

SAR Test Report

Report No.: AGC00408180401FH01

FCC ID	Compliance	ZL5B30
APPLICATION PURPOSE	Ċ	Class II Permissive Change
PRODUCT DESIGNATION	:	3G Feature Phone
BRAND NAME	Hestation C	САТ
MODEL NAME	:	B30
CLIENT	:	Bullitt Group
DATE OF ISSUE	6	July. 11, 2018
STANDARD(S)	abal Compl	IEEE Std. 1528:2013 FCC 47CFR § 2.1093 IEEE/ANSI C95.1:2005
REPORT VERSION	:	V1.0

Attestation of Global Compliance(Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Attestation of Global Compliance

Report No.: AGC00408180401FH01 Page 2 of 85

Report Revise Record

Report Version Revise Time		Issued Date Valid Versio		on Notes	
V1.0	Lo manage	July. 11, 2018	Valid	Class II Permissive Change	

The results shows if this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.com.

	Test Report Certification			
Applicant Name	Bullitt Group			
Applicant Address	No. 4, The Aquarium, King Street, Reading, United Kingdom, RG1 2AN			
Manufacturer Name	Leadsky International Development Co., Ltd.			
Manufacturer Address	4F,BLDG B,HUAFENG INDUSTRIAL PAPK,GUSHU,XIXIANG, BAO'AN DISTRICT,SHENZHEN,CHINA			
Product Designation	3G Feature Phone			
Brand Name	CAT			
Model Name	B30			
Different Description	N/A			
EUT Voltage	DC3.7V by battery			
Applicable Standard	IEEE Std. 1528:2013 FCC 47CFR § 2.1093 IEEE/ANSI C95.1:2005			
Test Date	June. 06, 2018 to June. 14, 2018			
Report Template	AGCRT-US-3G3/SAR (2018-01-01)			

Note: The results of testing in this report apply to the product/system which was tested only.

first that

Tested By

Eric Zhou(Zhou Yongkang) June. 14, 2018

Angola li

Checked By

Angela Li(Li Jiao)

July. 11, 2018

owest i

Authorized By

Forrest Lei(Lei Yonggang) Authorized Officer

July. 11, 2018

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

A GC [®] 鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC00408180401FH01 Page 4 of 85

ABLE OF CONTENTS

1. SUMMARY OF MAXIMUM SAR VALUE	
2. GENERAL INFORMATION	
2.1. EUT DESCRIPTION	6
3. SAR MEASUREMENT SYSTEM	
 3.1. THE SATIMO SYSTEM USED FOR PERFORMING COMPLIANCE TESTS CONSISTS OF FOLLOWING ITEMS	
4. SAR MEASUREMENT PROCEDURE	12
4.1. Specific Absorption Rate (SAR)	13 15
5. TISSUE SIMULATING LIQUID	
5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID 5.2. TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS	16 17
6. SAR SYSTEM CHECK PROCEDURE	
6.1. SAR System Check Procedures	19
7. EUT TEST POSITION	
 7.1. DEFINE TWO IMAGINARY LINES ON THE HANDSET	21 21
8. SAR EXPOSURE LIMITS	23
9. TEST FACILITY	
10. TEST EQUIPMENT LIST	25
11. MEASUREMENT UNCERTAINTY	26
12. CONDUCTED POWER MEASUREMENT	29
13. TEST RESULTS	37
13.1. SAR TEST RESULTS SUMMARY	
APPENDIX A. SAR SYSTEM CHECK DATA	
APPENDIX B. SAR MEASUREMENT DATA	
APPENDIX C. TEST SETUP PHOTOGRAPHS	80
APPENDIX D. CALIBRATION DATA	85

The results showing this just report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Attestation of Global Compliance

1. SUMMARY OF MAXIMUM SAR VALUE

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

	Highest R	SAR Test Limit	
Frequency Band	Head	Body-worn	(W/Kg)
GSM 850	0.642	1.067	
PCS 1900	0.363	1.193	The Compliance
UMTS Band II	0.391	1.052	1.6
UMTS Band V	0.991	1.211	
Simultaneous Reported SAR		1.237	
SAR Test Result		PASS	The second

This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/Kg) specified in IEEE Std. 1528:2013; FCC 47CFR § 2.1093; IEEE/ANSI C95.1:2005 and the following specific FCC Test Procedures:

- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 648474 D04 Handset SAR v01r03
- KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04
- KDB 941225 D01 3G SAR Procedures v03r01

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

2. GENERAL INFORMATION

2.1. EUT Description

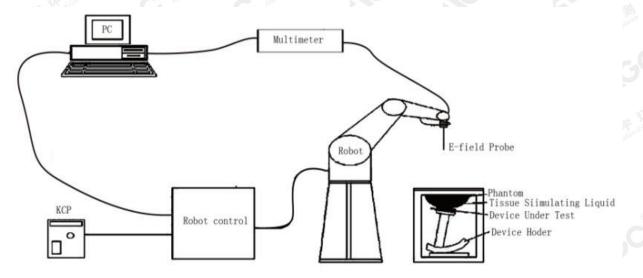
General Information					
Product Designation	3G Feature Phone				
Test Model	B30				
Hardware Version	S721M_MB_V1.0				
Software Version	B30_L02_850_1900_2018_07_17_V2.0N				
Device Category	Portable				
RF Exposure Environment	Uncontrolled				
Antenna Type	Internal				
GSM and GPRS					
Support Band	☐GSM 850 ☐PCS 1900 ☐GSM 900 ☐DCS 1800				
GPRS Type	Class B				
GPRS Class	Class 12(1Tx+4Rx, 2Tx+3Rx, 3Tx+2Rx, 4Tx+1Rx)				
TX Frequency Range	GSM 850 : 820-850MHz;; PCS 1900: 1850-1910MHz;				
RX Frequency Range	GSM 850 : 869~894MHz; PCS 1900: 1930~1990MHz R99				
Release Version					
Type of modulation	GMSK for GSM/GPRS;				
Antenna Gain	GSM850: -1.2dBi; PCS1900: -1.0dBi;				
Max. Average Power	GSM850: 31.25dBm ;PCS1900: 28.26dBm				
WCDMA					
Support Band	UMTS FDD Band II UMTS FDD Band V UMTS FDD Band I UMTS FDD Band VIII				
HS Type	HSPA(HSUPA/HSDPA)				
TX Frequency Range	WCDMA FDD Band II: 1850-1910MHz;WCDMA FDD Band V: 820-850MHz				
RX Frequency Range	WCDMA FDD Band II: 1930-1990MHz;WCDMA FDD Band V: 869-894MHz				
Release Version	Rel-6				
Type of modulation	HSDPA:QPSK/16QAM; HSUPA:BPSK; WCDMA:QPSK				
Antenna Gain	WCDMA850:-1.2 dBi, WCDMA1900:-1.0 dBi				
Max. Average Power Band II: 21.31dBm; Band V: 21.37dBm					

The results shows if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc?gatt.com.

EUT Description(Continue)

Bluetooth	
Bluetooth Version	□V2.0 □V2.1 □V2.1+EDR □V3.0 □V3.0+HS □V4.0 □V4.1
Operation Frequency	2402~2480MHz
Type of modulation	GFSK ⊠∏/4-DQPSK ⊠8-DPSK
Avg. Burst Power	-2.76dBm
Antenna Gain	0.8dBi
Accessories	
Battery	Brand name: N/A Model No. : BL-5C Voltage and Capacitance: 3.7 V & 1000mAh
Earphone	Brand name: N/A Model No. : N/A
	easure the average power and Peak power at the same time ed for testing is end product.
Product	Type Image: Second state of the second st

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.



GC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC00408180401FH01 Page 8 of 85

3. SAR MEASUREMENT SYSTEM

3.1. The SATIMO system used for performing compliance tests consists of following items

The COMOSAR system for performing compliance tests consists of the following items:

- The PC. It controls most of the bench devices and stores measurement data. A computer running WinXP and the Opensar software.
- The E-Field probe. The probe is a 3-axis system made of 3 distinct dipoles. Each dipole returns a voltage in function of the ambient electric field.
- The Keithley multimeter measures each probe dipole voltages.
- The SAM phantom simulates a human head. The measurement of the electric field is made inside the phantom.
- The liquids simulate the dielectric properties of the human head tissues.
- The network emulator controls the mobile phone under test.
- The validation dipoles are used to measure a reference SAR. They are used to periodically check the bench to make sure that there is no drift of the system characteristics over time.
- •The phantom, the device holder and other accessories according to the targeted measurement.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

3.2. COMOSAR E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SATIMO. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SATIMO conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528 and relevant KDB files.) The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

Model	SSE5
Manufacture	MVG
Identification No.	SN 08/16 EPGO282
Frequency	0.7GHz-6GHz Linearity:±0.06dB(700MHz-6GHz)
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.06dB
Dimensions	Overall length:330mm Length of individual dipoles:4.5mm Maximum external diameter:8mm Probe Tip external diameter:5mm Distance between dipoles/ probe extremity:2.7mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 3 GHz with precision of better 30%.

3.3. Robot

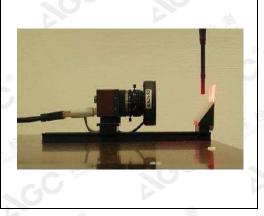
The COMOSAR system uses the KUKA robot from SATIMO SA (France).For the 6-axis controller COMOSAR system, the KUKA robot controller version from SATIMO is used.

The XL robot series have many features that are important for our application:

- □ High precision (repeatability 0.02 mm)
- □ High reliability (industrial design)
- □ Jerk-free straight movements
- □ Low ELF interference (the closed metallic

construction shields against motor control fields)

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

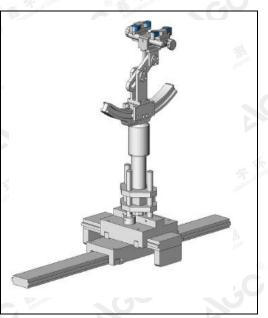

AGC[®]鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC00408180401FH01 Page 10 of 85

3.4. Video Positioning System

The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts. The camera is piloted by the main computer with firewire link. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.



3.5. Device Holder

The COMOSAR device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles. The COMOSAR device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity

 $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00408180401FH01 Page 11 of 85

3.6. SAM Twin Phantom

Company The complaint	anestation.				
The SAM twin phantom is a fiberglass she	ell phantom with				
2mm shell thickness (except the ear reg					
thickness increases to 6mm). It has three		100000	and the second sec	/- 1	2
	e measurement	1		The state of the	ł
areas:	F Gobald				ľ
🗆 Left head	Restation C B				l.
Right head					
□ Flat phantom		L.			P
					ð
	14 Star		8		Ĩ
The templation of the plants	The Compliant	A second	A REAL PROPERTY OF A REAL PROPER		
Gobald Contraction	F of Globa				
C Thestation . C The station of	Mestallo"				

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

AGC[®]鑫宇环检测 Attestation of Global Compliance

4. SAR MEASUREMENT PROCEDURE

4.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element(dv) of given mass density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/Kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt}_{t=0}$$

Where

SAR Ε σ ρ

dt

is the specific absorption rate in watts per kilogram; is the r.m.s. value of the electric field strength in the tissue in volts per meter; is the conductivity of the tissue in siemens per metre; is the density of the tissue in kilograms per cubic metre;

is the heat capacity of the tissue in joules per kilogram and Kelvin;

| t = 0 is the initial time derivative of temperature in the tissue in kelvins per second

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

4.2. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm This distance cannot be smaller than the distance os sensor calibration points to probe tip as `defined in the probe properties,

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in SATIMO software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Standard 1528, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan) If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100MHz to 6GHz

\leq 3 GHz	> 3 GHz	
$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
30°±1°	$20^{\circ} \pm 1^{\circ}$	
≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		
	$5 \pm 1 \text{ mm}$ $30^{\circ} \pm 1^{\circ}$ $\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ $2 - 3 \text{ GHz:} \leq 12 \text{ mm}$ When the x or y dimension o measurement plane orientation the measurement resolution matching x or y dimension of the test d	

Step 3: Zoom Scan

Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g abd 10g of simulated tissue. The Zoom Scan measures points(refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

02.							
100 CO	Maximum zoom scan s	aximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		$\leq 2 \text{ GHz}$: $\leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz} \le 4 \text{ mm}^*$		
		uniform grid: $\Delta z_{Zoom}(n)$		$\leq 5 \text{ mm}$	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm		
The second secon	Maximum zoom scan spatial resolution, normal to phantom surface graded		$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
per-	5	grid ∆z _{Zoom} (n>1): between subseq points	between subsequent	≤1.5·∆z	Zoom(n-1)		
	Minimum zoom scan volume	x, y, z		$ \begin{array}{c} 3 - 4 \text{ GHz:} \geq 28 \\ \geq 30 \text{ mm} \\ 4 - 5 \text{ GHz:} \geq 25 \\ 5 - 6 \text{ GHz:} \geq 22 \end{array} $			
Note: δ is the penetration depth of a plane-wave at normal i				l incidence to the tissue mediu	m: see draft standard IEEE		

Zoom Scan Parameters extracted from KDB865664 d01 SAR Measurement 100MHz to 6GHz

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gait.com.

Report No.: AGC00408180401FH01 Page 15 of 85


4.3. RF Exposure Conditions

Test Configuration and setting:

The EUT is a model of GSM/WCDMA Portable Mobile Station (MS). It supports GSM/GPRS, WCDMA/HSPA, BT.

For WWAN SAR testing, the device was controlled by using a base station emulator. Communication between the device and the emulator were established by air link. The distance between the EUT and the antenna is larger than 50cm, and the output power radiated from the emulator antenna is at least 30db smaller than the output power of EUT.

Antenna Location: (the back view)

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

5. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 5.2

5.1. The composition of the tissue simulating liquid

Ingredient (% Weight) Frequency (MHz)	Water	Nacl	Polysorbate 20	DGBE	1,2 Propanediol	Triton X-100
835 Head	50.36	1.25	48.39	0.0	0.0	0.0
835 Body	54.00	14	0.0	15	0.0	30
_1900 Head	54.9	0.18	0.0	44.92	0.0	0.0
1900 Body	70	1	0.0	9	.00	20

5.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in IEEE 1528.

Target Frequency	h	ead	b	ody
(MHz)	٤r	σ (S/m)	٤r	σ (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	1.01	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73

(ϵr = relative permittivity, σ = conductivity and ρ = 1000 kg/m3)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

AGC B 基 宇 环 检 测 Attestation of Global Compliance

5.3. Tissue Calibration Result

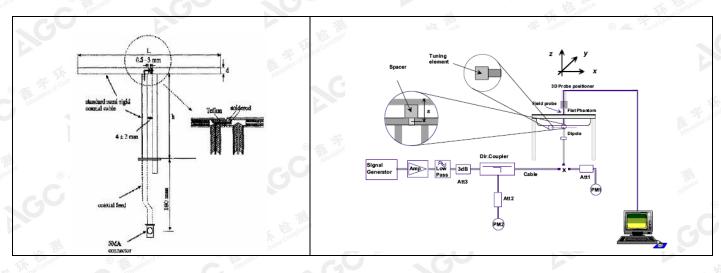
The dielectric parameters of the liquids were verified prior to the SAR evaluation using SATIMO Dielectric Probe Kit and R&S Network Analyzer ZVL6.

		Tissue Stimulant	Measurement for 835MHz		
	Fr.	Dielectric Pa	rameters (±5%)	Tissue	G
	(MHz)	εr 41.5 (39.425-43.575)	δ[s/m] 0.90(0.855-0.945)	Temp [°C]	Test time
	824.2	43.02	0.88		A The
Head	826.4	42.43	0.90		Co Co
	835	41.85	0.91	24.0	lung 06 2018
	836.6	41.29	0.92	21.8	June. 06, 2018
	846.6	40.61	0.93		
	848.8	40.05	0.93		The the planes @
	Fr.	Dielectric Pa	Tissue	on of Global	
	(MHz)	ɛr 55.20(52.44-57-96)	δ[s/m]0.97(0.9215-1.0185)	Temp [oC]	Test time
	824.2	56.75	0.93		
Body	826.4	56.11	0.94		The Compliance
200.)	835	55.53	0.95	204 F	hung 00, 0010
	836.6	54.96	0.95	21.5	June. 06, 2018
	846.6	54.38	0.96		
Franci Global Co	848.8	53.84	0.97		litter
Alleste	GC		the same IN the same		The the contractor

		Tissue Stimulant M	leasurement for 1900MHz		
8	Fr.	Dielectric Para	imeters (±5%)	Tissue	N
C A	(MHz)	εr40.00(38.00-42.00)	δ[s/m]1.40(1.33-1.47)	Temp [°C]	Test time
G	1850.2	41.56	1.36	The the maintence	® The stored Gobart
Head	1852.4	41.02	1.37	GlobalCo	Amesia
AF TH	1880	40.88	1.38	21.0	lupa 14 2019
The Compliant	1900	40.24	1.40	21.8	June. 14, 2018
oro C	1907.6	39.75	1.42	極	
	1909.8	39.33	1.44	F (Global Com	Attestation
	🔬 Fr.	Dielectric Para	meters (±5%)	Tissue	Test time
The start	(MHz)	er53.30(50.635-55.965)	δ[s/m]1.52(1.444-1.596)	Temp [oC]	restume
C The ston of Globs	1850.2	55.13	1.46	100-	
Dedu	1852.4	54.71	1.48	Hangelance	The computance
Body	1880	54.22	1.50	22.0	June. 14, 2018
100-	1900	53.65	1.52	22.0	June. 14, 2016
K Compliance	1907.6	53.07	1.53	NO -	-111-
Global C	1909.8	52.59	1.55	45	the partice

The results shows in this report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

AGC[®]鑫宇环检测 Attestation of Global Compliance

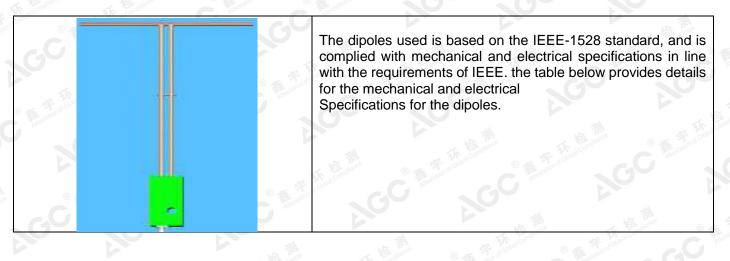

6. SAR SYSTEM CHECK PROCEDURE

6.1. SAR System Check Procedures

SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Each SATIMO system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.



The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

6.2. SAR System Check 6.2.1. Dipoles

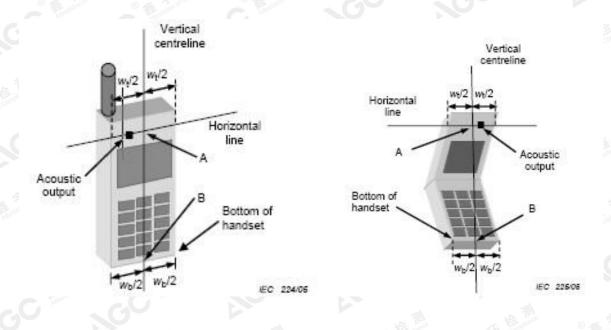
	7-20110		
Frequency	L (mm)	h (mm)	d (mm)
835MHz	161.0	89.8	3.6
1900MHz	68	39.5	3.6

6.2.2. System Check Result

the police		N SCOL	The state	All and a second se				
System Per	formance	e Check	at 835MHz&1900	MHzfor Head				
Validation H	(it: SN29	/15 DIP 0	G835-383&SN 2	9/15 DIP 1G900-3	389&			
Frequency Targe Value(W			Reference (± 1	Tested Value(W/Kg)		Tissue Temp.	Test time	
[MHz]	1g	10g	1g	10g	1g	10g	[°C]	SC SC
835	10.04	6.43	9.036-11.044	5.787 -7.073	9.93	6.14	21.8	June. 06, 2018
1900	41.44	21.33	37.296-45.584	19.197-23.463	39.15	19.68	21.8	June. 14, 2018
System Per	formance	e Check	at 835 MHz &190	0MHz for Body	y			
Frequency		get (W/Kg)	KIN CO.	ce Result 0%)		ested e(W/Kg)	Tissue Temp.	Test time
[MHz]	1g	10g	1g	10g	1g	10g	[°C]	
835	9.85	6.45	8.865-10.835	5.805-7.095	9.73	6.02	21.5	June. 06, 2018
1900	39.38	20.86	35.442-43.318	18.774-22.946	37.17	18.82	22.0	June. 14, 2018

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

AGC [®] 鑫 宇 环 检 测 Attestation of Global Compliance


Report No.: AGC00408180401FH01 Page 20 of 85

7. EUT TEST POSITION

This EUT was tested in Right Cheek, Right Tilted, Left Cheek, Left Tilted, Body back, Body front

7.1. Define Two Imaginary Lines on the Handset

- (1)The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset.
- (2) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (3)The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attrp://www.agc.geit.com.

GC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC00408180401FH01 Page 21 of 85

7.2. Cheek Position

- (1) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center picec in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (2) To move the device towards the phantom with the ear piece aligned with the the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost

7.3. Tilt Position

- (1) To position the device in the "cheek" position described above.
- (2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

AGC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC00408180401FH01 Page 22 of 85

7.4. Body Worn Position

wowney and they

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to 5mm.

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

THE

8. SAR EXPOSURE LIMITS

SAR assessments have been made in line with the requirements of IEEE-1528, and comply with ANSI/IEEE C95.1-2005 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit (W/kg)
Spatial Peak SAR (1g cube tissue for brain or body)	1.60
Spatial Average SAR (Whole body)	0.08
Spatial Peak SAR (Limbs)	4.0

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

9. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2F., Bldg.2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Bao'an District B112-B113, Shenzhen 518012
NVLAP Lab Code	600153-0
Designation Number	CN5028
Test Firm Registration Number	682566
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by National Voluntary Laboratory Accreditation program, NVLAP Code 600153-0

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at Atto://www.agc.cent.com.

Report No.: AGC00408180401FH01 Page 25 of 85

10. TEST EQUIPMENT LIST

Equipment description	Manufacturer/ Model	Identification No.	Current calibration date	Next calibration date	
SAR Probe	MVG	SN 08/16 EPGO282	Aug. 08,2017	Aug. 07,2018	
Phantom	SATIMO	SN_4511_SAM90	Validated. No cal required.	Validated. No cal required.	
Liquid	SATIMO	玉橋 一下	Validated. No cal required.	Validated. No cal required.	
Comm Tester	Agilent-8960	GB46310822	Mar. 01,2018	Feb. 28,2019	
Multimeter	Keithley 2000	1188656	Mar. 01,2018	Feb. 28,2019	
Dipole	SATIMO SID835	SN29/15 DIP 0G835-383	July 05,2016	July 04,2019	
Dipole	SATIMO SID1900	SN 29/15 DIP 1G900-389	July 05,2016	July 04,2019	
Signal Generator	Agilent-E4438C	US41461365	Mar. 01,2018	Feb. 28,2019	
Vector Analyzer	Agilent / E4440A	US41421290	Mar. 01,2018	Feb. 28,2019	
Network Analyzer	Rhode & Schwarz ZVL6	SN100132	Mar. 01,2018	Feb. 28,2019	
Attenuator	Warison /WATT-6SR1211	N/A	N/A C	N/A	
Attenuator	Mini-circuits / VAT-10+	G N/A	N/A	N/A	
Amplifier	EM30180	SN060552	Mar. 01,2018	Feb. 28,2019	
Directional Couple	Werlatone/ C5571-10	SN99463	June 20,2017	June 19,2018	
Directional Couple	Werlatone/ C6026-10	SN99482	June 20,2017	June 19,2018	
Power Sensor	NRP-Z21	1137.6000.02	Oct. 12,2017	Oct. 11,2018	
Power Sensor	NRP-Z23	US38261498	Mar. 01,2018	Feb. 28,2019	
Power Viewer	R&S	V2.3.1.0	N/A	N/A	

Note: Per KDB 865664 Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

1. There is no physical damage on the dipole;

2. System validation with specific dipole is within 10% of calibrated value;

3. Return-loss is within 20% of calibrated measurement;

4. Impedance is within 5Ω of calibrated measurement.

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

11. MEASUREMENT UNCERTAINTY

Measur	ement un	certainty fo	r Dipole	averaged	over 1 grai	n / 10 gran	n.		
а	b	C	d	e f(d,k)	f	g	h c×f/e	i cxg/e	k
Uncertainty Component	Sec.	Tol (± %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System		0	107-		III	. 1		The	ompliaite
Probe calibration	E.2.1	5.831	N	1 1	1	1 K Kata	5.83	5.83	8
Axial Isotropy	E.2.2	0.695	R	√3	√0.5	√0.5	0.28	0.28	00
Hemispherical Isotropy	E.2.2	1.045	R	$\sqrt{3}$	√0.5	√0.5	0.43	0.43	8
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	8
Linearity	E.2.4	0.685	R	$\sqrt{3}$	1 the complian	1	0.40	0.40	8
System detection limits	E.2.4	1.0 🔬	R	√3	of Glove	1 Sussain	0.58	0.58	8
Modulation response	E2.5	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	8
Readout Electronics	E.2.6	0.021	N	1	1	1	0.021	0.021	8
Response Time	E.2.7	0	R	√3	1	51 Kat	0	0	8
Integration Time	E.2.8	1.4	R	$\sqrt{3}$	1º 5 3010	1	0.81	0.81	00
RF ambient conditions-Noise	E.6.1	3.0	R	$\sqrt{3}$	1	1.0	1.73	1.73	8
RF ambient conditions-reflections	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	8
Probe positioner mechanical tolerance	E.6.2	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	00
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	1	1	0.81	0.81	8
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	1	1	1.33	1.33	8
Test sample Related			~	- mance	大臣	pliance	THE THE	obal Comt	1
Test sample positioning	E.4.2	2.6	N	1 _{© 4}	Fin 1 abal	1	2.6	2.6	00
Device holder uncertainty	E.4.1	3	N		1	1	3	3	8
Output power variation—SAR drift measurement	E.2.9	5	R	√3	1	1	2.89	2.89	8
SAR scaling	E.6.5	5	R	√3	1 1	110	2.89	2.89	∞
Phantom and tissue parameters		下 相 polance		F Thomas	(R) The	F Global Ct	- C	Attesta	-
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3		1	2.31	2.31	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	z	1		0.84	1.90	1.60	8
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	5	al ^{Conn} N	1	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	8
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	00
Combined Standard Uncertainty	~	12 molance	RSS	1 Compliance	C #	in of Give	9.79	9.59	6
Expanded Uncertainty (95% Confidence interval)	C The station of C	io ^{alt} 8	K=2		5	S	19.58	19.18	

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

Report No.: AGC00408180401FH01 Page 27 of 85

				e	<u> </u>	m / 10 gran	h	i	
а	b	c Tol	d Prob.	f(d,k)	f	g	c×f/e 1g Ui	c×g/e 10g Ui	k
Uncertainty Component	Sec.	(±%)	Dist.	Div.	Ci (1g)	Ci (10g)	(±%)	(±%)	vi
Measurement System		a G	(ter						447
Probe calibration drift	E.2.1.3	0.5	Ν	1	1	1 剩	0.50	0.50	8
Axial Isotropy	E.2.2	0.695	R	√3	0	0	0.00	0.00	8
Hemispherical Isotropy	E.2.2	1.045	R	√3	0	stuonol 0	0.00	0.00	00
Boundary effect	E.2.3	1.0	R	√3	0	0	0.00	0.00	8
Linearity	E.2.4	0.685	R	√3	0	0	0.00	0.00	8
System detection limits	E.2.4	1.0	R	√3	0	0	0.00	0.00	00
Modulation response	E2.5	3.0 🦟	R	√3	0	0	0.00	0.00	8
Readout Electronics	E.2.6	0.021	N	G	0	0	0.00	0.00	8
Response Time	E.2.7	0	R	√3	0	0	0.00	0.00	00
Integration Time	E.2.8	1.4	R	√3	0	0	0.00	0.00	00
RF ambient conditions-Noise	E.6.1	3.0	R	√3	0	0	0.00	0.00	00
RF ambient conditions-reflections	E.6.1	3.0	R	$\sqrt{3}$	0	0	0.00	0.00	00
Probe positioner mechanical tolerance	E.6.2	1.4	R	√3	1	1	0.81	0.81	00
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	E The I	C 17	0.81	0.81	8
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	0	0	0.00	0.00	8
System check source (dipole)	G							HEL STO	_
Deviation of experimental dipoles	E.6.4	2	N	1 1	10	ance 1	2	2	00
Input power and SAR drift measurement	8,6.6.4	5	R	√3	Front 100000	1	2.89	2.89	8
Dipole axis to liquid distance	8,E.6.6	2	R	$\sqrt{3}$	1	1	1.15	1.15	00
Phantom and tissue parameters		0					d.	The 1	AL noliance
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3	in 1	The Comp	2.31 💿	2.31	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	and 1	.0*	0.84	1.90	1.60	00
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	5	N	1	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	00
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	00
Combined Standard Uncertainty			RSS			in:	5.564	5.205	
Expanded Uncertainty (95% Confidence interval)		-TIL	K=2	1	-	F Global Compliance	11.128	10.410	

鑫 宇 环 检 测 Attestation of Global Compliance

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

Report No.: AGC00408180401FH01 Page 28 of 85

а	b	с	d	e f(d,k)	f	g	h cxf/e	i c×g/e	k
Uncertainty Component	Sec.	Tol (±%)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System	Pre		Her.						-714
Probe calibration	E.2.1	5.831	N	1	1	1 🛒	5.83	5.83	00
Axial Isotropy	E.2.2	0.695	R	√3	pance 1	The Compilar	0.40	0.40	00
Hemispherical Isotropy	E.2.2 ®	1.045	R	$\sqrt{3}$	0	0	0.00	0.00	00
Boundary effect	E.2.3	1.0	R	√3	29	1	0.58	0.58	00
Linearity	E.2.4	0.685	R	$\sqrt{3}$	1	1	0.40	0.40	00
System detection limits	E.2.4	1.0	R	$\sqrt{3}$	The Parameter	1	0.58	0.58	00
Modulation response	E2.5	3.0 🔨	R	$\sqrt{3}$	0	0	0.00	0.00	00
Readout Electronics	E.2.6	0.021	N	G	1	1	0.021	0.021	00
Response Time	E.2.7	0.0	R	√3	0	0	0.00	0.00	00
Integration Time	E.2.8	1.4	R	$\sqrt{3}$	0	0	0.00	0.00	00
RF ambient conditions-Noise	E.6.1	3.0	R	$\sqrt{3}$	° 15	1	1.73	1.73	00
RF ambient conditions-reflections	E.6.1	3.0	R	$\sqrt{3}$	O ₁	10	1.73	1.73	00
Probe positioner mechanical tolerance	E.6.2	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	00
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	BL THE 1	· 17	0.81	0.81	8
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	10	1	1.33	1.33	8
System check source (dipole)	G		9			117-	P	11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	
Deviation of experimental dipole	E.6.4	5.0	N	The 1	1.10	g ^{ance} 1	5.00	5.00	8
Input power and SAR drift measurement	8,6.6.4	5.0	R	√3	A astation of Glo	1	2.89	2.89	8
Dipole axis to liquid distance	8,E.6.6	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	00
Phantom and tissue parameters					<i>h</i>	1	<u>A</u>	Th	Compliance
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4.0	R	√3	1 ²⁰⁰	TIN TRANS	2.31	2.31	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1		0.84	1.90	1.60	8
Liquid conductivity measurement	E.3.3	4.0	N	1	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	5.0	Ν	1	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	00
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	8
Combined Standard Uncertainty			RSS			the The	9.718	9.517	
Expanded Uncertainty (95% Confidence interval)		ALL ALL	K=2	HE molance	8 <i>15</i>	The of Good Comp	19.437	19.035	(

鑫 宇 环 检 测 Attestation of Global Compliance

The results showing the streport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Report No.: AGC00408180401FH01 Page 29 of 85

12. CONDUCTED POWER MEASUREMENT

GSM BAND 🛛 🔊				
Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
/laximum Power <	1>	C American		
C Allestation of	824.2	31.25	-9	22.25
GSM 850	836.6	31.21	-9	22.21
	848.8	31.14	-9	22.14
GPRS 850	824.2	30.78	-9	21.78
(1 Slot)	836.6	30.75	-9	21.75
	848.8	30.71	-9	21.71
	824.2	28.34	5 Jan - 6 - 5 Maria	22.34
GPRS 850 (2 Slot)	836.6	28.28	-6	22.28
	848.8	28.24	-6	22.24
	824.2	26.36	-4.26	22.10
GPRS 850 (3 Slot)	836.6	26.33	-4.26	22.07
	848.8	26.29	-4.26	22.03
	824.2	25.31	-3	22.31
GPRS 850	836.6	25.27	-3	22.27
(4 Slot)	848.8	25.25	-3	22.25
/aximum Power <2	2>	L THE LE	Allance (Cobal Contra	C Franci Close
	824.2	30.79	-9	21.79
GSM 850	836.6	30.31	-9	21.31
	848.8	30.25	-9	21.25
0000050	824.2	29.56	-9	20.56
GPRS 850 (1 Slot)	836.6	29.45	-9 0 5	20.45
	848.8	29.39	-9	20.39
0000 050	824.2	28.21	-6	22.21
GPRS 850 (2 Slot)	836.6	28.25	-6	22.25
	848.8	28.19	-6	22.19
	824.2	26.26	-4.26	22.00
GPRS 850	836.6	26.27	-4.26	22.01
(3 Slot)	848.8	26.24	-4.26	21.98
60	824.2	25.25	-3	22.25
GPRS 850	836.6	25.21	-3	22.21
(4 Slot)	848.8	25.19	-3	22.19

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

Attestation of Global Compliance

ACC^K鑫宇环检测 Attestation of Global Compliance

Report No.: AGC00408180401FH01 Page 30 of 85

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
Maximum Power <	1>	ance the compliance	C Austalion C Austalia	Autosta
He dance	1850.2	28.26	-9	19.26
PCS1900	1880	28.25	-9	19.25
C Attestation of	1909.8	28.23	-9	19.23
GPRS1900	1850.2	27.77	-9	18.77
(1 Slot)	1880	27.75	-9	18.75
	1909.8	27.73	-9	18.73
00004000	1850.2	25.35	-6	19.35
GPRS1900 (2 Slot)	1880	25.32	-6	19.32
	1909.8	25.29	-6 -6	19.29
	1850.2	23.41	-4.26	19.15
GPRS1900 (3 Slot)	1880	23.35	-4.26	19.09
	1909.8	23.32	-4.26	19.06
GPRS1900 (4 Slot)	1850.2	22.34	-3	19.34
	1880	22.28	° 🐔 🕺 -3 👝 🖗	19.28
	1909.8	22.26	-3	19.26
Maximum Power <	2>	C N		
Alles aller	1850.2	27.56	-9	18.56
PCS1900	1880	27.26	-9 -9	18.26
	1909.8	27.31	-9	18.31
00004000	1850.2	26.33	-9	17.33
GPRS1900 (1 Slot)	1880	26.45	-9	17.45
(T SIOL)	1909.8	26.56	-9	17.56
0000	1850.2	25.47	-6 ®	19.47
GPRS1900 (2 Slot)	1880	25.28	-6	19.28
(2 5101)	1909.8	25.23	-6	19.23
GPRS1900 (3 Slot)	1850.2	23.31	-4.26	19.05
	1880	23.26	-4.26	19.00
	1909.8	23.22	-4.26	18.96
A 10	1850.2	22.19	-3	19.19
GPRS1900 (4 Slot)	1880	22.26	-3	19.26
	1909.8	22.17	-3	19.17

Note 1:

The Frame Power (Source-based time-averaged Power) is scaled the maximum burst average power based on time slots. The calculated methods are show as following:

Frame Power = Max burst power (1 Up Slot) - 9 dB

Frame Power = Max burst power (2 Up Slot) – 6 dB

Frame Power = Max burst power (3 Up Slot) - 4.26 dB

Frame Power = Max burst power (4 Up Slot) - 3 dB

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

A GC B 鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC00408180401FH01 Page 31 of 85

UMTS BAND HSDPA Setup Configuration:

•The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.

•The RF path losses were compensated into the measurements.

A call was established between EUT and Based Station with following setting:

- (1) Set Gain Factors(βc and βd) parameters set according to each
- (2) Set RMC 12.2Kbps+HSDPA mode.
- (3) Set Cell Power=-86dBm
- (4) Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
- (5) Select HSDPA Uplink Parameters
- (6) Set Delta ACK, Delta NACK and Delta CQI=8
- (7) Set Ack Nack Repetition Factor to 3
- (8) Set CQI Feedback Cycle (k) to 4ms
- (9) Set CQI Repetition Factor to 2
- (10) Power Ctrl Mode=All Up bits
- ·The transmitted maximum output power was recorded.

Sub-test	βc (Note5)	βd	βd (SF)	βc/βd	βHS (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15(Note 4)	15/15(Note 4)	64	12/15(Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Table C.10.2.4: β values for transmitter characteristics tests with HS-DPCCH

Note 1: $\triangle ACK$, $\triangle NACK$ and $\triangle CQI = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$.

Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause

5.13.1AA, \triangle ACK and \triangle NACK = 30/15 with $\beta_{hs} = 30/15 * \beta_c$, and \triangle CQI = 24/15 with $\beta_{hs} = 24/15 * \beta_c$.

Note 3: CM = 1 for $\beta c/\beta d$ =12/15, hs/ c=24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4: For subtest 2 the c/d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to c = 11/15 and d = 15/15.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

ACC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC00408180401FH01 Page 32 of 85

HSUPA Setup Configuration:

• The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.

- The RF path losses were compensated into the measurements.
- A call was established between EUT and Base Station with following setting *
- (1) Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
- (2) Set the Gain Factors (βc and βd) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121
- (3) Set Cell Power = -86 dBm
- (4) Set Channel Type = 12.2k + HSPA
- (5) Set UE Target Power
- (6) Power Ctrl Mode= Alternating bits
- (7) Set and observe the E-TFCI

(8) Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI

· The transmitted maximum output power was recorded.

Sub- test	βς	βd	βd (SF)	βc/βd	βHS (Note 1)	βec	βed (Note 4) (Note 5)	βed (SF)	βed (Code s)	CM (dB) (Note 2)	MPR (dB) (Note 2) (Note 6)	AG Index (Note 5)	E-TF CI
14 14	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/22 5	1309/225	4		1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	5. ¹ 1.	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	βed1: 47/15 βed2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0 💿	17	71
5	15/15	0	1	-	5/15	5/15	47/15	4	1 *	1.0	0.0	12	67

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Note 1: For sub-test 1 to 4, \triangle ACK, \triangle NACK and \triangle CQI = 30/15 with $\beta_{hs} = 30/15 * \beta_c$. For sub-test 5, \triangle ACK, \triangle NACK and \triangle CQI = 5/15 with $\beta_{hs} = 5/15 * \beta_c$.

 $\Delta NACK and \Delta CQI = 5/15 \text{ with } ns = 5/15 \text{ for}$

Note 2: CM = 1 for $\beta c/\beta d$ =12/15, hs/ c=24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the c/ d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to c = 10/15 and d = 15/15. Note 4: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.

Note 5: ßed cannot be set directly; it is set by Absolute Grant Value.

Note 6: For subtests 2, 3 and 4, UE may perform E-DPDCH power scaling at max power which could results in slightly smaller MPR values.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cont.com.

GC 鑫 宇 环 检 测 Attestation of Global Compliance

UMTS BAND II

Mode	Frequency (MHz)	Avg. Burst Power (dBm)
	1852.4	21.31
WCDMA 1900	1880	21.29
RMC	1907.6	21.23
	1852.4	21.18
WCDMA 1900	1880	21.13
AMR	1907.6	21.11
	1852.4	20.43
	1880	20.41
Subtest 1	1907.6	20.38
	1852.4	20.35
HSDPA	1880	20.32
Subtest 2	1907.6	20.29
LIOPPA	1852.4	20.32
HSDPA	1880	20.28
Subtest 3	1907.6	20.22
	1852.4	20.39
HSDPA	1880	20.33
Subtest 4	1907.6	20.31
The second secon	1852.4	20.35
HSUPA	1880	20.32
Subtest 1	1907.6	20.28
	1852.4	20.36
HSUPA	1880	20.34
Subtest 2	1907.6	20.35
	1852.4	20.29
HSUPA	1880	20.25
Subtest 3	1907.6	20.23
	1852.4	20.26
HSUPA	1880	20.21
Subtest 4	1907.6	20.18
	1852.4	20.34
HSUPA	1880	20.31
Subtest 5	1907.6	20.27

The results showing the streport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

GC 鑫 宇 环 检 测 Attestation of Global Compliance

UMTS BAND V

Mode	Frequency (MHz)	Avg. Burst Power (dBm)
	826.4	21.37
WCDMA 850	836.6	21.35
RMC	846.6	21.28
	826.4	21.15
WCDMA 850	836.6	21.12
AMR	846.6	21.11
	826.4	20.34
HSDPA	836.6	20.32
Subtest 1	846.6	20.27
	826.4	20.33
HSDPA	836.6	20.28
Subtest 2	846.6	20.24
	826.4	20.36
HSDPA	836.6	20.31
Subtest 3	846.6	20.28
	826.4	20.36
HSDPA	836.6	20.34
Subtest 4	846.6	20.28
	826.4	20.29
HSUPA	836.6	20.26
Subtest 1	846.6	20.24
	826.4	20.26
HSUPA	836.6	20.23
Subtest 2	846.6	20.21
	826.4	20.37
HSUPA	836.6	20.35
Subtest 3	846.6	20.32
	826.4	20.37
HSUPA	836.6	20.35
Subtest 4	846.6	20.31
	826.4	20.38
HSUPA	836.6	20.33
Subtest 5	846.6	20.32

The results showing the streport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Attestation of Global Compliance

Actestation of Global Compliance

According to 3GPP 25.101 sub-clause 6.2.2, the maximum output power is allowed to be reduced by following the table.

Table 6.1aA: UE maximum	output power with	HS-DPCCH and E-DCH

UE Transmit Channel Configuration	CM(db)	MPR(db)				
For all combinations of ,DPDCH,DPCCH HS-DPDCH,E-DPDCH and E-DPCCH	0≤ CM≤3.5	MAX(CM-1,0)				
Note: CM=1 for B /B =12/15 B, /B =24/15 For all	other combinations of DP	DCH DPCCH HS-DPCCH				

Note: CM=1 for $\beta_d/\beta_d=12/15$, $\beta_{hs}/\beta_c=24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCC E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH).

When E-DPDCH channels are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done .However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a compensation for the power back-off by increasing the gain of TX_AGC in the transceiver (PA) device.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

R 环 GC 测 藎 宇 检 Attestation of Global Compliance

Report No.: AGC00408180401FH01 Page 36 of 85

Bluetooth_V2.1+EDR

Modulation	Channel	Frequency(MHz)	Peak Power (dBm)
	0 To a com	2402	-2.94
GFSK	39	2441	-2.76
C. C. Station of Clou	78	2480	-3.03
C.C	0	2402	-3.71
π /4-DQPSK	39	2441	-3.67
The compliance	78	2480	-3.95
3 The grand Grand Cart	a Gioban O	2402	-3.75
8-DPSK	39	2441	-3.65
	78	2480	-3.9

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

GC Attestation of Global Compliance

13. TEST RESULTS

13.1. SAR Test Results Summary 13.1.1. Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE 1528-2013, Body-worn SAR was performed with the device 5mm from the phantom.

13.1.2. Operation Mode

- 1. Per KDB 447498 D01 v06 ,for each exposure position, if the highest 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional.
- 2. Per KDB 865664 D01 v01r04,for each frequency band, if the measured SAR is ≥0.8W/Kg, testing for repeated SAR measurement is required , that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
 - (1) When the original highest measured SAR is $\ge 0.8W/Kg$, repeat that measurement once.
 - (2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is \ge 1.45 W/Kg.
 - (3) Perform a third repeated measurement only if the original, first and second repeated measurement is ≥ 1.5 W/Kg and ratio of largest to smallest SAR for the original, first and second measurement is ≥ 1.20.
- 3. Body-worn exposure conditions are intended to voice call operations, therefore GSM voice call mode is selected to be test.
- 4. Per KDB 648474 D04 v01r03,when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤1.2W/Kg, SAR testing with a headset connected is not required.
- Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows: Maximum Scaling SAR =tested SAR (Max.) ×[maximum turn-up power (mw)/ maximum measurement output power(mw)]

6. Proximity sensor, just for avoiding the wrong operation in the phone screen when call, and has no influence on output power or SAR resu

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

13.1.3. Test Result

REMENT								
id (cm):>15			Relative	Humidity	(%): 45.1			
eature Phone								
SM850 with GM	SK mod	dulation						
Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
The Ket compliance		Allestallo		Attestation	Alles			
voice	190	836.6	-0.05	0.540	31.25	31.21	0.545	1.6
voice	190	836.6	0.02	0.342	31.25	31.21	0.345	1.6
voice	190	836.6	-0.03	0.636	31.25	31.21	0.642	1.6
voice	190	836.6	0.04	0.363	31.25	31.21	0.366	1.6
voice	128	824.2	-0.01	1.067	31.25	31.25	1.067	1.6
voice	190	836.6	-0.02	1.000	31.25	31.21	1.009	1.6
voice	251	848.8	0.03	1.005	31.25	31.14	1.031	1.6
voice	190	836.6	-0.05	0.429	31.25	31.21	0.433	1.6
ALL ALL	it.	Global Come	C AL F	3lobal	- C Attest	6		
GPRS-2 slot	128	824.2	-0.02	0.936	28.35	28.34	0.938	1.6
GPRS-2 slot	190	836.6	0.05	0.665	28.35	28.28	0.676	1.6
GPRS-2 slot	251	848.8	-0.03	0.958	28.35	28.24	0.983	1.6
GPRS-2 slot	190	836.6	0.04	0.417	28.35	28.28	0.424	1.6
	d (cm):>15 eature Phone SM850 with GM Mode Voice Voice Voice Voice Voice Voice Voice Voice Voice Voice Voice Voice Voice Voice Voice	d (cm):>15 eature Phone SM850 with GMSK mod Mode Ch. Voice 190 Voice 251 Voice 190	Mode Ch. Fr. (MHz) Voice 190 836.6 GPRS-2 slot 128 824.2 GPRS-2 slot 190 836.6 GPRS-2 slot 251 848.8	Relative Relative Relative SM850 with GMSK modulation Mode Ch. Fr. (MHz) Power Drift (<±5%) voice 190 836.6 -0.05 voice 190 836.6 0.02 voice 190 836.6 0.03 voice 190 836.6 0.04 voice 190 836.6 0.04 voice 190 836.6 -0.02 voice 190 836.6 -0.05 GPRS-2 slot 128 824.2 -0.02 GPRS-2 slot 128 824.2 -0.02 GPRS-2 slot 128 848.8 -0.03	Relative Humidity Relative Humidity reature Phone SM850 with GMSK modulation Mode Ch. Fr. (MHz) Power Drift (<±5%) SAR (1g) (W/kg) voice 190 836.6 -0.05 0.540 voice 190 836.6 0.02 0.342 voice 190 836.6 -0.03 0.636 voice 190 836.6 0.04 0.363 voice 190 836.6 -0.02 1.000 voice 190 836.6 -0.05 0.429 GPRS-2 slot 128 824.2 -0.02 0.936 GPRS-2 slot 128 824.2 -0.02 0.936 GPRS-2 slot 128 824.2 -0.02 0.936 GPRS	Id (cm):>15 Relative Humidity (%): 45.1 reature Phone SM850 with GMSK modulation SAR (1g) (×±5%) Max. (1g) (W/kg) Max. Tune-up Power (dBm) voice 190 836.6 -0.05 0.540 31.25 voice 190 836.6 0.02 0.342 31.25 voice 190 836.6 -0.03 0.636 31.25 voice 190 836.6 -0.03 0.636 31.25 voice 190 836.6 -0.02 1.000 31.25 voice 190 836.6 -0.05 0.429 31.25 voice 190 836.6 -0.05 0.429 31.25 voice 190 836.6 -0.05 0.429 31.25	voice 190 836.6 -0.05 0.540 31.25 31.21 voice 190 836.6 -0.05 0.540 31.25 31.21 voice 190 836.6 -0.02 0.342 31.25 31.21 voice 190 836.6 -0.03 0.636 31.25 31.21 voice 190 836.6 -0.04 0.363 31.25 31.21 voice 190 836.6 -0.02 1.000 31.25 31.21 voice 190 836.6 -0.02 1.000 31.25 31.21 voice 190 836.6 -0.02 1.005 31.25 31.21 voice 190 836.6 <t< td=""><td>Relative Humidity (%): 45.1 Generative Phone SM850 with GMSK modulation Max. Tune-up Power (dBm) Meas. output Power (dBm) SAR (19) (W/kg) Max. Tune-up Power (dBm) Meas. output Power (dBm) Scaled SAR (W/kg) voice 190 836.6 -0.05 0.540 31.25 31.21 0.545 voice 190 836.6 -0.02 0.342 31.25 31.21 0.642 voice 190 836.6 -0.03 0.636 31.25 31.21 0.642 voice 190 836.6 -0.01 1.067 31.25 31.21 0.366 voice 190 836.6 -0.02 1.000 31.25 31.21 0.366 voice 190 836.6 -0.02 1.000 31.25 31.21 0.366 voice 190 836.6 -0.02 1.000 31.25 31.21 1.009 voice 190 836.6 -0.05 0.429</td></t<>	Relative Humidity (%): 45.1 Generative Phone SM850 with GMSK modulation Max. Tune-up Power (dBm) Meas. output Power (dBm) SAR (19) (W/kg) Max. Tune-up Power (dBm) Meas. output Power (dBm) Scaled SAR (W/kg) voice 190 836.6 -0.05 0.540 31.25 31.21 0.545 voice 190 836.6 -0.02 0.342 31.25 31.21 0.642 voice 190 836.6 -0.03 0.636 31.25 31.21 0.642 voice 190 836.6 -0.01 1.067 31.25 31.21 0.366 voice 190 836.6 -0.02 1.000 31.25 31.21 0.366 voice 190 836.6 -0.02 1.000 31.25 31.21 0.366 voice 190 836.6 -0.02 1.000 31.25 31.21 1.009 voice 190 836.6 -0.05 0.429

Note:

When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
 The test separation for body back and body front is 5mm of all above table.

Measurements for SIM Card 2 are not conducted since SIM Card 1 show the highest output power

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

SAR MEASUREMENT

Depth of Liquid (cm):>15 Product: 3G Feature Phone Relative Humidity (%): 40.1

Test Mode: PCS1900 with GMSK modulat

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
SIM 1 Card			R F Goba	- 4	A Global Con	C The ston of Globs	- C	Afre	
Left Cheek	voice	661	1880.0	0.02	0.359	28.30	28.25	0.363	1.6
Left Tilt	voice	661	1880.0	-0.04	0.333	28.30	28.25	0.337	1.6
Right Cheek	voice	661	1880.0	0.01	0.317	28.30	28.25	0.321	1.6
Right Tilt	voice 🔬	661	1880.0	-0.00	0.292	28.30	28.25	0.295	1.6
Body back	voice	512	1850.2	0.03	1.182	28.30	28.26	1.193	1.6
Body back	voice	661	1880.0	-0.05	0.839	28.30	28.25	0.849	1.6
Body back	voice	810	1909.8	0.01	0.740	28.30	🔬 28.23	0.752	1.6
Body front	voice	661	1880.0	-0.02	0.311	28.30	28.25	0.315	1.6
			ある	A R	npliance	C Fration of Globa	C Thestall	on of bit	60
Body back	GPRS-2 slot	512	1850.2	0.02	1.120	25.35	25.35	1.120	1.6
Body back	GPRS-2 slot	661	1880.0	0.01	0.953	25.35	25.32	0.960	1.6
Body back	GPRS-2 slot	810	1909.8	0.05	0.905	25.35	25.29	0.918	1.6
Body front	GPRS-2 slot	661	1880.0	0.03	0.461	25.35	25.32	0.464	1.6
Note:	01110 2 0101		1000.0	1 0.00		20.00	20.02	0.101	1.0

Note:

• When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.

The test separation for body back and body front is 5mm of all above table.

Measurements for SIM Card 2 are not conducted since SIM Card 1 show the highest output power

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.com.

SAR MEASUREMENT

Depth of Liquid (cm):>15 Product: 3G Feature Phone Relative Humidity (%): 40.1

Test Mode: WCDMA Band II with OPSK modulation

1001110000. 1			modulatio		1		1	1	
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
Left Cheek	RMC 12.2kbps	9400	1880	-0.02	0.386	21.35	21.29	0.391	1.6
Left Tilt	RMC 12.2kbps	9400	1880	-0.05	0.369	21.35	21.29	0.374	1.6
Right Cheek	RMC 12.2kbps	9400	1880	0.03	0.289	21.35	21.29	0.293	1.6
Right Tilt	RMC 12.2kbps	9400	1880	-0.04	0.305	21.35	21.29	0.309	1.6
Body back	RMC 12.2kbps	9262	1852.4	0.01	0.939	21.35	21.31	0.948	1.6
Body back	RMC 12.2kbps	9400	1880	-0.02	1.038	21.35	21.29	1.052	1.6
Body back	RMC 12.2kbps	9538	1907.6	-0.05	0.944	21.35	21.23	0.970	1.6
Body front	RMC 12.2kbps	9400	1880	0.04	0.300	21.35	21.29	0.304	1.6
Noto:			•		•		10 Jance	The complete	B

Note:

• When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498. •The test separation for body back and body front is 5mm of all above table.

SAR MEASUREMENT

Product: 3G Feature Phone

Test Mode: WCDMA Band V with QPSK modulation

restinude. wo	DIVIA Dariu v With			1		1		-	1
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
Left Cheek	RMC 12.2kbps	4183	836.6	0.02	0.782	21.40	21.35	0.791	1.6
Left Tilt	RMC 12.2kbps	4183	836.6	0.01	0.456	21.40	21.35	0.461	1.6
Right Cheek	RMC 12.2kbps	4132	826.4	-0.05	0.864	21.40	21.37	0.870	1.6
Right Cheek	RMC 12.2kbps	4183	836.6	-0.03	0.892	21.40	21.35	0.902	1.6
Right Cheek	RMC 12.2kbps	4233	846.6	0.04	0.964	21.40	21.28	0.991	1.6
Right Tilt	RMC 12.2kbps	4183	836.6	-0.00	0.545	21.40	21.35	0.551	1.6
Body back	RMC 12.2kbps	4132	826.4	-0.05	1.203	21.40	21.37	1.211	1.6
Body back	RMC 12.2kbps	4183	836.6	0.02	1.058	21.40	21.35	1.070	1.6
Body back	RMC 12.2kbps	4233	846.6	0.03	0.754	21.40	21.28	0.775	1.6
Body front	RMC 12.2kbps	4183	836.6	-0.04	0.683	21.40	21.35	0.691	1.6
Body back+Ear	RMC 12.2kbps	4132	826.4	0.01	0.990	21.40	21.37	0.997	1.6
Body back+Ear	RMC 12.2kbps	4183	836.6	-0.05	0.938	21.40	21.35	0.949	1.6
Body back+Ear	RMC 12.2kbps	4233	846.6	-0.02	0.957	21.40	21.28	0.984	1.6
			-				omr .	a contraction	

Note:

When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
 The test separation for body back and body front is 5mm of all above table.

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.ceit.com.

Report No.: AGC00408180401FH01 Page 41 of 85

Repeated S	SAR									
Product: 3G	Feature Pho	ne								
Test Mode:	GSM850&PC	CS19008	WCDMA	Band II &	& WCDMA	Band V				
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	Once SAR (1g) (W/kg)	Power Drift (<±5%)	Twice SAR (1g) (W/kg)	Power Drift (<±5%)	Third SAR (1g) (W/kg)	Limit (W/kg)
Body back	voice	128	824.2	-0.01	1.028	Global Come	R A Globa	-	Attest	1.6
Body back	voice	512	1850.2	0.03	1.130	- 6	Allestan	-0	- 1	1.6
Body back	RMC 12.2kbps	4132	826.4	0.04	1.201	NO.	-111	-		1.6
Body back	RMC 12.2kbps	9400	1880	0.00	1.030	- 5	A Compliance	The solution Co	iphane ©	1.6

The results showing the streport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

GC[®]鑫宇环检测 Attestation of Global Compliance

Cimultana que atata	Portable Handset			
Simultaneous state	Head	Body-worn		
GSM(voice)+Bluetooth(data)	C Atestation - C E	Yes		
WCDMA(voice)+Bluetooth(data)		Yes		
GSM (Data) + Bluetooth(data)	-	Yes		
WCDMA (Data) + Bluetooth(data)		Yes		
V	VCDMA(voice)+Bluetooth(data) SSM (Data) + Bluetooth(data)	Simultaneous state Head GSM(voice)+Bluetooth(data) - VCDMA(voice)+Bluetooth(data) - GSM (Data) + Bluetooth(data) -		

NOTE:

- 1. Simultaneous with every transmitter must be the same test position.
- 2. KDB 447498 D01, BT SAR is excluded as below table.
- 3. KDB 447498 D01, for handsets the test separation distance is determined by the smallest distance between the outer surface of the device and the user; which is 0mm for head SAR and 5mm for body-worn SAR.
- 4. According to KDB 447498 D01 4.3.1, Standalone SAR test exclusion is as follow:

For 100 MHz to 6 GHz and test separation distances \leq 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] • [$\sqrt{}$

f(GHz)] \leq 3.0 for 1-g SAR, and \leq 7.5 for 10-g extremity SAR³⁰, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation³¹
- The result is rounded to one decimal place for comparison
- The values 3.0 and 7.5 are referred to as numeric thresholds in step b) below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm, and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 4.1 f) is applied to determine SAR test exclusion.

- 5. If the test separation distance is <5mm, 5mm is used for excluded SAR calculation.
- 6. According to KDB 447498 D01 4.3.2, simultaneous transmission SAR test exclusion is as follow:
 - (1) Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna.
 - (2) Any transmitters and antennas should be considered when calculating simultaneous mode.
 - (3) For mobile phone and PC, it's the sum of all transmitters and antennas at the same mode with same position in each applicable exposure condition
 - (4)When the standalone SAR test exclusion of section 4.3.2 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to det

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\left[\sqrt{f(GHz)/x}\right]$ W/kg for test separation distances ≤ 50 mm;

- where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
- 7. When the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio. The simultaneous transmitting antennas in each operating mode and exposure condition combination must be considered one pair at a time to determine the SAR to peak location separation ratio to qualify for test exclusion. The ratio is determined by (SAR1 + SAR2)1.5/Ri, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion.

Estimated SAR			luding Tune-up ance	Separation Distance (mm)	Estimated SAR (W/kg)
		dBm	mW		(**/Kg)
M BT	🚲 Head	-2	0.631	0	0.026
E Hanne I	Body	-2	0.631	5	0.026

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

RF Exposure Conditions	Test	Simultaneous Trans	Σ1-g SAR	SPLSR	
	Position	GSM 850	Bluetooth	(W/Kg)	(Yes/No)
Body-worn (Voice)	Rear	1.067	0.026	1.093	No
	Front	0.433	0.026	0.459	No 🔬
Body-worn	Rear	0.983	0.026	1.009	No
(Data)	Front	0.424	0.026	0.450	No

Sum of the SAR for GSM 850 & BT:

Sum of the SAR for GSM 1900 & BT:

RF Exposure Conditions P	Test	Simultaneous Transm	Σ1-g SAR	SPLSR	
	Position	GSM 1900	Bluetooth	(W/Kg)	(Yes/No)
Body-worn (Voice)	Rear	1.193	0.026	1.219	No
	Front	0.315	0.026	0.341	No
Body-worn	Rear	1.120	0.026	1.146	No
(Data)	Front	0.464	0.026	0.490	No

Sum of the SAR for WCDMA Band II & BT:

RF Exposure	Test	Simultaneous Trans	mission Scenario	Σ1-g SAR	SPLSR
Conditions	Position	WCDMA Band II	Bluetooth	(W/Kg)	(Yes/No)
Deducuran	Rear	1.052	0.026	1.078	No
Body-worn	Front	0.304	0.026	0.330	No

Sum of the SAR for WCDMA Band V & BT:

RF Exposure	Test	Simultaneous Trans	mission Scenario	Σ1-g SAR	SPLSR
Conditions	Position	WCDMA Band V	Bluetooth	(W/Kg)	(Yes/No)
. 6	Rear	1.211	0.026	1.237	No
Body-worn	Front	0.691	0.026	0.717	No
4	Earphone	0.997	0.026	1.023	No

Note:

 According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than1.6 W/Kg, SPLSR assessment is not required.
 SPLSR mean is "The SAR to Peak Location Separation Ratio "

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

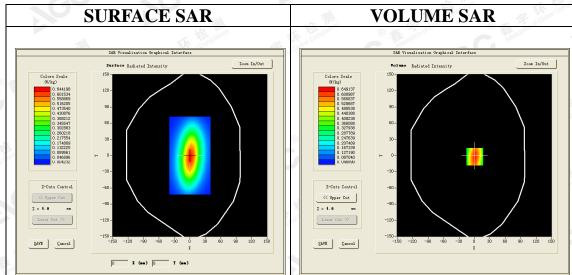
AGC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC00408180401FH01 Page 44 of 85

APPENDIX A. SAR SYSTEM CHECK DATA

Test Laboratory: AGC Lab

System Check Head 835 MHz DUT: Dipole 835 MHz Type: SID 835 Date: June. 06, 2018


Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Conv.F=1.74 Frequency: 835 MHz; Medium parameters used: f = 835 MHz; σ =0.91mho/m; ϵ r =41.85; ρ = 1000 kg/m³; Phantom section: Flat Section; Input Power=18dBm Ambient temperature (°C): 22.5 Liquid temperature (°C): 21.8

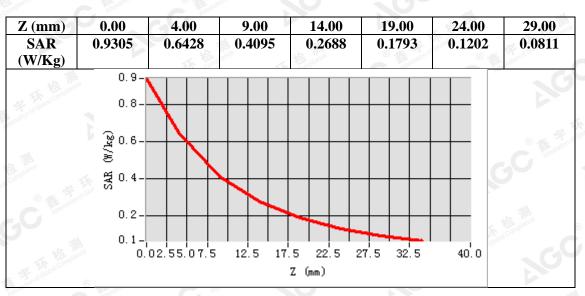
Ambient temperature ($^{\circ}$ C):22.5, Liquid temperature ($^{\circ}$ C): 21.8

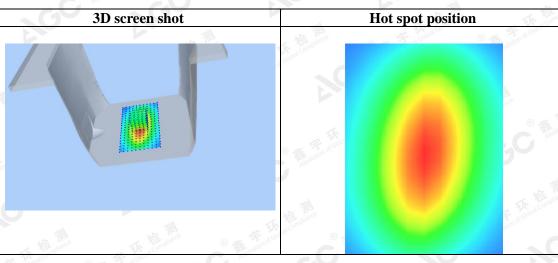
SATIMO Configuration

- Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_32

Configuration/System Check 835MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 835MHz Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Maximum location: X=2.00, Y=-2.00 SAR Peak: 0.92 W/kg


SAR 10g (W/Kg)	0.387524
SAR 1g (W/Kg)	0.626489

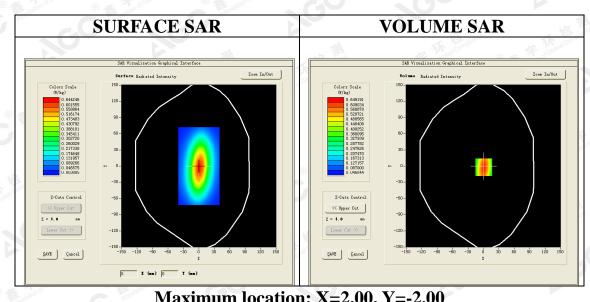

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00408180401FH01 Page 45 of 85

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00408180401FH01 Page 46 of 85

Test Laboratory: AGC Lab System Check Body 835 MHz DUT: Dipole 835 MHz Type: SID 835

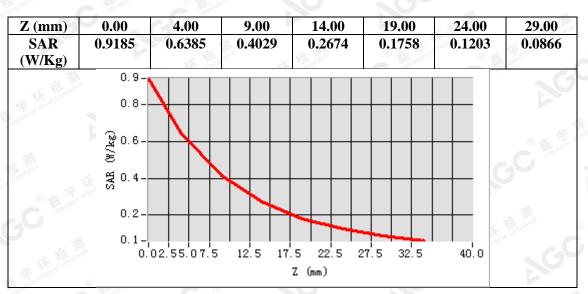

Date: June. 06, 2018

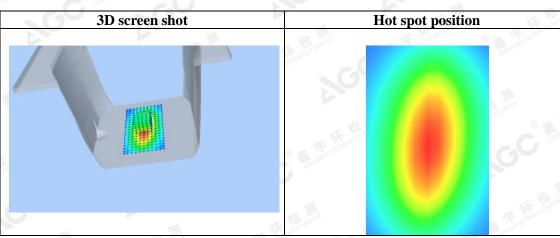
DUT: Dipole 835 MHz Type: SID 835 Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Conv.F=1.81 Frequency: 835 MHz; Medium parameters used: f = 835 MHz; σ =0.95 mho/m; ϵ r =55.53; ρ = 1000 kg/m³; Phantom section: Flat Section; Input Power=18dBm Ambient temperature (°C):22.5, Liquid temperature (°C): 21.5

SATIMO Configuration

- Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_32

Configuration/System Check 835MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 835MHz Body/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm


SAR Peak: 0.91 W/kg		
SAR 10g (W/Kg)	0.37958	2
SAR 1g (W/Kg)	0.61371	1

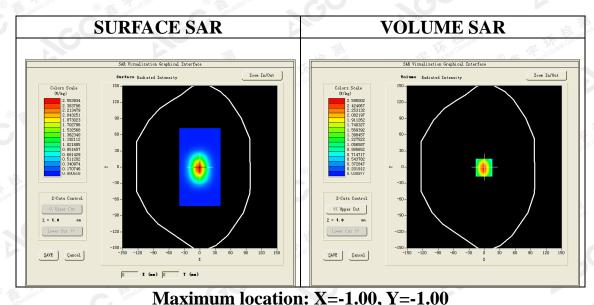

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00408180401FH01 Page 47 of 85

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00408180401FH01 Page 48 of 85

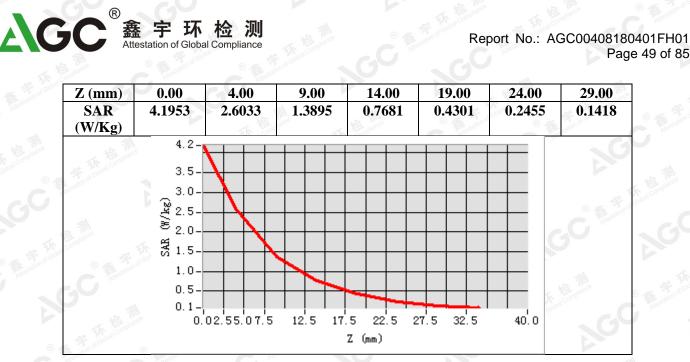
Test Laboratory: AGC Lab System Check Head 1900MHz DUT: Dipole 1900 MHz; Type: SID 1900

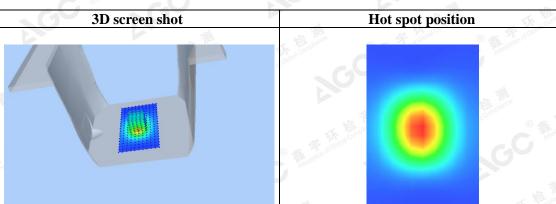

Date: June. 14, 2018

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1; Conv.F=2.32 Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.40$ mho/m; $\epsilon r = 40.24$ $\rho = 1000$ kg/m³; Phantom section: Flat Section; Input Power=18dBm Ambient temperature (°C):22.5, Liquid temperature (°C): 21.8

SATIMO Configuration:

- Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_32


Configuration/System Check 1900MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 1900MHz Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm


SAR Peak: 4.20 W/kg		
SAR 10g (W/Kg)	1.241863	
SAR 1g (W/Kg)	2.470319	

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

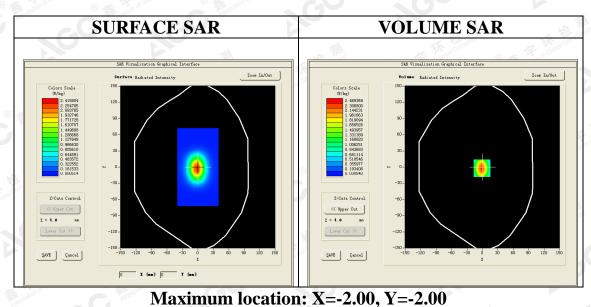
Report No.: AGC00408180401FH01

The results showing this test eport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com.

AGC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC00408180401FH01 Page 50 of 85

Test Laboratory: AGC Lab System Check Body 1900MHz DUT: Dipole 1900 MHz; Type: SID 1900

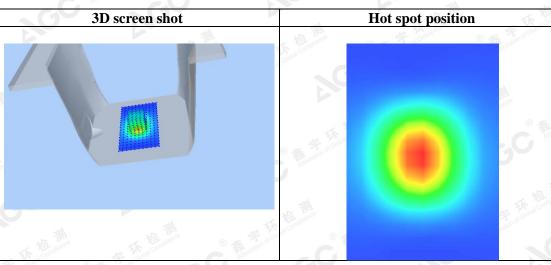

Date: June. 14, 2018

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1; Conv.F=2.39 Frequency: 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma=1.52$ mho/m; $\epsilon r = 53.65$; $\rho = 1000$ kg/m³; Phantom section: Flat Section; Input Power=18dBm Ambient temperature (°C):22.5, Liquid temperature (°C): 22.0

SATIMO Configuration:

- Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_32

Configuration/System Check 1900MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 1900MHz Body/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm


SAR Peak: 3.99 W/kg		
SAR 10g (W/Kg)	1.187209	
SAR 1g (W/Kg)	2.345375	

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00408180401FH01

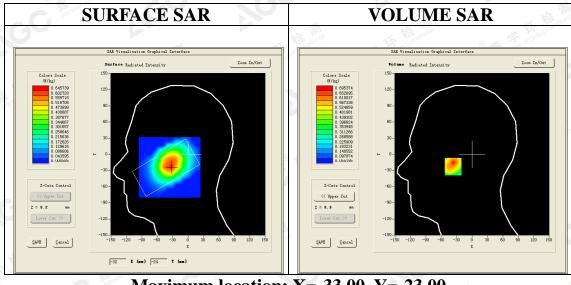
The results showing this test eport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com.

Report No.: AGC00408180401FH01 Page 52 of 85

APPENDIX B. SAR MEASUREMENT DATA

Test Laboratory: AGC Lab GSM 850 Mid- Touch-Right <SIM 1> DUT: 3G Feature Phone; Type: B30 Date: June. 06, 2018

Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Conv.F=1.74; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; σ = 0.92 mho/m; ϵ r = 41.29; ρ = 1000 kg/m³; Phantom section: Right Section

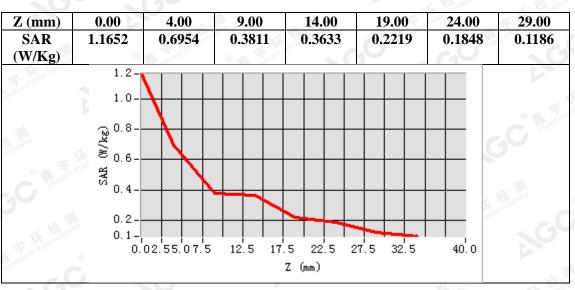

Ambient temperature (°C): 22.5, Liquid temperature (°C): 21.8

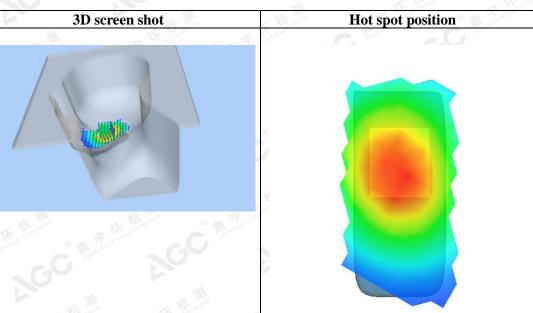
SATIMO Configuration:

- Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- · Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_32

Configuration/GSM 850 Mid-Touch-Right/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GSM 850 Mid-Touch-Right/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Right head
Device Position	Cheek
Band	GSM 850
Channels	Middle
Signal	TDMA (Crest factor: 8.0)


Maximum location: X=-33.00, Y=-23.00 SAR Peak: 0.92 W/kg


SAR 10g (W/Kg)	0.427653
SAR 1g (W/Kg)	0.635977

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

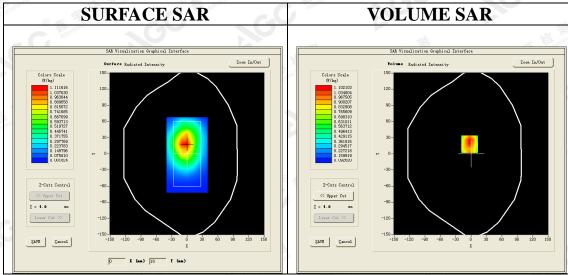
Report No.: AGC00408180401FH01 Page 53 of 85

The results show the master report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00408180401FH01 Page 54 of 85

Test Laboratory: AGC Lab GSM 850 Low- Body- Back (MS)<SIM 1> DUT: 3G Feature Phone; Type: B30 Date: June. 06, 2018

Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Conv.F=1.81 Frequency: 824.2 MHz; Medium parameters used: f = 835 MHz; σ = 0.93 mho/m; ϵ r = 56.75; ρ = 1000 kg/m³; Phantom section: Flat Section

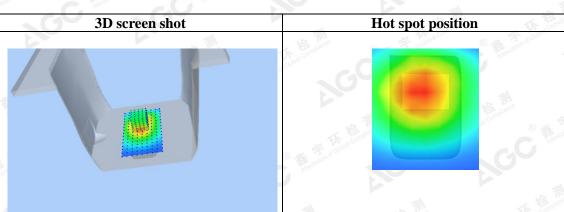

Ambient temperature (°C): 22.5, Liquid temperature (°C): 21.5

SATIMO Configuration:

- Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_32

Configuration/GSM 850 Low -Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GSM 850 Low -Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Back
Band	GSM 850
Channels	Low
Signal	TDMA (Crest factor: 8.0)
	aller all all all all all all all all all al



Maximum location: X=-3.00, Y=18.00 SAR Peak: 1.58 W/kg

SAR 10g (W/Kg)	0.671297
SAR 1g (W/Kg)	1.067312

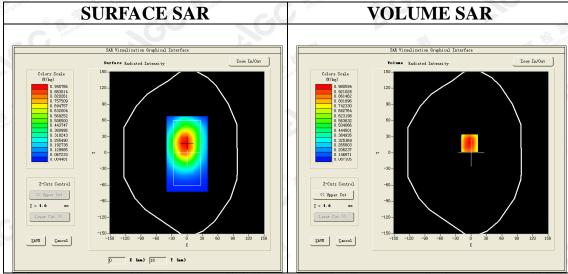
The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00408180401FH01 Page 56 of 85

Test Laboratory: AGC Lab GPRS 850 High- Body- Back (2up) DUT: 3G Feature Phone; Type: B30 Date: June. 06, 2018

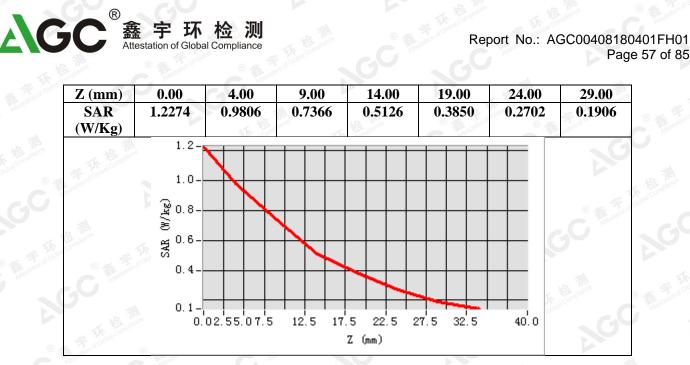
Communication System: GPRS-2 Slot; Communication System Band: GSM 850; Duty Cycle: 1:4.2; Conv.F=1.81; Frequency: 848.8 MHz; Medium parameters used: f = 835 MHz; σ = 0.97 mho/m; ϵ r = 53.84 ρ = 1000 kg/m³; Phantom section: Flat Section

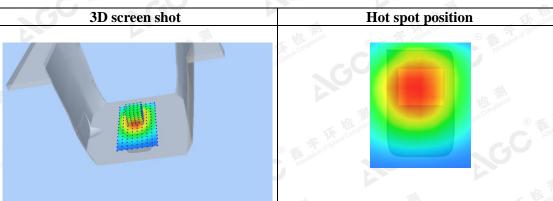

Ambient temperature (°C): 22.5, Liquid temperature (°C): 21.5

SATIMO Configuration:

- Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_32

Configuration/GPRS 850 High -Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GPRS 850 High -Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;


Area Scan	sam_direct_droit2_surf8mm.txt
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Back
Band	GSM 850
Channels	High
Signal	TDMA (Crest factor: 4.0)


Maximum location: X=-3.00, Y=18.00 SAR Peak: 1.36 W/kg

SAR 10g (W/Kg)	0.652724
SAR 1g (W/Kg)	0.957651

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.ceit.com.

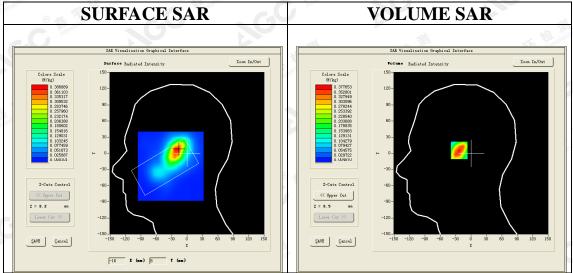
Report No.: AGC00408180401FH01

The results showed his test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document tcannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com.

Report No.: AGC00408180401FH01 Page 58 of 85

Test Laboratory: AGC Lab PCS 1900 Mid-Touch- Left <SIM 1> DUT: 3G Feature Phone; Type: B30 Date: June. 14, 2018

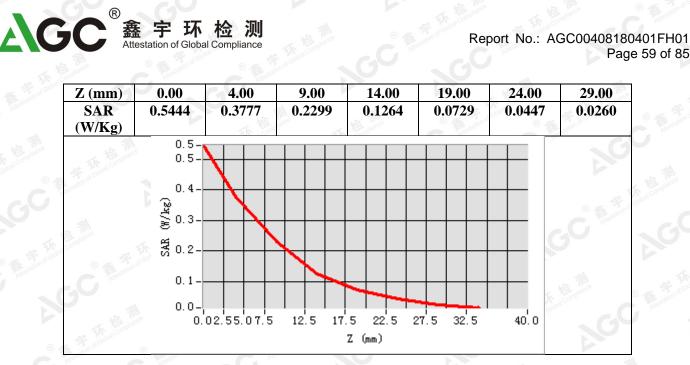
Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3; Conv.F=2.32 Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; σ = 1.38 mho/m; ϵ r =40.88; ρ = 1000 kg/m³; Phantom section: Left Section

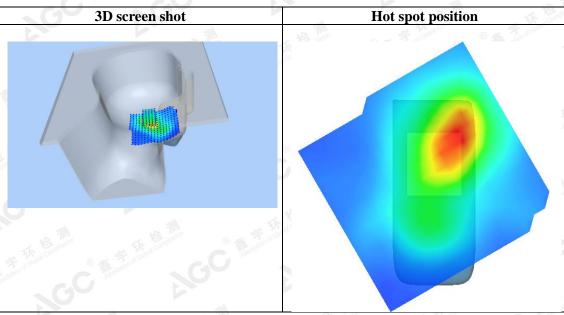

Ambient temperature (°C): 22.5, Liquid temperature (°C): 21.8

SATIMO Configuration:

- Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_32

Configuration/PCS1900 Mid-Touch-Left/Area Scan: Measurement grid: dx=8mm, dy=8mm **Configuration/PCS1900 Mid-Touch-Left/Zoom Scan:** Measurement grid: dx=8mm,dy=8mm, dz=5mm;


Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Left head
Device Position	Cheek
Band	PCS 1900
Channels	Middle
Signal	TDMA (Crest factor: 8.0)
	allow the state of



Maximum location: X=-20.00, Y=6.00 SAR Peak: 0.64 W/kg

SAR 10g (W/Kg)	0.191617
SAR 1g (W/Kg)	0.359371

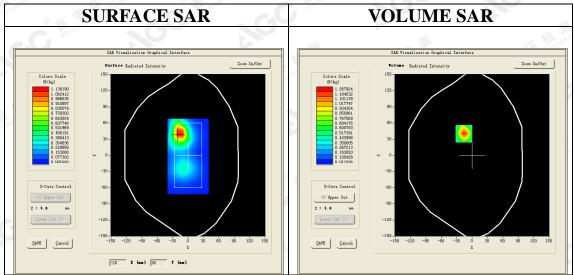
The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

Report No.: AGC00408180401FH01 Page 60 of 85

Test Laboratory: AGC Lab PCS 1900 Low-Body-Back (MS)<SIM 1> DUT: 3G Feature Phone; Type: B30 Date: June. 14, 2018

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3; Conv.F=2.39; Frequency: 1850.2 MHz; Medium parameters used: f = 1900 MHz; σ = 1.46 mho/m; ϵ r =55.13; ρ = 1000 kg/m³; Phantom section: Flat Section

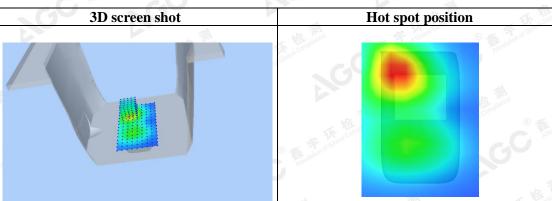

Ambient temperature (°C): 22.5, Liquid temperature (°C): 22.0

SATIMO Configuration:

- Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_32

Configuration/PCS1900 Low -Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/PCS1900 Low -Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Back
Band	PCS 1900
Channels	Low
Signal	TDMA (Crest factor: 8.0)
	Not Real and



Maximum location: X=-16.00, Y=40.00 SAR Peak: 2.06 W/kg

SAR 10g (W/Kg)	0.594307
SAR 1g (W/Kg)	1.182440

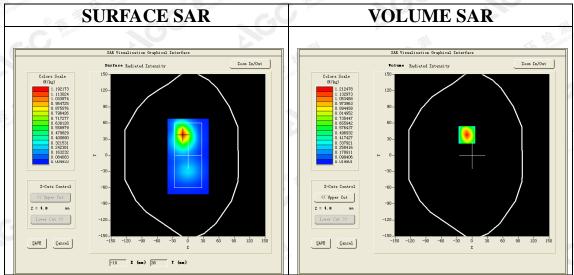
The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00408180401FH01 Page 62 of 85

Test Laboratory: AGC Lab GPRS 1900 Low-Body-Back (2up) DUT: 3G Feature Phone; Type: B30 Date: June. 14, 2018

Communication System: GPRS-4Slot; Communication System Band: PCS 1900; Duty Cycle: 1:4.2; Conv.F=2.39; Frequency: 1850.2 MHz; Medium parameters used: f = 1900 MHz; σ = 1.46 mho/m; ϵ r =55.13; ρ = 1000 kg/m³; Phantom section: Flat Section

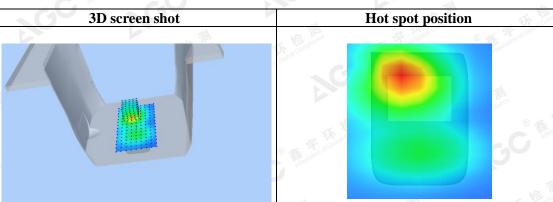

Ambient temperature (°C): 22.5, Liquid temperature (°C): 22.0

SATIMO Configuration:

- Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_32

Configuration/GPRS1900 Low -Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GPRS1900 Low -Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
Zoom Scan 🛛 🔬 🖉	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Back
Band	PCS 1900
Channels	Low
Signal	TDMA (Crest factor: 8.0)
	Refer to the second sec


Maximum location: X=-10.00, Y=38.00 SAR Peak: 1.80 W/kg

SAR 10g (W/Kg)	0.594941
SAR 1g (W/Kg)	1.120305

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

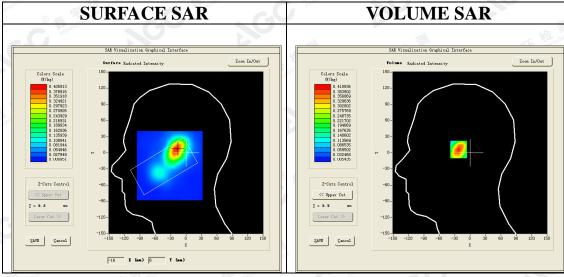
Report No.: AGC00408180401FH01

The results showed his test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document tcannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com.

Report No.: AGC00408180401FH01 Page 64 of 85

Test Laboratory: AGC Lab WCDMA Band II Mid-Touch-Left (RMC) DUT: 3G Feature Phone; Type: B30 Date: June. 14, 2018

Communication System: UMTS; Communication System Band: Band II UTRA/FDD ;Duty Cycle:1:1; Conv.F=2.32 Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; σ = 1.38 mho/m; ϵ r =40.88; ρ = 1000 kg/m³ ; Phantom section: Left Section

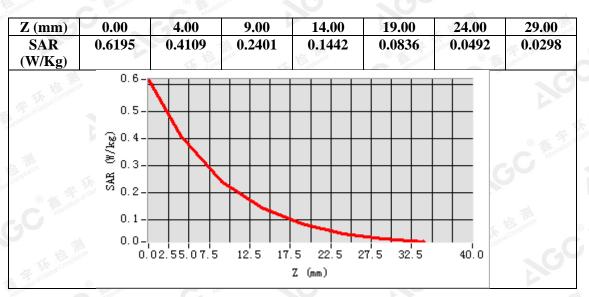

Ambient temperature (°C): 22.5, Liquid temperature (°C): 21.8

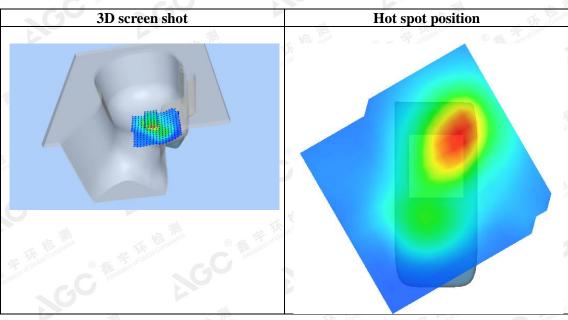
SATIMO Configuration:

- Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_32

Configuration/ WCDMA Band II Mid-Touch-Left/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ WCDMA Band II Mid-Touch-Left/Zoom Scan: Measurement grid:dx=8mm,dy=8mm,dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Left head
Device Position	Cheek
Band	WCDMA Band II
Channels	Middle
Signal	CDMA (Crest factor: 1.0)
	Globber B. M. Inol


Maximum location: X=-19.00, Y=7.00 SAR Peak: 0.63 W/kg


SAR 10g (W/Kg)	0.210112
SAR 1g (W/Kg)	0.385532

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00408180401FH01 Page 65 of 85

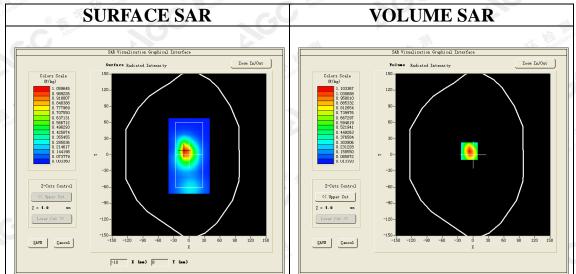
The results show the first est report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

Report No.: AGC00408180401FH01 Page 66 of 85

Date: June. 14, 2018

Test Laboratory: AGC Lab WCDMA Band II Mid-Body-Towards Grounds (RMC 12.2kbps) DUT: 3G Feature Phone; Type: B30

Communication System: UMTS; Communication System Band: Band II UTRA/FDD ;Duty Cycle:1:1; Conv.F=2.39 Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.50 \text{ mho/m}$; $\epsilon r = 54.22$; $\rho = 1000 \text{ kg/m}^3$; Phantom section: Flat Section

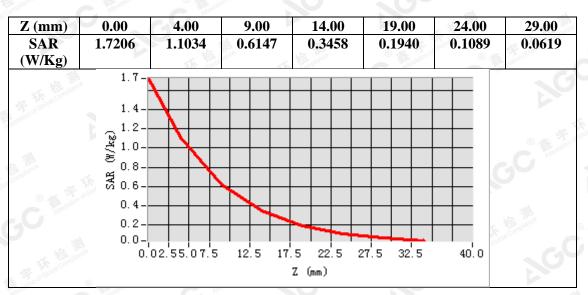

Ambient temperature (°C): 22.5, Liquid temperature (°C): 22.0

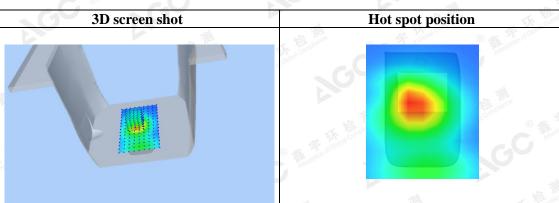
SATIMO Configuration:

- Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_32

Configuration/ WCDMA band II Mid-Body-back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ WCDMA band II Mid-Body-back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5m;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Back
Band	WCDMA band II
Channels	Middle
Signal	CDMA (Crest factor: 1.0)
	Bon B Frei Mai


Maximum location: X=-7.00, Y=7.00 SAR Peak: 1.72 W/kg


SAR 10g (W/Kg)	0.542165
SAR 1g (W/Kg)	1.038342

The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

Report No.: AGC00408180401FH01 Page 67 of 85

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00408180401FH01 Page 68 of 85

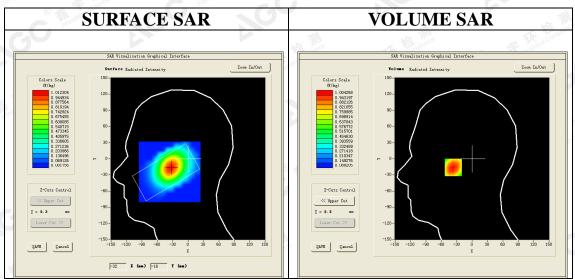
Date: June. 06, 2018

Test Laboratory: AGC Lab WCDMA Band V High- Touch-Right (RMC) DUT: 3G Feature Phone; Type: B30

Communication System: UMTS; Communication System Band: BAND V UTRA/FDD; Duty Cycle:1: 1; Conv.F=1.74; Frequency: 846.6 MHz; Medium parameters used: f = 835MHz; σ =0.93 mho/m; ϵ r =40.61; ρ = 1000 kg/m³; Phantom section: Right Section

Ambient temperature (°C): 22.5, Liquid temperature (°C): 21.8

SATIMO Configuration:


- Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- · Phantom: SAM twin phantom

Attestation of Global Compliance

Measurement SW: OpenSAR V4_02_32

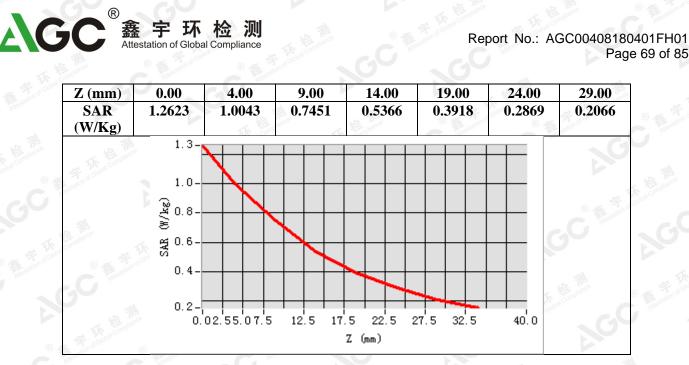
Configuration/ WCDMA Band V High -Touch-Right/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ WCDMA Band V High -Touch-Right/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

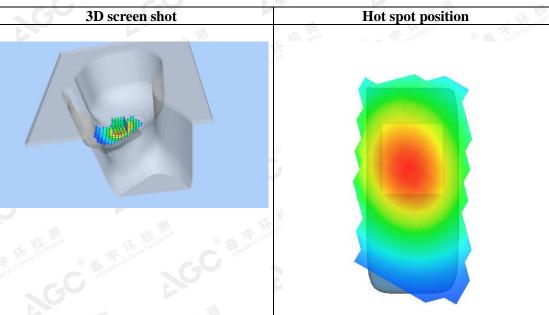
Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Right head
Device Position	Cheek
Band	WCDMA Band V
Channels	High
Signal	CDMA (Crest factor: 1.0)

Maximum location: X=-33.00, Y=-16.00 SAR Peak: 1.27 W/kg

SAR 10g (W/Kg)	0.657850
SAR 1g (W/Kg)	0.963877

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.


Fax: +86-755 2600 8484


Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

E-mail: agc@agc-cert.com

() 400 089 2118

Tel: +86-755 2908 1955

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

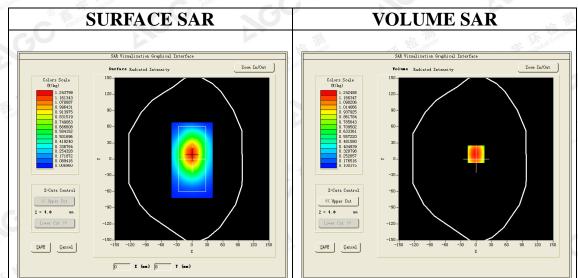
AGC * 鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC00408180401FH01 Page 70 of 85

Date: June. 06, 2018

Test Laboratory: AGC Lab WCDMA Band V Low-Body-Towards Grounds (RMC) DUT: 3G Feature Phone; Type: B30

Communication System: UMTS; Communication System Band: BAND V UTRA/FDD; Duty Cycle:1: 1; Conv.F=1.81; Frequency: 826.4 MHz; Medium parameters used: f = 835MHz; σ =0.94 mho/m; ϵ r =56.11; ρ = 1000 kg/m³; Phantom section: Flat Section

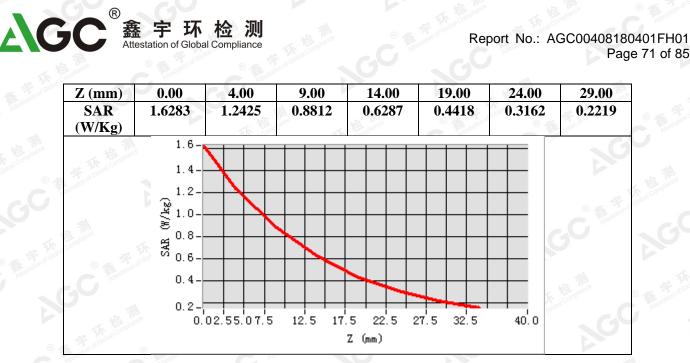

Ambient temperature (°C): 22.5, Liquid temperature (°C): 21.5

SATIMO Configuration:

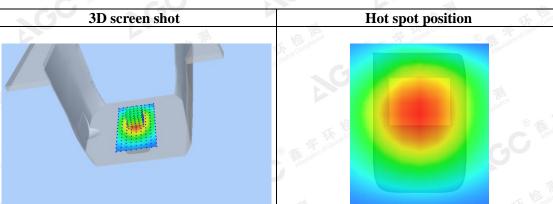
- Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_32

Configuration/ WCDMA Band V Low -Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ WCDMA Band V Low -Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Back
Band	WCDMA Band V
Channels	Low
Signal	CDMA (Crest factor: 1.0)



Maximum location: X=0.00, Y=9.00 SAR Peak: 1.64 W/kg


SAR 10g (W/Kg)	0.805784
SAR 1g (W/Kg)	1.203203

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.ceit.com.

Attestation of Global Compliance

Report No.: AGC00408180401FH01

The results showing this test eport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com.

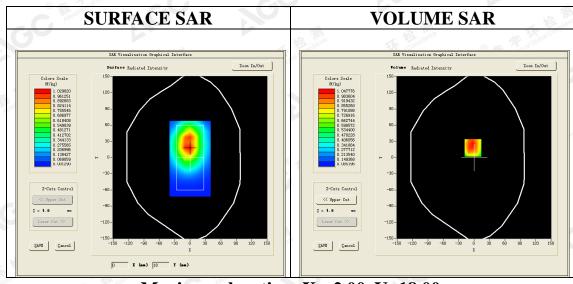
AGC [®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC00408180401FH01 Page 72 of 85

Repeated SAR Test Laboratory: AGC Lab GSM 850 Low- Body- Back (MS)<SIM 1> DUT: 3G Feature Phone; Type: B30

Date: June. 06, 2018

Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Conv.F=1.81 Frequency: 824.2 MHz; Medium parameters used: f = 835 MHz; σ = 0.93 mho/m; ϵ r = 56.75; ρ = 1000 kg/m³; Phantom section: Flat Section


Ambient temperature (°C): 22.5, Liquid temperature (°C): 21.5

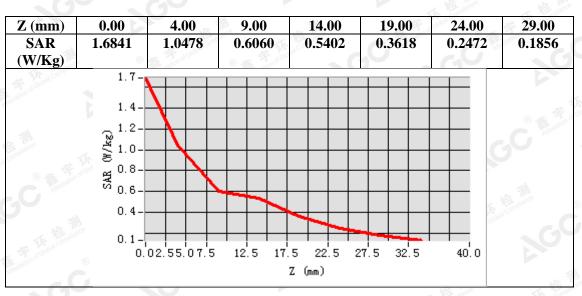
SATIMO Configuration:

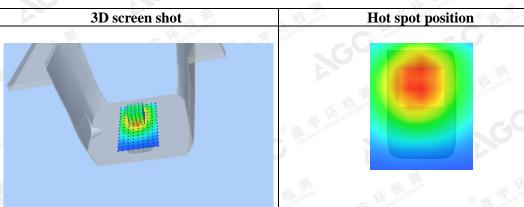
- Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_32

Configuration/GSM 850 Low -Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GSM 850 Low -Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Back
Band	GSM 850
Channels	Low
Signal	TDMA (Crest factor: 8.0)

Maximum location: X=-2.00, Y=18.00 SAR Peak: 1.51 W/kg


SAR 10g (W/Kg)	0.663655
SAR 1g (W/Kg)	1.028012


The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Attestation of Global Compliance

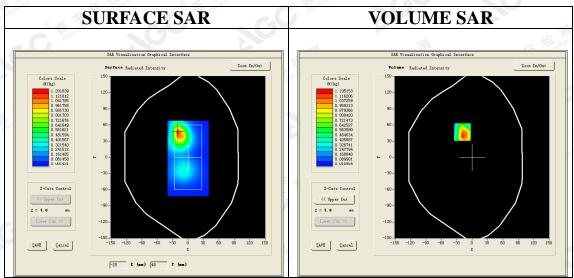
Report No.: AGC00408180401FH01 Page 73 of 85

The results show the first est report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

Report No.: AGC00408180401FH01 Page 74 of 85

Test Laboratory: AGC Lab PCS 1900 Low-Body-Back (MS)<SIM 1> DUT: 3G Feature Phone; Type: B30 Date: June. 14, 2018

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3; Conv.F=2.39; Frequency: 1850.2 MHz; Medium parameters used: f = 1900 MHz; σ = 1.46 mho/m; ϵ r =55.13; ρ = 1000 kg/m³; Phantom section: Flat Section

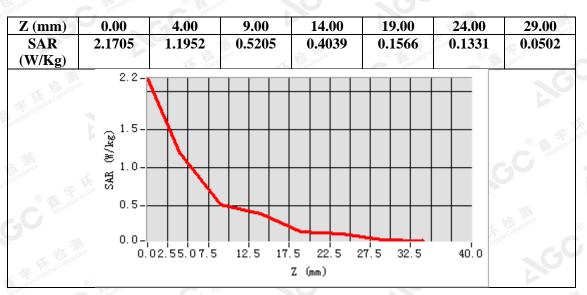

Ambient temperature (°C): 22.5, Liquid temperature (°C): 22.0

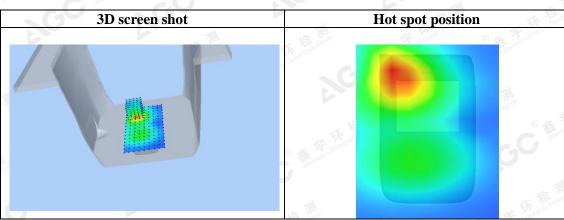
SATIMO Configuration:

- Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_32

Configuration/PCS1900 Low -Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/PCS1900 Low -Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Back
Band	PCS 1900
Channels	Low
Signal	TDMA (Crest factor: 8.0)
	Good Bar and


Maximum location: X=-19.00, Y=47.00 SAR Peak: 1.97 W/kg


SAR 10g (W/Kg)	0.581579
SAR 1g (W/Kg)	1.129793

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00408180401FH01 Page 75 of 85

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

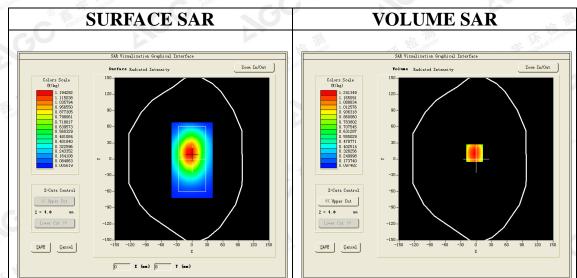
A GC 鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC00408180401FH01 Page 76 of 85

Date: June. 06, 2018

Test Laboratory: AGC Lab WCDMA Band V Low-Body-Towards Grounds (RMC)-once DUT: 3G Feature Phone; Type: B30

Communication System: UMTS; Communication System Band: BAND V UTRA/FDD; Duty Cycle:1: 1; Conv.F=1.81; Frequency: 826.4 MHz; Medium parameters used: f = 835MHz; $\sigma = 0.94$ mho/m; $\epsilon r = 56.11$; $\rho = 1000$ kg/m³; Phantom section: Flat Section


Ambient temperature (°C): 22.5, Liquid temperature (°C): 21.5

SATIMO Configuration:

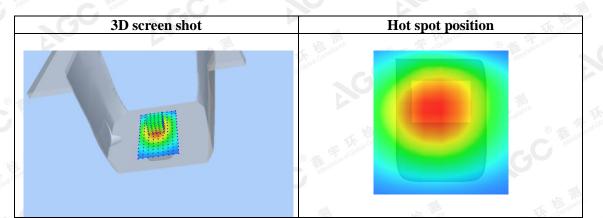
- Probe: SSE5; Calibrated: Aug. 08,2017; Serial No.: SN 08/16 EPGO282
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_32

Configuration/ WCDMA Band V Low -Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ WCDMA Band V Low -Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;


Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Back
Band	WCDMA Band V
Channels	Low
Signal	CDMA (Crest factor: 1.0)

Maximum location: X=-3.00, Y=11.00 SAR Peak: 1.65 W/kg

SAR 10g (W/Kg)	0.801700
SAR 1g (W/Kg)	1.200875


The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 🖉 C, this documents and the authenticity of the reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gett.com.

12.5

0.02.55.07.5

Page 77 of 85

17.5

22.5

Z (mm)

27.5

32.5

40.0

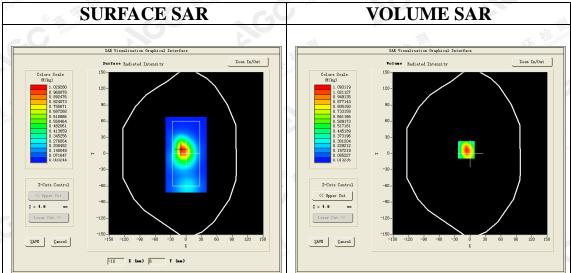
The results showed his test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document tcannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com.

Report No.: AGC00408180401FH01 Page 78 of 85

Date: June. 14, 2018

Test Laboratory: AGC Lab WCDMA Band II Mid-Body-Towards Grounds (RMC 12.2kbps) DUT: 3G Feature Phone; Type: B30

Communication System: UMTS; Communication System Band: Band II UTRA/FDD ;Duty Cycle:1:1; Conv.F=2.39 Frequency: 1880 MHz; Medium parameters used: f = 1900 MHz; σ =1.50 mho/m; ϵ r =54.22; ρ = 1000 kg/m³ ; Phantom section: Flat Section

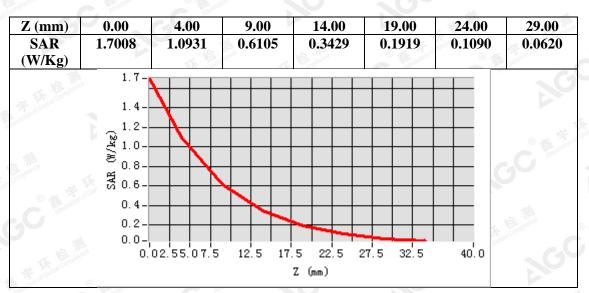

Ambient temperature (°C): 22.5, Liquid temperature (°C): 22.0

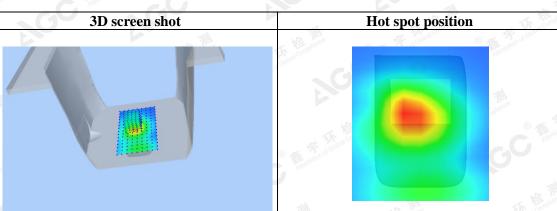
SATIMO Configuration:

- Probe: SSE5; Calibrated: 07/05/2016; Serial No.: SN 14/16 EP307
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Phantom: SAM twin phantom
- Measurement SW: OpenSAR V4_02_32

Configuration/ WCDMA band II Mid-Body-back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/ WCDMA band II Mid-Body-back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5m;

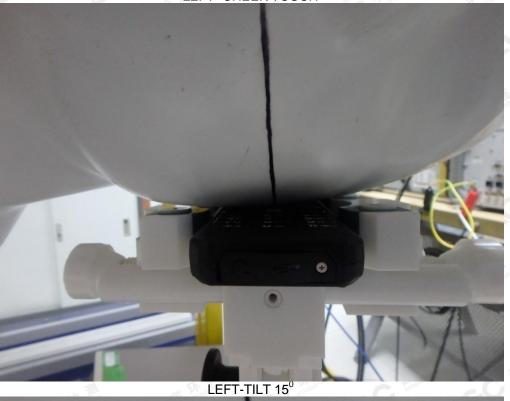
Area Scan	sam_direct_droit2_surf8mm.txt
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Back
Band	WCDMA band II
Channels	Middle
Signal	CDMA (Crest factor: 1.0)


Maximum location: X=-7.00, Y=7.00 SAR Peak: 1.70 W/kg


SAR 10g (W/Kg)	0.537756
SAR 1g (W/Kg)	1.029870

The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

Report No.: AGC00408180401FH01 Page 79 of 85


The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00408180401FH01 Page 80 of 85

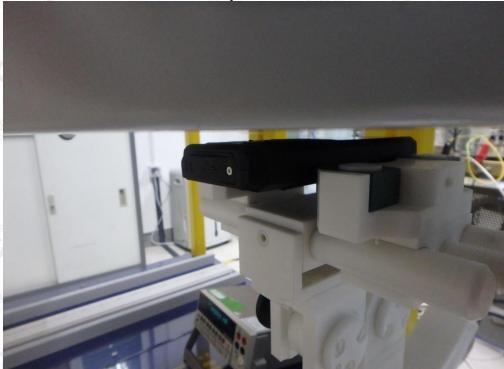
APPENDIX C. TEST SETUP PHOTOGRAPHS LEFT- CHEEK TOUCH

The results shows if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.geit.com.

Report No.: AGC00408180401FH01 Page 81 of 85

RIGHT- CHEEK TOUCH

The results show of the step of the second of the sample (s) tested unless otherwise stated and the sample (s) are retained for 30 days only. The document is issued by AGC, this document to cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attractions are details and the authenticity of the report will be confirmed at attractions.



Report No.: AGC00408180401FH01 Page 82 of 85

Body Back 5mm

Body Front 5mm

The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

Report No.: AGC00408180401FH01 Page 83 of 85

Body back with Headset 5mm


Position of the device under test in relation to the phantom

The results show of this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gent.com.

Report No.: AGC00408180401FH01 Page 84 of 85

The results shown if this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00408180401FH01 Page 85 of 85

APPENDIX D. CALIBRATION DATA

Refer to Attached files.

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

