FCC Test Report

Report No.:AGC00408190703FE02

FCC ID : ZL5B26

APPLICATION PURPOSE: Original Equipment

PRODUCT DESIGNATION: Mobile phone

BRAND NAME : CAT

MODEL NAME : B26

APPLICANT : Bullitt Group

DATE OF ISSUE : Aug. 12, 2019

STANDARD(S) : FCC Part 22H & 24E Rules

REPORT VERSION: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Page 2 of 46

REPORT REVISE RECORD

Report Version	ort Version Revise Time		Valid Version	Notes	
V1.0	/	Aug. 12, 2019	Valid	Initial Release	

TABLE OF CONTENTS

1.VERIFICATION OF COMPLIANCE	5
2. GENERAL INFORMATION	6
2.1 PRODUCT DESCRIPTION	6
2.2RELATED SUBMITTAL(S) / GRANT (S)	7
2.3 TEST METHODOLOGY	3
2.4 TEST FACILITY	g
2.6 SPECIAL ACCESSORIES	11
2.7 EQUIPMENT MODIFICATIONS	11
3. SYSTEM TEST CONFIGURATION	12
3.1 EUT CONFIGURATION	12
3.2 EUT EXERCISE	12
3.3 CONFIGURATION OF EUT SYSTEM	12
4. SUMMARY OF TEST RESULTS	13
5. DESCRIPTION OF TEST MODES	14
6. OUTPUT POWER	15
6.1 CONDUCTED OUTPUT POWER	15
6.2 RADIATED OUTPUT POWER	19
6.2.1 MEASUREMENT METHOD	19
6.2.2 PROVISIONS APPLICABLE	20
6.3. PEAK-TO-AVERAGE RATIO	22
6.3.1 MEASUREMENT METHOD	22
6.3.2 PROVISIONS APPLICABLE	22
6.3.3 MEASUREMENT RESULT	23
7. OCCUPIED BANDWIDTH	24
7.1 MEASUREMENT METHOD	24
7.2 PROVISIONS APPLICABLE	24
7.3 MEASUREMENT RESULT	25
8. BAND EDGE	28
8.1 MEASUREMENT METHOD	28
8.2 PROVISIONS APPLICABLE	28
8.3 MEASUREMENT RESULT	29
9. SPURIOUS EMISSION	30
9.1 CONDUCTED SPURIOUS EMISSION	30
9.2 RADIATED SPURIOUS EMISSION	37
9.2.2 TEST SETUP	38
10. FREQUENCY STABILITY	41
10.1 MEASUREMENT METHOD	41

Page 4 of 46

ΑI	PPENDIX A: PHOTOGRAPHS OF TEST SETUP	46
	10.3 MEASUREMENT RESULT	43
	10.2 PROVISIONS APPLICABLE	42

Page 5 of 46

1. VERIFICATION OF COMPLIANCE

Applicant	Bullitt Group
Address	One Valpy, Valpy Street, Reading, RG1 1AR United Kingdom
Manufacturer	SHENZHEN AIJIEMO SCIENCE AND TECHNOLOGY CO. LTD.
Address	1st Floor 101 and 2nd Floor 201, Building A2, Huafeng Century Technology Park, Nanchang Community, Xixiang, Baoan District, Shenzhen China
Factory	SHENZHEN AIJIEMO SCIENCE AND TECHNOLOGY Co.,LTD
Address	1st Floor 101 and 2nd Floor 201, Building A2, Huafeng Century Technology Park, Nanchang Community, Xixiang, Baoan District, Shenzhen China
Product Designation	Mobile phone
Brand Name	CAT
Test Model	B26
Date of test	July 29, 2019~Aug. 12, 2019
Deviation	None
Condition of Test Sample	Normal

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance(Shenzhen) Co., Ltd. The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI/TIA-603-E-2016. The sample tested as described in this report is in compliance with the FCC Rules Part 22H and 24E. The test results of this report relate only to the tested sample identified in this report.

Prepared By	Jonjon Away			
	Donjon Huang (Project Engineer)	Aug. 12, 2019		
Reviewed By	Max Zha	ng		
	Max Zhang (Reviewer)	Aug. 12, 2019		
Approved By		ei		
	Forrest Lei	Aug. 12, 2019		
	(Authorized Officer)	Aug. 12, 2019		

Page 6 of 46

2. GENERAL INFORMATION

2.1 PRODUCT DESCRIPTION

A major technical description of EUT is described as following:

Product Designation:	Mobile phone				
Francisco Dondo.	☑GPRS 850 ☑PCS1900 (U.S. Bands)				
Frequency Bands:	⊠GSM 900 ⊠DCS 1800 (Non-U.S. Bands)				
Hardware Version	C609B_MB_1.1				
Software Version	TBD				
Antenna Type	PIFA Antenna				
Antenna gain	GSM850:1.25dBi; PCS1900: 1.34dBi;				
Power Supply:	DC 3.7V by Built-in Li-ion Battery				
Battery parameter:	DC 3.7V 1500mAh				
Dual Card:	GSM Card Slot				
GPRS Class	12				
Extreme Vol. Limits:	DC3.15V to 4.2V (Normal: DC 3.7V)				
xtreme Temp. Tolerance -10℃ to +40℃					
*** Note: 1. The High Voltage DC4.2V and Low Voltage DC3.15V were declared by manufacturer					
2. The EUT couldn't be	operating normally with higher or lower voltage.				

^{***} **Note:**1. The maximum power levels are GSM for MCS-4: GMSK link, and RMC 12.2kbps mode, only these modes were used for all tests.

2. We found out the test mode with the highest power level after we analyze all the data rates. So we chose worst caseas a representative.

Page 7 of 46

GSM Slot 1:

	Maximum ERP/EIRP	Max. Average
	(dBm)	Burst Power (dBm)
GSM 850	30.52	31.69
GSM1900	27.34	28.59

GSM Slot 2:

	Maximum ERP/EIRP	Max. Average	
	(dBm)	Burst Power (dBm)	
GSM 850	30.12	31.13	
GSM1900	26.75	27.46	

Page 8 of 46

2.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: ZL5B26**, filing to comply with the FCC Part 22H&24E requirements.

2.3 TEST METHODOLOGY

The radiated emission testing was performed according to the procedures of ANSI/TIA-603-E-2016, and KDB 971168 D01 Power Means License Digital Systems V03R01.

Report No.: AGC00408190703FE02 Page 9 of 46

2.4 TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd	
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping	
Location	Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong,China	
Designation Number	CN1259	
FCC Test Firm Registration Number	975832	
A2LA Cert. No.	5054.02	
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA	

ALL TEST EQUIPMENT LIST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESPI	101206	Jun.12, 2019	Jun.11, 2020
LISN	R&S	ESH2-Z5	100086	Aug.28, 2018	Aug.27, 2019
TEST RECEIVER	R&S	ESCI	10096	Jun.12, 2019	Jun.11, 2020
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec.20, 2018	Dec.18, 2019
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep.21, 2017	Sep.20, 2019
preamplifier	ChengYi	EMC184045SE	980508	Oct. 31, 2018	Oct. 30, 2019
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	Mar. 01, 2018	Feb. 28, 2020
Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-205	Jun.12, 2019	Jun.11, 2020
ANTENNA	SCHWARZBECK	VULB9168	D69250	Sep.28, 2017	Sep.27, 2019
SIGNAL ANALYZER	Agilent	N9020A	MY52090123	Sep. 20, 2018	Sep. 19, 2019
USB Wideband Power Sensor	Agilent	U2021XA	MY54110007	Sep. 20, 2018	Sep. 19, 2019
Universal Radio Communication Tester	R&S	CMU200	120237	Feb. 27, 2019	Feb. 26, 2020
Universal Radio Communication Tester	Agilent	8960	GB46200384	July 11,2019	July 10,2020
Power Splitter	Agilent	11636A	34	Jun.12, 2019	Jun.11, 2020
Attenuator	JFW	50FHC-006-50	N/A	Jun.12, 2019	Jun.11, 2020
Horn Ant (18G-40GHz)	Schwarzbeck	BBHA 9170		Mar. 01, 2018	Feb. 28, 2020

Report No.: AGC00408190703FE02 Page 10 of 46

Horn Ant	ETS	QWH_SL_18_4		Mar. 01, 2018	Feb. 28, 2020
(18G-40GHz)	LIS	0_K_SG		Iviai. 01, 2016	Feb. 26, 2020
Power Splitter	Agilent	11636A	/	Sep.20, 2018	Sep.19, 2019
CMU200	R&S	120237	/	Feb. 27, 2019	Feb. 26, 2020
Artificial Mains	R&S	101116	/	July 10,2019	July 09, 2020
Network ENV4200	πασ	101110	,	Gary 10,2010	odly 00, 2020
Artificial Mains	R&S	101242	/	July 11,2019	July 10,2020
Network ENV216	Nao	101242	,	July 11,2013	July 10,2020
Filter Bank Notch	MICRO-TRONICS	010	1	Feb. 27, 2019	Feb. 26, 2020
1(880-915MHz)	WIICKO-TIKONICS	010	,	1 60. 21, 2019	1 60. 20, 2020
Filter Bank Notch					
2	MICRO-TRONICS	009	/	Feb. 27, 2019	Feb. 26, 2020
(1710-1785MHz)					
Filter Bank Notch					
3	MICRO-TRONICS	800	/	Feb. 27, 2019	Feb. 26, 2020
(1920-1980MHz)					

Page 11 of 46

2.6 SPECIAL ACCESSORIES

The battery wassupplied by the applicant were used as accessories and being tested with EUT intended for FCC grant together.

2.7 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Page 12 of 46

3. SYSTEM TEST CONFIGURATION

3.1 EUT CONFIGURATION

The EUTconfiguration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The Transmitter was operated in the maximum output power mode through Communication Tester. The TX frequency was fixed which was for the purpose of the measurements.

3.3 CONFIGURATION OF EUT SYSTEM

Fig. 2-1 Configuration of EUT System

Table 2-1 Equipment Used in EUT System

Item	Equipment	Model No.	ID or Specification	Remark
1	Mobile phone	B26	ZL5B26	EUT
2	Adapter	DCS10-0500550F	DC 5.0V 550mA	AE
3	Battery	B26	DC 3.7V 1500mAh	AE
4	Earphone	N/A	N/A	AE
5	USB Cable	N/A	N/A	AE

^{***}Note: All the accessories have been used during the test. The following "EUT" in setup diagram means EUT system.

Page 13 of 46

4. SUMMARY OF TEST RESULTS

Item Number	Item Description		FCC Rules	Result
		Conducted	2.1046	
1	Outrot Dames	Output Power	2.1040	Dana
'	Radiated		22.042(a) (a) / 24.222 (a)/ 27.50(d)(4)	Pass
		Output Power	22.913(a) (2) / 24.232 (c)/ 27.50(d)(4)	
2	Peak-to-Average	Peak-to-Average	24 222(d)	Door
2	Ratio	Ratio	24.232(d)	Pass
		Conducted		
3	Spurious	Spurious Emission	2.4054/22.047(a)/24.229(a)/.27.52(b)	Door
3	Emission	Radiated	2.1051/22.917(a)/24.238(a)/ 27.53(h)	Pass
		Spurious Emission		
4	Frequency Stability		2.1053/22.917(a)/24.238(a)/27.53(h)	Pass
5	Occupied Bandwidth		2.1049	Pass
6	Ban	nd Edge	2.1051/22.917(a)/24.238(a)/ 27.53(h)	Pass

Page 14 of 46

5. DESCRIPTION OF TEST MODES

During the testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication Tester (CMU 200)to ensure max power transmission and proper modulation. Three channels (The top channel, the middle channel and the bottom channel) were chosen for testing on both GSMand PCS frequency band.

The worst condition was recorded in the test report if no other modes test data.

***Note: GSM 850, PCS 1900, mode have been tested during the test.

Page 15 of 46

6. OUTPUT POWER

6.1 CONDUCTED OUTPUT POWER

6.1.1 MEASUREMENT METHOD

The transmitter output port was connected to base station.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Measure the maximum burst average power and average power for othermodulation signal.

The EUT was setup for the max output power with pseudo random data modulation. Power was measured with Spectrum Analyzer. The measurements were performed on all modes(GSM 850,PCS 1900)at 3 typical channels (the Top Channel, the Middle Channel and the Bottom Channel) for each band.

Report No.: AGC00408190703FE02 Page 16 of 46

GSM 850:

Mode	Frequency (MHz)	Avg.Burst Power	Duty cycle Factor(dB)	Frame Power(dBm)
	824.2	31.71	-9	22.71
GSM850	836.6	31.63	-9	22.63
	848.8	31.69	-9	22.69
CDDCCC	824.2	31.55	-9	22.55
GPRS850	836.6	31.43	-9	22.43
(1 Slot)	848.8	31.49	-9	22.49
000000	824.2	28.78	-6	22.78
GPRS850	836.6	28.72	-6	22.72
(2 Slot)	848.8	28.73	-6	22.73
CDDCCC	824.2	27.66	-4.26	23.40
GPRS850	836.6	27.48	-4.26	23.22
(3 Slot)	848.8	27.97	-4.26	23.71
CDDCCC	824.2	25.36	-3	22.36
GPRS850	836.6	25.12	-3	22.12
(4 Slot)	848.8	25.34	-3	22.34

Report No.: AGC00408190703FE02 Page 17 of 46

GSM 1900:

Mode	Frequency (MHz)	Avg.Burst Power	Duty cycle Factor(dB)	Frame Power(dBm)
	1850.2	28.18	-9	19.18
PCS1900	1880	28.27	-9	19.27
	1909.8	28.59	-9	19.59
CDDC4000	1850.2	28.21	-9	19.21
GPRS1900	1880	28.27	-9	19.27
(1 Slot)	1909.8	28.52	-9	19.52
00004000	1850.2	25.44	-6	19.44
GPRS1900	1880	25.10	-6	19.10
(2 Slot)	1909.8	25.36	-6	19.36
CDDC4000	1850.2	24.18	-4.26	19.92
GPRS1900	1880	24.33	-4.26	20.07
(3 Slot)	1909.8	24.27	-4.26	20.01
CDDC1000	1850.2	22.03	-3	19.03
GPRS1900	1880	22.43	-3	19.43
(4 Slot)	1909.8	22.19	-3	19.19

Page 18 of 46

According to 3GPP 25.101 sub-clause 6.2.2, the maximum output power is allowed to be reduced by following the table.

Table 6.1aA: UE maximum output power with HS-DPCCH and E-DCH

UE Transmit Channel Configuration	CM(db)	MPR(db)
For all combinations of ,DPDCH,DPCCH	0≤ CM≤3.5	MAY(CM 1 O)
HS-DPDCH,E-DPDCH and E-DPCCH	US CIVISS.5	MAX(CM-1,0)

Note: CM=1 for $\beta_c/\beta_d=12/15$, $\beta_hs/\beta_c=24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH).

When E-DPDCH channels are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done. However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a compensate for the power back-off by increasing the gain of TX_AGC in the transceiver (PA) device.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

Page 19 of 46

6.2 RADIATED OUTPUT POWER 6.2.1 MEASUREMENT METHOD

The measurements procedures specified in ANSI/TIA-603-E-2016 were applied.

- 1. Effective Radiated Power (ERP) and Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-E-2016 with the EUT transmitting into an integral antenna. Measurements on signal operating below 1GHz are performed using dipole antennas. Measurements on signals operating above 1GHz are performed using broadband horn antennas. All measurements are performed as RMS average measurements while the EUT operating at its maximum duty cycle, at maximum power, and at the approximate frequencies.
- 2. In an anechoic antenna test chamber, a half-wave dipole antenna for the frequency band of interest is placed at the reference centre of the chamber. An RF Signal source for the frequency band of interest is connected to the dipole with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A known (measured) power (Pin) is applied to the input of the dipole, and the power received (Pr) at the chamber's probe antenna is recorded.
- 3. The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established as ARpl=Pin + 2.15 Pr. TheARpl is the attenuation of "reference path loss", and including the gain of receive antenna, the cable loss and the air loss. The measurement results are obtained as described below: Power=PMea+ARpl
- 4. The EUT is substituted for the dipole at the reference centre of the chamber and a scan is performed to obtain the radiation pattern.
- 5. From the radiation pattern, the co-ordinates where the maximum antenna gain occurs are identified.
- 6. The EUT is then put into continuously transmitting mode at its maximum power level.
- 7. Power mode measurements are performed with the receiving antenna placed at the coordinates determined in Step 3 to determine the output power as defined in Rule 24.232 (b) and (c). The "reference path loss" from Step1 is added to this result.
- 8. This value is EIRP since the measurement is calibrated using a half-wave dipole antenna of known gain (2.15 dBi) and known input power (Pin).
- 9. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi...

Page 20 of 46

6.2.2 PROVISIONS APPLICABLE

Mode	FCC Part Section(s)	Nominal Peak Power
GSM 850	22.913(a)(2)	<=38.45dBm (7W). ERP
GSM1900	24.232(c)	<=33dBm (2W) FIRP

Report No.: AGC00408190703FE02 Page 21 of 46

6.2.3 MEASUREMENT RESULT

	Radiated Power (ERP) for GSM 850					
		Result				
Mode	Frequency	Max. Peak ERP	Polarization	Conclusion		
		(dBm)	Of Max. ERP			
	824.2	30.47	Horizontal	Pass		
	836.6	30.33	Horizontal	Pass		
GSM 850 -	848.8	30.52	Horizontal	Pass		
G3W 650	824.2	28.69	Vertical	Pass		
	836.6	28.48	Vertical	Pass		
	848.8	28.74	Vertical	Pass		

Radiated Power (E.I.R.P) for GSM 1900					
		Result			
Mode	Frequency	Max. Peak	Polarization	Conclusion	
		E.I.R.P.(dBm)	Of Max. E.I.R.P.		
	1850.2	27.11	Horizontal	Pass	
	1880.0	27.20	Horizontal	Pass	
PCS 1900	1909.8	27.34	Horizontal	Pass	
FC3 1900	1850.2	24.16	Vertical	Pass	
	1880.0	24.25	Vertical	Pass	
	1909.8	24.15	Vertical	Pass	

Note: Above is the worst mode data.

Page 22 of 46

6.3. PEAK-TO-AVERAGE RATIO

6.3.1 MEASUREMENT METHOD

Use one of the procedures presented in 4.1 to measure the total peak power and record as PPk. Use one of the applicable procedures presented 4.2 to measure the total average power and record as PAvg. Both the peak and average power levels must be expressed in the same logarithmic units (e.g., dBm). Determine the PAPR from:

PAPR (dB) = PPk (dBm) - PAvg (dBm).

6.3.2 PROVISIONS APPLICABLE

This is the test for the Peak-to-Average Ratio from the EUT.

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Page 23 of 46

6.3.3 MEASUREMENT RESULT

Modes GSM850(GSM)			
Channel	128	190	251
Channel	(Low)	(Mid)	(High)
Frequency	824.2	836.6	848.8
(MHz)	024.2	030.0	040.0
Peak-To-Average Ratio (dB)/GSM	1.52	1.32	1.40

Modes	PCS 1900 (GSM)			
Channel	512	661	810	
Channel	(Low)	(Mid)	(High)	
Frequency	1850.2	4000	4000.0	
(MHz)	1050.2	1880	1909.8	
Peak-To-Average Ratio (dB)/ GSM	2.00	1.88	1.96	

Page 24 of 46

7. OCCUPIED BANDWIDTH

7.1 MEASUREMENT METHOD

1. The Occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper Frequency limits, the mean power radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

2. RBW=1~5% of the expected OBW, VBW>=3 x RBW, Detector=Peak, Trace mode=max hold, Sweep=auto couple, and the trace was allowed to stabilize.

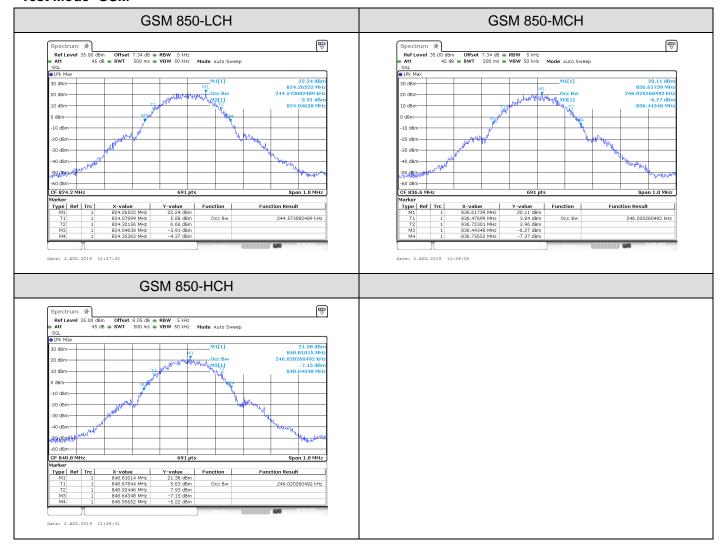
7.2 PROVISIONS APPLICABLE

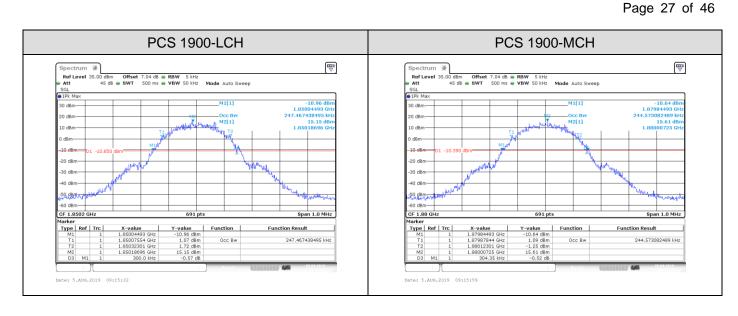
The emission bandwidth is defined as two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power

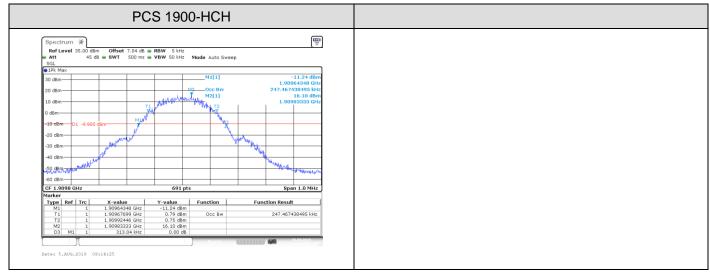
Report No.: AGC00408190703FE02 Page 25 of 46

7.3 MEASUREMENT RESULT

Test Results


Test	Test	Test	Occupied Bandwidth	Emission Bandwidth	Vardiet
Band	Mode	Channel	(KHZ)	(KHZ)	Verdict
		LCH	244.6	307	PASS
GSM 850	GSM	MCH	246.0	313	PASS
		HCH	246.0	313	PASS


Test Band	Test	Test	Occupied Bandwidth	Emission Bandwidth	Verdict
rest bariu	Mode	Channel	(KHZ)	(KHZ)	verdict
		LCH	247.5	300	PASS
PCS 1900	GSM	MCH	244.6	304	PASS
		HCH	247.5	313	PASS


Report No.: AGC00408190703FE02 Page 26 of 46

For GSM Test Band=GSM 850/PCS1900

Test Mode=GSM

Page 28 of 46

8. BAND EDGE

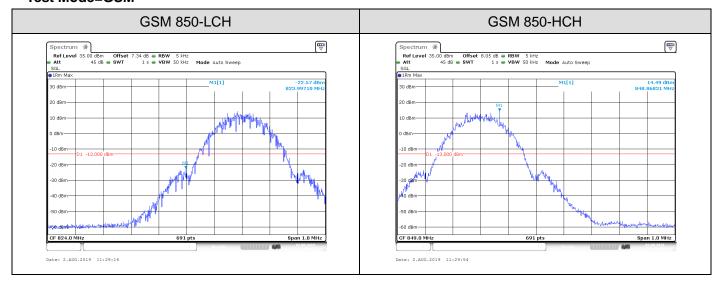
8.1 MEASUREMENT METHOD

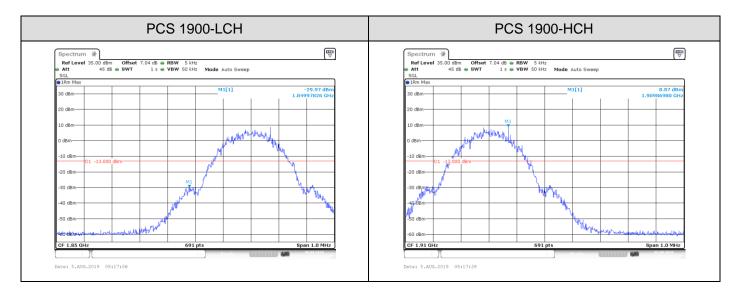
- 1. All out of band emissions are measured with an analyzer spectrum connected to the antenna terminal of the EUT while the EUT at its maximum duty cycle, at maximum power, and at the approximate frequencies. All data rates were investigated to determine the worst case configuration
- 2. The test set up and general procedure is similar to conducted peak output power test. Only different for setting the measurement configuration of the measuring instrument of Spectrum Analyzer.
- 3. Start and stop frequency were set such that the band edge would be placed in the center of the plot.
- 4. Span was set large enough so as to capture all out of band emissions near the band edge.
- 5. RBW>1% of the emission bandwidth, VBW >= $3 \times RBW$, Detector=RMS, Number of points>= $2 \times Span/RBW$, Trace mode=max hold, Sweep time=auto couple, and the trace was allowed to stabilize

8.2 PROVISIONS APPLICABLE

As Specified in FCC rules of 22.917(a) < 24.238(a)and KDB 971168 D1 V03R01.

Report No.: AGC00408190703FE02 Page 29 of 46


8.3 MEASUREMENT RESULT


Test Results

For GSM

Test Band=GSM 850/PCS 1900

Test Mode=GSM

Page 30 of 46

9. SPURIOUS EMISSION

9.1 CONDUCTED SPURIOUS EMISSION

9.1.1MEASUREMENT METHOD

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- 1. The level of the carrier and the various conducted spurious and harmonic frequency is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the approximate frequencies. All data rates were investigated to determine the worst case configuration.
- 2. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the equipment of PCS1900 band, this equates to a frequency range of 30 MHz to 19.1 GHz, data taken from 30 MHz to 20 GHz. For GSM850, data taken from 30 MHz to 9 GHz.
- 3. Determine EUT transmit frequencies: the following typical channelswere chosen to conducted emissions testing.

Report No.: AGC00408190703FE02 Page 31 of 46

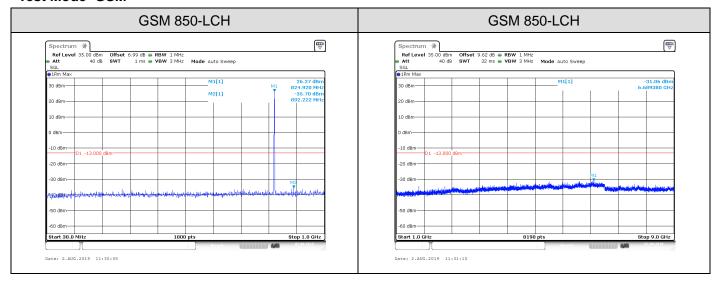
Typical Channels for testing of GSM 850				
Channel	Frequency (MHz)			
128	824.2			
190	836.6			
251	848.8			

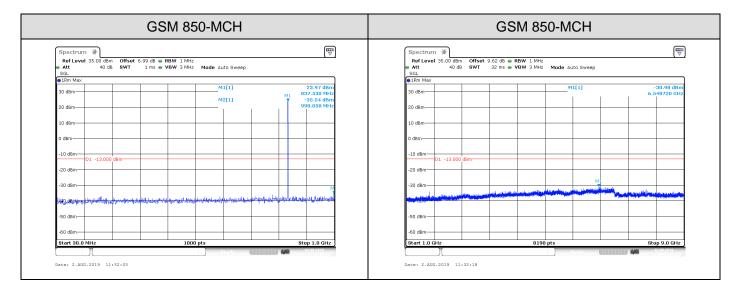
Typical Channels for testing of PCS 1900					
Channel	Frequency (MHz)				
512	1850.2				
661	1880.0				
810	1909.8				

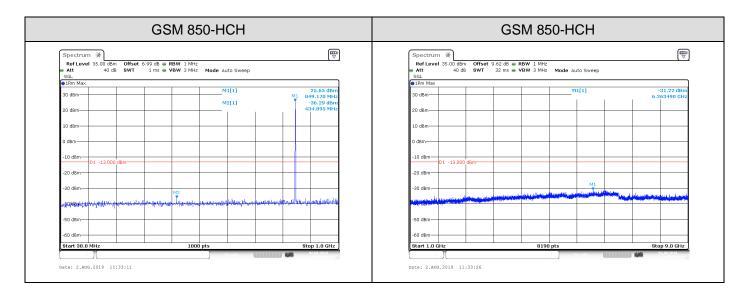
Page 32 of 46

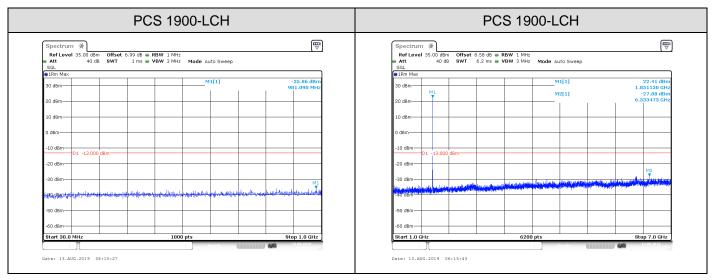
9.1.2 PROVISIONS APPLICABLE

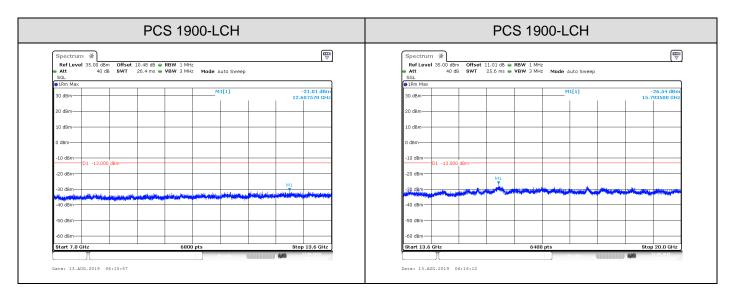
On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

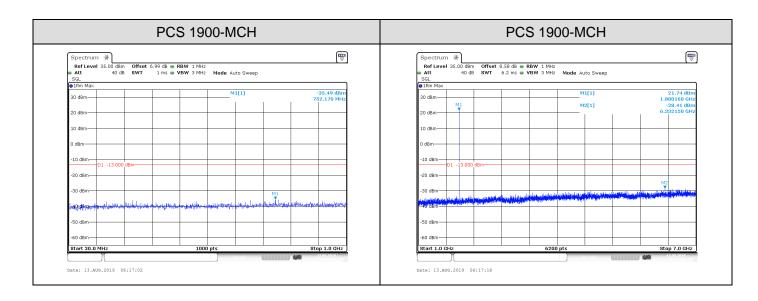

Report No.: AGC00408190703FE02 Page 33 of 46

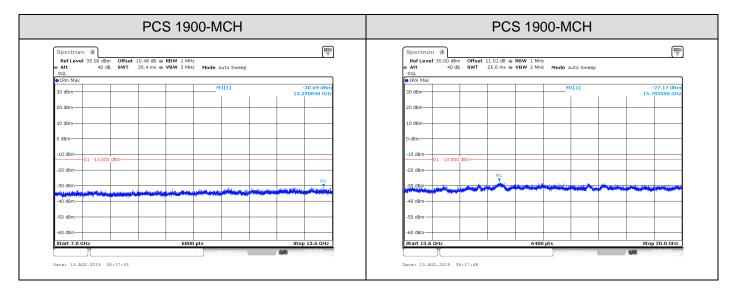

9.1.3MEASUREMENT RESULT

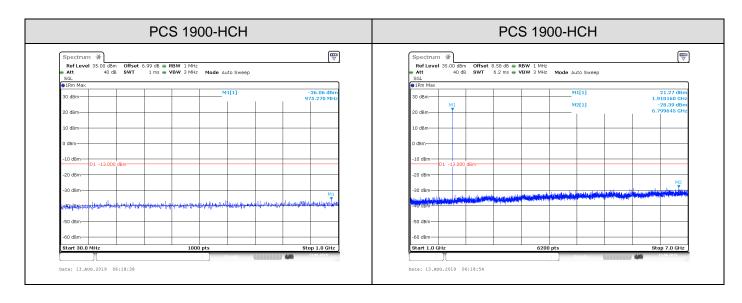

Test Results

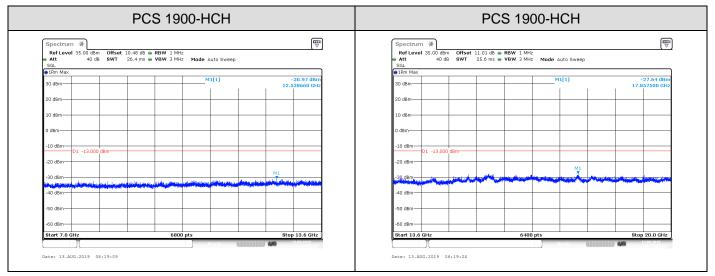

Test Band=GSM 850/PCS1900


Test Mode=GSM









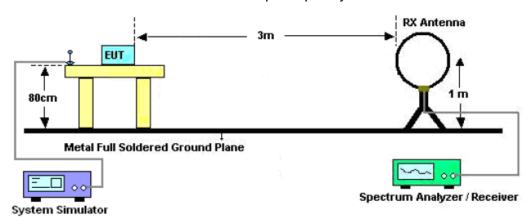
Report No.: AGC00408190703FE02 Page 35 of 46

Note:1. Below 30MHZ no Spurious found and Above is the worst mode data.

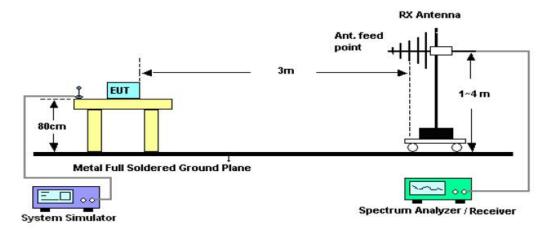
2. As no emission found in standby or receive mode, no recording in this report.

Page 37 of 46

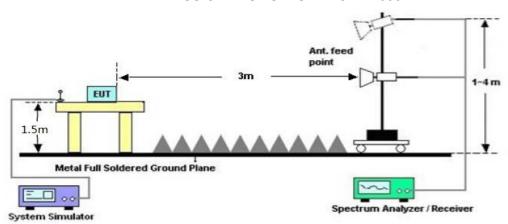
9.2 RADIATED SPURIOUS EMISSION


9.2.1MEASUREMENT METHOD

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High - Low scan is not required in this case.


Report No.: AGC00408190703FE02 Page 38 of 46

9.2.2 TEST SETUP


Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

Page 39 of 46

9.2.3 PROVISIONS APPLICABLE

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Note: only result the worst condition of each test mode:

Page 40 of 46

9.2.4 MEASUREMENT RESULT

GSM 850:

The Worst Test Results for Channel 251/848.8 MHz							
Frequency	Emission Level	Emission Level Limits Margin (dBm) (dBm) (dB)		Commont			
(MHz)	(dBm)			Comment			
1967.60	-50.75	-13	-37.75	Horizontal			
3241.59	-48.26	-13	-35.26	Horizontal			
6433.61	-47.53	-13	-34.53	Horizontal			
1967.60	-50.80	-13	-37.80	Vertical			
3436.15	-48.64	-13	-35.64	Vertical			
6647.89	-46.08	-13	-33.08	Vertical			

PCS 1900:

The Worst Test Results for Channel 810/1909.8MHz							
Frequency	Emission Level	Limits	Margin	Comment			
(MHz)	(dBm)	(dBm)	(dB)	Comment			
1163.41	-51.67	-13	-38.67	Horizontal			
3819.60	-49.82	-13	-36.82	Horizontal			
7134.84	-48.27	-13	-35.27	Horizontal			
1215.47	-50.15	-13	-37.15	Vertical			
3819.60	-48.87	-13	-35.87	Vertical			
6537.49	-47.92	-13	-34.92	Vertical			

RESULT: PASS

Note:

1. Margin = Emission Level -Limit

2. Below 30MHZ no Spurious found and Above is the worst mode data

Page 41 of 46

10. FREQUENCY STABILITY

10.1 MEASUREMENT METHOD

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU200 DIGITAL RADIO COMMUNICATION TESTER.

- 1 Measure the carrier frequency at room temperature.
- 2 Subject the EUT to overnight soak at -10°C.
- 3 With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on channel 661 for PCS 1900 band, channel 190 for GSM 850 band, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4 Repeat the above measurements at 10° C increments from - 10° C to + 40° C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 5 Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6 Subject the EUT to overnight soak at +40°C.
- With the EUT, powered via nominal voltage, connected to the CMU200 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8 Repeat the above measurements at 10° C increments from +40°C to -10°C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 9 At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

Page 42 of 46

10.2 PROVISIONS APPLICABLE

10.2.1 FOR HAND CARRIED BATTERY POWERED EQUIPMENT

According to the ANSI/TIA-603-E-2016, the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.15 VDC and 4.20 VDC, with a nominal voltage of 3.7 VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of -10 % and +12.5 %. For the purposes of measuring frequency stability these voltage limits are to be used.

10.2.2 FOR EQUIPMENT POWERED BY PRIMARY SUPPLY VOLTAGE

According to the ANSI/TIA-603-E-2016, the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment, the normal environment temperature is 20°C.

Report No.: AGC00408190703FE02 Page 43 of 46

10.3 MEASUREMENT RESULT

Test Results

Frequency Error vs. Voltage:

Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	\/a ==1: a4
Band	Mode	Channel	Temp.	Volt.(V)	(Hz)	(ppm)	(ppm)	Verdict
			TN	VL	-2.58	-0.003130	±2.5	PASS
		LCH	TN	VN	2.78	0.003373	±2.5	PASS
			TN	VH	5.75	0.006976	±2.5	PASS
	GSM850 GSM	GSM MCH	TN	VL	8.98	0.010734	±2.5	PASS
GSM850			TN	VN	11.43	0.013662	±2.5	PASS
			TN	VH	13.82	0.016519	±2.5	PASS
			TN	VL	1.10	0.001296	±2.5	PASS
			TN	VN	2.91	0.003428	±2.5	PASS
			TN	VH	1.49	0.001755	±2.5	PASS

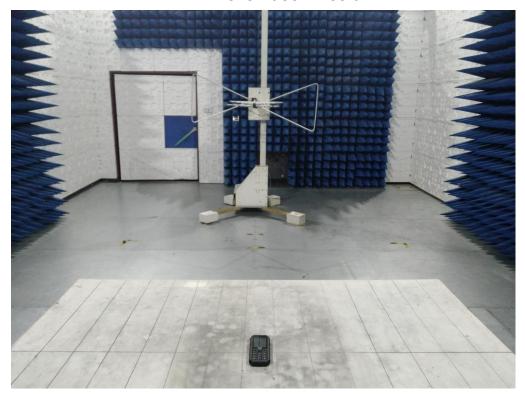
Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Verdict
Band	Mode	Channel	Temp.	Volt. (V)	(Hz)	(ppm)	
			TN	VL	15.50	0.008377	PASS
		LCH	TN	VN	21.70	0.011728	PASS
	1900		TN	VH	31.64	0.017101	PASS
DCC		GSM MCH	TN	VL	27.12	0.014426	PASS
			TN	VN	27.64	0.014702	PASS
1900			TN	VH	26.41	0.014048	PASS
			TN	VL	17.56	0.009195	PASS
			TN	VN	19.69	0.010310	PASS
			TN	VH	12.85	0.006728	PASS

Note: Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very samll. As such it is determined that channels at the band edge would remain in-band when the maximum measured frequency deviation noted duing the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperture and voltage range as tested.

Report No.: AGC00408190703FE02 Page 44 of 46

Frequency Error vs. Temperature:

Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	\/a vali at		
Band	Mode	Channel	Volt.	Tem. (°C)	(Hz)	(ppm)	(ppm)	Verdict		
			VN	-10	-1.10	-0.001335	±2.5	PASS		
			VN	0	8.91	0.010810	±2.5	PASS		
GSM	CDDC	1.011	VN	10	6.65	0.008068	±2.5	PASS		
850	GPRS	LCH	VN	20	3.87	0.004695	±2.5	PASS		
			VN	30	4.52	0.005484	±2.5	PASS		
			VN	40	6.72	0.008153	±2.5	PASS		
				VN	-10	4.78	0.005714	±2.5	PASS	
			VN	0	13.43	0.016053	±2.5	PASS		
CCMOTO	CDDC	MOLL	VN	10	7.23	0.008642	±2.5	PASS		
GSM850	GPRS	MCH	VN	20	2.78	0.003323	±2.5	PASS		
			VN	30	10.53	0.012587	±2.5	PASS		
			VN	40	7.94	0.009491	±2.5	PASS		
		RS HCH	VN	-10	4.78	0.005714	±2.5	PASS		
			VN	0	13.43	0.016053	±2.5	PASS		
GSM850 G	CDDC		VN	10	7.23	0.008642	±2.5	PASS		
	GPRS		VN	20	2.78	0.003323	±2.5	PASS		
			VN	30	10.53	0.012587	±2.5	PASS		
					VN	40	7.94	0.009491	±2.5	PASS


Report No.: AGC00408190703FE02 Page 45 of 46

Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	\
Band	Mode	Channel	Volt.	Tem. (°C)	(Hz)	(ppm)	Verdict
			VN	-10	34.93	0.018879	PASS
			VN	0	30.03	0.016231	PASS
GSM1900	GSM	LCH	VN	10	24.15	0.013053	PASS
G3W1900	GSIVI	LCH	VN	20	13.04	0.007048	PASS
			VN	30	25.51	0.013788	PASS
			VN	40	27.89	0.015074	PASS
		SM MCH	VN	-10	2.07	0.001101	PASS
			VN	0	9.94	0.005287	PASS
GSM1900	GSM		VN	10	21.89	0.011644	PASS
G3W1900	GSIVI	IVICH	VN	20	20.08	0.010681	PASS
			VN	30	16.79	0.008931	PASS
			VN	40	22.34	0.011883	PASS
		SM HCH	VN	-10	2.45	0.001283	PASS
			VN	0	20.99	0.010991	PASS
GSM1900	CCM		VN	10	31.96	0.016735	PASS
	GSIVI		VN	20	12.27	0.006425	PASS
			VN	30	16.34	0.008556	PASS
			VN	40	13.30	0.006964	PASS

Note: Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very samll. As such it is determined that channels at the band edge would remain in-band when the maximum measured frequency deviation noted duing the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperture and voltage range as tested.

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

RADIATED SPURIOUS EMISSION

RADIATED SPURIOUS ABOVE 1G EMISSION

----END OF REPORT----