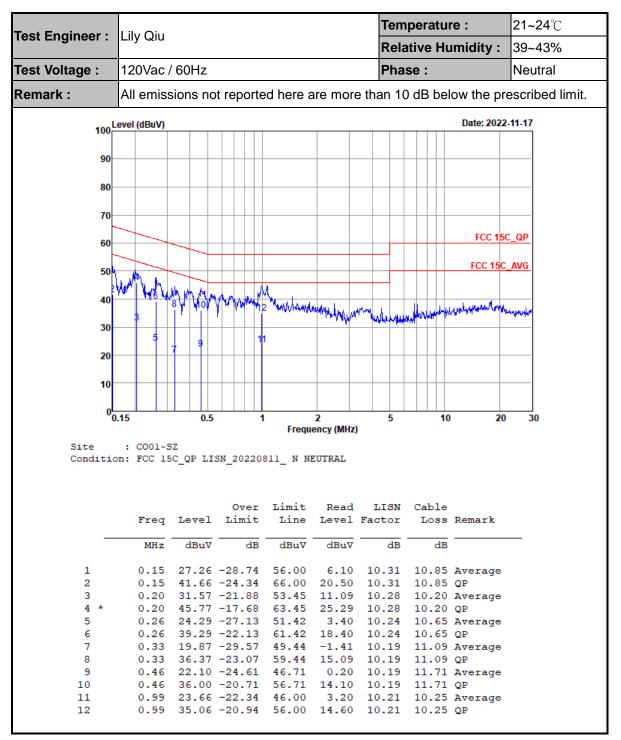
| Test Engineer: | Chen Ran   | Temperature:       | 21~25 | °C |
|----------------|------------|--------------------|-------|----|
| Test Date:     | 2022/11/22 | Relative Humidity: | 51~54 | %  |

|   | <u>TEST RESULTS DATA</u><br>6dB and 99% Occupied Bandwidth |              |     |     |                |                                |                 |                          |           |  |
|---|------------------------------------------------------------|--------------|-----|-----|----------------|--------------------------------|-----------------|--------------------------|-----------|--|
| Μ | /lod.                                                      | Data<br>Rate | NTX | CH. | Freq.<br>(MHz) | 99%<br>Occupied<br>BW<br>(MHz) | 6dB BW<br>(MHz) | 6dB BW<br>Limit<br>(MHz) | Pass/Fail |  |
| В | BLE                                                        | 2Mbps        | 1   | 0   | 2402           | 2.046                          | 1.187           | 0.50                     | Pass      |  |
| В | BLE                                                        | 2Mbps        | 1   | 19  | 2440           | 2.046                          | 1.183           | 0.50                     | Pass      |  |
| В | BLE                                                        | 2Mbps        | 1   | 39  | 2480           | 2.046                          | 1.180           | 0.50                     | Pass      |  |

#### TEST RESULTS DATA Peak Power Table

| Mod.   | Data<br>Rate | NTX | CH. | Freq.<br>(MHz) | Peak<br>Conducted<br>Power<br>(dBm) | Conducted<br>Power<br>Limit<br>(dBm) | DG<br>(dBi) | EIRP<br>Power<br>(dBm) | EIRP<br>Power<br>Limit<br>(dBm) | Pass<br>/Fail |
|--------|--------------|-----|-----|----------------|-------------------------------------|--------------------------------------|-------------|------------------------|---------------------------------|---------------|
| BLE5.0 | 2Mbps        | 1   | 0   | 2402           | -0.44                               | 30.00                                | -1.50       | -1.94                  | 36.00                           | Pass          |
| BLE5.0 | 2Mbps        | 1   | 19  | 2440           | -0.31                               | 30.00                                | -1.50       | -1.81                  | 36.00                           | Pass          |
| BLE5.0 | 2Mbps        | 1   | 39  | 2480           | -0.07                               | 30.00                                | -1.50       | -1.57                  | 36.00                           | Pass          |

| <u>TEST RESULTS DATA</u><br><u>Average Power Table</u> |              |     |     |                |                        |                                        |                                      |             |                        |                                 |               |
|--------------------------------------------------------|--------------|-----|-----|----------------|------------------------|----------------------------------------|--------------------------------------|-------------|------------------------|---------------------------------|---------------|
| Mod.                                                   | Data<br>Rate | NTX | CH. | Freq.<br>(MHz) | Duty<br>Factor<br>(dB) | Average<br>Conducted<br>Power<br>(dBm) | Conducted<br>Power<br>Limit<br>(dBm) | DG<br>(dBi) | EIRP<br>Power<br>(dBm) | EIRP<br>Power<br>Limit<br>(dBm) | Pass<br>/Fail |
| BLE                                                    | 2Mbps        | 1   | 0   | 2402           | 4.96                   | -1.30                                  | 30.00                                | -1.50       | -2.80                  | 36.00                           | Pass          |
| BLE                                                    | 2Mbps        | 1   | 19  | 2440           | 4.96                   | -0.90                                  | 30.00                                | -1.50       | -2.40                  | 36.00                           | Pass          |
| BLE                                                    | 2Mbps        | 1   | 39  | 2480           | 4.96                   | -0.60                                  | 30.00                                | -1.50       | -2.10                  | 36.00                           | Pass          |


| <u>TEST RESULTS DATA</u><br><u>Peak Power Density</u> |              |     |     |                |                              |                            |             |                                     |           |  |
|-------------------------------------------------------|--------------|-----|-----|----------------|------------------------------|----------------------------|-------------|-------------------------------------|-----------|--|
| Mod.                                                  | Data<br>Rate | NTX | CH. | Freq.<br>(MHz) | Peak PSD<br>(dBm<br>/100kHz) | Peak PSD<br>(dBm<br>/3kHz) | DG<br>(dBi) | Peak PSD<br>Limit<br>(dBm<br>/3kHz) | Pass/Fail |  |
| BLE                                                   | 2Mbps        | 1   | 0   | 2402           | -2.11                        | -18.33                     | -1.50       | 8.00                                | Pass      |  |
| BLE                                                   | 2Mbps        | 1   | 19  | 2440           | -1.61                        | -17.81                     | -1.50       | 8.00                                | Pass      |  |
| BLE                                                   | 2Mbps        | 1   | 39  | 2480           | -1.29                        | -17.50                     | -1.50       | 8.00                                | Pass      |  |



# **Appendix B. AC Conducted Emission Test Results**

| Test Engineer :                                                         | Lily Qiu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                             |                                                                                                                       | Tem                                                                                                                     | peratu                                                                                                        | re :                                                                                                   | <b>21~24</b> ℃  |  |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------|--|
| rest Engineer .                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                             |                                                                                                                       | Rela                                                                                                                    | ative Hu                                                                                                      | umidity :                                                                                              | 39~43%          |  |
| Fest Voltage :                                                          | 120Vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | / 60Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                   |                                                                                                                             |                                                                                                                       | Pha                                                                                                                     | se :                                                                                                          |                                                                                                        | Line            |  |
| Remark :                                                                | All emiss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sions no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t reporte                                                                                                                         | ed here a                                                                                                                   | are more                                                                                                              | e than 10                                                                                                               | ) dB bel                                                                                                      | ow the pre                                                                                             | escribed limit. |  |
| 100 <sup>L</sup>                                                        | evel (dBuV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                   |                                                                                                                             |                                                                                                                       |                                                                                                                         |                                                                                                               | Date: 2022-                                                                                            | 11-17           |  |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                             |                                                                                                                       |                                                                                                                         |                                                                                                               |                                                                                                        |                 |  |
| 90                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                             |                                                                                                                       |                                                                                                                         |                                                                                                               |                                                                                                        |                 |  |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                             |                                                                                                                       |                                                                                                                         |                                                                                                               |                                                                                                        |                 |  |
| 80-                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                             |                                                                                                                       |                                                                                                                         |                                                                                                               |                                                                                                        |                 |  |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                             |                                                                                                                       |                                                                                                                         |                                                                                                               |                                                                                                        |                 |  |
| 70-                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                             |                                                                                                                       |                                                                                                                         |                                                                                                               |                                                                                                        |                 |  |
| 60-                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                             |                                                                                                                       |                                                                                                                         |                                                                                                               | FCC 15C                                                                                                | _QP             |  |
| 00                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                             |                                                                                                                       |                                                                                                                         |                                                                                                               |                                                                                                        |                 |  |
| 50                                                                      | WIT TO A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                             |                                                                                                                       |                                                                                                                         |                                                                                                               | FCC 15C                                                                                                |                 |  |
|                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                   |                                                                                                                             |                                                                                                                       |                                                                                                                         |                                                                                                               |                                                                                                        |                 |  |
| 40                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 811011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MANNA                                                                                                                             | Nn                                                                                                                          |                                                                                                                       |                                                                                                                         |                                                                                                               |                                                                                                        | £.N.            |  |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e A Macada                                                                                                                        | 2 MM                                                                                                                        | Maria                                                                                                                 | all and a                                                                                                               |                                                                                                               | and shake the                                                                                          | r~w             |  |
| 30                                                                      | 40. 3 HOW WWW 2 Walk wat wat wat and a second of the secon |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                             |                                                                                                                       |                                                                                                                         |                                                                                                               |                                                                                                        |                 |  |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   | 1                                                                                                                           |                                                                                                                       |                                                                                                                         |                                                                                                               |                                                                                                        |                 |  |
| 20                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                             |                                                                                                                       |                                                                                                                         |                                                                                                               |                                                                                                        |                 |  |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                             |                                                                                                                       |                                                                                                                         |                                                                                                               |                                                                                                        |                 |  |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                             |                                                                                                                       |                                                                                                                         |                                                                                                               |                                                                                                        |                 |  |
| 10                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                             |                                                                                                                       |                                                                                                                         |                                                                                                               |                                                                                                        |                 |  |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                             |                                                                                                                       |                                                                                                                         |                                                                                                               |                                                                                                        |                 |  |
|                                                                         | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                 |                                                                                                                             | 2                                                                                                                     | 5                                                                                                                       | 10                                                                                                            | 20                                                                                                     | 30              |  |
| 0                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                 |                                                                                                                             | 2<br>ency (MHz)                                                                                                       | -                                                                                                                       | 10                                                                                                            | 20                                                                                                     | 30              |  |
| 0<br>Site                                                               | 0.15<br>: CO01-S<br>on: FCC 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   | Frequ                                                                                                                       | ency (MHz)                                                                                                            | -                                                                                                                       | 10                                                                                                            | 20                                                                                                     | 30              |  |
| 0<br>Site                                                               | : CO01-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   | Frequ                                                                                                                       | ency (MHz)                                                                                                            | -                                                                                                                       | 10                                                                                                            | 20                                                                                                     | 30              |  |
| 0<br>Site                                                               | : CO01-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5N_20220                                                                                                                          | Frequ                                                                                                                       | ency (MHz)<br>INE                                                                                                     |                                                                                                                         |                                                                                                               | 20                                                                                                     | 30              |  |
| 0<br>Site                                                               | : CO01-S<br>on: FCC 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5N_20220                                                                                                                          | Frequ<br>811_ L L<br>Limit                                                                                                  | ency (MHz)<br>INE<br>Read                                                                                             |                                                                                                                         | Cable                                                                                                         | 20<br>Remark                                                                                           | 30              |  |
| 0<br>Site                                                               | : COOl-S<br>on: FCC 15<br>Freq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GZ<br>GC_QP LI:<br>Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Over<br>Limit                                                                                                                     | Frequ<br>811_ L L<br>Limit<br>Line                                                                                          | INE<br>Read<br>Level                                                                                                  | LISN<br>Factor                                                                                                          | Cable<br>Loss                                                                                                 |                                                                                                        | 30              |  |
| 0<br>Site                                                               | : CO01-S<br>on: FCC 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SZ<br>SC_QP LI:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5N_20220                                                                                                                          | Frequ<br>811_ L L<br>Limit                                                                                                  | ency (MHz)<br>INE<br>Read                                                                                             | LISN                                                                                                                    | Cable                                                                                                         |                                                                                                        | <br>            |  |
| 0<br>Site                                                               | : COO1-S<br>on: FCC 15<br>Freq<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SZ<br>GC_QP LI:<br>Level<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Over<br>Limit<br>dB                                                                                                               | Frequ<br>811_ L L<br>Limit<br>Line                                                                                          | Read<br>Level<br>dBuV                                                                                                 | LISN<br>Factor<br>dB                                                                                                    | Cable<br>Loss<br>dB                                                                                           |                                                                                                        | 30              |  |
| Site<br>Conditio                                                        | : CO01-S<br>on: FCC 15<br>Freq<br>MHz<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SZ<br>GC_QP LI:<br>Level<br>dBuV<br>35.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Over<br>Limit<br>dB<br>-20.28                                                                                                     | Frequ<br>811_ L L<br>Limit<br>Line<br>                                                                                      | Read<br>Level<br>dBuV<br>14.60                                                                                        | LISN<br>Factor<br>dB<br>10.20                                                                                           | Cable<br>Loss<br>dB<br>10.83                                                                                  | Remark<br><br>Average                                                                                  | 30              |  |
| Site<br>Conditio                                                        | : CO01-S<br>on: FCC 15<br>Freq<br>MHz<br>0.15<br>0.15<br>0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52<br>GC_QP LI:<br>Level<br>dBuV<br>35.63<br>47.83<br>36.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Over<br>Limit<br>dB<br>-20.28<br>-18.08<br>-17.73                                                                                 | Frequ<br>811_ L L<br>Limit<br>Line<br>dBuV<br>55.91<br>65.91<br>53.98                                                       | Read<br>Level<br>dBuV<br>14.60<br>26.80<br>15.80                                                                      | LISN<br>Factor<br>dB<br>10.20<br>10.20<br>10.20                                                                         | Cable<br>Loss<br>dB<br>10.83<br>10.83<br>10.25                                                                | Remark<br>Average<br>QP<br>Average                                                                     | 30              |  |
| Site<br>Conditio                                                        | : CO01-S<br>on: FCC 15<br>Freq<br>MHz<br>0.15<br>0.15<br>0.19<br>0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2<br>5C_OP LI:<br>Level<br>dBuV<br>35.63<br>47.83<br>36.25<br>50.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Over<br>Limit<br>                                                                                                                 | Frequ<br>811_ L L<br>Limit<br>                                                                                              | Read<br>Level<br>dBuV<br>14.60<br>26.80<br>15.80<br>30.20                                                             | LISN<br>Factor<br>dB<br>10.20<br>10.20<br>10.20<br>10.20                                                                | Cable<br>Loss<br>dB<br>10.83<br>10.83<br>10.25<br>10.25                                                       | Remark<br>Average<br>QP<br>Average<br>QP                                                               | 30              |  |
| Site<br>Conditio<br>1<br>2<br>3<br>4 *<br>5                             | : C001-S<br>on: FCC 15<br>Freq<br>MHz<br>0.15<br>0.15<br>0.19<br>0.19<br>0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2<br>5C_OP LI:<br>Level<br>dBuV<br>35.63<br>47.83<br>36.25<br>50.65<br>27.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Over<br>Limit<br>                                                                                                                 | Frequ<br>811_ L L<br>Limit<br>Line<br>dBuV<br>55.91<br>65.91<br>53.98<br>63.98<br>51.12                                     | Read<br>Level<br>dBuV<br>14.60<br>26.80<br>15.80<br>30.20<br>6.70                                                     | LISN<br>Factor<br>dB<br>10.20<br>10.20<br>10.20<br>10.20<br>10.20<br>10.20                                              | Cable<br>Loss<br>dB<br>10.83<br>10.83<br>10.25<br>10.25<br>10.25                                              | Remark<br>Average<br>QP<br>Average<br>QP<br>Average                                                    |                 |  |
| Site<br>Conditio<br>1<br>2<br>3<br>4 *<br>5<br>6                        | : C001-S<br>on: FCC 15<br>Freq<br>MHz<br>0.15<br>0.15<br>0.19<br>0.19<br>0.27<br>0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2<br>5C_QP LI:<br>Level<br>dBuV<br>35.63<br>47.83<br>36.25<br>50.65<br>27.58<br>43.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Over<br>Limit<br>                                                                                                                 | Frequ<br>811_ L L<br>Limit<br>Line<br>dBuV<br>55.91<br>65.91<br>53.98<br>63.98<br>51.12<br>61.12                            | Read<br>Level<br>dBuV<br>14.60<br>26.80<br>15.80<br>30.20<br>6.70<br>22.70                                            | LISN<br>Factor<br>dB<br>10.20<br>10.20<br>10.20<br>10.20<br>10.20<br>10.17<br>10.17                                     | Cable<br>Loss<br>dB<br>10.83<br>10.25<br>10.25<br>10.71<br>10.71                                              | Remark<br>Average<br>QP<br>Average<br>QP<br>Average<br>QP                                              | 30              |  |
| 0<br>Site<br>Conditio<br>1<br>2<br>3<br>4 *<br>5<br>6<br>7              | : C001-S<br>on: FCC 15<br>Freq<br>MHz<br>0.15<br>0.15<br>0.19<br>0.19<br>0.27<br>0.27<br>0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>4<br>7<br>8<br>3<br>3<br>6<br>2<br>7<br>5<br>8<br>4<br>3<br>5<br>2<br>7<br>5<br>8<br>4<br>3<br>5<br>2<br>7<br>5<br>8<br>4<br>3<br>5<br>5<br>2<br>7<br>5<br>8<br>3<br>3<br>6<br>2<br>5<br>5<br>5<br>5<br>6<br>3<br>6<br>3<br>6<br>3<br>6<br>5<br>5<br>5<br>5<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>5<br>5<br>5<br>6<br>5<br>6<br>5<br>5<br>5<br>6<br>5<br>5<br>5<br>6<br>5<br>5<br>5<br>6<br>5<br>5<br>5<br>6<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | Over<br>Limit<br>                                                                                                                 | Frequ<br>811_ L L<br>Limit<br>Line<br>dBuV<br>55.91<br>65.91<br>53.98<br>63.98<br>51.12<br>61.12<br>49.27                   | Read<br>Level<br>dBuV<br>14.60<br>26.80<br>15.80<br>30.20<br>6.70<br>22.70<br>0.90                                    | LISN<br>Factor<br>dB<br>10.20<br>10.20<br>10.20<br>10.20<br>10.20<br>10.17<br>10.17<br>10.10                            | Cable<br>Loss<br>dB<br>10.83<br>10.25<br>10.25<br>10.71<br>10.71<br>11.13                                     | Remark<br>Average<br>QP<br>Average<br>QP<br>Average<br>QP<br>Average                                   | 30              |  |
| Site<br>Conditio<br>1<br>2<br>3<br>4 *<br>5<br>6                        | : C001-S<br>on: FCC 15<br>Freq<br>MHz<br>0.15<br>0.15<br>0.19<br>0.19<br>0.27<br>0.27<br>0.27<br>0.34<br>0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Over<br>Limit<br>                                                                                                                 | Frequ<br>811_ L L<br>Limit<br>Line<br>dBuV<br>55.91<br>65.91<br>53.98<br>63.98<br>51.12<br>61.12<br>49.27<br>59.27          | Read<br>Level<br>dBuV<br>14.60<br>26.80<br>15.80<br>30.20<br>6.70<br>22.70<br>0.90<br>18.50                           | LISN<br>Factor<br>dB<br>10.20<br>10.20<br>10.20<br>10.20<br>10.17<br>10.17<br>10.17<br>10.10<br>10.10                   | Cable<br>Loss<br>dB<br>10.83<br>10.83<br>10.25<br>10.25<br>10.71<br>10.71<br>11.13<br>11.13                   | Remark<br>Average<br>QP<br>Average<br>QP<br>Average<br>QP<br>Average<br>QP                             | 30              |  |
| 0<br>Site<br>Conditio<br>1<br>2<br>3<br>4 *<br>5<br>6<br>7<br>8         | : C001-S<br>on: FCC 15<br>Freq<br>MHz<br>0.15<br>0.15<br>0.19<br>0.19<br>0.19<br>0.27<br>0.27<br>0.27<br>0.34<br>0.34<br>0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Over<br>Limit<br>-20.28<br>-18.08<br>-17.73<br>-13.33<br>-23.54<br>-17.54<br>-27.14<br>-19.54<br>-28.39                           | Frequ<br>811_ L L<br>Limit<br>Line<br>dBuV<br>55.91<br>65.91<br>53.98<br>63.98<br>51.12<br>61.12<br>49.27<br>59.27          | Read<br>Level<br>dBuV<br>14.60<br>26.80<br>15.80<br>30.20<br>6.70<br>22.70<br>0.90<br>18.50<br>-1.80                  | LISN<br>Factor<br>dB<br>10.20<br>10.20<br>10.20<br>10.20<br>10.17<br>10.17<br>10.17<br>10.10<br>10.10                   | Cable<br>Loss<br>dB<br>10.83<br>10.83<br>10.25<br>10.25<br>10.71<br>10.71<br>11.13<br>11.13<br>11.39          | Remark<br>Average<br>QP<br>Average<br>QP<br>Average<br>QP<br>Average<br>QP<br>Average                  |                 |  |
| 0<br>Site<br>Conditio<br>1<br>2<br>3<br>4<br>*<br>5<br>6<br>7<br>8<br>9 | : CO01-S<br>on: FCC 15<br>Freq<br>MHz<br>0.15<br>0.15<br>0.19<br>0.19<br>0.27<br>0.27<br>0.34<br>0.34<br>0.39<br>0.39<br>1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2<br>C_QP LI:<br>Level<br>dBuV<br>35.63<br>47.83<br>36.25<br>50.65<br>27.58<br>43.58<br>22.13<br>39.73<br>19.69<br>37.99<br>21.25                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Over<br>Limit<br>dB<br>-20.28<br>-18.08<br>-17.73<br>-13.33<br>-23.54<br>-17.54<br>-27.14<br>-19.54<br>-28.39<br>-20.09<br>-24.75 | Frequ<br>811_ L L<br>Limit<br>Line<br>dBuV<br>55.91<br>65.91<br>53.98<br>63.98<br>51.12<br>61.12<br>49.27<br>59.27<br>48.08 | Read<br>Level<br>dBuV<br>14.60<br>26.80<br>15.80<br>30.20<br>6.70<br>22.70<br>0.90<br>18.50<br>-1.80<br>16.50<br>0.90 | LISN<br>Factor<br>dB<br>10.20<br>10.20<br>10.20<br>10.17<br>10.17<br>10.17<br>10.10<br>10.10<br>10.10<br>10.10<br>10.12 | Cable<br>Loss<br>dB<br>10.83<br>10.83<br>10.25<br>10.25<br>10.71<br>10.71<br>11.13<br>11.13<br>11.39<br>11.39 | Remark<br>Average<br>QP<br>Average<br>QP<br>Average<br>QP<br>Average<br>QP<br>Average<br>QP<br>Average |                 |  |





Note:

- 1. Level( $dB\mu V$ ) = Read Level( $dB\mu V$ ) + LISN Factor(dB) + Cable Loss(dB)
- Over Limit(dB) = Level(dBµV) Limit Line(dBµV)



# Appendix C. Radiated Spurious Emission

| Test Engineer : | Zhaohui Liang | Temperature :       | 24~25°C |
|-----------------|---------------|---------------------|---------|
| rest Engineer.  |               | Relative Humidity : | 48~49%  |

### **Bluetooth LE 1Mbps**

#### 2.4GHz 2400~2483.5MHz

#### BLE (Band Edge @ 3m)

| BLE          | Note | Frequency      | Level      | Margin     | Limit       | Read         | Antenna  | Path   | Preamp | Ant    | Table   | Peak  | Pol.  |
|--------------|------|----------------|------------|------------|-------------|--------------|----------|--------|--------|--------|---------|-------|-------|
| ANT          |      |                |            |            | Line        | Level        | Factor   | Loss   | Factor | Pos    | Pos     | Avg.  |       |
| 8            |      | (MHz)          | ( dBµV/m ) | ( dB )     | ( dBµV/m )  | ( dBµV )     | ( dB/m ) | ( dB ) | ( dB ) | ( cm ) | ( deg ) | (P/A) | (H/V) |
|              |      | 2317.455       | 48.05      | -25.95     | 74          | 40.43        | 32.1     | 7.58   | 32.06  | 366    | 302     | Ρ     | Н     |
|              |      | 2389.59        | 38.68      | -15.32     | 54          | 30.69        | 32.26    | 7.8    | 32.07  | 366    | 302     | А     | Н     |
| 515          | *    | 2402           | 91.88      | -          | -           | 83.88        | 32.28    | 7.8    | 32.08  | 366    | 302     | Ρ     | Н     |
| BLE<br>CH 00 | *    | 2402           | 91.46      | -          | -           | 83.46        | 32.28    | 7.8    | 32.08  | 366    | 302     | А     | Н     |
| 2402MHz      |      | 2363.025       | 47.67      | -26.33     | 74          | 39.85        | 32.2     | 7.69   | 32.07  | 255    | 296     | Ρ     | V     |
| 240210112    |      | 2328.165       | 38.25      | -15.75     | 54          | 30.61        | 32.12    | 7.58   | 32.06  | 255    | 296     | А     | V     |
|              | *    | 2402           | 95.21      | -          | -           | 87.21        | 32.28    | 7.8    | 32.08  | 255    | 296     | Ρ     | V     |
|              | *    | 2402           | 94.66      | -          | -           | 86.66        | 32.28    | 7.8    | 32.08  | 255    | 296     | А     | V     |
|              | *    | 2480           | 90.67      | -          | -           | 82.42        | 32.46    | 7.88   | 32.09  | 354    | 304     | Р     | Н     |
|              | *    | 2480           | 90.08      | -          | -           | 81.83        | 32.46    | 7.88   | 32.09  | 354    | 304     | А     | Н     |
|              |      | 2497.24        | 47.85      | -26.15     | 74          | 39.58        | 32.49    | 7.88   | 32.1   | 354    | 304     | Ρ     | Н     |
| BLE<br>CH 39 |      | 2498.52        | 38.73      | -15.27     | 54          | 30.45        | 32.5     | 7.88   | 32.1   | 354    | 304     | А     | н     |
| 2480MHz      | *    | 2480           | 93.07      | -          | -           | 84.82        | 32.46    | 7.88   | 32.09  | 277    | 297     | Р     | V     |
| 240011112    | *    | 2480           | 92.62      | -          | -           | 84.37        | 32.46    | 7.88   | 32.09  | 277    | 297     | А     | V     |
|              |      | 2483.56        | 48.11      | -25.89     | 74          | 39.86        | 32.46    | 7.88   | 32.09  | 277    | 297     | Р     | V     |
|              |      | 2490.08        | 38.45      | -15.55     | 54          | 30.18        | 32.48    | 7.88   | 32.09  | 277    | 297     | А     | V     |
|              | 1. N | lo other spuri | ous found. |            |             |              |          |        |        |        |         |       |       |
| Remark       | 2. A | Il results are | PASS agair | nst Peak a | and Average | e limit line | ).       |        |        |        |         |       |       |



# BLE (Harmonic @ 3m)

| BLE              | Note | Frequency      | Level               | Margin     | Limit       | Read         | Antenna  | Path   | Preamp | Ant    | Table   | Peak  | Pol.  |
|------------------|------|----------------|---------------------|------------|-------------|--------------|----------|--------|--------|--------|---------|-------|-------|
| ANT              |      |                | <i></i> . <i></i> . | <i></i>    | Line        | Level        | Factor   | Loss   | Factor | Pos    | Pos     | -     |       |
| 8                |      | (MHz)          | ( dBµV/m )          | (dB)       | ( dBµV/m )  | ( dBµV )     | ( dB/m ) | ( dB ) | (dB)   | ( cm ) | ( deg ) | (P/A) | (H/V) |
| BLE              |      | 4804           | 45.92               | -28.08     | 74          | 51.6         | 34.82    | 11.08  | 51.58  | -      | -       | Р     | н     |
| CH 00            |      |                |                     |            |             |              |          |        |        |        |         |       |       |
| 2402MHz          |      | 4804           | 46.11               | -27.89     | 74          | 51.79        | 34.82    | 11.08  | 51.58  | -      | -       | Р     | V     |
|                  |      | 4880           | 44.96               | -29.04     | 74          | 50.57        | 34.85    | 11.09  | 51.55  | -      | -       | Ρ     | Н     |
| BLE              |      | 7320           | 47.81               | -26.19     | 74          | 49.57        | 36.33    | 13.08  | 51.17  | -      | -       | Р     | н     |
| CH 19            |      | 1020           | 11.01               | 20.10      |             | 10.07        | 00.00    | 10.00  | 01.17  |        |         | •     |       |
| 2440141-         |      | 4880           | 44.94               | -29.06     | 74          | 50.55        | 34.85    | 11.09  | 51.55  | -      | -       | Р     | V     |
| 2440MHz          |      | 7320           | 47.77               | -26.23     | 74          | 49.53        | 36.33    | 13.08  | 51.17  | -      | -       | Р     | V     |
|                  |      | 4960           | 45.94               | -28.06     | 74          | 51.43        | 34.88    | 11.14  | 51.51  | -      | -       | Ρ     | н     |
| BLE              |      | 7440           | 47.21               | -26.79     | 74          | 49.03        | 36.38    | 12.99  | 51.19  | -      | -       | Р     | Н     |
| CH 39<br>2480MHz |      | 4960           | 45.69               | -28.31     | 74          | 51.18        | 34.88    | 11.14  | 51.51  | -      | -       | Ρ     | V     |
| 240010172        |      | 7440           | 48.32               | -25.68     | 74          | 50.14        | 36.38    | 12.99  | 51.19  | -      | -       | Ρ     | V     |
| Remark           | 1. N | lo other spuri | ous found.          |            |             |              |          |        |        |        |         |       |       |
|                  | 2. A | Il results are | PASS agair          | nst Peak a | and Average | e limit line | 9.       |        |        |        |         |       |       |





### **Bluetooth LE 2Mbps**

#### 2.4GHz 2400~2483.5MHz

| BLE          | Note | Frequency      | Level      | Margin     | Limit       | Read       | Antenna  | Path   | Preamp | Ant    | Table   | Peak  | Pol.  |
|--------------|------|----------------|------------|------------|-------------|------------|----------|--------|--------|--------|---------|-------|-------|
| ANT          |      |                |            |            | Line        | Level      | Factor   | Loss   | Factor | Pos    | Pos     | Avg.  |       |
| 8            |      | (MHz)          | (dBµV/m)   | ( dB )     | ( dBµV/m )  | ( dBµV )   | ( dB/m ) | ( dB ) | ( dB ) | ( cm ) | ( deg ) | (P/A) | (H/V) |
|              |      | 2315.25        | 47.48      | -26.52     | 74          | 39.87      | 32.09    | 7.58   | 32.06  | 375    | 303     | Ρ     | Н     |
|              |      | 2381.505       | 39.51      | -14.49     | 54          | 31.65      | 32.24    | 7.69   | 32.07  | 375    | 303     | А     | Н     |
|              | *    | 2402           | 92.21      | -          | -           | 84.21      | 32.28    | 7.8    | 32.08  | 375    | 303     | Р     | Н     |
| BLE<br>CH 00 | *    | 2402           | 90.13      | -          | -           | 82.13      | 32.28    | 7.8    | 32.08  | 375    | 303     | А     | Н     |
| 2402MHz      |      | 2367.435       | 47.6       | -26.4      | 74          | 39.77      | 32.21    | 7.69   | 32.07  | 255    | 297     | Р     | V     |
| 240211112    |      | 2373.21        | 39.79      | -14.21     | 54          | 31.95      | 32.22    | 7.69   | 32.07  | 255    | 297     | А     | V     |
|              | *    | 2402           | 95.05      | -          | -           | 87.05      | 32.28    | 7.8    | 32.08  | 255    | 297     | Р     | V     |
|              | *    | 2402           | 93.46      | -          | -           | 85.46      | 32.28    | 7.8    | 32.08  | 255    | 297     | А     | V     |
|              | *    | 2480           | 91.1       | -          | -           | 82.85      | 32.46    | 7.88   | 32.09  | 354    | 304     | Р     | Н     |
|              | *    | 2480           | 89.51      | -          | -           | 81.26      | 32.46    | 7.88   | 32.09  | 354    | 304     | А     | Н     |
|              |      | 2483.76        | 47.58      | -26.42     | 74          | 39.33      | 32.46    | 7.88   | 32.09  | 354    | 304     | Р     | Н     |
| BLE<br>CH 39 |      | 2483.52        | 40.14      | -13.86     | 54          | 31.89      | 32.46    | 7.88   | 32.09  | 354    | 304     | А     | Н     |
| 2480MHz      | *    | 2480           | 93.45      | -          | -           | 85.2       | 32.46    | 7.88   | 32.09  | 278    | 296     | Р     | V     |
| 24000012     | *    | 2480           | 91.88      | -          | -           | 83.63      | 32.46    | 7.88   | 32.09  | 278    | 296     | А     | V     |
|              |      | 2495.24        | 48.06      | -25.94     | 74          | 39.79      | 32.49    | 7.88   | 32.1   | 278    | 296     | Р     | V     |
|              |      | 2483.52        | 40.19      | -13.81     | 54          | 31.94      | 32.46    | 7.88   | 32.09  | 278    | 296     | А     | V     |
| Remark       | 1. N | lo other spuri | ous found. |            |             |            |          |        |        |        |         |       |       |
|              | 2. A | Il results are | PASS agair | nst Peak a | and Average | limit line | Э.       |        |        |        |         |       |       |

# BLE (Band Edge @ 3m)



| 2.4GHz 2400~2483.5M | ΛHz |
|---------------------|-----|
|---------------------|-----|

# BLE (Harmonic @ 3m)

| BLE              | Note | Frequency      | Level      | Margin        | Limit       | Read         | Antenna  | Path   | Preamp | Ant    | Table   | Peak  | Pol.  |
|------------------|------|----------------|------------|---------------|-------------|--------------|----------|--------|--------|--------|---------|-------|-------|
| ANT              |      |                |            | ( . <b></b> ) | Line        | Level        | Factor   | Loss   | Factor | Pos    | Pos     |       |       |
| 8                |      | (MHz)          | (dBµV/m)   | ( dB )        | ( dBµV/m )  | (dBµV)       | ( dB/m ) | ( dB ) | ( dB ) | ( cm ) | ( deg ) | (P/A) | (H/V) |
| BLE              |      | 4804           | 45.92      | -28.08        | 74          | 51.6         | 34.82    | 11.08  | 51.58  | -      | -       | Ρ     | н     |
| CH 00            |      |                |            |               |             |              |          |        |        |        |         |       |       |
| 2402MHz          |      | 4804           | 46.13      | -27.87        | 74          | 51.81        | 34.82    | 11.08  | 51.58  | -      | -       | Ρ     | V     |
|                  |      | 4880           | 45.08      | -28.92        | 74          | 50.69        | 34.85    | 11.09  | 51.55  | -      | -       | Ρ     | Н     |
| BLE              |      | 7320           | 48.53      | -25.47        | 74          | 50.29        | 36.33    | 13.08  | 51.17  | -      | -       | Р     | Н     |
| CH 19            |      | 1020           | 10.00      | 20.17         |             | 00.20        | 00.00    | 10.00  | 01.17  |        |         | •     |       |
| 2440141-         |      | 4880           | 45.19      | -28.81        | 74          | 50.8         | 34.85    | 11.09  | 51.55  | -      | -       | Р     | V     |
| 2440MHz          |      | 7320           | 47.55      | -26.45        | 74          | 49.31        | 36.33    | 13.08  | 51.17  | -      | -       | Ρ     | V     |
|                  |      | 4960           | 45.48      | -28.52        | 74          | 50.97        | 34.88    | 11.14  | 51.51  | -      | -       | Ρ     | Н     |
| BLE              |      | 7440           | 47.86      | -26.14        | 74          | 49.68        | 36.38    | 12.99  | 51.19  | -      | -       | Р     | Н     |
| CH 39<br>2480MHz |      | 4960           | 46.07      | -27.93        | 74          | 51.56        | 34.88    | 11.14  | 51.51  | -      | -       | Р     | V     |
|                  |      | 7440           | 47.28      | -26.72        | 74          | 49.1         | 36.38    | 12.99  | 51.19  | -      | -       | Ρ     | V     |
| Remark           | 1. N | lo other spuri | ous found. |               |             |              |          |        |        |        |         |       |       |
|                  | 2. A | Il results are | PASS agair | nst Peak a    | and Average | e limit line | ).       |        |        |        |         |       |       |



#### Emission below 1GHz

# 2.4GHz BLE (LF)

| BLE           | Note | Frequency      | Level      | Margin        | Limit    | Read   | Antenna  | Path   | Preamp | Ant    | Table   | Peak  | Pol.  |
|---------------|------|----------------|------------|---------------|----------|--------|----------|--------|--------|--------|---------|-------|-------|
| ANT           |      |                |            |               | Line     | Level  | Factor   | Loss   | Factor | Pos    | Pos     | Avg.  |       |
| 8             |      | (MHz)          | ( dBµV/m ) | ( dB )        | (dBµV/m) | (dBµV) | ( dB/m ) | ( dB ) | (dB)   | ( cm ) | ( deg ) | (P/A) | (H/V) |
|               |      | 66.86          | 19.78      | -20.22        | 40       | 35.19  | 17.6     | 1.82   | 34.83  | -      | -       | Р     | Н     |
|               |      | 183.26         | 27.32      | -16.18        | 43.5     | 42.49  | 16.99    | 2.54   | 34.7   | -      | -       | Р     | н     |
|               |      | 246.31         | 28.93      | -17.07        | 46       | 43.19  | 17.45    | 2.99   | 34.7   | -      | -       | Р     | Н     |
|               |      | 323.91         | 26.34      | -19.66        | 46       | 37.97  | 19.65    | 3.32   | 34.6   | -      | -       | Р     | Н     |
|               |      | 538.28         | 24.15      | -21.85        | 46       | 31.19  | 23.99    | 3.47   | 34.5   | -      | -       | Р     | Н     |
| 2.4GHz<br>BLE |      | 719.67         | 27.14      | -18.86        | 46       | 30.51  | 27.29    | 3.74   | 34.4   | -      | -       | Р     | Н     |
| LF            |      | 33.88          | 30.65      | -9.35         | 40       | 45.7   | 18.46    | 1.27   | 34.78  | -      | -       | Р     | V     |
|               |      | 161.92         | 26.97      | -16.53        | 43.5     | 41     | 18.28    | 2.39   | 34.7   | -      | -       | Р     | V     |
|               |      | 252.13         | 26.82      | -19.18        | 46       | 40.87  | 17.63    | 3.02   | 34.7   | -      | -       | Р     | V     |
|               |      | 466.5          | 23.84      | -22.16        | 46       | 31.95  | 22.95    | 3.44   | 34.5   | -      | -       | Р     | V     |
|               |      | 591.63         | 25.94      | -20.06        | 46       | 31.19  | 25.76    | 3.57   | 34.58  | -      | -       | Р     | V     |
|               |      | 818.61         | 28.53      | -17.47        | 46       | 30.24  | 28.2     | 4.39   | 34.3   | -      | -       | Р     | V     |
| Remark        | 1. N | lo other spuri | ous found. |               |          |        |          |        |        |        |         |       |       |
| Reilidik      | 2. A | Il results are | PASS agair | nst limit lir | ne.      |        |          |        |        |        |         |       |       |



# **Co-colation For Sample 1**

#### 2.4GHz 2400~2483.5MHz

| BLE              | Note | Frequency | Level      | Margin | Limit      | Read     | Antenna  | Cable  | Preamp | Ant    | Table | Peak  | Pol.  |
|------------------|------|-----------|------------|--------|------------|----------|----------|--------|--------|--------|-------|-------|-------|
| Ant.             |      |           |            |        | Line       | Level    | Factor   | Loss   | Factor | Pos    | Pos   | Avg.  |       |
| 8                |      | (MHz)     | ( dBµV/m ) | (dB)   | ( dBµV/m ) | ( dBµV ) | ( dB/m ) | ( dB ) | (dB)   | ( cm ) | (deg) | (P/A) | (H/V) |
|                  | *    | 2480      | 90.75      | -      | -          | 82.5     | 32.46    | 7.88   | 32.09  | 316    | 294   | Р     | Н     |
|                  | *    | 2480      | 89.05      | -      | -          | 80.8     | 32.46    | 7.88   | 32.09  | 316    | 294   | А     | Н     |
| BLE              |      | 2494.44   | 49.49      | -24.51 | 74         | 41.22    | 32.49    | 7.88   | 32.1   | 316    | 294   | Р     | Н     |
| CH 39<br>2480MHz |      | 2486.96   | 41.39      | -12.61 | 54         | 33.13    | 32.47    | 7.88   | 32.09  | 316    | 294   | A     | н     |
| +GSM850          | *    | 2480      | 94.33      | -      | -          | 86.08    | 32.46    | 7.88   | 32.09  | 278    | 281   | Р     | V     |
| Co-colation      | *    | 2480      | 92.7       | -      | -          | 84.45    | 32.46    | 7.88   | 32.09  | 278    | 281   | А     | V     |
|                  |      | 2483.52   | 50.39      | -23.61 | 74         | 42.14    | 32.46    | 7.88   | 32.09  | 278    | 281   | Р     | V     |
|                  |      | 2483.52   | 42.38      | -11.62 | 54         | 34.13    | 32.46    | 7.88   | 32.09  | 278    | 281   | А     | V     |

### BLE (Band Edge @ 3m)

#### 2.4GHz 2400~2483.5MHz

# BLE (Harmonic @ 3m)

| BLE                | Note | Frequency | Level      | Margin | Limit      | Read     | Antenna  | Cable  | Preamp | Ant    | Table   | Peak  | Pol.  |
|--------------------|------|-----------|------------|--------|------------|----------|----------|--------|--------|--------|---------|-------|-------|
| Ant.               |      |           |            |        | Line       | Level    | Factor   | Loss   | Factor | Pos    | Pos     | Avg.  |       |
| 8                  |      | (MHz)     | ( dBµV/m ) | ( dB ) | ( dBµV/m ) | ( dBµV ) | ( dB/m ) | ( dB ) | ( dB ) | ( cm ) | ( deg ) | (P/A) | (H/V) |
|                    |      | 1672.8    | 46.72      | -27.28 | 74         | 42.67    | 29.96    | 6.57   | 32.48  | -      | -       | Р     | Н     |
|                    |      | 2509.2    | 48.52      | -25.48 | 74         | 40.18    | 32.53    | 7.91   | 32.1   | -      | -       | Р     | Н     |
|                    |      | 3345.6    | 45.38      | -28.62 | 74         | 53.64    | 34.61    | 9.03   | 51.9   | -      | -       | Р     | Н     |
| BLE                |      | 4960      | 45.62      | -28.38 | 74         | 51.11    | 34.88    | 11.14  | 51.51  | -      | -       | Ρ     | Н     |
| CH 39              |      | 7440      | 47.41      | -26.59 | 74         | 49.23    | 36.38    | 12.99  | 51.19  | -      | -       | Ρ     | Н     |
| 2480MHz<br>+GSM850 |      | 1672.8    | 45.44      | -28.56 | 74         | 41.39    | 29.96    | 6.57   | 32.48  | -      | -       | Р     | V     |
| Co-colation        |      | 2509.2    | 48.48      | -25.52 | 74         | 40.14    | 32.53    | 7.91   | 32.1   | -      | -       | Р     | V     |
|                    |      | 3345.6    | 44.72      | -29.28 | 74         | 52.98    | 34.61    | 9.03   | 51.9   | -      | -       | Р     | V     |
|                    |      | 4960      | 45.92      | -28.08 | 74         | 51.41    | 34.88    | 11.14  | 51.51  | -      | -       | Р     | V     |
|                    |      | 7440      | 46.54      | -27.46 | 74         | 48.36    | 36.38    | 12.99  | 51.19  | -      | -       | Р     | V     |



| 2.4GHz 2400~2483.5MHz |
|-----------------------|
|-----------------------|

| WIFI                 | Note | Frequency     | Level    | Margin   | Limit      | Read         | Antenna  | Cable  | Preamp | Ant    | Table   | Peak  | Pol.  |
|----------------------|------|---------------|----------|----------|------------|--------------|----------|--------|--------|--------|---------|-------|-------|
| Ant.                 |      |               |          |          | Line       | Level        | Factor   | Loss   | Factor | Pos    | Pos     | Avg.  |       |
| 8                    |      | (MHz)         | (dBµV/m) | ( dB )   | ( dBµV/m ) | ( dBµV )     | ( dB/m ) | ( dB ) | (dB)   | ( cm ) | ( deg ) | (P/A) | (H/V) |
|                      | *    | 2480          | 89.3     | -        | -          | 81.05        | 32.46    | 7.88   | 32.09  | 297    | 132     | Ρ     | Н     |
|                      | *    | 2480          | 87.5     | -        | -          | 79.25        | 32.46    | 7.88   | 32.09  | 297    | 132     | А     | Н     |
| BLE                  |      | 2483.56       | 48.34    | -25.66   | 74         | 40.09        | 32.46    | 7.88   | 32.09  | 297    | 132     | Ρ     | Н     |
| CH 39                |      | 2486.2        | 40.32    | -13.68   | 54         | 32.06        | 32.47    | 7.88   | 32.09  | 297    | 132     | А     | Н     |
| 2480MHz &<br>NTN B23 | *    | 2480          | 92.12    | -        | -          | 83.87        | 32.46    | 7.88   | 32.09  | 214    | 260     | Ρ     | V     |
| Co-colation          | *    | 2480          | 90.39    | -        | -          | 82.14        | 32.46    | 7.88   | 32.09  | 214    | 260     | А     | V     |
|                      |      | 2485.08       | 48.27    | -25.73   | 74         | 40.01        | 32.47    | 7.88   | 32.09  | 214    | 260     | Ρ     | V     |
|                      |      | 2483.52       | 40.94    | -13.06   | 54         | 32.69        | 32.46    | 7.88   | 32.09  | 214    | 260     | А     | Н     |
| Remark               |      | lo other spur |          | nst Peak | and Averag | ge limit lir | ne.      |        |        |        |         |       |       |

# BLE (Band Edge @ 3m)

#### 2.4GHz 2400~2483.5MHz

| BLE | E (Harmo | nic @ | 3m) |
|-----|----------|-------|-----|
|     |          |       |     |

| WIFI               | Note | Frequency     | Level      | Margin   | Limit      | Read         | Antenna  | Cable  | Preamp | Ant    | Table   | Peak  | Pol.  |
|--------------------|------|---------------|------------|----------|------------|--------------|----------|--------|--------|--------|---------|-------|-------|
| Ant.               |      |               |            |          | Line       | Level        | Factor   | Loss   | Factor | Pos    | Pos     | Avg.  |       |
| 8                  |      | (MHz)         | ( dBµV/m ) | ( dB )   | ( dBµV/m ) | ( dBµV )     | ( dB/m ) | ( dB ) | ( dB ) | ( cm ) | ( deg ) | (P/A) | (H/V) |
|                    |      | 4020          | 45.62      | -28.38   | 74         | 52.88        | 34.51    | 10.02  | 51.79  | -      | -       | Ρ     | н     |
|                    |      | 4960          | 45.5       | -28.5    | 74         | 50.99        | 34.88    | 11.14  | 51.51  | -      | -       | Ρ     | Н     |
|                    |      | 6030          | 45.7       | -28.3    | 74         | 50.42        | 35.52    | 11.45  | 51.69  | -      | -       | Ρ     | Н     |
| BLE                |      | 7440          | 47.06      | -26.94   | 74         | 48.88        | 36.38    | 12.99  | 51.19  | -      | -       | Ρ     | Н     |
| CH 39<br>2480MHz & |      | 8040          | 47.25      | -26.75   | 74         | 48.3         | 36.86    | 13.26  | 51.17  | -      | -       | Ρ     | Н     |
| NTN B23            |      | 4020          | 44.83      | -29.17   | 74         | 52.09        | 34.51    | 10.02  | 51.79  | -      | -       | Ρ     | V     |
| Co-colation        |      | 4960          | 44.72      | -29.28   | 74         | 50.21        | 34.88    | 11.14  | 51.51  | -      | -       | Ρ     | V     |
|                    |      | 6030          | 46.9       | -27.1    | 74         | 51.62        | 35.52    | 11.45  | 51.69  | -      | -       | Ρ     | V     |
|                    |      | 7440          | 47.28      | -26.72   | 74         | 49.1         | 36.38    | 12.99  | 51.19  | -      | -       | Ρ     | V     |
|                    |      | 8040          | 47.5       | -26.5    | 74         | 48.55        | 36.86    | 13.26  | 51.17  | -      | -       | Ρ     | V     |
| Remark             |      | lo other spur |            | nst Peak | and Averag | je limit lir | ne.      |        |        |        |         |       |       |



# **Co-colation For Sample 2**

#### 2.4GHz 2400~2483.5MHz

# BLE (Band Edge @ 3m)

| BLE          | Note | Frequency | Level      | Margin | Limit      | Read   | Antenna  | Cable  | Preamp | Ant    | Table   | Peak  | Pol.  |
|--------------|------|-----------|------------|--------|------------|--------|----------|--------|--------|--------|---------|-------|-------|
| Ant.         |      |           |            |        | Line       | Level  | Factor   | Loss   | Factor | Pos    | Pos     | Avg.  |       |
| 8            |      | (MHz)     | ( dBµV/m ) | (dB)   | ( dBµV/m ) | (dBµV) | ( dB/m ) | ( dB ) | (dB)   | ( cm ) | ( deg ) | (P/A) | (H/V) |
|              |      | 2480      | 89.17      | -      | -          | 80.92  | 32.46    | 7.88   | 32.09  | 100    | 234     | Р     | Н     |
|              |      | 2480      | 87.51      | -      | -          | 79.26  | 32.46    | 7.88   | 32.09  | 100    | 234     | А     | н     |
| BLE<br>CH 39 |      | 2489.84   | 47.93      | -26.07 | 74         | 39.66  | 32.48    | 7.88   | 32.09  | 100    | 234     | Р     | Н     |
| 2480MHz      |      | 2483.52   | 40.11      | -13.89 | 54         | 31.86  | 32.46    | 7.88   | 32.09  | 100    | 234     | А     | Н     |
| +GSM850      |      | 2480      | 91.39      | -      | -          | 83.14  | 32.46    | 7.88   | 32.09  | 270    | 263     | Ρ     | V     |
| Co-colation  |      | 2480      | 89.75      | -      | -          | 81.5   | 32.46    | 7.88   | 32.09  | 270    | 263     | А     | V     |
|              |      | 2497.2    | 47.36      | -26.64 | 74         | 39.09  | 32.49    | 7.88   | 32.1   | 270    | 263     | Р     | V     |
|              |      | 2483.56   | 40.05      | -13.95 | 54         | 31.8   | 32.46    | 7.88   | 32.09  | 270    | 263     | А     | V     |

#### 2.4GHz 2400~2483.5MHz

# BLE (Harmonic @ 3m)

| BLE                | Note | Frequency | Level      | Margin | Limit      | Read     | Antenna  | Cable | Preamp | Ant    | Table   | Peak  | Pol.  |
|--------------------|------|-----------|------------|--------|------------|----------|----------|-------|--------|--------|---------|-------|-------|
| Ant.               |      |           |            |        | Line       | Level    | Factor   | Loss  | Factor | Pos    | Pos     | Avg.  |       |
| 8                  |      | (MHz)     | ( dBµV/m ) | ( dB ) | ( dBµV/m ) | ( dBµV ) | ( dB/m ) | (dB)  | (dB)   | ( cm ) | ( deg ) | (P/A) | (H/V) |
|                    |      | 1672.8    | 44.65      | -29.35 | 74         | 40.6     | 29.96    | 6.57  | 32.48  | -      | -       | Р     | Н     |
|                    |      | 2509.2    | 50.55      | -23.45 | 74         | 42.21    | 32.53    | 7.91  | 32.1   | -      | -       | Р     | Н     |
|                    |      | 3345.6    | 46.76      | -27.24 | 74         | 55.02    | 34.61    | 9.03  | 51.9   | -      | -       | Р     | Н     |
| BLE                |      | 4960      | 45.19      | -28.81 | 74         | 50.68    | 34.88    | 11.14 | 51.51  | -      | -       | Р     | Н     |
| CH 39              |      | 7440      | 47.57      | -26.43 | 74         | 49.39    | 36.38    | 12.99 | 51.19  | -      | -       | Р     | Н     |
| 2480MHz<br>+GSM850 |      | 1672.8    | 45.06      | -28.94 | 74         | 41.01    | 29.96    | 6.57  | 32.48  | -      | -       | Р     | V     |
| Co-colation        |      | 2509.2    | 47.62      | -26.38 | 74         | 39.28    | 32.53    | 7.91  | 32.1   | -      | -       | Р     | V     |
|                    |      | 3345.6    | 46.22      | -27.78 | 74         | 54.48    | 34.61    | 9.03  | 51.9   | -      | -       | Р     | V     |
|                    |      | 4960      | 44.86      | -29.14 | 74         | 50.35    | 34.88    | 11.14 | 51.51  | -      | -       | Р     | V     |
|                    |      | 7440      | 47.63      | -26.37 | 74         | 49.45    | 36.38    | 12.99 | 51.19  | -      | -       | Р     | V     |



# Note symbol

| *   | Fundamental Frequency which can be ignored. However, the level of any       |
|-----|-----------------------------------------------------------------------------|
|     | unwanted emissions shall not exceed the level of the fundamental frequency. |
| !   | Test result is <b>Margin</b> line.                                          |
| P/A | Peak or Average                                                             |
| H/V | Horizontal or Vertical                                                      |



# A calculation example for radiated spurious emission is shown as below:

| BLE     | Note | Frequency | Level      | Margin | Limit    | Read   | Antenna  | Path   | Preamp | Ant    | Table   | Peak  | Pol.  |
|---------|------|-----------|------------|--------|----------|--------|----------|--------|--------|--------|---------|-------|-------|
|         |      |           |            |        | Line     | Level  | Factor   | Loss   | Factor | Pos    | Pos     | Avg.  |       |
|         |      | (MHz)     | ( dBµV/m ) | ( dB ) | (dBµV/m) | (dBµV) | ( dB/m ) | ( dB ) | ( dB ) | ( cm ) | ( deg ) | (P/A) | (H/V) |
| BLE     |      | 2390      | 55.45      | -18.55 | 74       | 54.51  | 32.22    | 4.58   | 35.86  | 103    | 308     | Р     | н     |
| CH 00   |      |           |            |        |          |        |          |        |        |        |         |       |       |
| 2402MHz |      | 2390      | 43.54      | -10.46 | 54       | 42.6   | 32.22    | 4.58   | 35.86  | 103    | 308     | А     | Н     |

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level( $dB\mu V/m$ ) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin (dB) = Level(dB $\mu$ V/m) – Limit Line(dB $\mu$ V/m)

#### For Peak Limit @ 2390MHz:

- 1. Level(dB $\mu$ V/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Margin (dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

#### For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Margin (dB)
- = Level(dB $\mu$ V/m) Limit Line(dB $\mu$ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

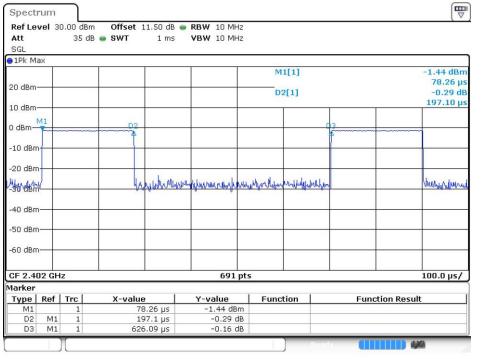
#### Both peak and average measured complies with the limit line, so test result is "PASS".





# Appendix D. Duty Cycle Plots

| Band               | Duty Cycle(%) | T(ms) | 1/T(kHz) | VBW<br>Setting |
|--------------------|---------------|-------|----------|----------------|
| Bluetooth LE 1Mbps | 61.11         | 0.383 | 2.614    | 3KHz           |
| Bluetooth LE 2Mbps | 31.48         | 0.197 | 5.074    | 10KHZ          |


#### Bluetooth LE 1Mbps

|         | vel 3  | 0.00 dB |               |                            |          |                        |                     |
|---------|--------|---------|---------------|----------------------------|----------|------------------------|---------------------|
| Att     |        | 35 d    | IB 🖷 SWT 2 ms | VBW 10 MHz                 |          |                        |                     |
| SGL     |        |         |               |                            |          |                        |                     |
| 1Pk M   | ах     |         |               |                            |          |                        |                     |
|         |        |         |               |                            | D3[1]    |                        | 0.27 di<br>626.09 µ |
| 20 dBm  |        |         | -             |                            |          |                        |                     |
|         |        |         | MITII         | M1[1]                      |          |                        |                     |
| 10 dBm· |        |         |               |                            |          |                        | 353.62 µs           |
|         |        | M       | 1 0           |                            |          |                        |                     |
| ) dBm-  |        |         | č             | 2 D3                       |          |                        |                     |
| 10 10   |        |         |               | T                          |          |                        |                     |
| -10 dBm | 1      |         |               |                            |          |                        | 11.0                |
| -20 dBm |        |         |               |                            |          |                        |                     |
| -20 461 | 11.    |         |               |                            |          |                        |                     |
| -30 dBm | mappin | noutin  | k\            | What what we have a second |          | however and the second |                     |
|         |        |         |               |                            |          |                        |                     |
| -40 dBm | n——    |         |               |                            |          |                        |                     |
|         |        |         |               |                            |          |                        |                     |
| -50 dBm |        |         |               | -                          |          |                        |                     |
|         |        |         |               |                            |          |                        |                     |
| -60 dBm | 1      |         |               |                            |          |                        |                     |
|         |        |         |               |                            |          |                        |                     |
| CF 2.40 | 02 GH  | z       |               | 691 pt:                    | 5        |                        | 200.0 µs/           |
| 1arker  |        |         |               |                            |          |                        |                     |
| Type    | Ref    | Trc     | X-value       | Y-value                    | Function | Function R             | esult               |
| M1      |        | 1       | 353.62 µs     | -2.16 dBm                  |          |                        |                     |
| D2      | M1     | 1       | 382.61 µs     | 0.56 dB                    |          |                        |                     |
| D3      | M1     | 1       | 626.09 µs     | 0.27 dB                    |          |                        |                     |

Date: 8.NOV.2022 14:04:23



#### Bluetooth LE 2Mbps



Date: 8.NOV.2022 14:06:36