SAR Test Report

Report No.: AGC00408190703FH01

FCC ID : ZL5B26

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION: Mobile phone

BRAND NAME : CAT

MODEL NAME : B26

APPLICANT: Bullitt Group

DATE OF ISSUE : Aug. 13,2019

IEEE Std. 1528:2013

STANDARD(S) : FCC 47CFR § 2.1093

IEEE/ANSI C95.1:2005

REPORT VERSION: V1.0

Attestation of Global Compliance(Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Page 2 of 62

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Aug. 13,2019	Valid	Initial Release

Page 3 of 62

	Test Report
Applicant Name	Bullitt Group
Applicant Address	One Valpy, Valpy Street, Reading, RG1 1AR, Berkshire, United Kingdom
Manufacturer Name	SHENZHEN AIJIEMO SCIENCE AND TECHNOLOGY CO. LTD.
Manufacturer Address	1st Floor 101 and 2nd Floor 201, Building A2, Huafeng Century Technology Park, Nanchang Community, Xixiang, Baoan District, Shenzhen China
Factory Name	SHENZHEN AIJIEMO SCIENCE AND TECHNOLOGY Co.,LTD
Factory Address	1st Floor 101 and 2nd Floor 201, Building A2, Huafeng Century Technology Park, Nanchang Community, Xixiang, Baoan District, Shenzhen China
Product Designation	Mobile phone
Brand Name	CAT
Model Name	B26
EUT Voltage	DC3.7V by battery
Applicable Standard	IEEE Std. 1528:2013 FCC 47CFR § 2.1093 IEEE/ANSI C95.1:2005
Test Date	Aug. 05,2019 to Aug. 06,2019
Report Template	AGCRT-US-2.5G/SAR (2018-01-01)

Note: The results of testing in this report apply to the product/system which was tested only.

	from Inau			
Tested By	Eric Zhou(Zhou Yongkang)	Aug. 06,2019		
	Jack Gui			
Checked By	Jack Gui (Gui Jiafeng)	Aug. 13,2019		
Authorized By	Lowersh cei			
,	Forrest Lei(Lei Yonggang) Authorized Officer	Aug. 13,2019		

TABLE OF CONTENTS

1. SUMMARY OF MAXIMUM SAR VALUE	5
2. GENERAL INFORMATION	6
2.1. EUT DESCRIPTION	6
3. SAR MEASUREMENT SYSTEM	7
3.1. THE SATIMO SYSTEM USED FOR PERFORMING COMPLIANCE TESTS CONSISTS OF FOLLOWING ITEMS 3.2. COMOSAR E-FIELD PROBE	8 9 9
4. SAR MEASUREMENT PROCEDURE	11
4.1. SPECIFIC ABSORPTION RATE (SAR) 4.2. SAR MEASUREMENT PROCEDURE 4.3. RF EXPOSURE CONDITIONS	12 14
5. TISSUE SIMULATING LIQUID	15
5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID	15
6. SAR SYSTEM CHECK PROCEDURE	17
6.1. SAR SYSTEM CHECK PROCEDURES	
7. EUT TEST POSITION	19
7.1. DEFINE TWO IMAGINARY LINES ON THE HANDSET	20 20
8. SAR EXPOSURE LIMITS	22
9. TEST FACILITY	23
10. TEST EQUIPMENT LIST	24
11. MEASUREMENT UNCERTAINTY	25
12. CONDUCTED POWER MEASUREMENT	28
13. TEST RESULTS	31
13.1. SAR TEST RESULTS SUMMARY	31
APPENDIX A. SAR SYSTEM CHECK DATA	37
APPENDIX B. SAR MEASUREMENT DATA	45
APPENDIX C. TEST SETUP PHOTOGRAPHS	57
APPENDIX D. CALIBRATION DATA	62

Page 5 of 62

1. SUMMARY OF MAXIMUM SAR VALUE

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

Fraguanay Band	Highest Rep	SAR Test Limit	
Frequency Band	Head Body-worn(with 10mm separation)		(W/Kg)
GSM 850	0.75	0.71	
PCS 1900	0.48 0.39		1.6
Simultaneous Reported SAR	0.78		1.0
SAR Test Result		PASS	

This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/Kg) specified in IEEE Std. 1528:2013; FCC 47CFR § 2.1093; IEEE/ANSI C95.1:2005 and the following specific FCC Test Procedures:

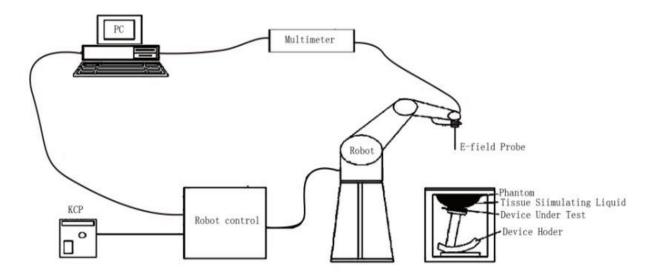
- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 648474 D04 Handset SAR v01r03
- KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04
- KDB 941225 D01 3G SAR Procedures v03r01

Page 6 of 62

2. GENERAL INFORMATION

2.1 FUT Description

Z. I. EUT Description	
General Information	
Product Designation	Mobile phone
Test Model	B26
Hardware Version	C609B_MB_1.1
Software Version	B26_M01_2019_08_02_V0.8
Device Category	Portable
RF Exposure Environment	Uncontrolled
Antenna Type	Internal
GSM and GPRS	
Support Band	☑GSM 850 ☑PCS 1900 ☐GSM 900 ☐DCS 1800
GPRS Type	Class B
GPRS Class	Class 12(1Tx+4Rx, 2Tx+3Rx, 3Tx+2Rx, 4Tx+1Rx)
TX Frequency Range	GSM 850 : 820-850MHz;; PCS 1900: 1850-1910MHz;
RX Frequency Range	GSM 850 : 869~894MHz; PCS 1900: 1930~1990MHz
Release Version	R99
Type of modulation	GMSK for GSM/GPRS
Antenna Gain	GSM850:1.25dBi; PCS1900: 1.34dBi;
Max. Average Power	GSM850: 31.69dBm ;PCS1900: 28.59dBm
Bluetooth	
Bluetooth Version	□V2.0 □V2.1 □V2.1+EDR □V3.0 □V3.0+HS □V4.0 □V4.1
Operation Frequency	2402~2480MHz
Type of modulation	⊠GFSK ⊠∏/4-DQPSK ⊠8-DPSK
Avg. Burst Power	-1.458dBm
Antenna Gain	0dBi
Accessories	
Battery	Brand name: N/A Model No. : B26 Voltage and Capacitance: 3.7 V & 1500mAh
Earphone	Brand name: N/A Model No. : N/A
Note:1.CMU200 can mea	sure the average power and Peak power at the same time


2. The sample used for testing is end product.

	Z.The sumple asca i	or testing is one produ	ot.
Product	Туре		
Flouuci	Product Type Production unit	☐ Identical Prototype	

Page 7 of 62

3. SAR MEASUREMENT SYSTEM

3.1. The SATIMO system used for performing compliance tests consists of following items

The COMOSAR system for performing compliance tests consists of the following items:

- The PC. It controls most of the bench devices and stores measurement data. A computer running WinXP and the Opensar software.
- The E-Field probe. The probe is a 3-axis system made of 3 distinct dipoles. Each dipole returns a voltage in function of the ambient electric field.
- The Keithley multimeter measures each probe dipole voltages.
- The SAM phantom simulates a human head. The measurement of the electric field is made inside the phantom.
- The liquids simulate the dielectric properties of the human head tissues.
- The network emulator controls the mobile phone under test.
- The validation dipoles are used to measure a reference SAR. They are used to periodically check the bench to make sure that there is no drift of the system characteristics over time.
- •The phantom, the device holder and other accessories according to the targeted measurement.

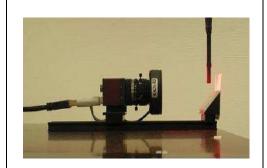
Page 8 of 62

3.2. COMOSAR E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SATIMO. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SATIMO conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528 and relevant KDB files.) The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

Model	SSE5
Manufacture	MVG
Identification No.	SN 22/12 EP159
Frequency	0.45GHz-3GHz Linearity:±0.11dB(0.45GHz-3GHz)
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.11dB
Dimensions	Overall length:330mm Length of individual dipoles:4.5mm Maximum external diameter:8mm Probe Tip external diameter:5mm Distance between dipoles/ probe extremity:2.7mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 3 GHz with precisin of better 30%.

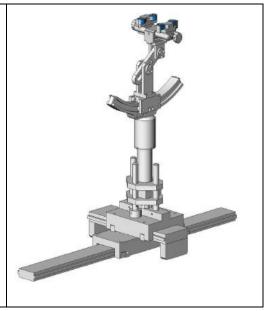

3.3. RODOT	
The COMOSAR system uses the KUKA robot from SATIMO SA (France).For the 6-axis controller COMOSAR system, the KUKA robot controller version from SATIMO is used. The XL robot series have many features that are important for our application: High precision (repeatability 0.02 mm) High reliability (industrial design) Jerk-free straight movements Low ELF interference (the closed metallic construction shields against motor control fields) 6-axis controller	

Page 9 of 62

3.4. Video Positioning System

The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts. The camera is piloted by the main computer with firewire link. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.



3.5. Device Holder

The COMOSAR device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles. The COMOSAR device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity

 $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Page 10 of 62

3.6. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

□ Left head

☐ Right head

☐ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Page 11 of 62

4. SAR MEASUREMENT PROCEDURE

4.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element(dv) of given mass density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/Kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt}\Big|_{t=0}$$

Where

SAR is the specific absorption rate in watts per kilogram;
E is the r.m.s. value of the electric field strength in the tissue in volts per meter;
σ is the conductivity of the tissue in siemens per metre;
ρ is the density of the tissue in kilograms per cubic metre;

ch is the heat capacity of the tissue in joules per kilogram and Kelvin;

 $\frac{dT}{dt} \mid t=0$ $\,$ is the initial time derivative of temperature in the tissue in kelvins per second

Page 12 of 62

4.2. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm This distance cannot be smaller than the distance os sensor calibration points to probe tip as `defined in the probe properties,

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in SATIMO software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Standard 1528, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan) If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100MHz to 6GHz

	≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	≤2 GHz: ≤15 mm 2 – 3 GHz: ≤12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx _{Area} , Δy _{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Step 3: Zoom Scan

Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g abd 10g of simulated tissue. The Zoom Scan measures points(refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label.

Page 13 of 62

Zoom Scan Parameters extracted from KDB865664 d01 SAR Measurement 100MHz to 6GHz

Maximum zoom scan spatial resolution: Δx _{Zoom} , Δy _{Zoom}		$\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ 3 - 4 GHz: $\leq 5 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$ 4 - 6 GHz: $\leq 4 \text{ mm}$		
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: Δz _{Zoom} (n)		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
	$\begin{array}{c} \Delta z_{Z00m}(1)\text{: between} \\ 1^{\text{st}} \text{ two points closest} \\ \text{to phantom surface} \\ \\ \Delta z_{Z00m}(n>1)\text{:} \\ \text{between subsequent} \\ \text{points} \end{array}$	1 st two points closest	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Page 14 of 62

4.3. RF Exposure Conditions

Test Configuration and setting:

The EUT is a model of GSM Portable Mobile Station (MS). It supports GSM/GPRS, BT.

For WWAN SAR testing, the device was controlled by using a base station emulator. Communication between the device and the emulator were established by air link. The distance between the EUT and the antenna is larger than 50cm, and the output power radiated from the emulator antenna is at least 30db smaller than the output power of EUT.

Antenna Location: (the back view)

Page 15 of 62

5. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 4.2

5.1. The composition of the tissue simulating liquid

Ingredient (% Weight) Frequency (MHz)	Water	Nacl	Polysorbate 20	DGBE	1,2 Propanediol	Triton X-100
835 Head	50.36	1.25	48.39	0.0	0.0	0.0
835 Body	54.00	1	0.0	15	0.0	30
1900 Head	54.9	0.18	0.0	44.92	0.0	0.0
1900 Body	70	1	0.0	9	0.0	20

5.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in IEEE 1528.

Target Frequency	he	ad	k	oody
(MHz)	εr	σ (S/m)	εr	σ (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	1.01	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73

(ϵr = relative permittivity, σ = conductivity and ρ = 1000 kg/m3)

Page 16 of 62

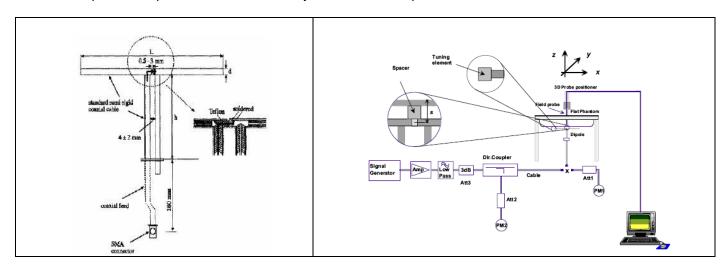
5.3. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using SATIMO Dielectric Probe Kit and R&S Network Analyzer ZVL6.

	Tissue Stimulant Measurement for 835MHz										
	Fr.	Dielectric Par	Tissue								
	(MHz)	εr 41.5 (39.425-43.575) δ[s/m] 0.90(0.855-0.945)		Temp [ºC]	Test time						
Head	824.2	43.07	0.90								
	835	42.16	0.91	20.9	Aug.						
	836.6	41.35	0.92	20.9	05,2019						
	848.8	40.69	0.93								
	Fr.	Dielectric Par	Tissue								
	(MHz)	εr 55.20(52.44-57-96)	δ[s/m]0.97(0.9215-1.0185)	Temp [oC]	Test time						
Body	824.2	55.72	0.98								
	835	54.35	0.99	20.9	Aug.						
	836.6	53.95	1.00	20.9	05,2019						
	848.8	53.22	1.01								

		Tissue Stimulant Me	easurement for 1900MHz		
	Fr.	Dielectric Par	Tissue	T	
	(MHz)	εr40.00(38.00-42.00)	δ[s/m]1.40(1.33-1.47)	Temp [ºC]	Test time
Head	1850.2	41.92	1.38		
	1880	41.77	1.41	20.6	Aug.
	1900	41.56	1.42	20.6	06,2019
	1909.8	40.63	1.44		
	Fr.	Dielectric Par	ameters (±5%)	Tissue	
	(MHz)	εr53.30(50.635-55.965)	δ[s/m]1.52(1.444-1.596)	Temp [oC]	Test time
Body	1850.2	53.46	1.45		
	1880	52.79	1.46	20.6	Aug.
	1900	52.64	1.48	20.6	06,2019
	1909.8	51.85	1.50		

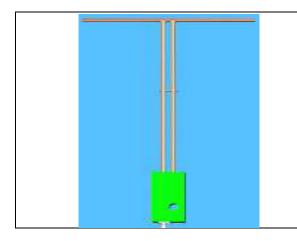
Page 17 of 62


6. SAR SYSTEM CHECK PROCEDURE

6.1. SAR System Check Procedures

SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Each SATIMO system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder.


The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.

Page 18 of 62

6.2. SAR System Check

6.2.1. Dipoles

The dipoles used are based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of IEEE. the table below provides details for the mechanical and electrical Specifications for the dipoles.

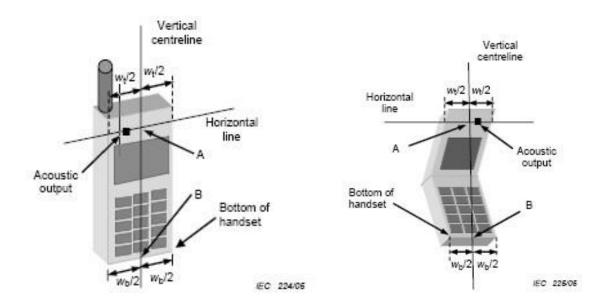
Frequency	L (mm)	h (mm)	d (mm)
835MHz	161.0	89.8	3.6
1900MHz	68	39.5	3.6

6.2.2. System Check Result

System Per	System Performance Check at 835MHz&1900MHz for Head														
Validation K	Validation Kit: SN29/15 DIP 0G835-383& SN 46/11 DIP 1G900-187														
Frequency		get W/Kg)		ce Result 0%)	Tested Value(W/Kg)		Tissue Temp.	Test time							
[MHz]	1g	10g	1g	10g	1g	10g	[°C]								
835	9.85	6.27	8.865-10.835	5.643 -6.897	9.73	6.32	20.9	Aug. 05,2019							
1900	40.25	20.50	36.225-44.275	18.45-22.55	38.33	20.36	20.6	Aug. 06,2019							
System Per	formance	Check at	835 MHz &1900	MHz for Body											
Frequency [MHz]	Target Value(W/Kg)			ce Result 0%)		sted (W/Kg)	Tissue Temp.	Test time							
[IVIIIZ]	1g	10g	1g	1g 10g		10g	[°C]								
835	9.95	6.50	8.955-10.945 5.85-7.15		9.55	6.50	20.9	Aug. 05,2019							
1900	40.82	20.99	36.738-44.902	18.891-23.089	39.33	20.80	20.6	Aug. 06,2019							

Note

(1) We use a CW signal of 18dBm for system check, and then all SAR values are normalized to 1W forward power. The result must be within $\pm 10\%$ of target value.

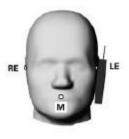

Page 19 of 62

7. EUT TEST POSITION

This EUT was tested in Right Cheek, Right Tilted, Left Cheek, Left Tilted, Body back, Body front

7.1. Define Two Imaginary Lines on the Handset

- (1)The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset.
- (2)The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (3)The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

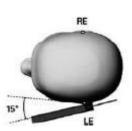


Page 20 of 62

7.2. Cheek Position

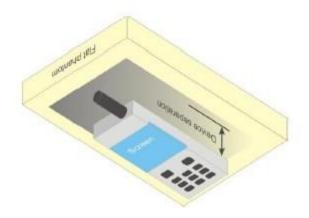
(1) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center picec in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.

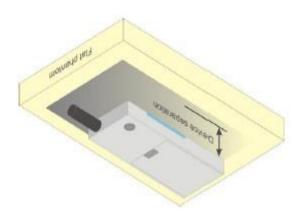
(2) To move the device towards the phantom with the ear piece aligned with the the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost



7.3. Tilt Position

- (1) To position the device in the "cheek" position described above.
- (2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost.





Page 21 of 62

7.4. Body Worn Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to 10mm.

Page 22 of 62

8. SAR EXPOSURE LIMITS

SAR assessments have been made in line with the requirements of IEEE-1528, and comply with ANSI/IEEE C95.1-2005 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit (W/kg)
Spatial Peak SAR (1g cube tissue for brain or body)	1.60
Spatial Average SAR (Whole body)	0.08
Spatial Peak SAR (Limbs)	4.0

Page 23 of 62

9. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Designation Number	CN1259
A2LA Cert. No.	5054.02
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA

Page 24 of 62

10. TEST EQUIPMENT LIST

Equipment description	Manufacturer/ Model	Identification No.	Current calibration date	Next calibration date
SAR Probe	MVG	SN 22/12 EP159	Aug. 08,2018	Aug. 07,2019
Phantom	SATIMO	SN_4511_SAM90	Validated. No cal required.	Validated. No cal required.
Liquid	SATIMO	-	Validated. No cal required.	Validated. No cal required.
Comm Tester	Agilent-8960	GB46310822	Feb. 27,2019	Feb. 26,2020
Multimeter	Keithley 2000	4114939	Sep. 20,2018	Sep. 19,2019
Dipole	SATIMO SID835	SN29/15 DIP 0G835-383	Apr. 26,2019	Apr. 25,2022
Dipole	SATIMO SID1900	SN 46/11 DIP 1G900-187	Apr. 26,2019	Apr. 25,2022
Signal Generator	Agilent-E4438C	US41461365	Nov. 01,2018	Oct. 31,2019
Vector Analyzer	Agilent / E4440A	US41421290	Feb. 27,2019	Feb. 26,2020
Network Analyzer	Rhode & Schwarz ZVL6	SN101443	Nov. 01,2018	Oct. 31,2019
Attenuator	Warison /WATT-6SR1211	S/N:WRJ34AYM2F1	June 11,2019	June 10, 2020
Attenuator	Mini-circuits / VAT-10+	31405	June 11,2019	June 10, 2020
Amplifier	EM30180	SN060552	Feb. 27,2019	Feb. 26,2020
Directional Couple	Werlatone/ C5571-10	SN99463	June 12,2019	June 11,2020
Directional Couple	Werlatone/ C6026-10	SN99482	June 12,2019	June 11,2020
Power Sensor	NRP-Z21	1137.6000.02	Sep. 20,2018	Sep. 19,2019
Power Sensor	NRP-Z23	US38261498	Feb. 19,2019	Feb. 18,2020
Power Viewer	R&S	V2.3.1.0	N/A	N/A

Note: Per KDB 865664 Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement;
- 4. Impedance is within 5Ω of calibrated measurement.

Page 25 of 62

11. MEASUREMENT UNCERTAINTY

Measu	Measurement uncertainty for Dipole averaged over 1 gram / 10 gram.										
a	b	С	d	e f(d,k)	f	g	h c×f/e	i c×g/e	k		
Uncertainty Component	Sec.	Tol (± %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi		
Measurement System											
Probe calibration	E.2.1	5.831	N	1	1	1	5.83	5.83	8		
Axial Isotropy	E.2.2	0.579	R	√3	√0.5	√0.5	0.24	0.24	00		
Hemispherical Isotropy	E.2.2	0.813	R	√3	√0.5	√0.5	0.33	0.33	8		
Boundary effect	E.2.3	1.0	R	√3	1	1	0.58	0.58	00		
Linearity	E.2.4	1.26	R	√3	1	1	0.73	0.73	8		
System detection limits	E.2.4	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	8		
Modulation response	E2.5	3.0	R	√3	1	1	1.73	1.73	8		
Readout Electronics	E.2.6	0.021	N	1	1	1	0.021	0.021	œ		
Response Time	E.2.7	0	R	√3	1	1	0	0	œ		
Integration Time	E.2.8	1.4	R	√3	1	1	0.81	0.81	00		
RF ambient conditions-Noise	E.6.1	3.0	R	√3	1	1	1.73	1.73	00		
RF ambient conditions-reflections	E.6.1	3.0	R	√3	1	1	1.73	1.73	00		
Probe positioner mechanical tolerance	E.6.2	1.4	R	√3	1	1	0.81	0.81	œ		
Probe positioning with respect to phantom shell	E.6.3	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8		
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	1	1	1.33	1.33	oo		
Test sample Related											
Test sample positioning	E.4.2	2.6	N	1	1	1	2.6	2.6	8		
Device holder uncertainty	E.4.1	3	N	1	1	1	3	3	8		
Output power variation—SAR drift measurement	E.2.9	5	R	√3	1	1	2.89	2.89	8		
SAR scaling	E.6.5	5	R	√3	1	1	2.89	2.89	∞		
Phantom and tissue parameters											
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3	1	1	2.31	2.31	8		
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	œ		
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.12	2.84	М		
Liquid permittivity measurement	E.3.3	5	N	1	0.23	0.26	1.15	1.30	М		
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	8		
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	8		
Combined Standard Uncertainty			RSS				9.807	9.608			
Expanded Uncertainty (95% Confidence interval)			K=2				19.614	19.216			

Page 26 of 62

System	Validation	uncertainty	for Dipole	e averaged	over 1 grai	m / 10 gram	1.		
а	b	С	d	e f(d,k)	f	g	h c×f/e	i c×g/e	k
Uncertainty Component	Sec.	Tol (±%)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System									
Probe calibration	E.2.1	5.831	N	1	1	1	5.83	5.83	00
Axial Isotropy	E.2.2	0.579	R	√3	1	1	0.33	0.33	8
Hemispherical Isotropy	E.2.2	0.813	R	√3	0	0	0.00	0.00	00
Boundary effect	E.2.3	1.0	R	√3	1	1	0.58	0.58	00
Linearity	E.2.4	1.26	R	√3	1	1	0.73	0.73	8
System detection limits	E.2.4	1.0	R	√3	1	1	0.58	0.58	8
Modulation response	E2.5	3.0	R	√3	0	0	0.00	0.00	8
Readout Electronics	E.2.6	0.021	N	1	1	1	0.021	0.021	8
Response Time	E.2.7	0.0	R	√3	0	0	0.00	0.00	8
Integration Time	E.2.8	1.4	R	√3	0	0	0.00	0.00	8
RF ambient conditions-Noise	E.6.1	3.0	R	√3	1	1	1.73	1.73	8
RF ambient conditions-reflections	E.6.1	3.0	R	√3	1	1	1.73	1.73	8
Probe positioner mechanical tolerance	E.6.2	1.4	R	√3	1	1	0.81	0.81	œ
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	1	1	0.81	0.81	00
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	1	1	1.33	1.33	o
System check source (dipole)									
Deviation of experimental dipole from numerical dipole	E.6.4	5.0	N	1	1	1	5.00	5.00	8
Input power and SAR drift measurement	8,6.6.4	5.0	R	√3	1	1	2.89	2.89	00
Dipole axis to liquid distance	8,E.6.6	2.0	R	√3	1	1	1.15	1.15	00
Phantom and tissue parameters									
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4.0	R	√3	1	1	2.31	2.31	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	œ
Liquid conductivity measurement	E.3.3	4.0	N	1	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	5.0	N	1	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	8
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	8
Combined Standard Uncertainty			RSS				9.735	9.534	
Expanded Uncertainty (95% Confidence interval)			K=2				19.470	19.069	

Page 27 of 62

Syster	n check ur	ncertainty fo	r Dipole a	averaged o	ver 1 gram	/ 10 gram.			
а	b	С	d	e f(d,k)	f	g	h cxf/e	i c×g/e	k
Uncertainty Component	Sec.	Tol (± %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System									
Probe calibration drift	E.2.1.3	0.5	N	1	1	1	0.50	0.50	8
Axial Isotropy	E.2.2	0.579	R	√3	0	0	0.00	0.00	8
Hemispherical Isotropy	E.2.2	0.813	R	√3	0	0	0.00	0.00	8
Boundary effect	E.2.3	1.0	R	√3	0	0	0.00	0.00	8
Linearity	E.2.4	1.26	R	√3	0	0	0.00	0.00	8
System detection limits	E.2.4	1.0	R	√3	0	0	0.00	0.00	8
Modulation response	E2.5	3.0	R	√3	0	0	0.00	0.00	8
Readout Electronics	E.2.6	0.021	N	1	0	0	0.00	0.00	00
Response Time	E.2.7	0	R	√3	0	0	0.00	0.00	œ
Integration Time	E.2.8	1.4	R	√3	0	0	0.00	0.00	8
RF ambient conditions-Noise	E.6.1	3.0	R	√3	0	0	0.00	0.00	8
RF ambient conditions-reflections	E.6.1	3.0	R	√3	0	0	0.00	0.00	8
Probe positioner mechanical tolerance	E.6.2	1.4	R	√3	1	1	0.81	0.81	8
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	1	1	0.81	0.81	8
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	0	0	0.00	0.00	o
System check source (dipole)									
Deviation of experimental dipoles	E.6.4	2	N	1	1	1	2	2	8
Input power and SAR drift measurement	8,6.6.4	5	R	√3	1	1	2.89	2.89	8
Dipole axis to liquid distance	8,E.6.6	2	R	√3	1	1	1.15	1.15	00
Phantom and tissue parameters									
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3	1	1	2.31	2.31	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1	0.84	1.90	1.60	œ
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	5	N	1	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	8
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	8
Combined Standard Uncertainty			RSS				5.564	5.205	
Expanded Uncertainty (95% Confidence interval)			K=2				11.128	10.410	

Page 28 of 62

12. CONDUCTED POWER MEASUREMENT GSM BAND

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
Maximum Power <1	l>	· · · · · · · · · · · · · · · · · · ·		, ,
	824.2	31.71	-9	22.71
GSM 850	836.6	31.63	-9	22.63
	848.8	31.69	-9	22.69
CDDC 050	824.2	31.55	-9	22.55
GPRS 850 (1 Slot)	836.6	31.43	-9	22.43
(1 3101)	848.8	31.49	-9	22.49
0000 050	824.2	28.78	-6	22.78
GPRS 850 (2 Slot)	836.6	28.72	-6	22.72
(2 3101)	848.8	28.73	-6	22.73
000000	824.2	27.66	-4.26	23.40
GPRS 850 (3 Slot)	836.6	27.48	-4.26	23.22
(3 3101)	848.8	27.97	-4.26	23.71
0000000	824.2	25.36	-3	22.36
GPRS 850 (4 Slot)	836.6	25.12	-3	22.12
(4 5101)	848.8	25.34	-3	22.34
Maximum Power <2	2>			1
	824.2	31.08	-9	22.08
GSM 850	836.6	31.10	-9	22.10
	848.8	31.13	-9	22.13
ODDC 050	824.2	31.05	-9	22.05
GPRS 850 (1 Slot)	836.6	31.07	-9	22.07
(1000)	848.8	31.11	-9	22.11
CDDC 050	824.2	28.75	-6	22.75
GPRS 850 (2 Slot)	836.6	28.68	-6	22.68
(2 3101)	848.8	28.65	-6	22.65
CDDC 050	824.2	27.56	-4.26	23.30
GPRS 850 (3 Slot)	836.6	27.42	-4.26	23.16
(3 3101)	848.8	27.92	-4.26	23.66
00000000	824.2	25.30	-3	22.30
GPRS 850 (4 Slot)	836.6	25.07	-3	22.07
(4 3101)	848.8	25.26	-3	22.26

Page 29 of 62

GSM BAND CONTINUE

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
Maximum Power <1	>			
	1850.2	28.18	-9	19.18
PCS1900	1880	28.27	-9	19.27
	1909.8	28.59	-9	19.59
GPRS1900	1850.2	28.21	-9	19.21
(1 Slot)	1880	28.27	-9	19.27
(1 0101)	1909.8	28.52	-9	19.52
GPRS1900	1850.2	25.44	-6	19.44
(2 Slot)	1880	25.10	-6	19.10
(2 3101)	1909.8	25.36	-6	19.36
00004000	1850.2	24.18	-4.26	19.92
GPRS1900 (3 Slot)	1880	24.33	-4.26	20.07
(3 3101)	1909.8	24.27	-4.26	20.01
GPRS1900	1850.2	22.03	-3	19.03
	1880	22.43	-3	19.43
(4 Slot)	1909.8	22.19	-3	19.19
Maximum Power <2	?>			1
	1850.2	27.22	-9	18.22
PCS1900	1880	27.35	-9	18.35
	1909.8	27.46	-9	18.46
ODD04000	1850.2	27.12	-9	18.12
GPRS1900 (1 Slot)	1880	27.25	-9	18.25
(1 3101)	1909.8	27.32	-9	18.32
ODD04000	1850.2	25.40	-6	19.40
GPRS1900 (2 Slot)	1880	25.06	-6	19.06
(2 3101)	1909.8	25.31	-6	19.31
00001000	1850.2	24.13	-4.26	19.87
GPRS1900 (3 Slot)	1880	24.30	-4.26	20.04
	1909.8	24.22	-4.26	19.96
0000:	1850.2	22.01	-3	19.01
GPRS1900	1880	22.36	-3	19.36
(4 Slot)	1909.8	22.12	-3	19.12

Note 1

The Frame Power (Source-based time-averaged Power) is scaled the maximum burst average power based on time slots. The calculated methods are show as following:

Frame Power = Max burst power (1 Up Slot) - 9 dB

Frame Power = Max burst power (2 Up Slot) - 6 dB

Frame Power = Max burst power (3 Up Slot) – 4.26 dB

Frame Power = Max burst power (4 Up Slot) - 3 dB

Page 30 of 62

Bluetooth_ V2.1+EDR

Modulation	Channel	Frequency(MHz)	Peak Power (dBm)
	0	2402	-2.688
GFSK	39	2441	-3.238
	78	2480	-3.767
	0	2402	-1.822
π /4-DQPSK	39	2441	-2.180
	78	2480	-3.517
	0	2402	-1.458
8-DPSK	39	2441	-2.014
	78	2480	-3.248

Page 31 of 62

13. TEST RESULTS

13.1. SAR Test Results Summary

13.1.1. Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE 1528-2013, Body-worn SAR was performed with the device 10mm from the phantom.

13.1.2. Operation Mode

- 1. Per KDB 447498 D01 v06 ,for each exposure position, if the highest 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional.
- 2. Per KDB 865664 D01 v01r04,for each frequency band, if the measured SAR is ≥0.8W/Kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
 - (1) When the original highest measured SAR is \geq 0.8W/Kg, repeat that measurement once.
 - (2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥1.45 W/Kg.
 - (3) Perform a third repeated measurement only if the original, first and second repeated measurement is \geq 1.5 W/Kg and ratio of largest to smallest SAR for the original, first and second measurement is \geq 1.20
- 3. Body-worn exposure conditions are intended to voice call operations, therefore GSM voice call mode is selected to be test.
- 4. Per KDB 648474 D04 v01r03,when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤1.2W/Kg, SAR testing with a headset connected is not required.
- 5. Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows:

 Maximum Scaling SAR =tested SAR (Max.) ×[maximum turn-up power (mw)/ maximum measurement output power(mw)]
- 6. Proximity sensor, just for avoiding the wrong operation in the phone screen when call, and has no influence on output power or SAR result.

Page 32 of 62

13.1.3. Test Result

SAR MEASUREMENT										
Depth of Liqui	Depth of Liquid (cm):>15				Relative Humidity (%): 47.8					
Product: Mobi	Product: Mobile phone									
Test Mode: G	SM850 with GM	SK mod	dulation							
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)	
SIM 1 Card										
Left Cheek	voice	190	836.6	-0.25	0.733	31.70	31.63	0.745	1.6	
Left Tilt	voice	190	836.6	-0.32	0.387	31.70	31.63	0.393	1.6	
Right Cheek	voice	190	836.6	0.04	0.674	31.70	31.63	0.685	1.6	
Right Tilt	voice	190	836.6	-0.27	0.364	31.70	31.63	0.370	1.6	
Body back	voice	190	836.6	-0.31	0.622	31.70	31.63	0.632	1.6	
Body front									1.6	
Body back	GPRS-3 slot	190	836.6	-0.11	0.628	28.00	27.48	0.708	1.6	
Body front	GPRS-3 slot	190	836.6	0.17	0.493	28.00	27.48	0.556	1.6	

Note:

<sup>When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
The test separation for body back, body front and 4 Edges is 10mm of all above table.</sup>

Page 33 of 62

SAR MEASUREMENT									
Depth of Liquid (cm):>15 Relative Humidity (%): 49.5									
Product: Mobi	Product: Mobile phone								
Test Mode: PO	CS1900 with GM	1SK mc	dulation						
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
SIM 1 Card									
Left Cheek	voice	661	1880.0	-0.31	0.358	28.60	28.27	0.386	1.6
Left Tilt	voice	661	1880.0	0.04	0.317	28.60	28.27	0.342	1.6
Right Cheek	voice	661	1880.0	-0.29	0.444	28.60	28.27	0.479	1.6
Right Tilt	voice	661	1880.0	-0.61	0.413	28.60	28.27	0.446	1.6
Body back	voice	661	1880.0	-0.35	0.348	28.60	28.27	0.375	1.6
Body front	voice	661	1880.0	0.27	0.245	28.60	28.27	0.264	1.6
Body back	GPRS-3 slot	661	1880.0	-0.24	0.372	24.50	24.33	0.387	1.6
Body front	GPRS-3 slot	661	1880.0	0.33	0.262	24.50	24.33	0.272	1.6

Note:

[•] When the 1-g Reported SAR is \leq 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498. • The test separation for body back, body front and 4 Edges is 10mm of all above table.

Page 34 of 62

NO	Simultaneous state	Portable Handset			
NO	NO Simultaneous state		Body-worn	Hotspot	
1	GSM(voice)+Bluetooth(data)	-	Yes	-	
2	GSM (Data) + Bluetooth(data)	-	Yes	Yes	

NOTE:

- 1. Simultaneous with every transmitter must be the same test position.
- 2. KDB 447498 D01, BT SAR is excluded as below table.
- 3. KDB 447498 D01, for handsets the test separation distance is determined by the smallest distance between the outer surface of the device and the user; which is 0mm for head SAR and 10mm for body-worn SAR.
- 4. According to KDB 447498 D01 4.3.1, Standalone SAR test exclusion is as follow:
 - For 100 MHz to 6 GHz and test separation distances \leq 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] • [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR³⁰, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation³¹
- The result is rounded to one decimal place for comparison
- The values 3.0 and 7.5 are referred to as numeric thresholds in step b) below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm, and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 4.1 f) is applied to determine SAR test exclusion.

- 5. If the test separation distance is <5mm, 5mm is used for excluded SAR calculation.
- 6. According to KDB 447498 D01 4.3.2, simultaneous transmission SAR test exclusion is as follow:
 - (1) Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna.
 - (2) Any transmitters and antennas should be considered when calculating simultaneous mode.
 - (3) For mobile phone and PC, it's the sum of all transmitters and antennas at the same mode with same position in each applicable exposure condition
 - (4)When the standalone SAR test exclusion of section 4.3.2 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to det

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

7. When the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio. The simultaneous transmitting antennas in each operating mode and exposure condition combination must be considered one pair at a time to determine the SAR to peak location separation ratio to qualify for test exclusion. The ratio is determined by (SAR1 + SAR2)1.5/Ri, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion.

Estimated SAR		Max Power including Tune-up Tolerance		Separation Distance (mm)	Estimated SAR (W/kg)	
		dBm	mW	Distance (IIIIII)	(vv/kg)	
DT	Head	-1	0.794	0	0.033	
ВТ	Body	-1	0.794	10	0.016	

Page 35 of 62

Sum of the SAR for GSM 850 & BT:

RF Exposure	Test	Simultaneous Transr	Σ1-g SAR	SPLSR	
Conditions	Position	GSM 850	Bluetooth	(W/Kg)	(Yes/No)
	Left Touch	0.745	0.033	0.778	No
Head	Left Tilt	0.393	0.033	0.426	No
(voice)	Right Touch	0.685	0.033	0.718	No
	Right Tilt	0.370	0.033	0.403	No
Body-worn	Rear	0.632	0.016	0.648	No
(voice)	Front	0.484	0.016	0.500	No
Body-worn	Rear	0.708	0.016	0.724	No
(Data)	Front	0.556	0.016	0.572	No

Note:

⁻According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.

[·]SPLSR mean is "The SAR to Peak Location Separation Ratio "

Page 36 of 62

Sum of the SAR for PCS 1900 & BT:

RF Exposure	Test	Simultaneous Transr	Σ1-g SAR	SPLSR	
Conditions	Position	PCS 1900	Bluetooth	(W/Kg)	(Yes/No)
	Left Touch	0.386	0.033	0.419	No
Head	Left Tilt	0.342	0.033	0.375	No
(voice)	Right Touch	0.479	0.033	0.512	No
	Right Tilt	0.446	0.033	0.479	No
Body-worn	Rear	0.375	0.016	0.391	No
(voice)	Front	0.264	0.016	0.280	No
Body-worn	Rear	0.387	0.016	0.403	No
(Data)	Front	0.272	0.016	0.288	No

Note:

⁻According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.

⁻SPLSR mean is "The SAR to Peak Location Separation Ratio "

Page 37 of 62

APPENDIX A. SAR SYSTEM CHECK DATA

Test Laboratory: AGC Lab Date: Aug. 05,2019

System Check Head 835 MHz

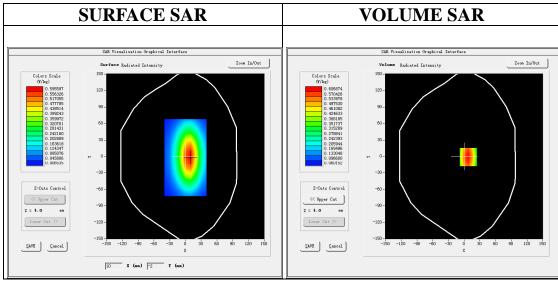
DUT: Dipole 835 MHz Type: SID 835

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Conv.F=5.29 Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; ϵ r =42.16; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):21.2, Liquid temperature (°C): 20.9

SATIMO Configuration

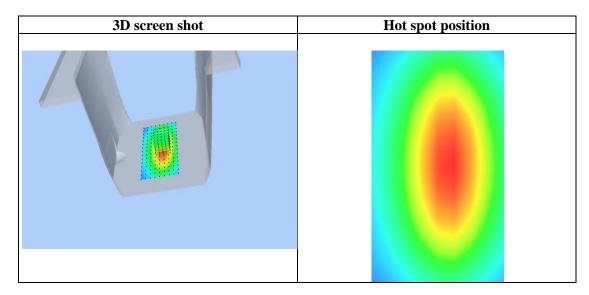

• Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_35

Configuration/System Check 835MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 835MHz Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm


Maximum location: X=8.00, Y=-1.00

SAR Peak: 0.84 W/kg

SAR 10g (W/Kg)	0.398680
SAR 1g (W/Kg)	0.613792

Report No.: AGC00408190703FH01 Page 38 of 62

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.8395	0.6073	0.4138	0.2876	0.2142	0.1458	0.1063
	0.8- 0.7 0.6 0.5 0.4 0.3 0.2	02.55.07.5	12.5 17.	5 22.5 2 Z (mm)	27.5 32.5	40.0	
				Z (IIIII)			

Date: Aug. 05,2019

Page 39 of 62

Test Laboratory: AGC Lab System Check Body 835 MHz

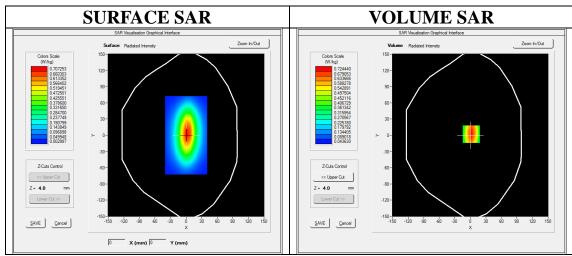
DUT: Dipole 835 MHz Type: SID 835

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Conv.F=5.49 Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\epsilon r = 54.35$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):21.2, Liquid temperature (°C): 20.9

SATIMO Configuration

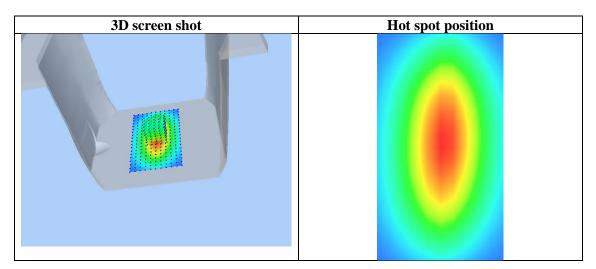

Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4 02 35

Configuration/System Check 835MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 835MHz Body/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm



Maximum location: X=2.00, Y=2.00 SAR Peak: 1.07 W/kg

SAR 10g (W/Kg)	0.410268
SAR 1g (W/Kg)	0.602657

Page 40 of 62

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	1.0738	0.7582	0.4467	0.2828	0.1895	0.1273	0.0894
(W/IIg)	1.1-						
	3						
	0.8-	λ					
		X					
	≥ 0.6-	++					
	9.0 (W/kg)						
	0.4		\mathbb{N}				
	0.2-						
	0.1-		ļ I		+		
	0.0	2.5 5.0 7.5 1		20.0 25.0	30.0 35.	0 40.0	
				Z (mm)			

Page 41 of 62

Test Laboratory: AGC Lab
System Check Head 1900MHz
Date: Aug. 06,2019

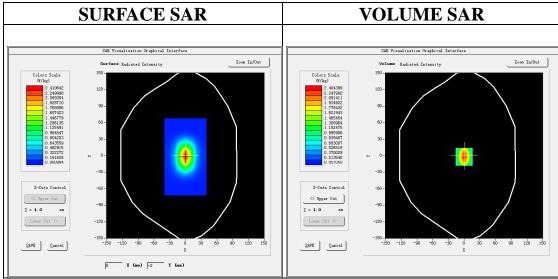
DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1; Conv.F=5.24 Frequency: 1900 MHz; Medium parameters used: f = 1850 MHz; $\sigma = 1.42$ mho/m; $\epsilon r = 41.56$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):20.9, Liquid temperature (°C): 20.6

SATIMO Configuration:

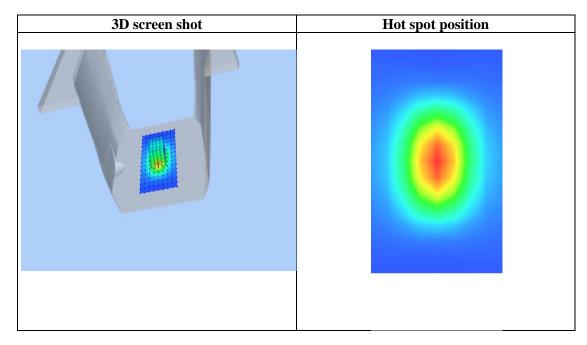

• Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_35

Configuration/System Check 1900MHz Head/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 1900MHz Head/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm



Maximum location: X=0.00, Y=-2.00 SAR Peak: 3.62 W/kg

	0
SAR 10g (W/Kg)	1.284562
SAR 1g (W/Kg)	2.418514

Page 42 of 62

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	3.6328	2.4026	1.4117	0.8628	0.5237	0.3216	0.2029
(W/Kg)							
	3.6-						
	3.0-	$\downarrow \downarrow \downarrow$					
		\longrightarrow					
	2.5- (%//kg) 2.0-	$+\lambda$					
	평 1.5	$++\lambda$					
	1.0-		\mathcal{N}				
	0.5		++				
	0.1-	02.55.07.5	12.5 17.	5 22.5 2	27.5 32.5	40.0	
		J2. JJ. U 1. J		Z (mm)	.1.0 32.3	40.0	

Page 43 of 62

Test Laboratory: AGC Lab
System Check Body 1900MHz
Date: Aug. 06,2019

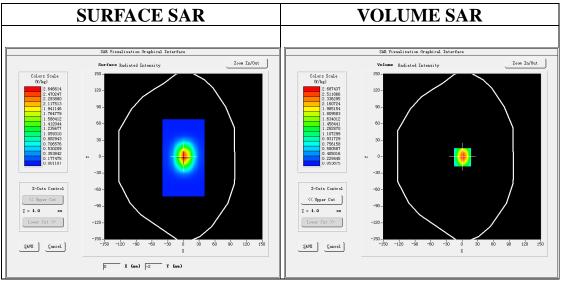
DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1; Conv.F=5.39 Frequency: 1900 MHz; Medium parameters used: f = 1850 MHz; $\sigma = 1.48$ mho/m; $\epsilon r = 52.64$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):20.9, Liquid temperature (°C): 20.6

SATIMO Configuration:

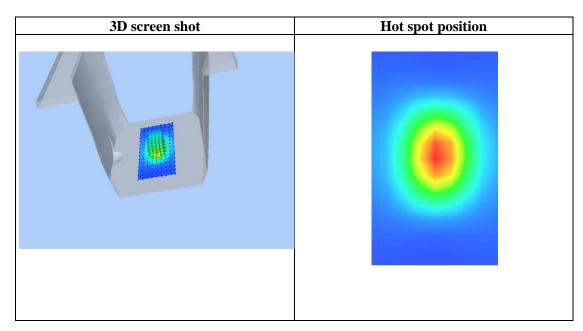

Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4 02 35

Configuration/System Check 1900MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 1900MHz Body/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm



Maximum location: X=1.00, Y=-1.00 SAR Peak: 4.05 W/kg

	0
SAR 10g (W/Kg)	1.312492
SAR 1g (W/Kg)	2.481597

Page 44 of 62

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	4.0308	2.6846	1.5954	0.9829	0.5937	0.3682	0.2264
(··· S)	3.5 3.0 3.5 3.0 2.5 2.0 3.1.5 1.0 0.1 0.1	02.55.07.5	12.5 17.		27.5 32.5	40.0	
				Z (mm)			

Page 45 of 62

APPENDIX B. SAR MEASUREMENT DATA

Test Laboratory: AGC Lab Date: Aug. 05,2019

GSM 850 Mid-Touch-Left <SIM 1> DUT: Mobile phone; Type: B26

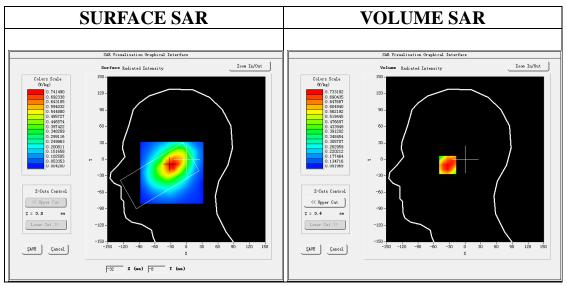
Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Conv.F=5.29; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.92$ mho/m; $\epsilon r = 41.35$; $\rho = 1000$ kg/m³;

Phantom section: Left Section

Ambient temperature ($^{\circ}$ C): 21.2, Liquid temperature ($^{\circ}$ C): 20.9

SATIMO Configuration:

• Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

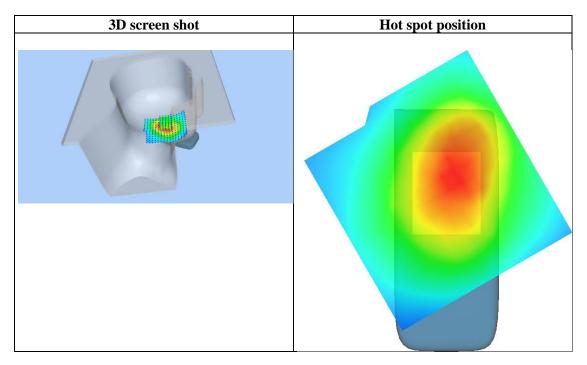

• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4 02 35

Configuration/GSM 850 Mid-Touch-Left/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GSM 850 Mid-Touch-Left/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Area Scan	dx=8mm dy=8mm, h= 5.00 mm			
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete			
Phantom	Left head			
Device Position	Cheek			
Band	GSM 850			
Channels	Middle			
Signal	TDMA (Crest factor: 8.0)			


Maximum location: X=-29.00, Y=-10.00

SAR Peak: 1.04 W/kg

SAR 10g (W/Kg)	0.500092
SAR 1g (W/Kg)	0.733140

Report No.: AGC00408190703FH01 Page 46 of 62

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.9999	0.7332	0.5270	0.4359	0.3393	0.2471	0.1917
(W/Kg)							
	8.0 8.0 4.0 SAR						
	0. 1 – 0. (02.55.07.5	12.5 17.	5 22.5 2	7.5 32.5	40.0	
				Z (mm)			

Page 47 of 62

Test Laboratory: AGC Lab Date: Aug. 05,2019

GSM 850 Mid- Body- Back (MS)<SIM 1> DUT: Mobile phone; Type: B26

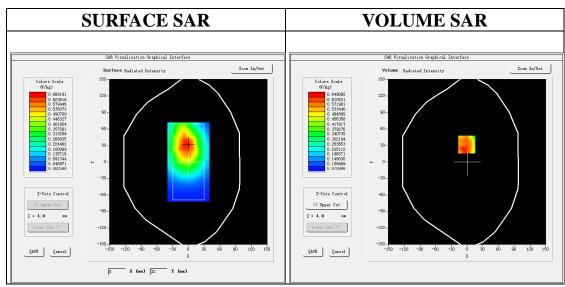
Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Conv.F=5.49; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 1.00$ mho/m; ϵ r = 53.95; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C): 21.2, Liquid temperature (°C): 20.9

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

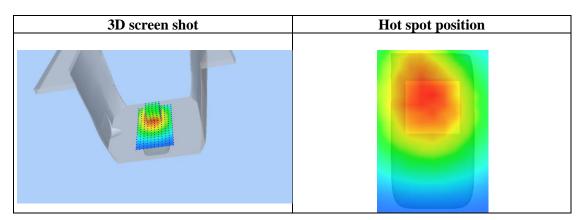

• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_35

Configuration/GSM 850 Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GSM 850 Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	surf_sam_plan.txt, h= 5.00 mm		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Validation plane		
Device Position	Body Back		
Band	GSM 850		
Channels	Middle		
Signal	TDMA (Crest factor: 8.0)		



Maximum location: X=-1.00, Y=32.00 SAR Peak: 0.93 W/kg

21111 30011	· ••••
SAR 10g (W/Kg)	0.438648
SAR 1g (W/Kg)	0.621554

Page 48 of 62

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	1.0298	0.6491	0.3808	0.3404	0.2150	0.2005	0.1424
(W/Kg)							
	1.0-						
	0.8-	$\setminus \mid \mid \mid$					
	(%/kg)						
	₹ 0.4-						
	0. 1-			Ш			
	0.1- 0.0	02.55.07.5	12.5 17.	5 22.5	27.5 32.5	40.0	
				Z (mm)			

Page 49 of 62

Test Laboratory: AGC Lab Date: Aug. 05,2019

GPRS 850 Mid- Body- Back (3up) DUT: Mobile phone; Type: B26

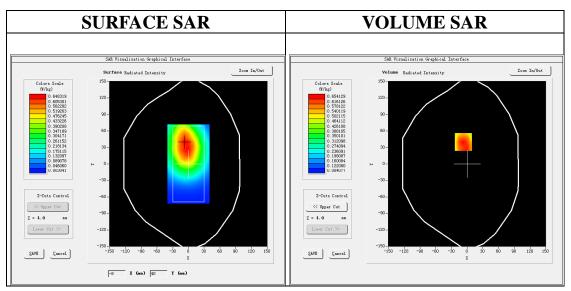
Communication System: GPRS-3 Slot; Communication System Band: GSM 850; Duty Cycle: 1:2.7; Conv.F=5.49; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; σ = 1.00 mho/m; ϵ r = 53.95; ρ = 1000 kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.2, Liquid temperature ($^{\circ}$ C): 20.9

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

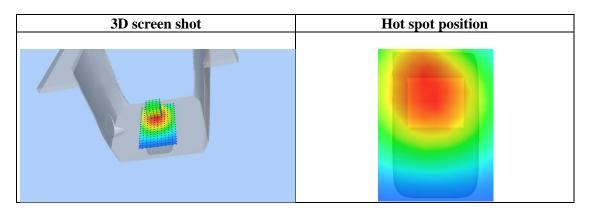

• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_35

Configuration/GPRS 850 Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GPRS 850 Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	surf_sam_plan.txt, h= 5.00 mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Validation plane		
Device Position	Body Back		
Band	GSM 850		
Channels	Middle		
Signal	TDMA (Crest factor: 2.7)		



Maximum location: X=-7.00, Y=40.00 SAR Peak: 0.83 W/kg

SAR 10g (W/Kg)	0.463942	
SAR 1g (W/Kg)	0.627993	

Report No.: AGC00408190703FH01 Page 50 of 62

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.8118	0.6541	0.5002	0.3826	0.2994	0.2386	0.1838
······································	0.8- 0.7 0.6 0.0 - 0.5 0.4 0.3 0.1 0.0	02.55.07.5	12.5 17.	5 22.5 2 Z (mm)	27.5 32.5	40.0	

Page 51 of 62

Test Laboratory: AGC Lab Date: Aug. 06,2019

PCS 1900 Mid-Touch-Right <SIM 1> DUT: Mobile phone; Type: B26

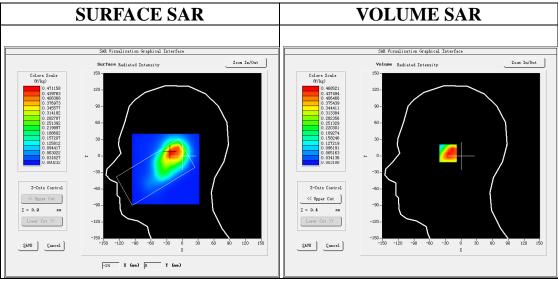
Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3; Conv.F=5.24; Frequency: 1880 MHz; Medium parameters used: f = 1850 MHz; $\sigma = 1.41$ mho/m; $\epsilon r = 41.77$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

Ambient temperature (°C): 20.9, Liquid temperature (°C): 20.6

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

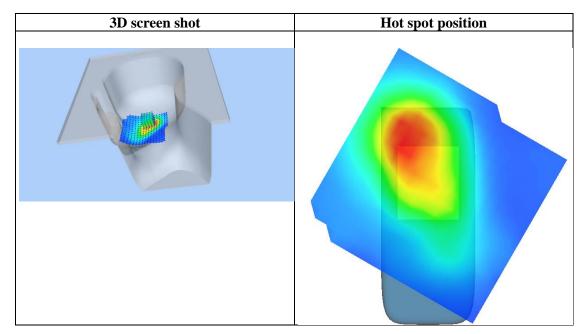

• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_35

Configuration/PCS1900 Mid-Touch-Right/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/PCS1900 Mid-Touch-Right/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	dx=8mm dy=8mm, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Right head
Device Position	Cheek
Band	PCS 1900
Channels	Middle
Signal	TDMA (Crest factor: 8.0)



Maximum location: X=-22.00, Y=6.00 SAR Peak: 0.75 W/kg

SAR 10g (W/Kg)	0.253447	
SAR 1g (W/Kg)	0.443631	

Page 52 of 62

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.8192	0.4685	0.2292	0.1393	0.0901	0.0469	0.0318
	0.8- 0.7- 0.6- 0.5- 0.4- 0.3- 0.2- 0.1- 0.1-	02.55.07.5	12.5 17.	5 22.5 2 Z (mm)	27.5 32.5	40.0	

Page 53 of 62

Test Laboratory: AGC Lab Date: Aug. 06,2019

PCS 1900 Mid-Body-Back (MS)<SIM 1> DUT: Mobile phone; Type: B26

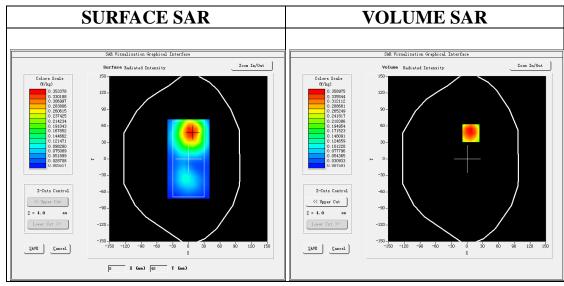
Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3; Conv.F=5.39; Frequency: 1880 MHz; Medium parameters used: f = 1850 MHz; $\sigma = 1.47$ mho/m; ϵ r =52.79; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C): 20.9, Liquid temperature (°C): 20.6

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

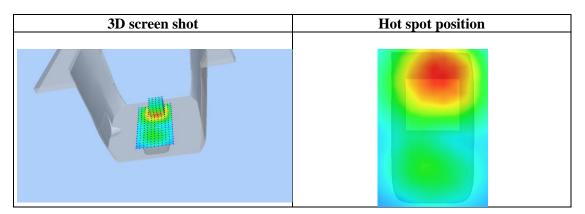

• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_35

Configuration/PCS1900 Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/PCS1900 Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	surf_sam_plan.txt, h= 5.00 mm		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Validation plane		
Device Position	Body Back		
Band	PCS 1900		
Channels	Middle		
Signal	TDMA (Crest factor: 8.0)		



Maximum location: X=7.00, Y=47.00 SAR Peak: 0.56 W/kg

SAR 10g (W/Kg)	0.202995	
SAR 1g (W/Kg)	0.348274	

Page 54 of 62

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.5680	0.3590	0.1990	0.1251	0.0762	0.0422	0.0287
(W/Kg)							
	0.6-		1 1 1 1	111			
	0.5-	\longrightarrow	\bot		\perp		
		$\mathbf{N} + \mathbf{I}$					
	0.4-	$\overline{}$	 	+++	+++		
	(a) 1.0 (a) 2.0 (a)						
	₩ 0.2-						
	01 0.2-						
	0.1-	+++			\perp		
	0.0-	02.55.07.5	12.5 17.	5 22.5	27.5 32.5	40.0	
	0.0	12.33.01.5			21.3 32.3	40.0	
				Z (mm)			

Page 55 of 62

Test Laboratory: AGC Lab Date: Aug. 06,2019

GPRS 1900 Mid-Body-Back (3up) DUT: Mobile phone; Type: B26

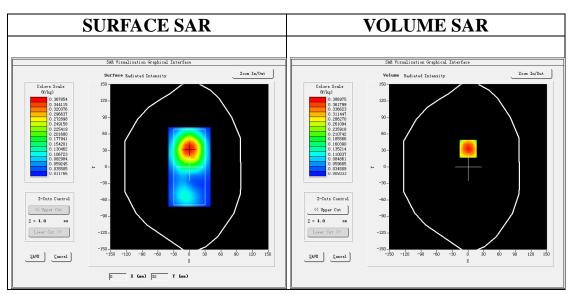
Communication System: GPRS-3Slot; Communication System Band: PCS 1900; Duty Cycle: 1:2.7; Conv.F=5.39; Frequency: 1880 MHz; Medium parameters used: f = 1850 MHz; σ = 1.47 mho/m; ϵ r =52.79; ρ = 1000 kg/m³;

Phantom section: Flat Section

Ambient temperature (°C): 20.9, Liquid temperature (°C): 20.6

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

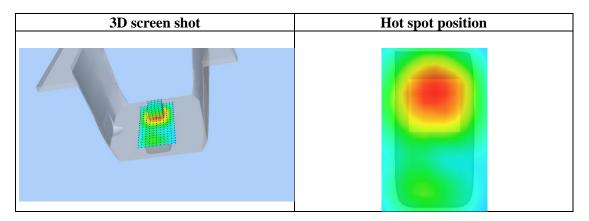

• Sensor-Surface: 4mm (Mechanical Surface Detection)

· Phantom: SAM twin phantom

• Measurement SW: OpenSAR V4_02_35

Configuration/GPRS1900 Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GPRS1900 Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	surf_sam_plan.txt, h= 5.00 mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete		
Phantom	Validation plane		
Device Position	Body Back		
Band	PCS 1900		
Channels	Middle		
Signal	TDMA (Crest factor: 2.7)		



Maximum location: X=0.00, Y=33.00 SAR Peak: 0.59 W/kg

SAR 10g (W/Kg)	0.219349
SAR 1g (W/Kg)	0.372052

Page 56 of 62

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00	
SAR	0.5809	0.3870	0.2309	0.1407	0.0877	0.0527	0.0324	
(W/Kg)								
	0.6-							
	0.5-	\longrightarrow						
	0.4-	+	++++		++-			
	% 0.4 % 0.3							
		++						
	₩ 0.2-							
	0.1-	+	++		+			
	0.0-							
		02.55.07.5	12.5 17.	5 22.5 2	27.5 32.5	40.0		
Z (mm)								

Page 57 of 62

APPENDIX C. TEST SETUP PHOTOGRAPHS

LEFT- CHEEK TOUCH

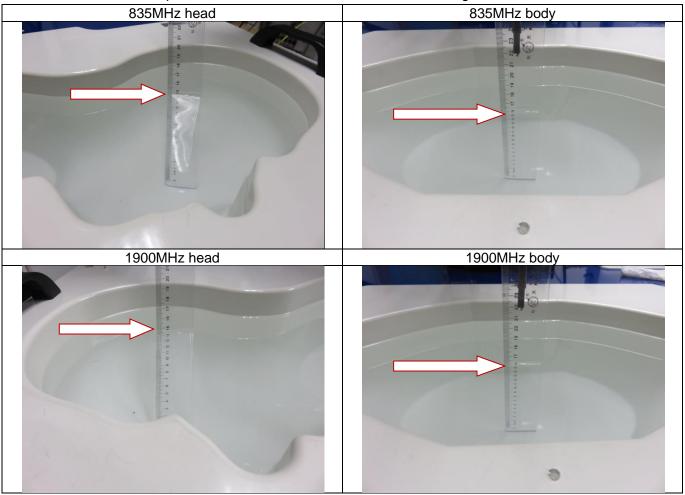
LEFT-TILT 150

Report No.: AGC00408190703FH01 Page 58 of 62

Report No.: AGC00408190703FH01 Page 59 of 62



Body Front 10mm


Report No.: AGC00408190703FH01 Page 60 of 62

Page 61 of 62

DEPTH OF THE LIQUID IN THE PHANTOM—ZOOM IN

Note: The position used in the measurement were according to IEEE 1528-2013

Page 62 of 62

APPENDIX D. CALIBRATION DATA

Refer to Attached files.