FCC RF Test Report

APPLICANT : Bullitt Group

EQUIPMENT: Rugged Smart Phone

BRAND NAME : CAT

MODEL NAME : BM1S1B

FCC ID : ZL5BM1S1BE

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DSS) Spread Spectrum Transmitter

TEST DATE(S) : Nov. 08, 2022 ~ Dec. 08, 2022

We, Sporton International Inc. (Shenzhen), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Shenzhen), the test report shall not be reproduced except in full.

Approved by: Jason Jia

Report No.: FR2O1410-01A

Sporton International Inc. (ShenZhen)

1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055

People's Republic of China

Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 1 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

TABLE OF CONTENTS

RE	VISIOI	N HISTORY	3
SU	MMAR	RY OF TEST RESULT	4
1	GENI	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	5
	1.6	Testing Location	6
	1.7	Test Software	6
	1.8	Applicable Standards	
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	_
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	
	2.5	EUT Operation Test Setup	
	2.6	Measurement Results Explanation Example	10
3	TEST	「 RESULT	11
	3.1	Number of Channel Measurement	11
	3.2	Hopping Channel Separation Measurement	13
	3.3	Dwell Time Measurement	19
	3.4	20dB and 99% Bandwidth Measurement	
	3.5	Output Power Measurement	32
	3.6	Conducted Band Edges Measurement	
	3.7	Conducted Spurious Emission Measurement	40
	3.8	Radiated Band Edges and Spurious Emission Measurement	50
	3.9	AC Conducted Emission Measurement	
	3.10	Antenna Requirements	56
4	LIST	OF MEASURING EQUIPMENT	57
5	UNC	ERTAINTY OF EVALUATION	58
ΑP	PEND	IX A. CONDUCTED TEST RESULTS	
ΑP	PEND	IX B. AC CONDUCTED EMISSION TEST RESULT	
AP	PEND	IX C. RADIATED SPURIOUS EMISSION	
AP	PEND	IX D. DUTY CYCLE PLOTS	
ΑP	PEND	IX E. SETUP PHOTOGRAPHS	

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 2 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No. : FR2O1410-01A

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR2O1410-01A	Rev. 01	Initial issue of report	Jan. 05, 2023

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 3 of 58

Report Issued Date : Jan. 05, 2023

Report Version : Rev. 01

Report No. : FR2O1410-01A

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	-	Report only	-
3.4	-	99% Bandwidth	-	Report only	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 9.77 dB at 30.00 MHz
3.9	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 13.33 dB at 0.19 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	15.203 & 15.247(b)	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 4 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A

1 General Description

1.1 Applicant

Bullitt Group

One Valpy, Valpy Street, Reading, Berkshire, RG1 1AR, United Kingdom

1.2 Manufacturer

Bullitt Mobile Limited

One Valpy, Valpy Street, Reading, Berkshire, RG1 1AR, United Kingdom

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	Rugged Smart Phone			
Brand Name	CAT			
Model Name	BM1S1B			
FCC ID	ZL5BM1S1BE			
	Conducted: 352089780020578/352089780024059			
IMEI Code	Conduction: 352089780018861/352089780022343			
	Radiation: 352089780001274/352089780002777			
EUT Stage	Identical Prototype			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	79			
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78			
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 12.40 dBm (0.0174 W) Bluetooth EDR (2Mbps) : 12.00 dBm (0.0158 W) Bluetooth EDR (3Mbps) : 12.50 dBm (0.0178 W)			
99% Occupied Bandwidth	Bluetooth BR(1Mbps) : 0.883 MHz Bluetooth EDR (2Mbps) : 1.172 MHz Bluetooth EDR (3Mbps) : 1.178 MHz			
Antenna Type / Gain	IFA Antenna type with gain -1.50 dBi			
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) :π/4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK			

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

Sporton International Inc. (Shenzhen)
TEL: +86-755-8637-9589

FAX: +86-755-8637-9589 FCC ID: ZL5BM1S1BE Page Number : 5 of 58

Report Issued Date : Jan. 05, 2023

Report Version : Rev. 01

Report No.: FR2O1410-01A

1.6 Testing Location

Sporton International Inc. (Shenzhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sporton International Inc. (Shenzhen)						
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595						
	Sporton Site No.	FCC Designation No.	FCC Test Firm				
Test Site No.	Sporton Site No.	rec Designation No.	Registration No.				
	CO01-SZ TH01-SZ	CN1256	421272				

Test Firm	Sporton International Inc. (Shenzhen)				
Test Site Location	101, 1st Floor, Block B, Building 1, No. 2, Tengfeng 4th Road, Fenghuang Community, Fuyong Street, Baoan District, Shenzhen City Guangdong Province China 518103 TEL: +86-755-33202398				
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.		
	03CH01-SZ	CN1256	421272		

1.7 Test Software

Item	Site	Manufacturer	Name	Version
1.	03CH01-SZ	AUDIX	E3	6.2009-8-24
2.	CO01-SZ	AUDIX	E3	6.120613b

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 6 of 58

Report Issued Date : Jan. 05, 2023

Report Version : Rev. 01

Report No.: FR2O1410-01A

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 7 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT Version 2.0

Report No.: FR2O1410-01A

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

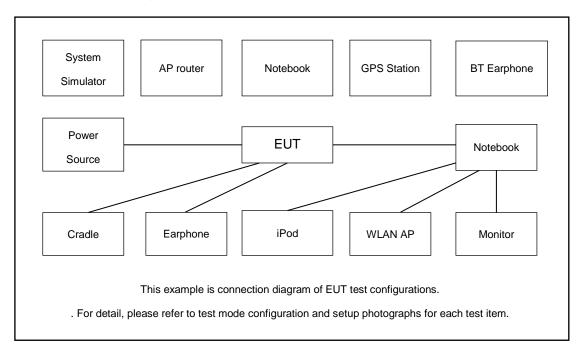
The following summary table is showing all test modes to demonstrate in compliance with the standard.

Summary table of Test Cases						
	Data Rate / Modulation					
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps			
	GFSK	π/4-DQPSK	8-DPSK			
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz			
Conducted	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz			
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz			
	Bluetooth EDR 3Mbps 8-DPSK					
	ь	idetootii EDN Silibps o-Di S				
Radiated		Mode 1: CH00_2402 MHz	· ·			
Radiated Test Cases		•	· ·			
		Mode 1: CH00_2402 MHz				
		Mode 1: CH00_2402 MHz Mode 2: CH39_2441 MHz Mode 3: CH78_2480 MHz				
Test Cases		Mode 1: CH00_2402 MHz Mode 2: CH39_2441 MHz				

Remark:

- 1. For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.
- 2. For Radiated Test Cases, The tests were performed with Adapter, Battery 1 and USB Cable 1.

Sporton International Inc. (Shenzhen)


TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 8 of 58

Report Issued Date : Jan. 05, 2023

Report Version : Rev. 01

Report No.: FR2O1410-01A

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Base Station	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m
2.	Base Station	R&S	CMW500	Fcc DoC	N/A	Shielded, 1.5m
3.	Base Station	R&S	CBT32	N/A	N/A	Unshielded,1.8m
4.	WLAN AP	Dlink	DIR-820L	KA2IR820LA1	N/A	Unshielded,1.8m
5.	Bluetooth Earphone	Samsung	EO-MG900	PYAHS-107W	N/A	N/A

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 9 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 1.50 dB and 10dB attenuator.

$$Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$$

= 1.50 + 10 = 11.50 (dB)

Page Number : 10 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

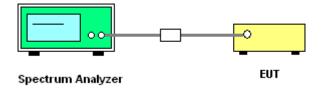
Report No.: FR2O1410-01A

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.


3.1.2 Measuring Instruments

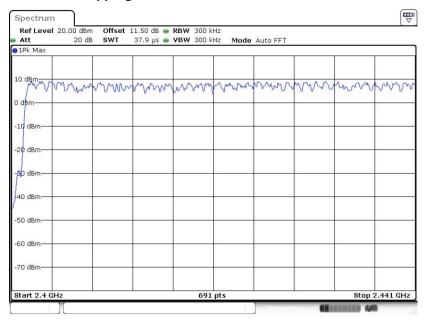
The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = the frequency band of operation; RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

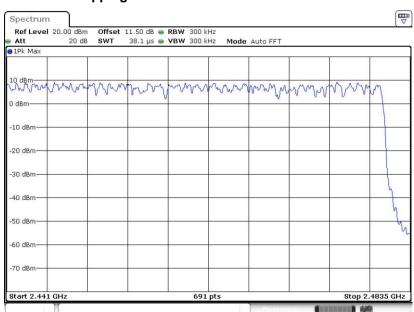
3.1.4 Test Setup

Sporton International Inc. (Shenzhen)


TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 11 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A

3.1.5 Test Result of Number of Hopping Frequency


Please refer to Appendix A.

Number of Hopping Channel Plot on Channel 00

Date: 10.NOV.2022 23:49:35

Number of Hopping Channel Plot on Channel 78

Date: 10.NOV.2022 23:49:59

Sporton International Inc. (Shenzhen)

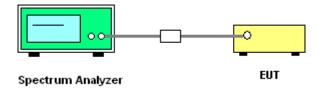
TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 12 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

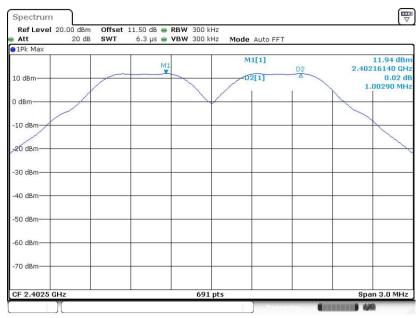
3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

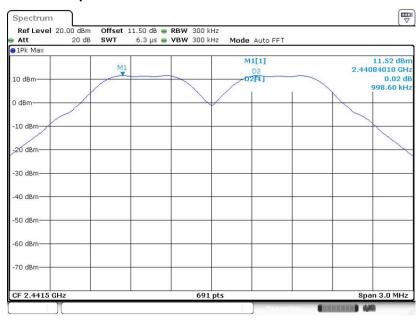
Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 13 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01


Report No.: FR2O1410-01A

3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

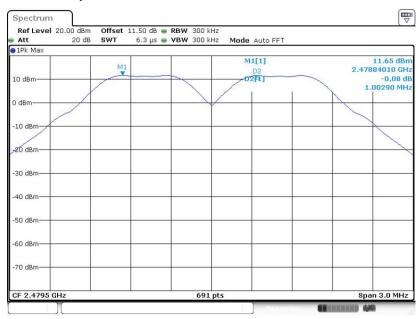

<1Mbps>

Channel Separation Plot on Channel 00 - 01

Date: 10.NOV.2022 22:55:17

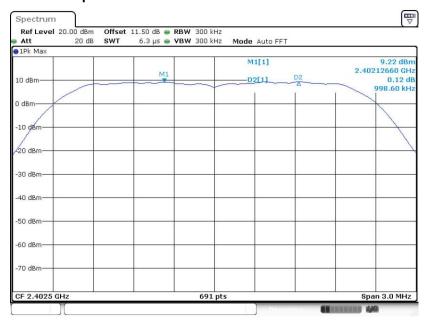
Channel Separation Plot on Channel 39 - 40

Date: 10.NOV.2022 23:12:56


Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 14 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

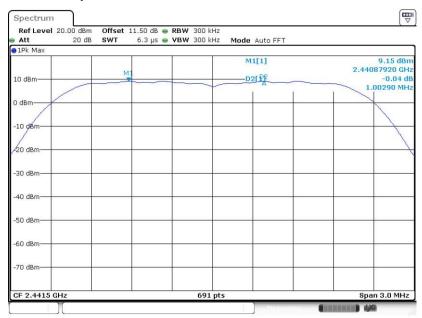
Report No.: FR2O1410-01A


Channel Separation Plot on Channel 77 - 78

Date: 10.NOV.2022 23:17:56

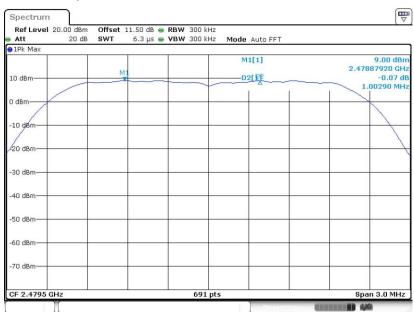
<2Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 11.NOV.2022 00:03:22

Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 15 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01


Report No.: FR2O1410-01A

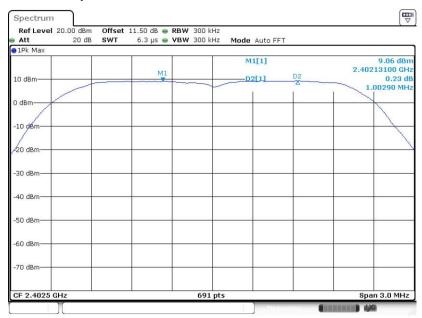
Channel Separation Plot on Channel 39 - 40

Date: 11.NOV.2022 00:52:40

Channel Separation Plot on Channel 77 - 78

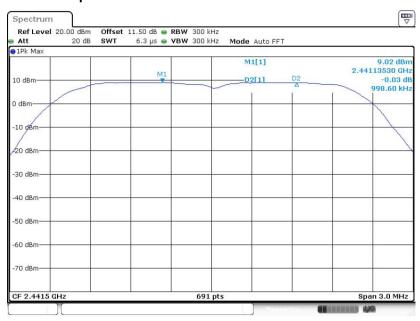
Date: 11.NOV.2022 00:59:07

Sporton International Inc. (Shenzhen)


TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE

Page Number : 16 of 58 Report Issued Date: Jan. 05, 2023 Report Version : Rev. 01

Report No.: FR2O1410-01A


<3Mbps>

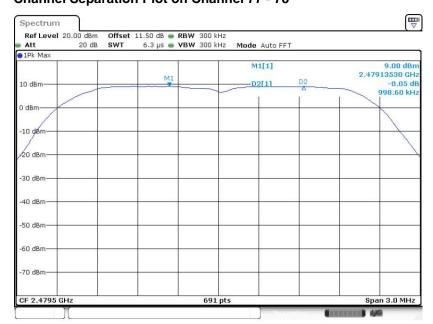
Channel Separation Plot on Channel 00 - 01

Date: 11.NOV.2022 01:03:48

Channel Separation Plot on Channel 39 - 40

Date: 11.NOV.2022 01:10:04

Sporton International Inc. (Shenzhen)


TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 17 of 58

Report Issued Date : Jan. 05, 2023

Report Version : Rev. 01

Report No.: FR2O1410-01A

Channel Separation Plot on Channel 77 - 78

Date: 11.NOV.2022 01:17:35

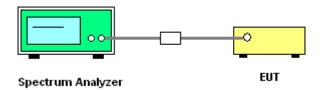
TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 18 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No. : FR2O1410-01A

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
 The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 19 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Spectrum Offset 11.50 dB • RBW 1 MHz Att 35 dB 🕳 SWT 10 ms VBW 1 MHz ●1Pk Max D3[1] 20 dBm M1[1] 11.31 dBr 2.2681 m 10 dBm-0 dBm -10 dBn -20 dBn -30 dBr Horas JAHANAN 1 aproduction -40 dBr -50 dBm CF 2.402 GHz 691 pts 1.0 ms/ Marker Type Ref Trc 2.2681 ms 2.8768 ms Y-value 11.31 dBm 0.17 dB -0.11 dB

Function

Function Result

Package Transfer Time Plot

Date: 8.NOV.2022 16:57:01

Remark:

1. In normal mode, hopping rate is 1600 hops/s with 6 slots (5 Transmit and 1 Receive slot) in 79 hopping channels.

With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.

3.7464 ms

3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE

Page Number : 20 of 58 Report Issued Date: Jan. 05, 2023 Report Version : Rev. 01

Report No.: FR2O1410-01A

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.

Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;

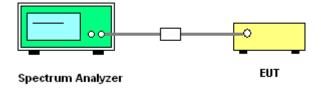
The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW;

Sweep = auto; Detector function = peak;

Trace = max hold.

5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.

Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;


The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW;

Sweep = auto; Detector function = peak;

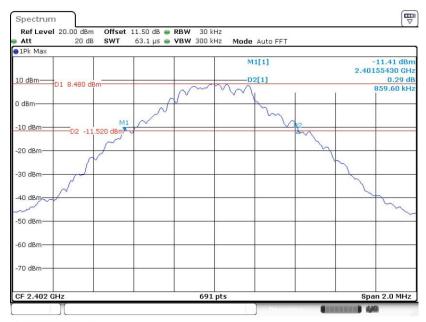
Trace = max hold.

6. Measure and record the results in the test report.

3.4.4 Test Setup

Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 21 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01


Report No.: FR2O1410-01A

3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

<1Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 3.DEC.2022 15:35:17

20 dB Bandwidth Plot on Channel 39

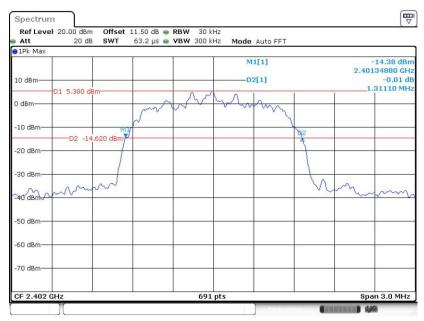
Date: 3.DEC.2022 15:44:39


Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 22 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A

FCC RF Test Report


20 dB Bandwidth Plot on Channel 78

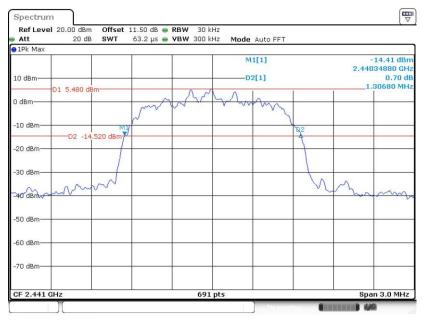
Date: 3.DEC.2022 15:45:36

<2Mbps>

20 dB Bandwidth Plot on Channel 00

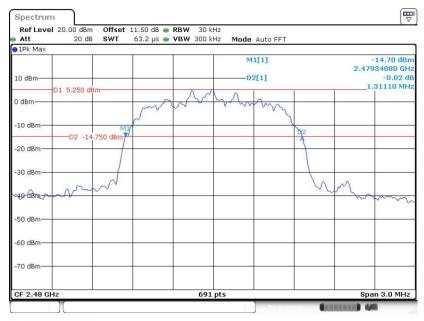
Date: 3.DEC.2022 15:38:51

Sporton International Inc. (Shenzhen)


TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE

Page Number : 23 of 58 Report Issued Date: Jan. 05, 2023 Report Version : Rev. 01

Report No.: FR2O1410-01A


Report No.: FR2O1410-01A

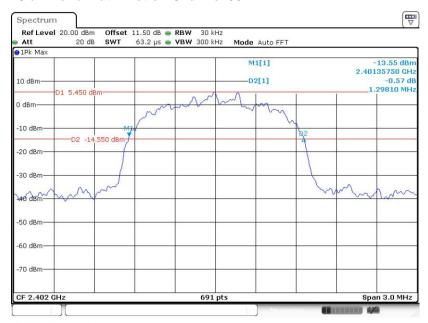
20 dB Bandwidth Plot on Channel 39

Date: 3.DEC.2022 15:43:23

20 dB Bandwidth Plot on Channel 78

Date: 3.DEC.2022 15:42:30

Sporton International Inc. (Shenzhen)


TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE

Page Number : 24 of 58 Report Issued Date: Jan. 05, 2023

Report Version : Rev. 01


<3Mbps>

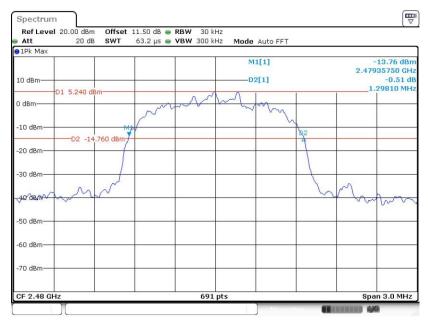
20 dB Bandwidth Plot on Channel 00

Date: 3.DEC.2022 15:39:51

20 dB Bandwidth Plot on Channel 39

Date: 3.DEC.2022 15:40:48

Sporton International Inc. (Shenzhen)


TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 25 of 58

Report Issued Date : Jan. 05, 2023

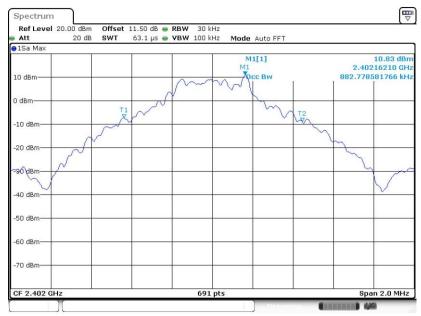
Report Version : Rev. 01

Report No.: FR2O1410-01A

20 dB Bandwidth Plot on Channel 78

Date: 3.DEC.2022 15:41:39

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 26 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01


Report No. : FR2O1410-01A

3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

<1Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 10.NOV.2022 23:00:28

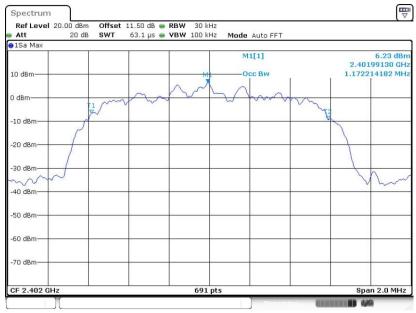
99% Occupied Bandwidth Plot on Channel 39

Date: 10.NOV.2022 23:14:34

Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 27 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

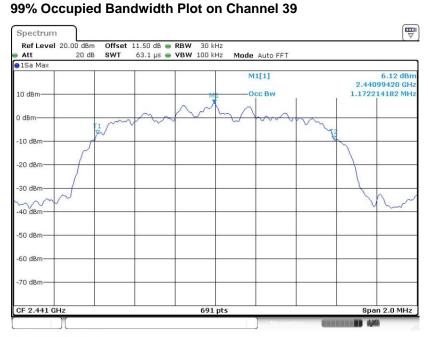
Report No.: FR2O1410-01A


99% Occupied Bandwidth Plot on Channel 78

Date: 10.NOV.2022 23:22:05

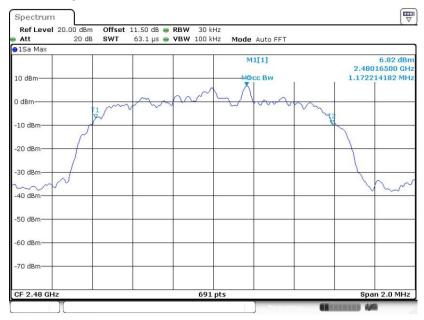
<2Mbps>

99% Occupied Bandwidth Plot on Channel 00


Date: 11.NOV.2022 00:04:52

Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE

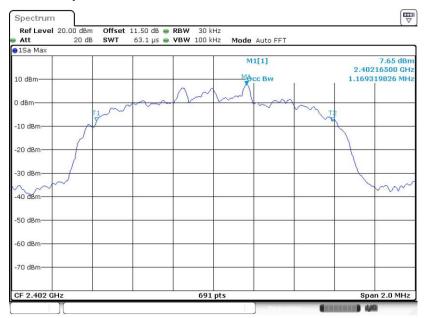

Page Number : 28 of 58 Report Issued Date: Jan. 05, 2023 Report Version : Rev. 01

Report No.: FR2O1410-01A

Date: 11.NOV.2022 00:53:44

99% Occupied Bandwidth Plot on Channel 78

Date: 11.NOV.2022 01:00:48


Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 29 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

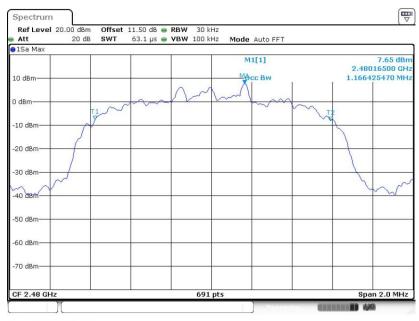
Report No.: FR2O1410-01A

<3Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 11.NOV.2022 01:05:22

99% Occupied Bandwidth Plot on Channel 39


Date: 11.NOV.2022 01:11:20

Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 30 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A

99% Occupied Bandwidth Plot on Channel 78

Date: 11.NOV.2022 01:15:32

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

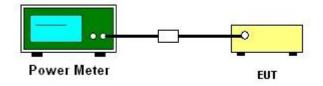
TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 31 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.


3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

Sporton International Inc. (Shenzhen)

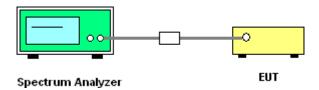
TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 32 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

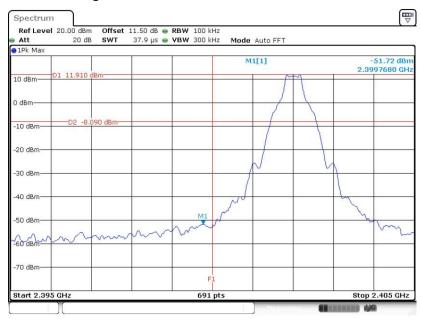

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

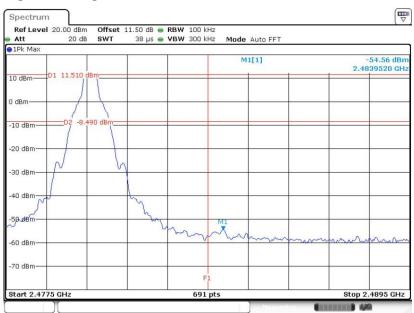
- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup


TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 33 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A

3.6.5 Test Result of Conducted Band Edges


<1Mbps>

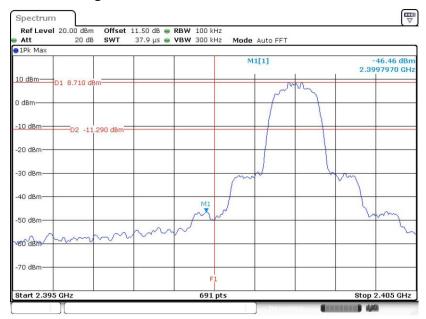
Low Band Edge Plot on Channel 00

Date: 10.NOV.2022 22:58:45

High Band Edge Plot on Channel 78

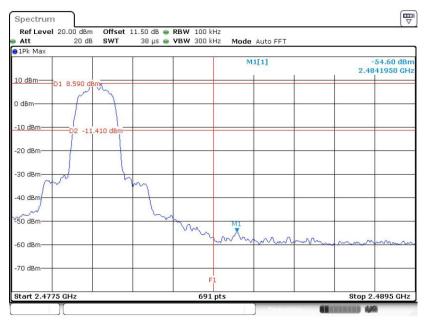
Date: 10.NOV.2022 23:21:13

Sporton International Inc. (Shenzhen)


TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE

Page Number : 34 of 58 Report Issued Date: Jan. 05, 2023 Report Version : Rev. 01

Report No.: FR2O1410-01A

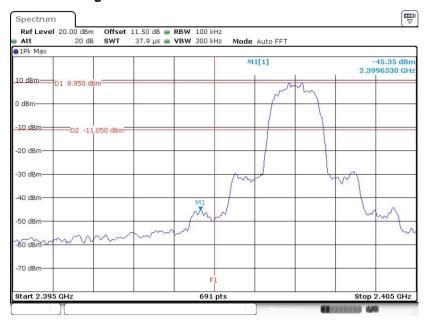

<2Mbps>

Low Band Edge Plot on Channel 00

Date: 11.NOV.2022 00:04:17

High Band Edge Plot on Channel 78

Date: 11.NOV.2022 01:01:08


Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 35 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A


<3Mbps>

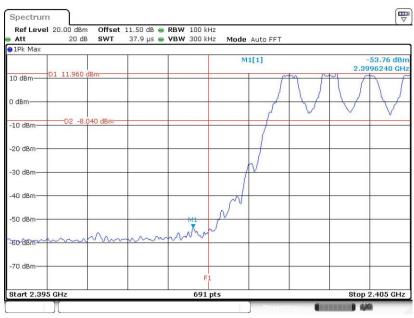
Low Band Edge Plot on Channel 00

Date: 11.NOV.2022 01:04:47

High Band Edge Plot on Channel 78

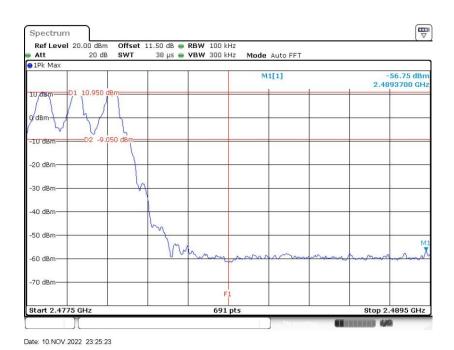
Date: 11.NOV.2022 01:16:02

Sporton International Inc. (Shenzhen)


TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 36 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A

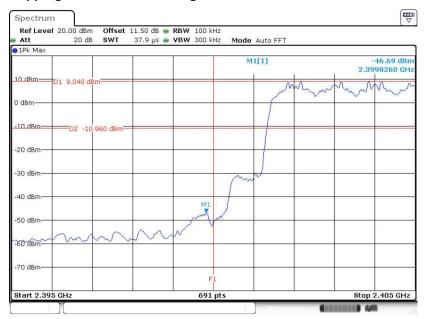
3.6.6 Test Result of Conducted Hopping Mode Band Edges


<1Mbps>

Hopping Mode Low Band Edge Plot

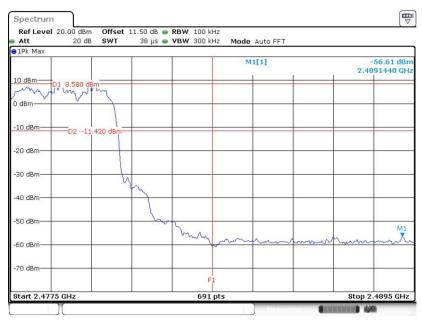
Date: 10.NOV.2022 23:24:53

Hopping Mode High Band Edge Plot


Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 37 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A


<2Mbps>

Hopping Mode Low Band Edge Plot

Date: 10.NOV.2022 23:48:43

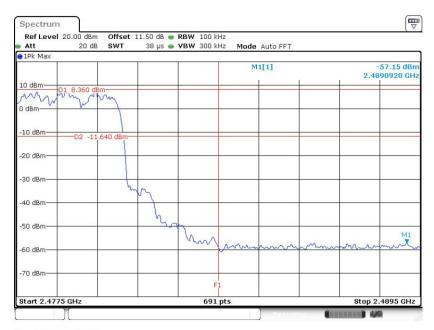
Hopping Mode High Band Edge Plot

Date: 10.NOV.2022 23:46:04

Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 38 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A


<3Mbps>

Hopping Mode Low Band Edge Plot

Date: 10.NOV.2022 23:44:01

Hopping Mode High Band Edge Plot

Date: 10.NOV.2022 23:44:50

Sporton International Inc. (Shenzhen)

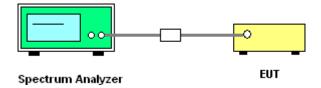
TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 39 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

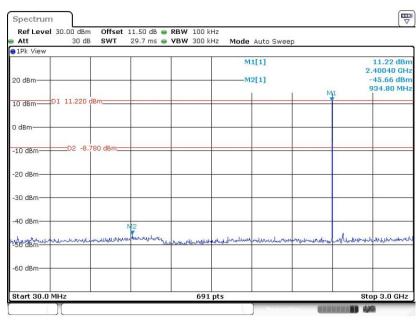

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Procedure

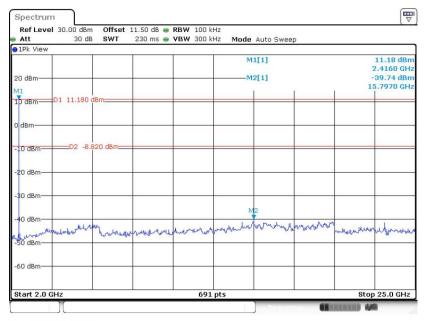
- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup


TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 40 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A

3.7.5 Test Result of Conducted Spurious Emission

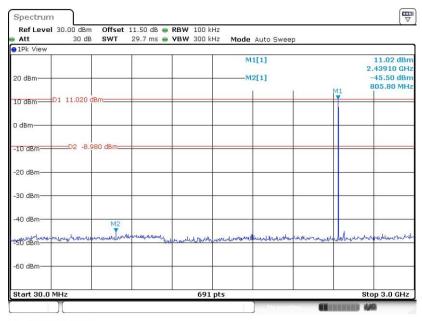

<1Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 10.NOV.2022 23:04:20

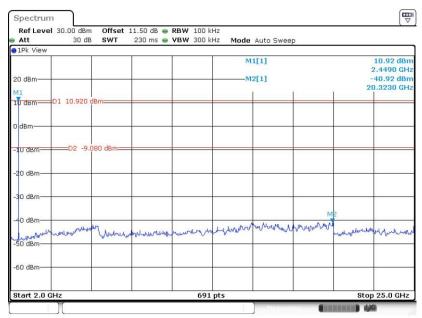
CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 10.NOV.2022 23:04:51


Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 41 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

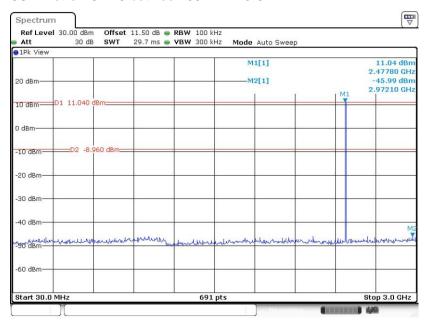
Report No.: FR2O1410-01A



CSE Plot on Ch 39 between 30MHz ~ 3 GHz

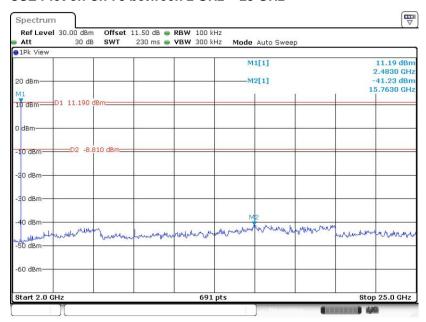
Date: 10.NOV.2022 23:15:23

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz


Date: 10.NOV.2022 23:16:47

Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 42 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01


Report No.: FR2O1410-01A

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

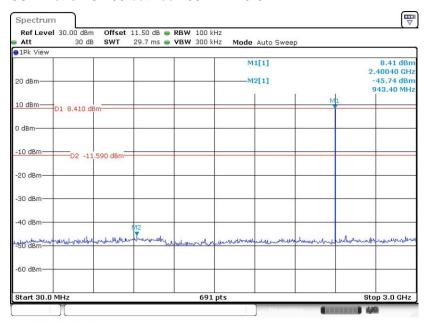
Date: 10.NOV.2022 23:23:01

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 10.NOV.2022 23:23:31

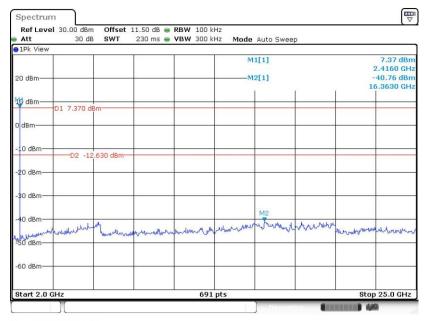
Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE


Page Number : 43 of 58 Report Issued Date: Jan. 05, 2023 Report Version : Rev. 01

Report No.: FR2O1410-01A

Report No.: FR2O1410-01A

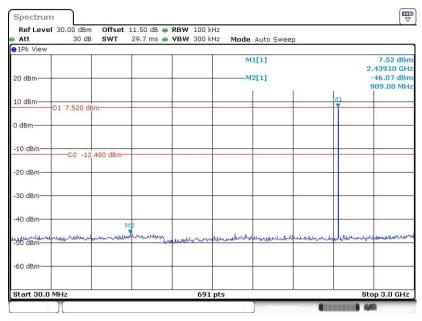

<2Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 11.NOV.2022 00:50:17

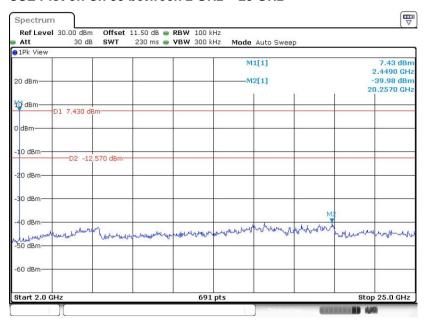
CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 11.NOV.2022 00:50:47


Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE

Page Number : 44 of 58 Report Issued Date: Jan. 05, 2023 Report Version : Rev. 01


FCC RF Test Report

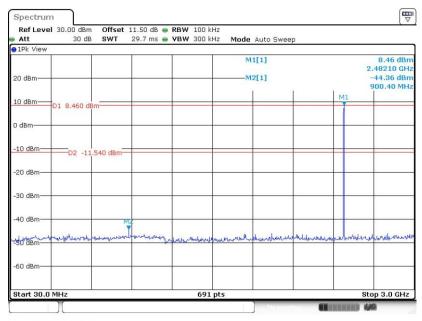
CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 11.NOV.2022 00:55:28

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

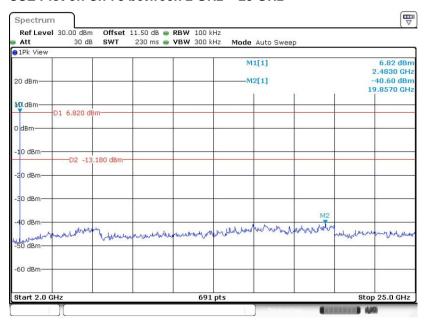
Date: 11.NOV.2022 00:55:57

Sporton International Inc. (Shenzhen)


TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE

Page Number : 45 of 58 Report Issued Date: Jan. 05, 2023 Report Version : Rev. 01

Report No.: FR2O1410-01A

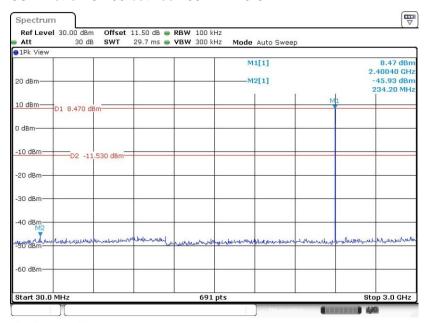

FCC RF Test Report

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 11.NOV.2022 01:01:42

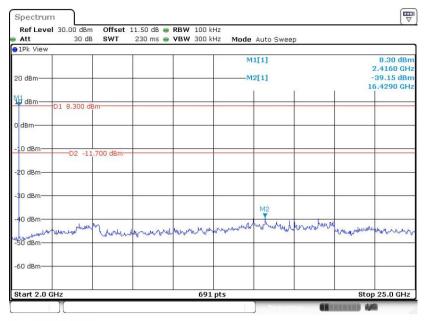
CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 11.NOV.2022 01:02:11


Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 46 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

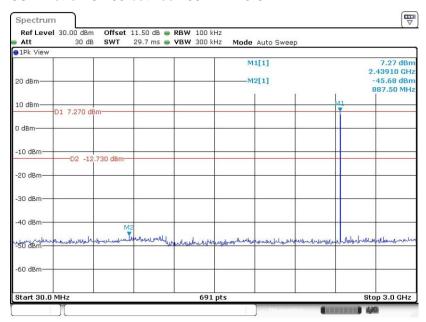
Report No.: FR2O1410-01A


<3Mbps>

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

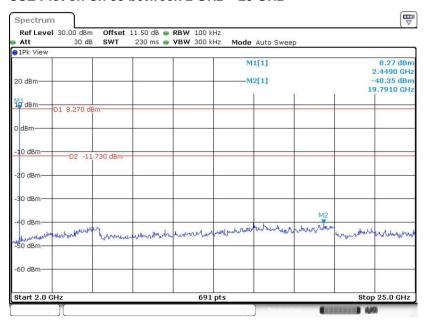
Date: 11.NOV.2022 01:06:09

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz


Date: 11.NOV.2022 01:06:38

Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 47 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01


Report No.: FR2O1410-01A

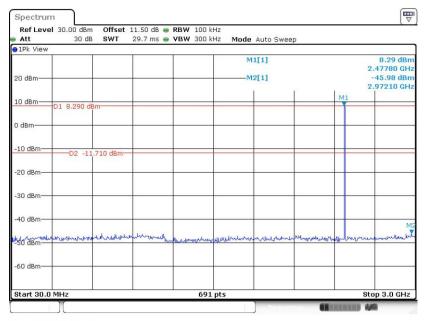
CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 11.NOV.2022 01:12:00

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

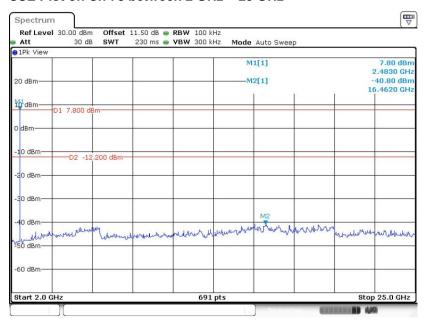
Date: 11.NOV.2022 01:12:29

Sporton International Inc. (Shenzhen)


TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE

Page Number : 48 of 58 Report Issued Date: Jan. 05, 2023 Report Version : Rev. 01

Report No.: FR2O1410-01A


FCC RF Test Report

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 11.NOV.2022 01:14:30

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 11.NOV.2022 01:14:58

Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 49 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 50 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A

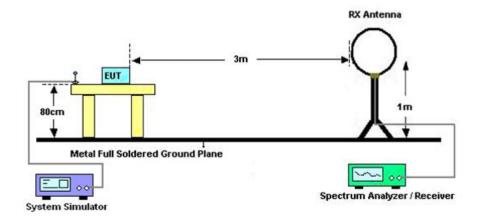
3.8.3 Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c).

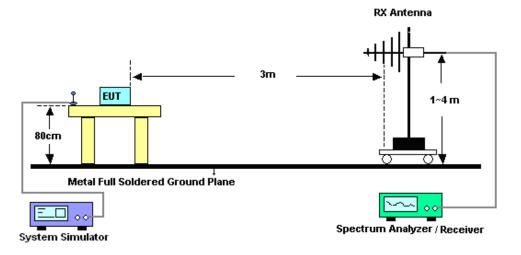
Duty cycle = On time/100 milliseconds

On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$

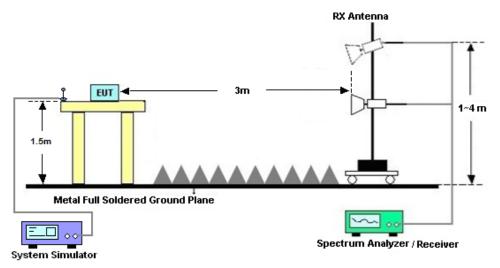
Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.


Average Emission Level = Peak Emission Level + 20*log(Duty cycle)

- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.


Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

3.8.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 52 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C.

3.8.8 Duty cycle correction factor for average measurement

Please refer to Appendix D.

Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 53 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A

3.9 AC Conducted Emission Measurement

3.9.1 Limit of AC Conducted Emission

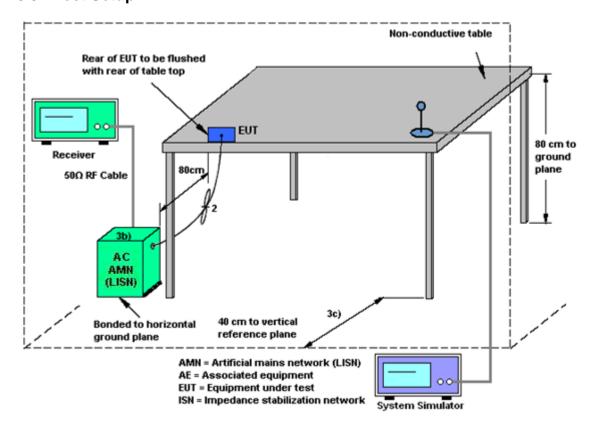
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Eroquonov of omission (MUz)	Conducted	limit (dBμV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*}Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.


3.9.3 Test Procedures

- The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 54 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 55 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 56 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 07, 2022	Nov. 08, 2022~ Dec. 07, 2022	Apr. 08, 2023	Conducted (TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1339473	30MHz~40GHz	Dec. 28, 2021	Nov. 08, 2022~ Dec. 07, 2022	Dec. 27, 2022	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1542004	50MHz Bandwidth	Dec. 28, 2021	Nov. 08, 2022~ Dec. 07, 2022	Dec. 27, 2022	Conducted (TH01-SZ)
EMI Test Receiver&SA	Agilent	N9038A	MY522601 85	20Hz~26.5GHz	Dec.27, 2021	Dec. 05, 2022~ Dec. 08, 2022	Dec.26, 2022	Radiation (03CH01-SZ)
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY551502 13	10Hz~44GHz	Jul. 7, 2022	Dec. 05, 2022~ Dec. 08, 2022	Jul. 6, 2023	Radiation (03CH01-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jul. 28, 2022	Dec. 05, 2022~ Dec. 08, 2022	Jun. 27, 2024	Radiation (03CH01-SZ)
Bilog Antenna	TeseQ	CBL6112D	35407	30MHz-2GHz	Sep. 28, 2021	Dec. 05, 2022~ Dec. 08, 2022	Sep. 27, 2023	Radiation (03CH01-SZ)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00119436	1GHz~18GHz	Jul. 7, 2022	Dec. 05, 2022~ Dec. 08, 2022	Jul. 6, 2023	Radiation (03CH01-SZ)
SHF-EHF Horn	com-power	AH-840	101071	18Ghz-40GHz	Apr.10, 2022	Dec. 05, 2022~ Dec. 08, 2022	Apr.9 2023	Radiation (03CH01-SZ)
LF Amplifier	Burgeon	BPA-530	102209	0.01~3000Mhz	Apr. 6, 2022	Dec. 05, 2022~ Dec. 08, 2022	Apr. 5, 2023	Radiation (03CH01-SZ)
HF Amplifier	MITEQ	AMF-7D-0010 1800-30-10P- R	1943528	1GHz~18GHz	Oct.19,2022	Dec. 05, 2022~ Dec. 08, 2022	Oct.18,2023	Radiation (03CH01-SZ)
HF Amplifier	KEYSIGHT	83017A	MY532701 05	0.5GHz~26.5Gh z	Oct.19,2022	Dec. 05, 2022~ Dec. 08, 2022	Oct.18,2023	Radiation (03CH01-SZ)
HF Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz	Jul. 6. 2022	Dec. 05, 2022~ Dec. 08, 2022	Jul. 5. 2023	Radiation (03CH01-SZ)
AC Power Source	Chroma	61601	616010001 985	N/A	Nov.10.2022	Dec. 05, 2022~ Dec. 08, 2022	Nov.9.2023	Radiation (03CH01-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Dec. 05, 2022~ Dec. 08, 2022	NCR	Radiation (03CH01-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Dec. 05, 2022~ Dec. 08, 2022	NCR	Radiation (03CH01-SZ)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Jul. 7, 2022	Nov. 17, 2022~ Nov. 18, 2022	Jul. 6 2023	Conduction (CO01-SZ)
AC LISN	R&S	ENV216	100063	9kHz~30MHz	Sept. 15, 2022	Nov. 17, 2022~ Nov. 18, 2022	Sept. 14, 2023	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Oct. 17, 2022	Nov. 17, 2022~ Nov. 18, 2022	Oct. 16, 2023	Conduction (CO01-SZ)

NCR: No Calibration Required

Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 57 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No. : FR2O1410-01A

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Test Item	Uncertainty
Conducted Power	±1.34 dB
Conducted Emissions	±1.34 dB
Occupied Channel Bandwidth	±0.13 %
Conducted Power Spectral Density	±1.32 dB

<u>Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)</u>

Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	2.2dB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4 040
of 95% (U = 2Uc(y))	4.2dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

	
Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.0db

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	4.3dB
of 95% (U = 2Uc(y))	4.3ub

----- THE END -----

Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number : 58 of 58
Report Issued Date : Jan. 05, 2023
Report Version : Rev. 01

Report No.: FR2O1410-01A

Appendix A. Conducted Test Results

Sporton International Inc. (Shenzhen)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE Page Number

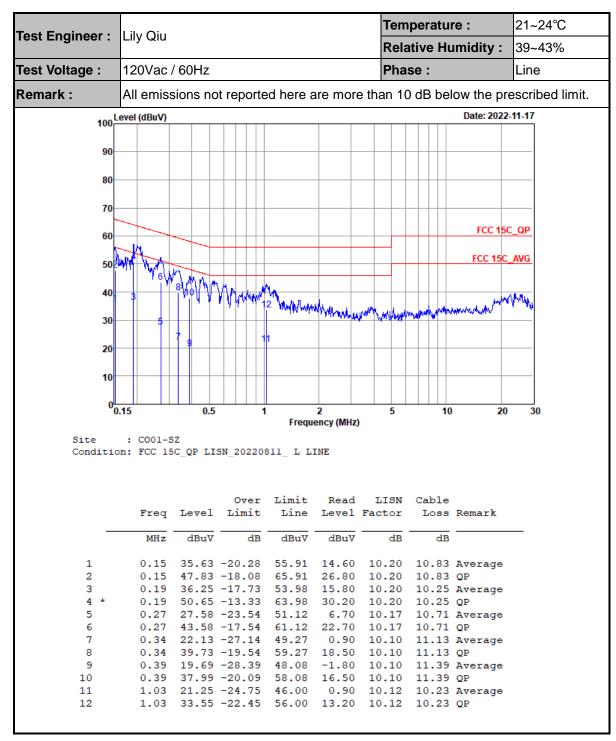
: A1 of A1

Report Number : FR2O1410-01A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Chen Ran	Temperature:	21~25	°C
Test Date:	2022/11/22	Relative Humidity:	51~54	%

			20d	B and s	99% Occu		SULTS DATA th and Hopping	Channel Separat	ion
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.860	0.883	1.003	0.5731	Pass
DH	1Mbps	1	39	2441	0.863	0.883	0.999	0.5750	Pass
DH	1Mbps	1	78	2480	0.857	0.880	1.003	0.5711	Pass
2DH	2Mbps	1	0	2402	1.311	1.172	0.999	0.8741	Pass
2DH	2Mbps	1	39	2441	1.307	1.172	1.003	0.8712	Pass
2DH	2Mbps	1	78	2480	1.311	1.172	1.003	0.8741	Pass
3DH	3Mbps	1	0	2402	1.298	1.169	1.003	0.8654	Pass
3DH	3Mbps	1	39	2441	1.298	1.178	0.999	0.8654	Pass
3DH	3Mbps	1	78	2480	1.298	1.166	0.999	0.8654	Pass


			<u>TE</u> S	ST RESULTS Dwell Time		
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Nomal	79	106.67	2.88	0.31	0.4	Pass
AFH	20	53.33	2.88	0.15	0.4	Pass

					ST RESUL Peak Powe
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	12.40	20.97	Pass
DH5	39	1	12.30	20.97	Pass
Ī	78	1	12.00	20.97	Pass
	0	1	12.00	20.97	Pass
2DH5	39	1	11.90	20.97	Pass
Ī	78	1	11.70	20.97	Pass
	0	1	12.50	20.97	Pass
3DH5	39	1	12.30	20.97	Pass
-	78	1	12.20	20.97	Pass

				Av	ST RESULTS DATA erage Power Table (Reporting Only)
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)	
	0	1	11.10	1.15	
DH5	39	1	11.00	1.15	
	78	1	10.90	1.15	
	0	1	9.40	1.15	1
2DH5	39	1	9.10	1.15	
	78	1	8.90	1.15	1
	0	1	9.30	1.15	
3DH5	39	1	9.00	1.15	
	78	1	8.90	1.15]

<u>TEST RESULTS DATA</u> Number of Hoppina Freauency									
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail						
79	20	> 15	Pass						

Appendix B. AC Conducted Emission Test Results

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE

CC RF Test Report No.: FR201410-01A

act Engineer .	 :iv/ Oi					Tem	peratu	re:	21~24°0		
est Engineer :	Liiy Qiu	Relative Humidity :					ımidity :	39~43%			
est Voltage :	120Vac /	60Hz				Pha	se:		Neutral		
emark :	All amics	sions no	t reporte	nd here	are more	e than 10) dB ba	low the pr	escribed		
Ciliai K .	All elliss	510113 110	reporte	ou nere a	ale illoit	e triair it	than 10 dB below the prescri				
100 L	evel (dBuV)							Date: 2022	2-11-17		
90-											
80							+++				
70											
								FCC 45	C OD		
60								FCC 15	C_QP		
								FCC 15C	AVG		
50							+++	100 100	_AVU		
اِع	W" NAN	Un ion As .	1	Л							
40	· 110 MM	8 100	/ ¹ 12 WWW.	2 Many Many	ando. I		11 1.	يتحالينيس الل			
	3	1111	'	- 2018 811 41184	malahar 4/4/PA	and when the	KA PANTALIPATANIN	handraparantery.	K-K-MINEC HERE		
30				4	 						
		 9		1							
20		1 1 1									
20											
10											
10	.15	0.5			2	5	10	20	30		
10			1		2 ency (MHz	_	10	20	30		
10- 0_0	: CO01-S	Z		Frequ	ency (MHz	_	10	20	30		
10- 0_0		Z		Frequ	ency (MHz	_	10	20	30		
10- 0_0	: CO01-S	Z		Frequ	ency (MHz	_	10	20	30		
10- 0_0	: CO01-S	Z	SN_20220	Frequ	ency (MHz)		20	30		
10- 0_0	: CO01-S	Z C_QP LI:	SN_20220	Frequ 811_ N N Limit	ency (MHz) EUTRAL Read	LISN	Cable		30		
10- 0_0	: CO01-S	Z C_QP LI:	SN_20220	Frequ 811_ N N Limit	ency (MHz) EUTRAL Read)	Cable	20 Remark	30		
10- 0_0	: CO01-S	Z C_QP LI:	SN_20220	Frequest Research Frequest Fre	ency (MHz) EUTRAL Read	LISN	Cable		30		
10- 0- Site Conditio	: CO01-S on: FCC 15 Freq	Level	Over Limit	Frequence Frequence Relation No. 10 March 12 Mar	EUTRAL Read Level dBuV	LISN Factor	Cable Loss ——————————————————————————————————	Remark	30		
10- 0_0	: CO01-S on: FCC 15 Freq MHz 0.15	Level dBuV	Over Limit ———————————————————————————————————	Frequence Frequence Relation No. 10 March 12 Mar	Read Level dBuV	LISN Factor	Cable Loss dB	Remark	30		
10- 0- Site Conditio	: C001-S on: FCC 15 Freq MHz 0.15 0.15	Level dBuV 27.26 41.66	Over Limit ———————————————————————————————————	Frequence Frequence Representation No. 10 March 1980 Frequence Repre	Read Level dBuV 6.10 20.50	LISN Factor dB 10.31 10.31	Cable Loss dB 10.85 10.85	Remark	30		
10- 00 Site Conditio	: C001-S on: FCC 15 Freq MHz 0.15 0.15	Level dBuV 27.26 41.66 31.57	Over Limit dB -28.74 -24.34 -21.88	Frequence Frequence Representation No. 10 March 1980 Frequence Repre	Read Level dBuV 6.10 20.50 11.09	LISN Factor dB 10.31 10.31	Cable Loss dB 10.85 10.85 10.20	Remark Average QP Average	30		
Site Condition	: C001-S on: FCC 15 Freq MHz 0.15 0.15 0.20	Level dBuV 27.26 41.66 31.57 45.77	Over Limit dB -28.74 -24.34 -21.88 -17.68	Frequence N N N N N N N N N N	Read Level dBuV 6.10 20.50 11.09 25.29	LISN Factor dB 10.31 10.28 10.28	Cable Loss dB 10.85 10.85 10.20 10.20	Remark Average QP Average	30		
10- 0- 0 Site Conditio	: C001-S on: FCC 1S Freq MHz 0.15 0.15 0.20 0.20 0.26 0.26	Level dBuV 27.26 41.66 31.57 45.77 24.29 39.29	Over Limit ———————————————————————————————————	Frequence N N Limit Line dBuV 56.00 66.00 53.45 63.45 51.42 61.42 61.42	Read Level dBuV 6.10 20.50 11.09 25.29 3.40 18.40	LISN Factor dB 10.31 10.31 10.28 10.28 10.24 10.24	Cable Loss dB 10.85 10.85 10.20 10.20 10.65 10.65	Remark Average QP Average QP Average QP	30		
10- 00 Site Condition	: C001-S on: FCC 1S Freq MHz 0.15 0.15 0.20 0.20 0.26 0.26 0.33	Level dBuV 27.26 41.66 31.57 45.77 24.29 39.29 19.87	Over Limit dB -28.74 -24.34 -21.88 -17.68 -27.13 -22.13 -29.57	Frequence N N	Read Level dBuV 6.10 20.50 11.09 25.29 3.40 18.40 -1.41	LISN Factor dB 10.31 10.31 10.28 10.28 10.24 10.24 10.19	Cable Loss dB 10.85 10.85 10.20 10.65 10.65 11.09	Remark Average QP Average QP Average QP Average	30		
10- 00 Site Conditio	: C001-S on: FCC 1S Freq MHz 0.15 0.15 0.20 0.20 0.26 0.26 0.33 0.33	Level dBuV 27.26 41.66 31.57 45.77 24.29 39.29 19.87 36.37	Over Limit dB -28.74 -24.34 -21.88 -17.68 -27.13 -22.13 -29.57 -23.07	Frequence Similar N N Limit Line	Read Level dBuV 6.10 20.50 11.09 25.29 3.40 18.40 -1.41 15.09	LISN Factor dB 10.31 10.31 10.28 10.28 10.24 10.24 10.19 10.19	Cable Loss dB 10.85 10.85 10.20 10.65 11.09 11.09	Remark Average QP Average QP Average QP Average QP	30		
10- 00 Site Conditio	: C001-S on: FCC 1S Freq MHz 0.15 0.20 0.20 0.26 0.26 0.33 0.33 0.46	Level dBuV 27.26 41.66 31.57 45.77 24.29 39.29 19.87 36.37 22.10	Over Limit dB -28.74 -24.34 -21.88 -17.68 -27.13 -22.13 -29.57 -23.07 -24.61	Frequence Similar N N Limit Line dBuV	Read Level dBuV 6.10 20.50 11.09 25.29 3.40 18.40 -1.41 15.09 0.20	LISN Factor dB 10.31 10.31 10.28 10.24 10.24 10.19 10.19	Cable Loss dB 10.85 10.20 10.20 10.65 11.09 11.71	Remark Average QP Average QP Average QP Average QP Average QP	30		
10- 00 Site Conditio	: C001-S on: FCC 1S Freq MHz 0.15 0.15 0.20 0.20 0.26 0.26 0.33 0.33	Level dBuV 27.26 41.66 31.57 45.77 24.29 39.29 19.87 36.37 22.10 36.00	Over Limit dB -28.74 -24.34 -21.88 -17.68 -27.13 -22.13 -29.57 -23.07 -24.61 -20.71	Frequence Similar N N Limit Line dBuV	Read Level dBuV 6.10 20.50 11.09 25.29 3.40 18.40 -1.41 15.09 0.20 14.10	LISN Factor dB 10.31 10.31 10.28 10.28 10.24 10.19 10.19 10.19 10.19	Cable Loss dB 10.85 10.20 10.65 10.65 11.09 11.71 11.71	Remark Average QP Average QP Average QP Average QP Average QP	30		

Note:

- 1. Level(dB μ V) = Read Level(dB μ V) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

TEL: +86-755-8637-9589 FAX: +86-755-8637-9595 FCC ID: ZL5BM1S1BE

Appendix C. Radiated Spurious Emission

		Temperature :	24~25°C
Test Engineer :	Zhaohui Lian	Relative Humidity :	48~49%

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT 8		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	i l
		2361.45	48.93	-25.07	74	41.11	32.2	7.69	32.07	367	304	Р	Н
		2361.45	24.14	-29.86	54	-	-	-	-	-	-	Α	Н
	*	2402	102.77	-	-	94.77	32.28	7.8	32.08	367	304	Р	Н
BT	*	2402	77.98	-	-	-	-	-	-	-	-	Α	Н
2402MHz		2340.66	48.56	-25.44	74	40.9	32.15	7.58	32.07	288	264	Р	٧
2402WINZ		2340.66	23.77	-30.23	54	-	-	-	-			Α	٧
	*	2402	104.66	-	-	96.66	32.28	7.8	32.08	288	264	Р	٧
	*	2402	79.87	-	-	-	-	-	-	-	-	Α	٧
	*	2480	99.55	-	-	91.3	32.46	7.88	32.09	354	305	Р	Н
	*	2480	74.76	-	-	-	-	-		-	-	Α	Н
		2489.84	47.72	-26.28	74	39.45	32.48	7.88	32.09	354	305	Р	Н
BT		2489.84	22.93	-31.07	54	-	-	-	-	-	-	Α	Н
CH 78 2480MHz	*	2480	103.4	-	-	95.15	32.46	7.88	32.09	279	261	Р	٧
240UWITZ	*	2480	78.61	-	-	-	-	-	-	-	-	Α	٧
		2483.52	51.09	-22.91	74	42.84	32.46	7.88	32.09	279	261	Р	٧
		2483.52	26.3	-27.7	54	-	-	-	-	-	-	Α	٧
Remark		lo other spuri		nst Peak	and Average	e limit line	€.						

TEL: + 86-755-8637-9589 FAX: + 86-755-8637-9595 FCC ID: ZL5BM1S1BE

2.4GHz 2400~2483.5MHz

BT (Harmonic @ 3m)

ВТ	Note	Erecuency	Lovel	Marain	Limit	Dood	Antonno	Doth	Draama	A m4	Table	Dook	Dal
ANT	Note	Frequency	Level	Margin	Limit Line	Read Level	Antenna Factor	Path Loss	Preamp Factor	Pos	Table Pos		POI.
8 8		(MHz)	(dBµV/m)	(dB)	(dBµV/m)			(dB)	1		(deg)		(H/V)
		4804	45.21	-28.79	74	50.89	34.82	11.08	51.58	-	-	Р	Н
ВТ		4804	20.42	-33.58	54	-	-	-	-	-	-	Α	Н
CH 00		4804	45.25	-28.75	74	50.93	34.82	11.08	51.58	-	-	Р	V
2402MHz		4804	20.46	-33.54	54	-	-	-	-	-	-	Α	V
		4882	45.46	-28.54	74	51.05	34.85	11.11	51.55	-	-	Р	Н
		4882	20.67	-33.33	54	-	-	-	-	-	-	Α	Н
		7323	48.26	-25.74	74	50.02	36.33	13.08	51.17	-	-	Р	Н
BT		7323	23.47	-30.53	54	-	-	-	-	-	-	Α	Н
CH 39 2441MHz		4882	45.62	-28.38	74	51.21	34.85	11.11	51.55	-	-	Р	V
244 HVIITIZ		4882	20.83	-33.17	54	1	-	-	1	ı	-	Α	V
		7323	47.68	-26.32	74	49.44	36.33	13.08	51.17	ı	-	Р	V
		7323	22.89	-31.11	54	-	-	-	-	•	-	Α	V
		4960	46.69	-27.31	74	52.18	34.88	11.14	51.51	•	-	Р	Н
		4960	21.9	-32.1	54	1	-	-	-	•	-	Α	Н
DT		7440	47.67	-26.33	74	49.49	36.38	12.99	51.19	•	-	Р	Н
BT CH 78		7440	22.88	-31.12	54	-	-	-	-	•	-	Α	Н
2480MHz		4960	45.96	-28.04	74	51.45	34.88	11.14	51.51	ı	-	Р	V
248UMHZ		4960	21.17	-32.83	54	-	-	-	-	ı	-	Α	V
		7440	47.54	-26.46	74	49.36	36.38	12.99	51.19	1	-	Р	V
		7440	22.75	-31.25	54	-	-	-	-	-	-	Α	V
Remark		lo other spuri		nst Peak	and Average	e limit line) .						

TEL: + 86-755-8637-9589 FAX: + 86-755-8637-9595 FCC ID: ZL5BM1S1BE

Emission below 1GHz

2.4GHz BT (LF)

ВТ	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
8		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		49.4	19.88	-20.12	40	33.61	19.63	1.63	34.99	-	-	Р	Н
		173.56	27.69	-15.81	43.5	42.36	17.57	2.46	34.7	-	-	Р	Н
		249.22	28.95	-17.05	46	43.1	17.54	3.01	34.7	-	-	Р	Н
		325.85	28.49	-17.51	46	40.07	19.69	3.33	34.6	-	-	Р	Н
2.4611-		699.3	28.13	-17.87	46	31.71	27.08	3.74	34.4	-	-	Р	Н
2.4GHz BT		801.15	29.14	-16.86	46	31.19	27.86	4.39	34.3	-	-	Р	Н
LF		30	30.23	-9.77	40	46.16	17.56	1.21	34.7	-	-	Р	V
		67.83	25.72	-14.28	40	41.28	17.43	1.83	34.82	-	-	Р	V
		164.83	26.48	-17.02	43.5	40.67	18.1	2.41	34.7	-	-	Р	V
		255.04	26.64	-19.36	46	40.58	17.72	3.03	34.69	-	-	Р	V
		485.9	24.31	-21.69	46	32.22	23.18	3.41	34.5	-	-	Р	V
		756.53	27.49	-18.51	46	30.44	27.62	3.82	34.39	-	-	Р	V
Remark	1. N	lo other spuri	ous found.										
Nomark	2. A	III results are	PASS agair	nst limit lir	ne.								

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions
	shall not exceed the level of the fundamental frequency.
!	Test result is Margin line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: + 86-755-8637-9589 FAX: + 86-755-8637-9595 FCC ID: ZL5BM1S1BE

A calculation example for radiated spurious emission is shown as below:

ВТ	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
ВТ		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

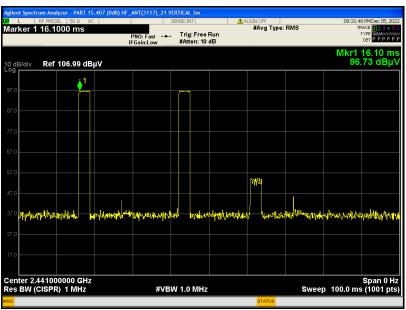
- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

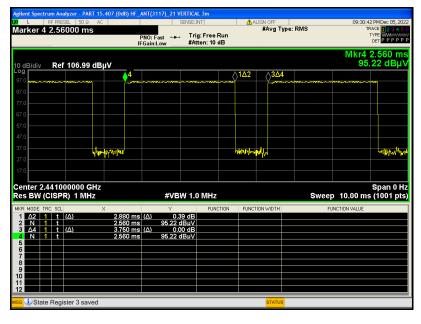
3. Margin (dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Margin (dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)


For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Margin (dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)


Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Duty Cycle Plots

3DH5 on time (One Pulse) Plot on Channel 39

3DH5 on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = $2 \times 2.88 / 100 = 5.76 \%$
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. 3DH5 has the highest duty cycle worst case and is reported.