

NTS Silicon Valley www.nts.com 41039 Boyce Road Fremont, CA 94538 510-578-3500 Phone 510-440-9525 Fax

EMC Test Report

Application for Class II Permissive Change/Reassessment

Industry Canada RSS-Gen Issue 3 / RSS 210 Issue 8 FCC Part 15 Subpart C

Model: RS9110-N-11-22

IC CERTIFICATION #: 9849A-RS9110N1122 FCC ID: ZKSRS9110N1122 **APPLICANT:** Safemine Ltd. Lindenstrasse 4 Baar 6340, Switzerland TEST SITE(S): National Technical Systems - Silicon Valley 41039 Boyce Road. Fremont, CA. 94538-2435 IC SITE REGISTRATION #: 2845B-7 **REPORT DATE:** May 21, 2014 **REISSUE DATE:** October 7, 2014 FINAL TEST DATES: March 28 and 31 and April 3 and 15, 2014 TOTAL NUMBER OF PAGES: 66

PROGRAM MGR / TECHNICAL REVIEWER:

Bar

David W. Bare Chief Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

National Technical Systems - Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	May 21, 2014	First release	-
1	September 9, 2014	Reissued to update modifications section on page 8 and update model name throughout report	David Bare
2	October 7, 2014	Reissued to add power measurements	David Bare

TABLE OF CONTENTS

REVISION HISTORY	
TABLE OF CONTENTS	3
SCOPE	
OBJECTIVE	
STATEMENT OF COMPLIANCE	5
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHZ)	0 6
MEASUREMENT UNCERTAINTIES	6
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL.	
ANTENNA SYSTEM	
ENCLOSURE	7
MODIFICATIONS	
SUPPORT EQUIPMENT	7
EUT INTERFACE PORTS	
EUT OPERATION	
PROPOSED MODIFICATION DETAILS	
GENERAL	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT.	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	13
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS EINITS - THIS AND DTS STSTEMS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	19
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	20
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	21
APPENDIX B TEST DATA	
END OF REPORT	

SCOPE

An electromagnetic emissions test has been performed on the Safemine Ltd. model RS9110-N-11-22, pursuant to the following rules:

Industry Canada RSS-Gen Issue 3

RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems - Silicon Valley test procedures:

ANSI C63.10-2009 FCC DTS Measurement Guidance KDB558074

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization. Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Safemine Ltd. model RS9110-N-11-22 complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 3

RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Safemine Ltd. model RS9110-N-11-22 and therefore apply only to the tested sample. The sample was selected and prepared by Lukas Herzog of Safemine Ltd.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report for the tests performed.

TEST RESULTS SUMMARY

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	No change from original filing	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	No change from original filing	>500kHz	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	802.11b: 9.6 dBm 802.11g: 14.0 dBm 802.11n20: 14.3 dBm	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	Not performed as power is less than original filing	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	Not performed as power is less than original filing	< -20dBc	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	53.9 dBµV/m @ 4924.0 MHz (-0.1 dB)	15.207 in restricted bands, all others < -20dBc	Complies
15.203	-	RF Connector	No change from original filing	Unique or integral antenna required	Complies
15.207	RSS GEN Table 4	AC Conducted Emissions	Not performed as power is less than original filing	Refer to page 16	Complies
-	RSP 100 RSS GEN 4.6.1	99% Bandwidth	Not performed as power is less than original filing	Information only	N/A

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
Radiated emission (field strength)	dBµV/m	25 to 1000 MHz	± 3.6 dB
Radiated emission (neid strength)		1000 to 40000 MHz	± 6.0 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Safemine Ltd. model RS9110-N-11-22 is an 802.11 compliant 2.4 GHz band Wi-Fi module. Since the EUT could be placed in any position in an end product, it was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 3.3Vdc supplied from the host.

The sample was received on March 18, 2014 and tested on March 28 and 31 and April 3 and 15, 2014. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
SafeMine	RS9110-N-11-22	Wi-Fi Module	P07-2812	ZKSRS9110N1122

ANTENNA SYSTEM

The EUT antenna is either a MobileMark MGW-301-3C3J2C-WHT-138-SP-253 or SMW-301-3C3J2C-WHT-8-SP-192. The MGW-301-3C3J2C-WHT-138-SP-253 is a Multi-band Surface Magnet Mt. antenna. The SMW-301-3C3J2C-WHT-8-SP-192 is a surface mount antenna. Both have a 5dBi gain in the 2.4 GHz band. These antennas are also sold as SAFEmine branded models QF037 and QF036.

The antenna connects to the EUT via a non-standard u.FL antenna connector, thereby meeting the requirements of FCC 15.203.

ENCLOSURE

The EUT has no enclosure. It is designed to be installed within the enclosure of a host computer.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Redpine Signals	RS9110-N-11-22-	Test Board	-	-
	02EVB			

The following equipment was used as remote support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID
MSI	U100(MS-6837D)	Laptop	-	-
Not on Adapter	0025A2040	AC Adapter	A30836088724	-
Samsung	GB4943-2001	USB AC Adapter	-	-

EUT INTERFACE PORTS

Port	Connected To	Cable(s)		
1 OIT		Description	Shielded or Unshielded	Length(m)
RF Port	Antenna (Wifi cable)	Coaxial	Shielded	3.5

The I/O cabling configuration during testing was as follows:

Port	Connected To	Cable(s)			
ron	Connected 10	Description	Shielded or Unshielded	Length(m)	
Antenna (ISM cable)	50 ohm terminator	Coaxial	Shielded	3.5	
Antenna (GPS cable)	50 ohm terminator	Coaxial	Shielded	3.5	
Laptop USB	serial port on test board	DB25 to USB	Shielded	1.8	
USB AC Adapter	Mini USB port on Test board	regular USB to Mini USB	Unshielded	1.5	

EUT OPERATION

During testing, the EUT was set to transmit continuously at the specified power level on the selected channel.

PROPOSED MODIFICATION DETAILS

GENERAL

This section details the modifications to the Safemine Ltd. model RS9110-N-11-22 being proposed. All performance and construction deviations from the characteristics originally reported to the FCC are addressed

The Safemine Ltd. model RS9110-N-11-22 module has not been changed except to add a new antenna type. The output power was lowered in software for use with the new antenna.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Designation / Reg	Location	
Chamber 7	FCC US0027	Canada 2845B-7	41039 Boyce Road Fremont, CA 94538-2435

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

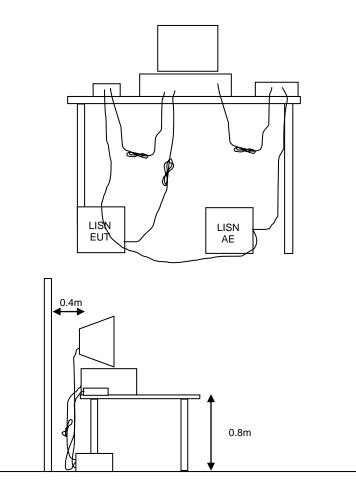
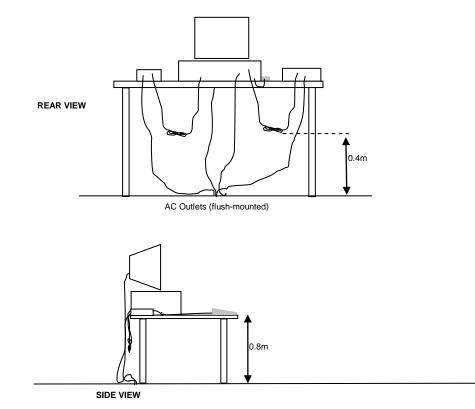
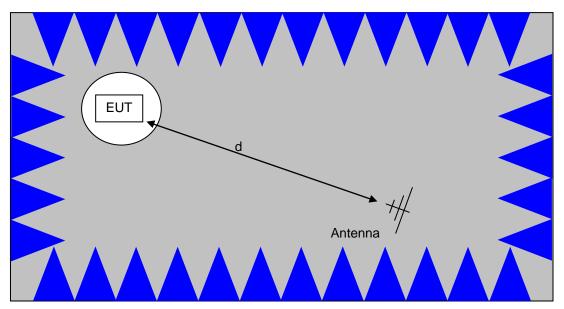


Figure 1 Typical Conducted Emissions Test Configuration

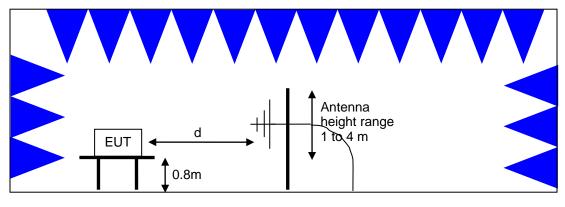

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

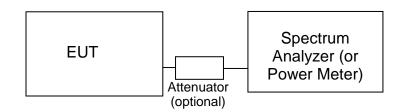
Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 – 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 – 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 – 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

$$L_S$$
 = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

 $E = 1000000 \sqrt{30 P}$ microvolts per meter

d

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Manufacturer Radiated Emissions	<u>Description</u> I,000 - 6,500 MHz, 28-Mar-14	Model	Asset #	Cal Due
EMCO Rohde & Schwarz	Antenna, Horn, 1-18GHz EMI Test Receiver, 20 Hz-7 GHz	3115 ESIB7	868 1538	6/19/2014 12/14/2014
Power, 28-Mar-14 Rohde & Schwarz Rohde & Schwarz	Power Meter, Single Channel Power Sensor 100 uW - 2 Watts (w/ 20 dB pad, SN BJ5155)	NRVS NRV-Z32	1290 1536	12/10/2014 12/19/2014
Radiated Emissions, 1 Hewlett Packard	Microwave Preamplifier, 1-	8449B	785	10/31/2014
EMCO Hewlett Packard	26.5GHz Antenna, Horn, 1-18GHz Head (Inc flex cable, 1143, 2198)	3115 84125C	868 1145	6/19/2014 6/26/2014
Hewlett Packard	Red SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	9/14/2014
A. H. Systems Micro-Tronics	Spare System Horn, 18-40GHz Band Reject Filter, 2400-2500 MHz	SAS-574, p/n: 2581 BRM50702-02	2162 2238	7/24/2014 9/18/2014
	1,000 - 12,000 MHz, 31-Mar-14	0.4.405		
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	10/31/2014
EMCO Hewlett Packard	Antenna, Horn, 1-18GHz SpecAn 30 Hz -40 GHz, SV (SA40) Red	3115 8564E (84125C)	868 1148	6/19/2014 9/14/2014
Rohde & Schwarz Rohde & Schwarz	Power Meter, Single Channel Power Sensor 100 uW - 2 Watts	NRVS NRV-Z32	1290 1536	12/10/2014 12/19/2014
Micro-Tronics	(w/ 20 dB pad, SN BJ5155) Band Reject Filter, 2400-2500 MHz	BRM50702-02	2238	9/18/2014
Radiated Emissions, 1	l,000 - 18,000 MHz, 03-Apr-14			
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	10/31/2014
EMCO	Antenna, Horn, 1-18 GHz (SA40- Red)	3115	1142	8/23/2014
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	9/14/2014
Micro-Tronics	Band Ŕeject Filter, 2400-2500 MHz	BRM50702-02	1683	8/2/2014
	1000 - 25,000 MHz, 03-Apr-14			
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	785	10/31/2014
EMCO	Antenna, Horn, 1-18 GHz (SA40- Red)	3115	1142	8/23/2014
Hewlett Packard	Head (Inc flex cable, 1143, 2198) Red	84125C	1145	6/26/2014
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	9/14/2014
Hewlett Packard Micro-Tronics	High Pass filter, 8.2 GHz Band Reject Filter, 2400-2500 MHz	P/N 84300-80039 BRM50702-02	1156 1683	6/7/2014 8/2/2014

Test Report Reissue Date: October 7, 2014

	Report Date:	May 21, 2014 Reissi	ie Date: Octo	ober 7, 2014
Manufacturer	Description	Model	Asset #	Cal Due
A. H. Systems	Spare System Horn, 18-40GHz	SAS-574, p/n: 2581	2162	7/24/2014
Radiated Emissions	, 30 - 1,000 MHz, 03-Apr-14			
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/14/2014
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1657	6/4/2014
Radiated Emissions	, 30 - 1,000 MHz, 15-Apr-14			
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/14/2014
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1657	6/4/2014
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	2238	9/18/2014
Com-Power	Preamplifier, 30-1000 MHz	PA-103	2465	9/13/2014

Appendix B Test Data

T94588 Pages 24 - 65

EMC Test Data

WE ENGINEER S	UCCESS		
Client:	SAFEmine Technology, Inc.	Job Number:	J94480
Product	RS9110-N-11-22	T-Log Number:	T94588
		Project Manager:	Christine Krebill
Contact:	Lukas Herzog	Project Coordinator:	Irene Rademacher
Emissions Standard(s):	FCC Part 15.247	Class:	-
Immunity Standard(s):	-	Environment:	Radio

EMC Test Data

For The

SAFEmine Technology, Inc.

Product

RS9110-N-11-22

Date of Last Test: 4/15/2014

		ESS		ЕМС	C Test Data
Client	SAFEmine Techno	logy, Inc.		Job Number: J	94480
Madal	DC0110 N 11 22		1	F-Log Number: T	94588
Model	RS9110-N-11-22		Pro	oject Manager: C	Christine Krebill
	Lukas Herzog		Proje		rene Rademacher
Standard	FCC Part 15.247			Class: N	I/A
	RSS 2	210 and FCC 15.247 (DTS) Power, PSD, Bandwidth a			
Гest Spe	cific Details				
·	Objective. The ob	pjective of this test session is to perform cation listed above.	n final qualification testing of	the EUT with re	spect to the
Te	Date of Test: 3/28/2 est Engineer: Jack L est Location: FT Ch	iu	Config. Used: 1 Config Change: None EUT Voltage: 120V, 60	Hz	
	Test Configurati as connected to the	on spectrum analyzer or power meter via a	a suitable attenuator.		
All measure	ements have been co	prrected to allow for the external attenu	ators used.		
	Conditions: y of Results	Temperature:22 °CRel. Humidity:40 %			
Run #	Pwr setting	Test Performed	Limit	Pass / Fail	Result / Margin
					b: 9.6 dBm
1	See below	Output Power	15.247(b)	Pass	g: 14.0 dBm n20: 14.3 dBm
No modifica Deviatior	ns From The Sta	the EUT during testing			

	NTS	EMO	C Test Data
Client:	SAFEmine Technology, Inc.	Job Number:	J94480
Madal	RS9110-N-11-22	T-Log Number:	T94588
woder.	N39110-IN-11-22	Project Manager:	Christine Krebill
Contact:	Lukas Herzog	Project Coordinator:	Irene Rademacher
Standard:	FCC Part 15.247	Class:	N/A

Procedure Comments:

Measurements performed in accordance with FCC KDB 558074

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11b	1 Mb/s	100.00	-	-	0	0	-
11g	6 Mb/s	100.00	-	-	0	0	-
n20	MCS 0	100.00	-	-	0	0	-

Sample Notes

Sample S/N: P07-2812 (NTS 2014-4946) MAC: 00:23:A7:25:38:0F

							EM	C Test	' Data
Client:	SAFEmine Technology,	Inc.				Job Number: J94480			
Madal							.og Number:	T94588	
Model:	RS9110-N-11-22					Proje	ct Manager:	Christine Kr	ebill
Contact:	Lukas Herzog					Project	Coordinator:	Irene Raden	nacher
Standard:	FCC Part 15.247						Class:	N/A	
Run #1: Ou	utput Power								
Mada	116								
Mode: Power		Output	Power	Antenna		Ell	2P	Output	Power
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
32	2412	8.0	6.3	5.0	Pass	13.0	0.020	(abiii)	
36	2437	9.4	8.7	5.0	Pass	14.4	0.028		
37	2472	9.6	9.1	5.0	Pass	14.6	0.029		
Mode: Power		Output	Power	Antenna		EII	RP	Output	Power
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
38	2412	14.0	25.1	5.0	Pass	19.0	0.079	(0-11)	
38	2437	14.0	25.1	5.0	Pass	19.0	0.079		
Mode: Power		Output	Power	Antenna	Desult	Ell	RP	Output	Power
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
36	2412	14.3	26.9	5.0	Pass	19.3	0.085		
36	2437	14.2	26.3	5.0	Pass	19.2	0.083		
37	2472	14.1	25.7	5.0	Pass	19.1	0.081		
Note 1: Output power measured using a peak power meter, spurious limit is -20dBc.									

EMC Test Data

Client:	SAFEmine Technology, Inc.	Job Number:	J94480
Model	RS9110-N-11-22	T-Log Number:	T94588
wouer.	N33110-IN-11-22	Project Manager:	Christine Krebill
Contact:	Lukas Herzog	Project Coordinator:	Irene Rademacher
Standard:	FCC Part 15.247	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

rs

SUCCESS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature:	22 °C
Rel. Humidity:	40 %

Note: Target powers are peak

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Run #	Mode	Channel	Target Power	Power Setting	Test Performed	Limit	Result / Margin
	b	1 - 2412MHz	16.1	50	Restricted Band Edge (2390 MHz)	FCC Part 15.209 / 15.247(c)	37.1 dBµV/m @ 2367. MHz (-16.9 dB)
1	b	11 - 2462MHz	15.9	50	Restricted Band Edge (2483.5 MHz)	FCC Part 15.209 / 15.247(c)	35.3 dBµV/m @ 2483. MHz (-18.7 dB)
	b	13 - 2472MHz	15.9	51	Restricted Band Edge (2483.5 MHz)	FCC Part 15.209 / 15.247(c)	52.5 dBµV/m @ 2483 MHz (-1.5 dB)
2	g	1 - 2412MHz	14.0	38	Restricted Band Edge (2390 MHz)	FCC Part 15.209 / 15.247(c)	36.5 dBµV/m @ 2390 MHz (-17.5 dB)
	g	11 - 2462MHz	13.9	38	Restricted Band Edge (2483.5 MHz)	FCC Part 15.209 / 15.247(c)	35.0 dBµV/m @ 2483 MHz (-19.0 dB)
	g	13 - 2472MHz	14.0	40	Restricted Band Edge (2483.5 MHz)	FCC Part 15.209 / 15.247(c)	48.8 dBµV/m @ 2483 MHz (-5.2 dB)
3	n20	1 - 2412MHz	14.3	36	Restricted Band Edge (2390 MHz)	FCC Part 15.209 / 15.247(c)	38.0 dBµV/m @ 2390 MHz (-16.0 dB)
	n20	11 - 2462MHz	14.1	37	Restricted Band Edge (2483.5 MHz)	FCC Part 15.209 / 15.247(c)	36.7 dBµV/m @ 2483 MHz (-17.3 dB)
	n20	12 - 2467MHz	14.1	37	Restricted Band Edge (2483.5 MHz)	FCC Part 15.209 / 15.247(c)	43.1 dBµV/m @ 2483 MHz (-10.9 dB)
	n20	13 - 2472MHz	14.1	37	Restricted Band Edge (2483.5 MHz)	FCC Part 15.209 / 15.247(c)	50.6 dBµV/m @ 2483 MHz (-3.4 dB)

	NTS
Client:	SAFEmine Technology, Inc.
Model:	RS9110-N-11-22
Contact:	Lukas Herzog
Standard:	FCC Part 15.247

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Sample Notes

Sample S/N: P07-2812 (NTS 2014-4946) MAC: 00:23:A7:25:38:0F

Driver: -

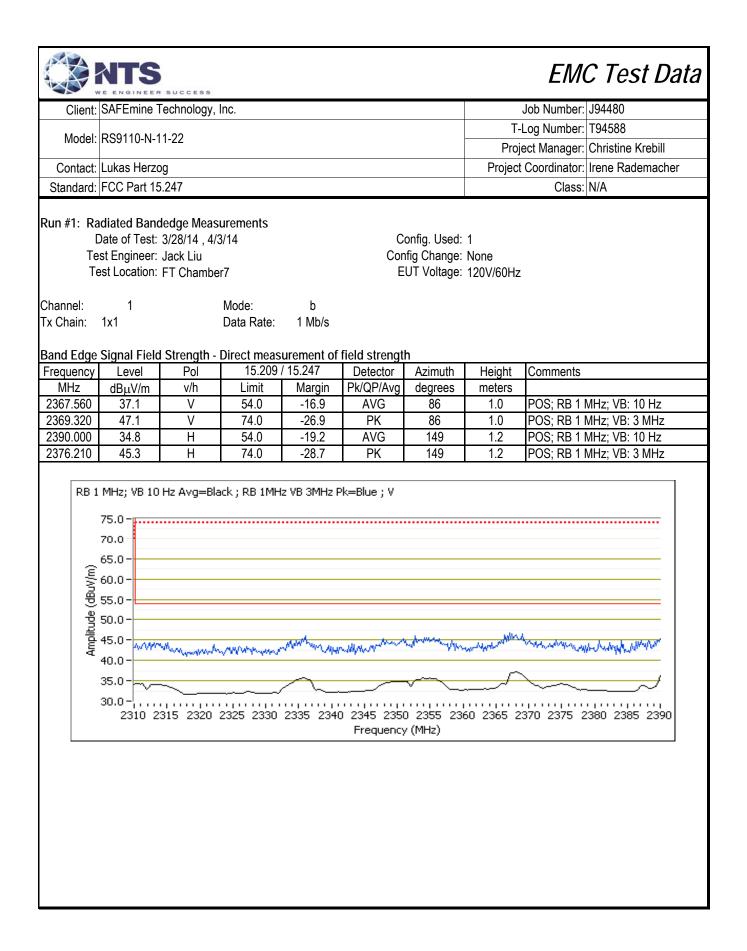
A Party

Antenna: QF-037 (NTS 2014-4945)

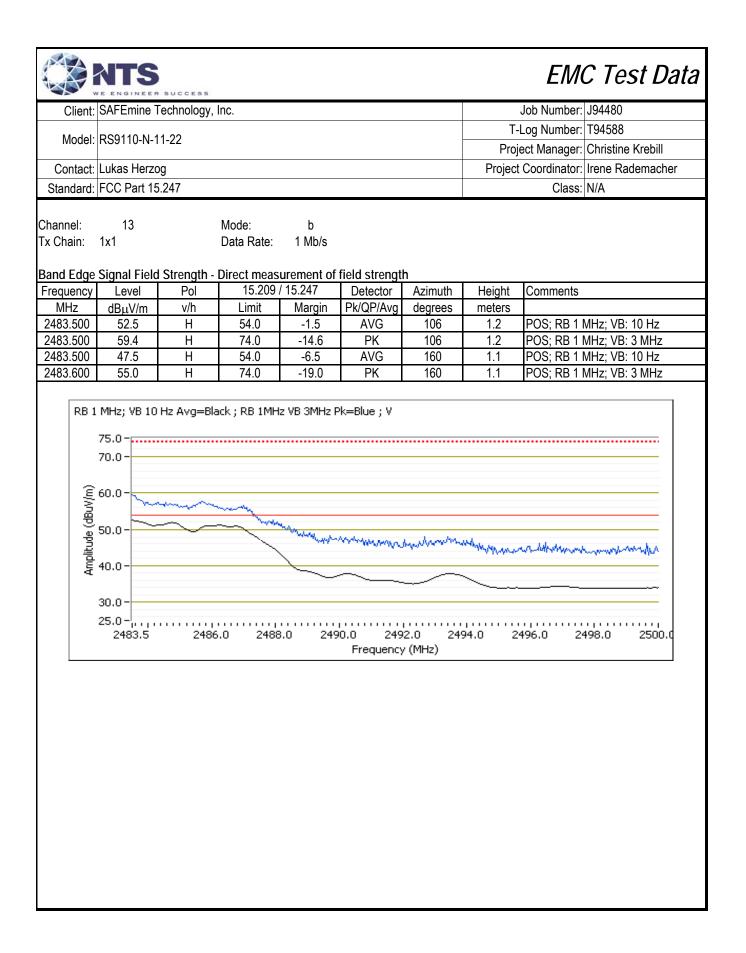
Procedure Comments:

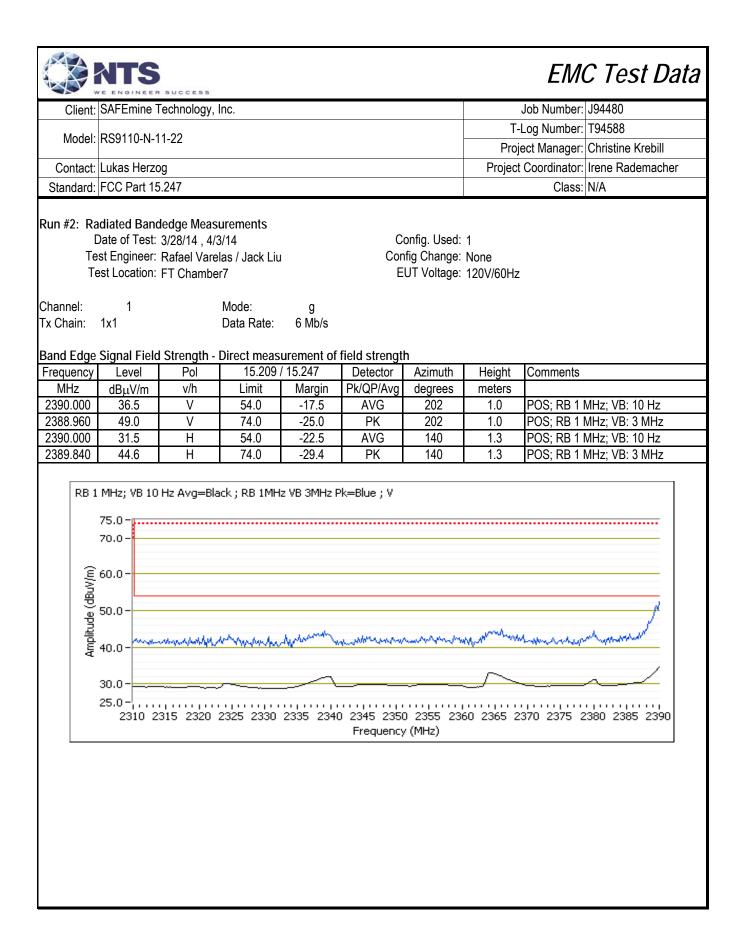
Measurements performed in accordance with FCC KDB 558074

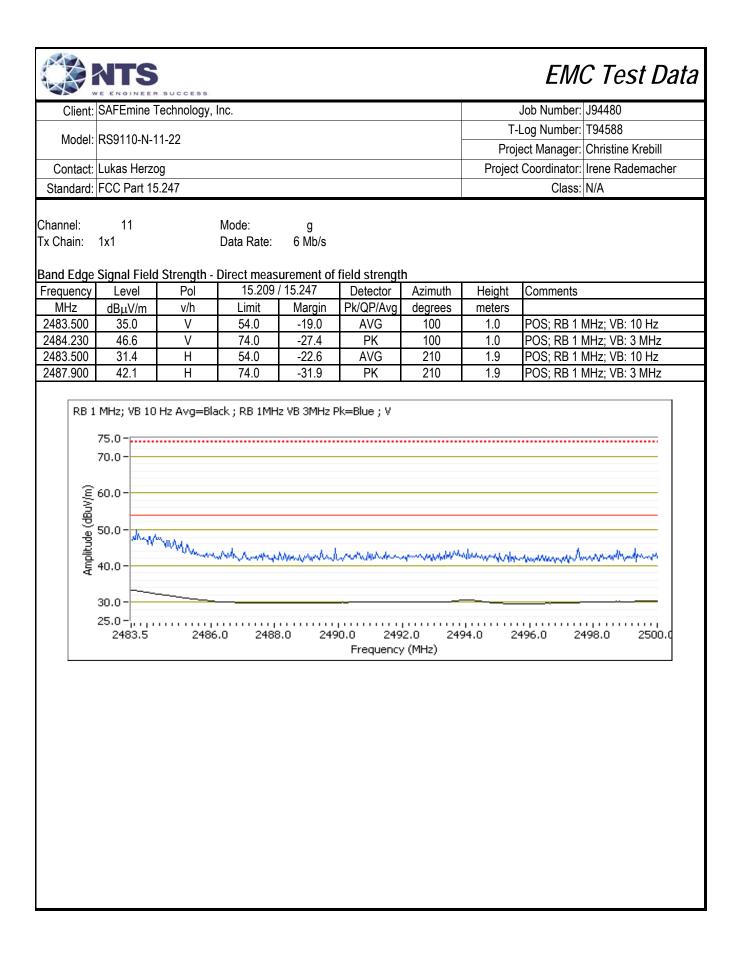
Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.

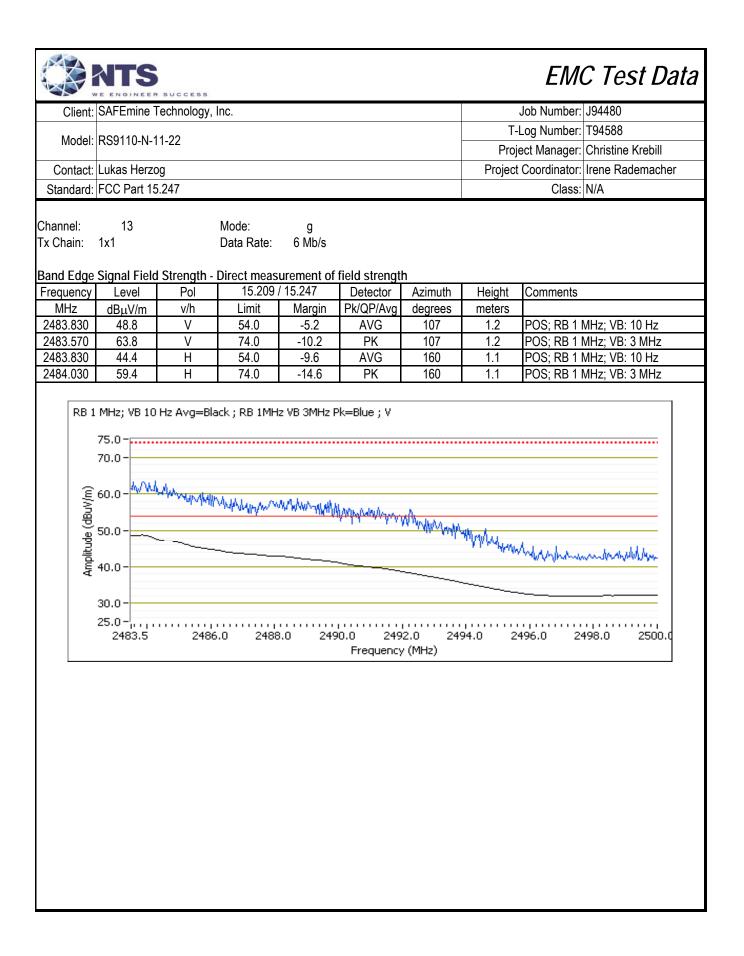

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11b	1 Mb/s	100.00	-	-	0	0	-
11g	6 Mb/s	100.00	-	-	0	0	-
n20	MCS 0	100.00	-	-	0	0	-

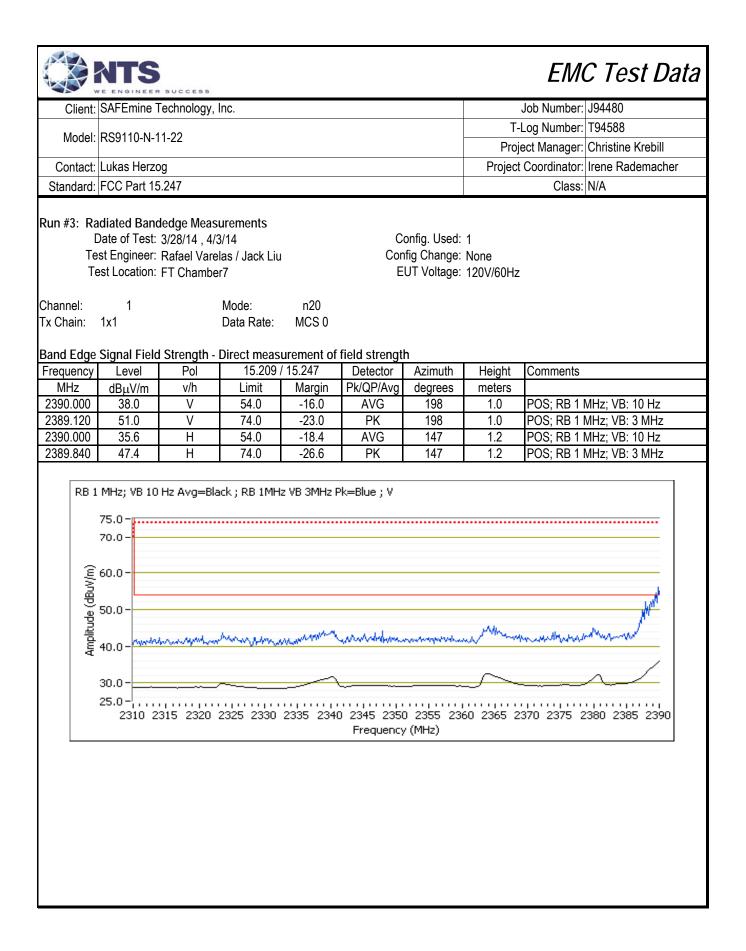
Measurement Specific Notes:

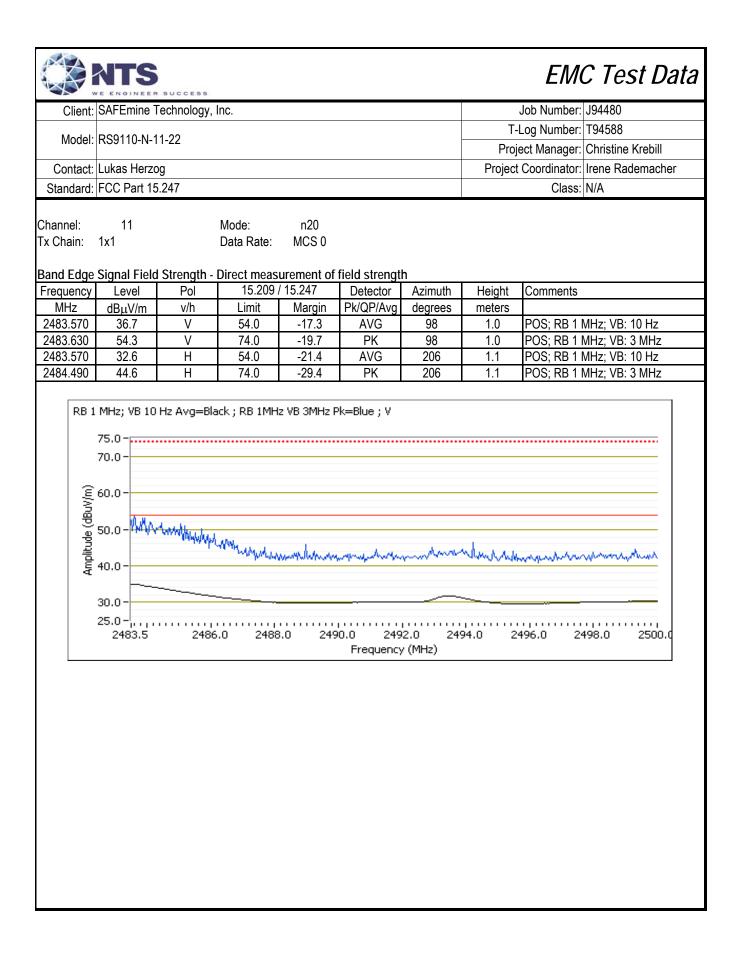

Note 1:	Emission in non-restricted band, but limit of 15.209 used.
Note 2:	Emission in non-restricted band, the limit was set 30dB below the level of the fundamental and measured in 100kHz.
Note 2:	Emission has duty cycle ≥ 98%, average measurement performed: RBW=1MHz, VBW=3MHz, RMS, Power averaging, auto
	sweep, trace average 100 traces
Note 3:	Emission has duty cycle < 98%, but constant, average measurement performed: RBW=1MHz, VBW=10Hz, peak detector,
NULE 3.	linear averaging, auto sweep, trace average 100 traces, measurement corrected by Linear Voltage correction factor
Note 4:	Emission has duty cycle < 98% and is NOT constant, average measurement performed: RBW=1MHz, VBW> 1/T, peak
	detector, linear average mode, sweep time auto, max hold. Max hold for 50*(1/DC) traces
Note 5:	Emission has duty cycle < 98%, but constant, average measurement performed: RBW=1MHz, VBW=3MHz, RMS, Power
	averaging, auto sweep, trace average 100 traces, measurement corrected by Pwr correction factor
Note 6:	Plots of the average and peak bandedge do not account for any duty cycle correction. Refer to the tabular results for final
	measurements.

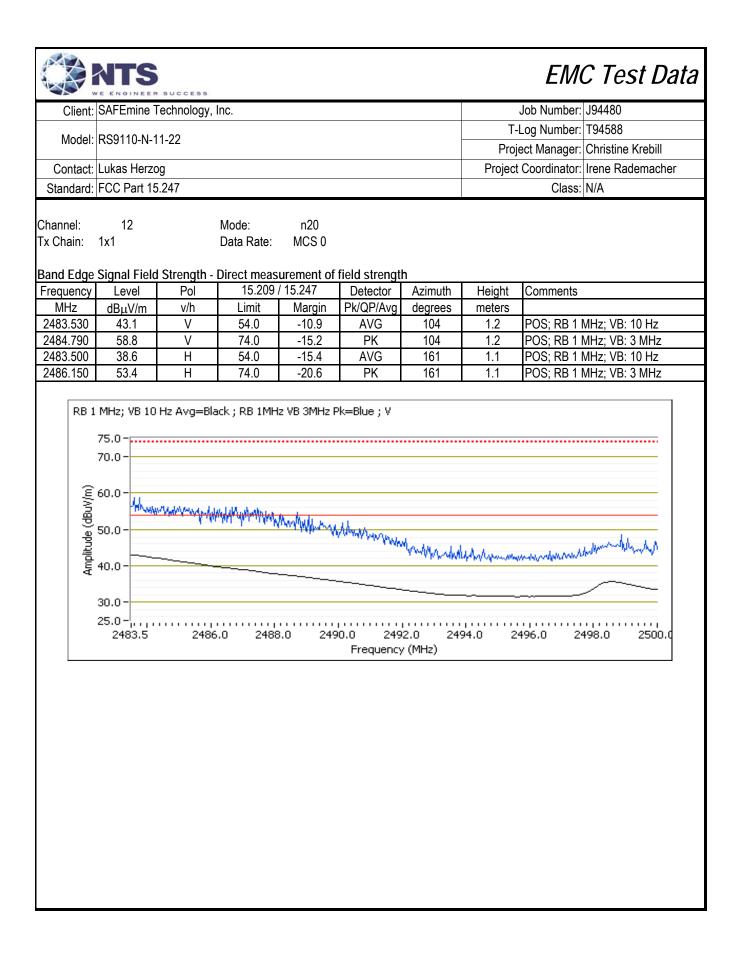

EMC Test Data

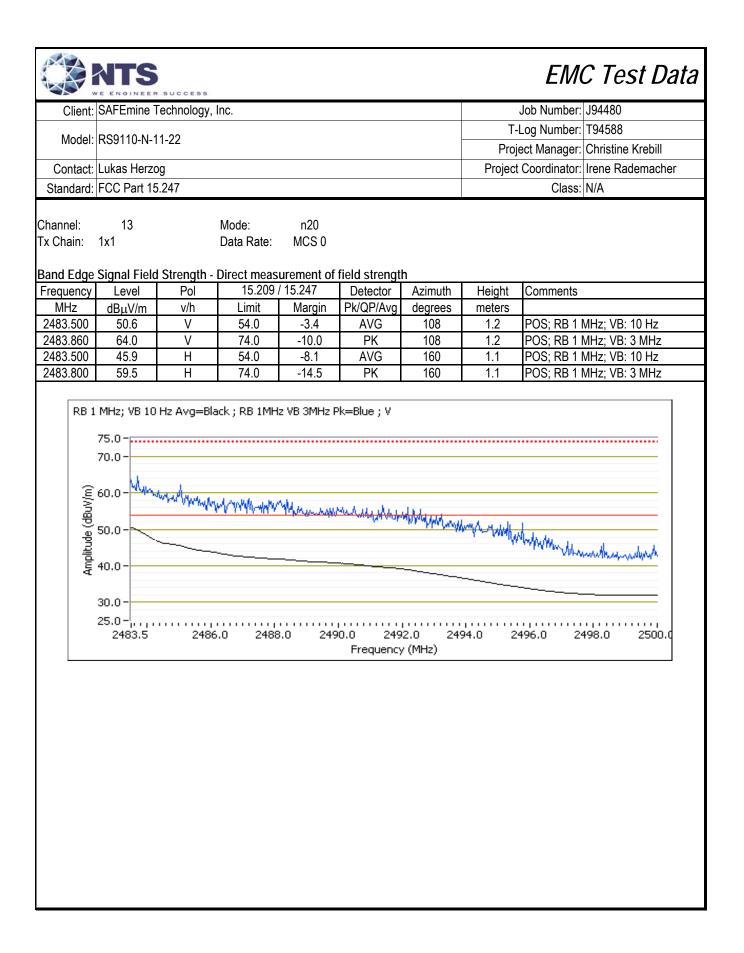

Job Number: J94480 T-Log Number: T94588 Project Manager: Christine Krebill Project Coordinator: Irene Rademacher Class: N/A




EMC Test Data										
Client:	SAFEmine Technology, Inc.							Job Number: J94480		
								Log Number:	T94588	
Model:	RS9110-N-11-22							Project Manager: Christine Krebill		
Contact:	Lukas Herzog							Project Coordinator: Irene Rademacher		
	FCC Part 1	-					Class: N/A			
Channel: Tx Chain:	11 1x1		Mode: Data Rate:	b 1 Mb/s						
Band Edge	Signal Field	d Strength -	Direct meas		field strengtl	า				
Frequency	Level	Pol	15.209/	15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2483.500	35.3	V	54.0	-18.7	AVG	100	1.0		MHz; VB: 10 Hz	
2486.180	46.7	V	74.0	-27.3	PK	100	1.0		MHz; VB: 3 MHz	
2483.500	33.2	Н	54.0	-20.8	AVG	151	1.1		MHz; VB: 10 Hz	
2492.760	45.2	Н	74.0	-28.8	PK	151	1.1	POS; RB 1 I	MHz; VB: 3 MHz	
75.0 70.0 65.0 66.0 900 55.0 900 45.0 45										







	WE ENGINEE	R SUCCESS					C Test Data
Client:	SAFEmine	Technology, I	NC.			Job Number:	
Model	RS9110-N-	11 00				T-Log Number:	T94588
wouer.	- KO9110-IN-	11-22				Project Manager:	Christine Krebill
Contact:	Lukas Herz	og	Project Coordinator:	Irene Rademacher			
Standard:	FCC Part 1	5.247				Class:	N/A
	F	RSS 210 a	nd FCC	15.247 (DTS) Radiated Sp	ourious Emissior	IS
[est Sne	cific Detai	ilc					
Lot oper		The chiection	e of this test	session is to	perform final qualificatior	n testing of the EUT with	respect to the
	Objective	specification			· · · · · · · · · · · · · · · · · · ·		
2							
	Test Confi	•					
he EUT ar	nd all local su	upport equipm	ent were loc	ated on the f	turntable for radiated spur	ious emissions testing.	
or radiated	d emissions t	esting the me	asurement a	intenna was	located 3 meters from the	EUT. unless otherwise r	noted.
						,	
Ambient	Condition	IS:					
		Te	emperature:		°C		
			el. Humidity:	40	%		
		Note: Target					
Summary	y of Resul	ts - Device		g in the 24	100-2483.5 MHz Ban	d	
Run #	Mode	Channel	Target Power	Power Setting	Test Performed	Limit	Result / Margin
	b	1-	8.0	32	Radiated Emissions,	FCC Part 15.209 /	53.5 dBµV/m @ 4824.
		2412MHz	0.0		<u>1 - 25 GHz</u>	15.247(c)	MHz (-0.5 dB)
	b	6 -	9.4	36	Radiated Emissions,	FCC Part 15.209 /	53.3 dBµV/m @ 4874.
1		2437MHz 11 -			1 - 25 GHz Radiated Emissions,	<u>15.247(c)</u> FCC Part 15.209 /	MHz (-0.7 dB) 53.9 dBµV/m @ 4924.
	b	2462MHz	9.5	37	1 - 25 GHz	15.247(c)	MHz (-0.1 dB)
	·	13 -	0.0	07	Radiated Emissions,	FCC Part 15.209 /	50.2 dBµV/m @ 4944.
	b	2472 MHz	9.6	37	1 - 25 GHz	15.247(c)	MHz (-3.8 dB)
	enter channe	el in all OFDM	modes to de	etermine the	worst case mode.		
cans on ce		6 -	14	38	Radiated Emissions,	FCC Part 15.209 /	44.4 dBµV/m @ 4874.
Scans on ce	a	0.4079.411	17		1 - 25 GHz	15.247(c)	MHz (-9.6 dB)
	g	2437MHz		36	Radiated Emissions,	FCC Part 15.209 /	53.6 dBµV/m @ 4874.
Scans on ce 2	g n20	6 -	14.2	30			
2	n20	6 - 2437MHz			<u>1 - 25 GHz</u>	15.247(c)	MHz (-0.4 dB)
2	n20	6 - 2437MHz nd high chann	els in worst	-case OFDM	mode.		
2 Neasureme	n20	6 - 2437MHz nd high chann 1 -			mode. Radiated Emissions,	FCC Part 15.209 /	44.5 dBµV/m @ 4824.
2	n20 ents on low a	6 - 2437MHz nd high chann	els in worst	-case OFDM	mode.		MHz (-0.4 dB) 44.5 dBµV/m @ 4824. MHz (-9.5 dB) 45.7 dBµV/m @ 4944.

EMC Test Data

N N	E ENGINEER SUCCESS		
Client:	SAFEmine Technology, Inc.	Job Number:	J94480
Model [.]	RS9110-N-11-22	T-Log Number:	T94588
wouer.	R39110-IN-11-22	Project Manager:	Christine Krebill
Contact:	Lukas Herzog	Project Coordinator:	Irene Rademacher
Standard:	FCC Part 15.247	Class:	N/A

Modifications Made During Testing

Initial peak scans of 802.11b mode performed at higher power setting than for final measurments.

Deviations From The Standard

No deviations were made from the requirements of the standard.

Sample Notes

Sample S/N: P07-2812 (NTS 2014-4946) MAC: 00:23:A7:25:38:0F

Driver: -

Antenna: QF-037 (NTS 2014-4945)

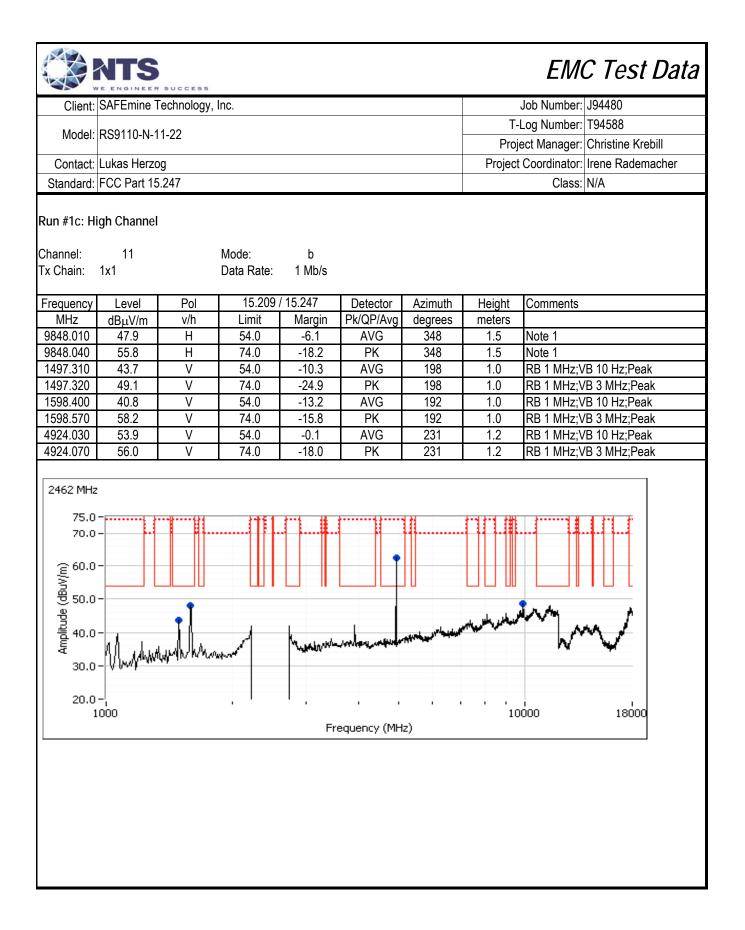
Procedure Comments:

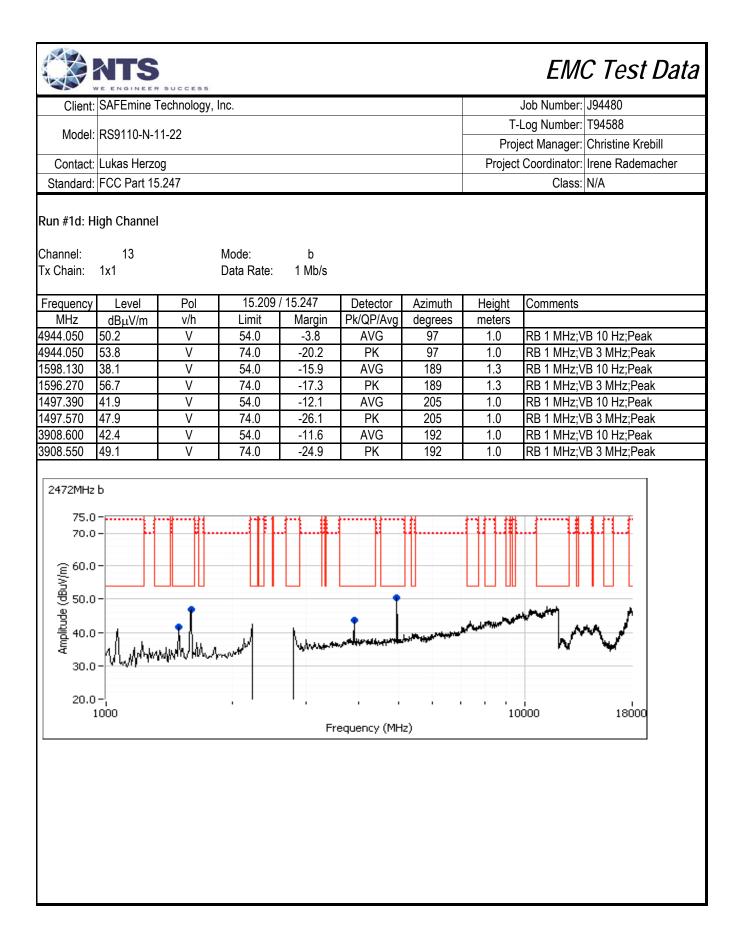
Measurements performed in accordance with FCC KDB 558074

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time

Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.

2.4GHz band reject filter used

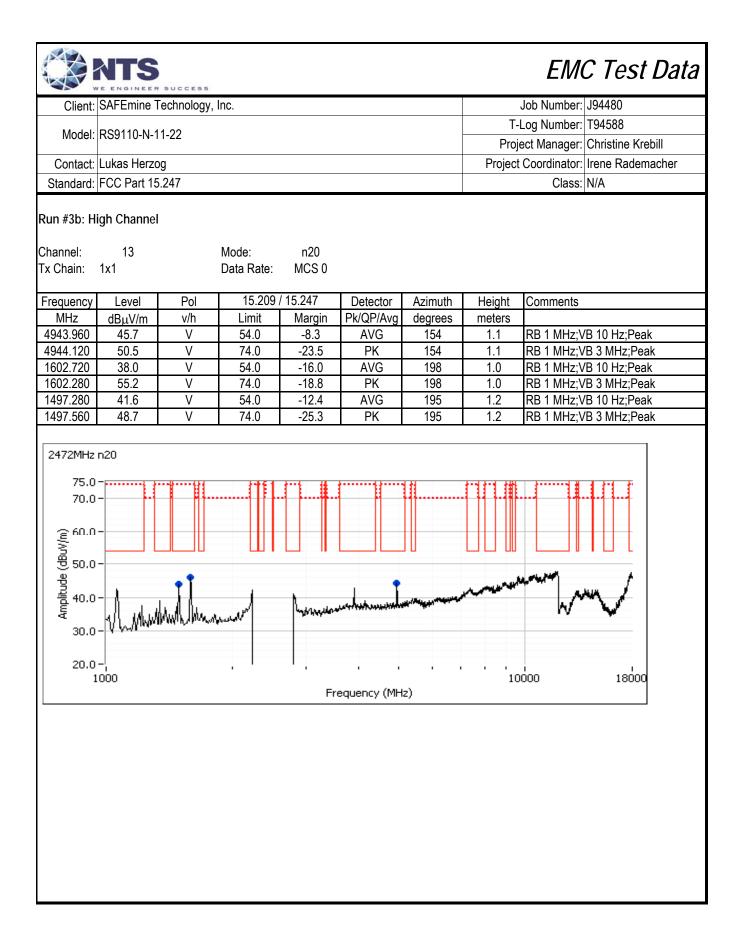

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11b	1 Mb/s	100.00	-	-	0	0	-
11g	6 Mb/s	100.00	-	-	0	0	-
n20	MCS 0	100.00	-	-	0	0	-


Measurement Specific Notes:

Note 1:	Emission in non-restricted band, but limit of 15.209 used.
Note 2:	Emission in non-restricted band, the limit was set 30dB below the level of the fundamental and measured in 100kHz.
Note 2:	Emission has duty cycle ≥ 98%, average measurement performed: RBW=1MHz, VBW=3MHz, RMS, Power averaging, auto
NOLE Z.	sweep, trace average 100 traces
Note 3:	Emission has duty cycle < 98%, but constant, average measurement performed: RBW=1MHz, VBW=10Hz, peak detector,
NOLE J.	linear averaging, auto sweep, trace average 100 traces, measurement corrected by Linear Voltage correction factor
Note 4:	Emission has duty cycle < 98% and is NOT constant, average measurement performed: RBW=1MHz, VBW> 1/T, peak
NOLE 4.	detector, linear average mode, sweep time auto, max hold. Max hold for 50*(1/DC) traces
Note 5:	Emission has duty cycle < 98%, but constant, average measurement performed: RBW=1MHz, VBW=3MHz, RMS, Power
NOLE J.	averaging, auto sweep, trace average 100 traces, measurement corrected by Pwr correction factor
Note 6:	Plots of the average and peak bandedge do not account for any duty cycle correction. Refer to the tabular results for final
NOLE U.	measurements.
1	

Client:	SAFEmine T	echnology.	Inc.					Job Number:	J94480
		•••						Log Number:	
Model:	RS9110-N-1	1-22						-	Christine Krebill
Contact:	Lukas Herzo	a					-		Irene Rademacher
	FCC Part 15						110,000	Class:	
			ions 1,000	25000 MHz	. Operating N	/lodo: 202 1	1h	01000.	
	Date of Test:			2000 10112		onfig. Used:			
	st Engineer:					fig Change:			
	est Location:					UT Voltage:			
Run #1a: L	ow Channel								
Newsel	4		Mada	h					
Channel: Tx Chain:	1 1x1		Mode: Data Rate:	b 1 Mb/s					
x Unain.			Data Nate.						
Frequency	Level	Pol	15.209/	15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
9648.000	47.2	Н	54.0	-6.8	AVG	350	1.4	RB 1 MHz;V	'B 10 Hz;Peak, Note ´
9647.790	55.0	Н	74.0	-19.0	PK	350	1.4		B 3 MHz;Peak, Note
1497.300	43.3	V	54.0	-10.7	AVG	196	1.0		/B 10 Hz;Peak
1497.540	51.2	V	74.0	-22.8	PK	196	1.0		/B 3 MHz;Peak
1602.300 1603.750	38.4 56.6	V V	54.0 74.0	-15.6 -17.4	AVG PK	191 191	1.0 1.0		/B 10 Hz;Peak
3914.610	40.5	V	54.0	-17.4	AVG	149	1.0		'B 3 MHz;Peak 'B 10 Hz;Peak
3914.560	47.9	V	74.0	-26.1	PK	149	1.0		/B 3 MHz;Peak
4824.040	53.5	V	54.0	-0.5	AVG	249	1.5		/B 10 Hz;Peak
4824.140	56.0	V	74.0	-18.0	PK	249	1.5		/B 3 MHz;Peak
102 1.1 10	00.0	v	11.0	10.0		210	1.0	110 1 1112,1	
2412	2 MHz								
	75.0-				18	harred bi	head have		
	70.0-		H	II					
						•			
Ê	60.0-								
			JU L						
Amplitude (dBuV/m)	50.0-		•					t a m	
tr de		•	l i	1	•		. Ar	MAN AN	
ja ja	40.0-	. الارد ال	J. May	N	Langert my let are all	ميجيعة بالمردد والماديون			A Martin La
_ <	30.0-1/1	VWWWW	WYKAPYLANA"						φ.
	30.0-								
	20.0-								
	1000							10000	18000
					Frequency	/ (MHz)			

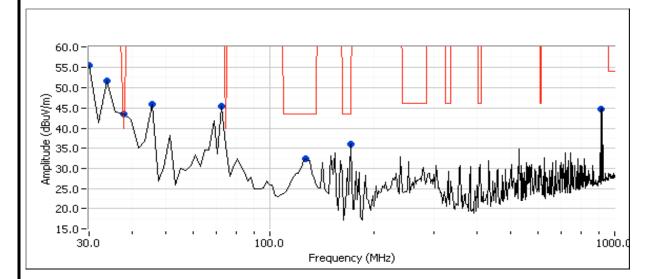
		SUCCESS						ЕМС	C Test Data
Client:	SAFEmine T	echnology, l	nc.					Job Number:	J94480
	500440 N 4	4.00					T-	Log Number:	T94588
Model:	RS9110-N-1	1-22					Proj	ect Manager:	Christine Krebill
Contact:	Lukas Herzo	Da					-	-	Irene Rademacher
	FCC Part 15	-						Class:	
Run #1b: C Channel:	enter Chanr 6	nel	Mode:	b					
Tx Chain:	1x1		Data Rate:	1 Mb/s					
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
9747.950	47.5	Н	54.0	-6.5	AVG	340	1.6		'B 10 Hz;Peak, Note 1
9748.210	55.5	Н	74.0	-18.5	PK	340	1.6	,	B 3 MHz;Peak, Note 1
1600.050	40.5	V	54.0	-13.5	AVG	201	1.0		B 10 Hz;Peak
1600.740	57.7	V	74.0	-16.3	PK	201	1.0		B 3 MHz;Peak
1497.350	43.0	V	54.0	-11.0	AVG	194	1.1		B 10 Hz;Peak
1496.980	49.0	V	74.0	-25.0	PK	194	1.1		B 3 MHz;Peak
4874.050	53.3	V	54.0	-0.7	AVG	236	1.2		B 10 Hz;Peak
4873.950	55.5	V	74.0	-18.5	PK	236	1.2	RB 1 MHZ;V	'B 3 MHz;Peak
Amplitude (dBuV/m)	the device in				ssions in this			un in the second	tennas 20-50cm from
	20.0 - 1000				, Frequency	(MHz)		10000	18000



Client:	SAFEmine T	echnology.	Inc.					Job Number:	J94480
			-					Log Number:	
Model:	RS9110-N-1	1-22							Christine Krebill
Contact:	Lukas Herzo	n							Irene Rademacher
	FCC Part 15	-					110,000	Class:	
			ions, 1,000 -	25000 MHz	. Operating N	Ande: OFDN	Λ	01035.	IN/A
	anaroa opan								
	enter Chanr		20		0	onfia Lloodu	4		
	Date of Test: st Engineer:		JU			onfig. Used: ifig Change:			
	est Location:		r7			UT Voltage:			
					_	5	1201/00112		
Channel:	6		Mode:	g					
Tx Chain:	1x1		Data Rate:	6 Mb/s					
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4874.050	44.4	V	54.0	-9.6	AVG	158	1.2	RB 1 MHz;V	'B 10 Hz;Peak
4874.530	51.4	V	74.0	-22.6	PK	158	1.2		'B 3 MHz;Peak
1497.370	41.9	V	54.0	-12.1	AVG	192	1.1		'B 10 Hz;Peak
1497.520	48.6	V	74.0	-25.4	PK	192	1.1		B 3 MHz;Peak
1599.600	37.0	V	54.0	-17.0	AVG	173	1.0		B 10 Hz;Peak
1602.140 3908.810	56.9 42.9	V	74.0 54.0	-17.1 -11.1	PK AVG	173 140	1.0 1.6		'B 3 MHz;Peak 'B 10 Hz;Peak
3908.870	42.9	V	74.0	-24.6	PK	140	1.6		B 3 MHz;Peak
0000.010	1011	•	11.0	2110		110		1.12 1 11.12,1	
Note:	Scans made	between 18	3 - 25 GHz wi	th the meas	urement antei	nna moved a	around the c	ard and its an	tennas 20-50cm fror
NOLE.	the device in	dicated ther	e were no sig	gnificant em	issions in this	frequency ra	inge		
g mode 24	437MHz								
75.0			2451	a	******	4 44	*****		ब सन्दर स
70.0		- H		-		H	·I II I-III		4444
Ê ^{60.0}	-								
Ang						10			I LI L
පී 50.0 ප	_	1			_			a stantes	*
(w/\ngp 50.0 900 (gBu/) 40.0		1		-	1 1		and the second second		w
	A taken	المالياني		www	a series and the series of the			W	\sim
30.0	-N William	WALM HAAN	193.rt.4""						-
20.0	000			_	equency (MH		10	000	18000

Client:	SAFEmine T	echnology,	Inc.					Job Number: J94480
Madal	D00440 N 4	4 00					T-I	Log Number: T94588
Model:	RS9110-N-1	1-22					Proje	ect Manager: Christine Krebill
Contact:	Lukas Herzo	g					Project	Coordinator: Irene Rademacher
	FCC Part 15							Class: N/A
	L						L	
	Center Chanr							
	Date of Test:):00			onfig. Used:		
	est Engineer:		7			fig Change:		
16	est Location:	FI Chambe	er/		E	UT Voltage:	120V/60Hz	
Channel:	6		Mode:	n20				
	1x1		Data Rate:	MCS 0				
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4874.070	53.6	V	54.0	-0.4	AVG	185	1.3	RB 1 MHz;VB 10 Hz;Peak
4874.120	56.7	V	74.0	-17.3	PK	185	1.3	RB 1 MHz;VB 3 MHz;Peak
3908.780	44.2	V	54.0	-9.8	AVG	148	1.3	RB 1 MHz;VB 10 Hz;Peak
3908.880	50.5	V	74.0	-23.5	PK	148	1.3	RB 1 MHz;VB 3 MHz;Peak
1600.090 1597.640	38.9 58.2	V	54.0 74.0	-15.1 -15.8	AVG PK	207 207	1.0 1.0	RB 1 MHz;VB 10 Hz;Peak RB 1 MHz;VB 3 MHz;Peak
1497.420	44.0	V	74.0 54.0	-15.6	AVG	207	1.0	RB 1 MHz;VB 10 Hz;Peak
1497.200	51.5	V	74.0	-10.0	PK	203	1.0	RB 1 MHz;VB 3 MHz;Peak
1066.210	33.1	V	54.0	-22.3	AVG	161	1.3	RB 1 MHz;VB 10 Hz;Peak
1069.360	48.3	V	74.0	-25.7	PK	161	1.3	RB 1 MHz;VB 3 MHz;Peak
Neter	Scans made	between 18	3 - 25 GHz wi	th the meas	urement antei	nna moved a	round the ca	ard and its antennas 20-50cm from
Note:					issions in this			
2437 MHz	2 n20							
75.0								
75.0 70.0		- II.						
/0.0								
 	-							
20010								
<u> ජි</u> 50.0	-				- 1			
je		• 1			•			VV /
Amplitude (dBuV/m) 9000 (dBuV/m) 1000 (dBuV/m)	- 8	1		k		Married Walnut		MA /
an A	hi uma	WY NAME	humphan	Www.where	******			N V
	- Amilian			_				
30.0								
20.0	_ 1000			· ·	· · ·			000 18000

		SUCCESS						EMO	C Test Data
Client:	SAFEmine T	echnology,	nc.					Job Number:	J94480
		4.00					T-	Log Number:	T94588
Model:	RS9110-N-1	1-22					Proj	ect Manager:	Christine Krebill
Contact:	Lukas Herzo	g							Irene Rademacher
	FCC Part 15	-						Class:	N/A
۲ Te Te Run #3a: L	Date of Test: st Engineer: est Location: ow Channel	4/3/2014 0:0 Rafael Vare FT Chambe)0 las r7		Cor	<i>I</i> lode: Wors onfig. Used: ifig Change: UT Voltage:	1 None		
Channel: Tx Chain:	1 1x1		Mode: Data Rate:	n20 MCS 0					
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4824.020	44.5	V	54.0	-9.5	AVG	152	1.3		B 10 Hz;Peak
4823.940	50.8	V	74.0	-23.2	PK	152	1.3		B 3 MHz;Peak
1601.290	38.5	V	54.0	-15.5	AVG	194	1.0		B 10 Hz;Peak
1600.960	56.4	V	74.0	-17.6	PK	194	1.0		B 3 MHz;Peak
1497.250 1497.590	41.3 47.2	V V	54.0 74.0	-12.7 -26.8	AVG PK	<u>199</u> 199	1.0 1.0		B 10 Hz;Peak B 3 MHz;Peak
70.0 (w. 60.0 (w. Angp) 50.0 ppnjildwy 40.0 30.0 20.0		- I II WM Imm	warrad	And and a second					
				Fr	equency (MH	z)			

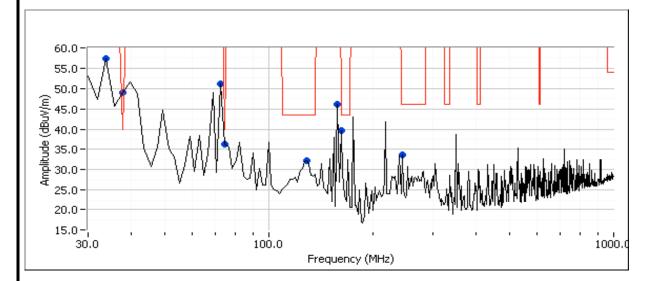


Model: RS9110-N-1	echnology, Inc.			Job Number: J94480
	1-22			Log Number: T94588
			-	ect Manager: Christine Krebill
Contact: Lukas Herzo Standard: FCC Part 15	-		Project	Coordinator: Irene Rademacher Class: -
Stanuaru. FOC Fait 15	.241			01855
Fest Specific Detail	(Elliott Laboratories Frem	ted Emissions ont Facility, Semi-Al		ber)
	The objective of this test session is t specification listed above.	to perform final qualifie	cation testing of	f the EUT with respect to the
Test Engineer:	4/3 & 4/15//2014 Rafael Varelas FT Chamber #7	Config. Use Config Chan EUT Volta		
Note, preliminary testing	trapolation factor (if applicable) are d indicates that the emissions were ma			nd elevation of the measurement
	on of the EUT's interface cables.	e maximized by orient	ation of the EU	T, elevation of the measurement
	on of the EUT's interface cables.	·	ation of the EU 15/2014	
antenna, and manipulatio	on of the EUT's interface cables.	2014 4/ °C 2 ⁻		
antenna, and manipulatio	on of the EUT's interface cables. S: 4/3/2 Temperature: 20.8	2014 4/ °C 2 ⁻	15/2014 1.6 °C	
antenna, and manipulatio	on of the EUT's interface cables. S: 4/3/2 Temperature: 20.8 Rel. Humidity: 42	2014 4/ °C 2 ⁻	15/2014 1.6 °C	
antenna, and manipulatio Ambient Conditions Summary of Result	on of the EUT's interface cables. S: 4/3/2 Temperature: 20.8 Rel. Humidity: 42 S (ANSI C63.4:2009)	2014 4/ °C 2 ⁻ %	15/2014 1.6 °C 40 %	T, elevation of the measurement

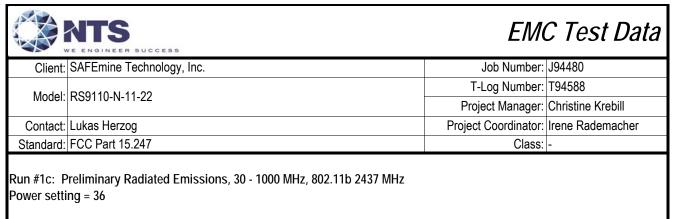
EMC Test					
Client:	SAFEmine Technology, Inc.	Job Number:	J94480		
Madal	RS9110-N-11-22	T-Log Number:	T94588		
woder.	R39110-IN-11-22	Project Manager:	Christine Krebill		
Contact:	Lukas Herzog	Project Coordinator:	Irene Rademacher		
Standard:	FCC Part 15.247	Class:	-		

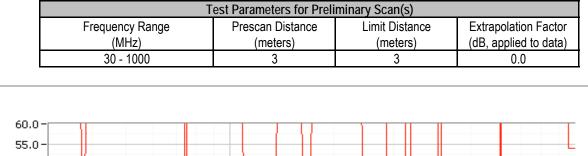
Run #1a: Preliminary Radiated Emissions, 30 - 1000 MHz, 802.11b 2412 MHz Power setting = 32

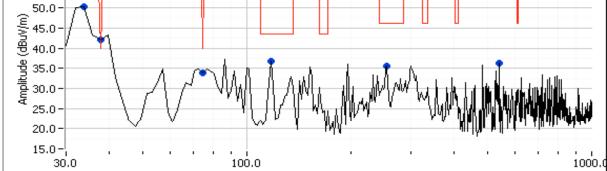
Test Parameters for Preliminary Scan(s)									
Frequency Range	Prescan Distance	Limit Distance	Extrapolation Factor						
(MHz)	(meters)	(meters)	(dB, applied to data)						
30 - 1000	3	3	0.0						



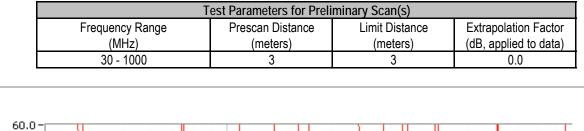
	SAFEmine T	echnology	/, Inc.					Job Number:	J94480
M	D00440 N 4	4.00					T-	Log Number:	T94588
Model:	RS9110-N-1	1-22					Proj	ect Manager:	Christine Krebill
Contact:	Lukas Herzo	g							Irene Rademacher
Standard:	FCC Part 15	5.247						Class:	-
reliminary	v peak readir	ngs captu	red during p	re-scan					
requency	Level	Pol		15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
30.730	55.4	Н	100.0	-44.6	Peak	126	1.5		
33.312	51.7	V	100.0	-48.3	Peak	275	2.0		
37.782	43.5	Н	40.0	3.5	Peak	294	1.0		
45.435	45.9	H	100.0	-54.1	Peak	345	1.5		
73.737	45.5	H	40.0	5.5	Peak	136	1.5		
128.365 172.026	32.4 36.1	H V	43.5 43.5	-11.1 -7.4	Peak Peak	209 131	1.0 2.0		
912.020	44.8	V	100.0	-7.4	Peak	353	1.5		
512.025		v	100.0	-00.2	TOUR	000	1.0		
reliminarv	guasi-peak	readings	(no manipu	lation of EU	T interface c	ables)			
requency	Level	Pol		15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
30.730	27.1	Н	40.0	-12.9	QP	126	1.0	QP (1.00s),	Note 1
172.026	19.4	V	43.5	-24.1	QP	131	2.0	QP (1.00s)	
73.737	28.5	Н	40.0	-11.5	QP	136	1.4	QP (1.00s)	
128.365	29.3	Н	43.5	-14.2	QP	209	1.0	QP (1.00s)	
33.312	25.1	V	40.0	-14.9	QP	275	1.0	QP (1.00s),	Note 1
37.782	23.7	Н	40.0	-16.3	QP	294	1.0	QP (1.00s)	
45.435	16.7	Н	40.0	-23.3	QP	345	1.3	QP (1.00s)	
912.029	32.2	V	46.0	-13.8	QP	334	1.0	QP (1.00s),	Note 1
					imit was used				
Note 1:									

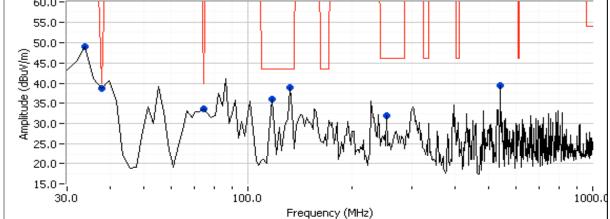

	ATS	EM	C Test Data
Client:	SAFEmine Technology, Inc.	Job Number:	J94480
Madal	RS9110-N-11-22	T-Log Number:	T94588
	R39110-N-11-22	Project Manager:	Christine Krebill
Contact:	Lukas Herzog	Project Coordinator:	Irene Rademacher
Standard:	FCC Part 15.247	Class:	-


Run #1b: Preliminary Radiated Emissions, 30 - 1000 MHz, 802.11n20 2472 MHz Power setting = 37


	Т	est Parameters for Preli	minary Scan(s)	
ſ	Frequency Range	Prescan Distance	Limit Distance	Extrapolation Factor
	(MHz)	(meters)	(meters)	(dB, applied to data)
	30 - 1000	3	3	0.0

Model: R Contact: Lu Standard: F(g						Log Number:	T94588
Contact: Lu Standard: F	ukas Herzo	g					Droi		
Standard: F							FIUJ	ect Manager:	Christine Krebill
Standard: F							Project	Coordinator:	Irene Rademacher
reliminary p							-	Class:	-
reliminary p									
reliminary p									
					Detector	A	11	O a man a m ta	
requency MHz	Level dBµV/m	Pol v/h	FCC 1 Limit		Detector Pk/QP/Avg	Azimuth	Height	Comments	
33.301	<u>авµv/ш</u> 57.3	H	100.0	Margin -42.7	Peak	degrees 300	meters 1.0		
36.875	49.1	H	40.0	9.1	Peak	300	1.0		
72.009	51.2	H	100.0	-48.8	Peak	136	1.0		
73.738	36.3	Н	40.0	-3.7	Peak	96	3.0		
128.740	32.2	Н	43.5	-11.3	Peak	246	1.0		
163.355	39.7	Н	43.5	-3.8	Peak	141	1.0		
242.727	33.7	Н	46.0	-12.3	Peak	131	1.0		
158.435	46.0	Н	100.0	-54.0	Peak	131	1.0		
					T interface c			1-	
requency	Level	Pol	FCC 1		Detector	Azimuth	Height	Comments	
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
36.875	34.9	Н	40.0	-5.1	QP	300	2.0	QP (1.00s),	
33.301	27.0	ΞΞ	40.0	-13.0	QP	300	1.0	QP (1.00s),	Note 1
128.740	29.0	H H	43.5 43.5	-14.5	QP QP	246 141	1.0	QP (1.00s) QP (1.00s)	
163.355 72.009	19.4 27.3	H	43.5	-24.1 -12.7	QP QP	136	<u>1.0</u> 1.3		Noto 1
158.435	19.6	H	40.0	-12.7	QP QP	130	1.3	QP (1.00s), QP (1.00s),	
242.727	21.5	H	46.0	-23.5	QP	131	1.0	QP (1.00s), QP (1.00s)	
73.738	27.3	H	40.0	-12.7	QP	96	1.4	QP (1.00s)	
10.100	21.0		40.0	12.1	Qi	50	1.4	Qi (1.000)	
Note 1: E	mission in I	non-restric	ted band. bu	t restricted li	mit was used.				

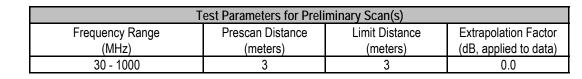


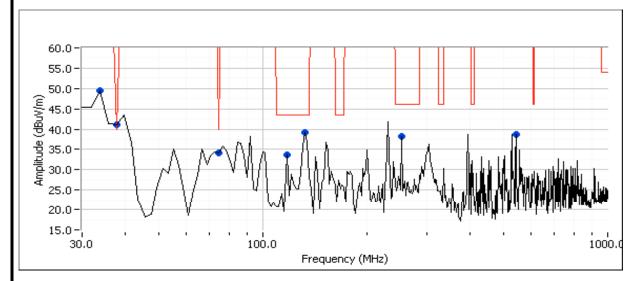

Frequency (MHz)

Model: RS9110-N-11-22 T-Log Number: T94588 Project Manager: Christine Kr Contact: Lukas Herzog Project Coordinator: Irene Rader Standard: FCC Part 15.247 Class: - reliminary peak readings captured during pre-scan Class: - requency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 34.058 50.2 V 100.0 -49.8 Peak 353 1.0 37.674 42.1 V 40.0 2.1 Peak 318 1.0 37.674 42.1 V 40.0 -6.1 Peak 151 1.5 117.047 36.8 H 43.5 -6.7 Peak 264 4.0 255.078 35.7 H 46.0 -10.3 Peak 326 2.5 requency	Client:	SAFEmine Te	echnology	, Inc.					Job Number:	J94480
Project Manager: Christine Kr Contact: Lukas Herzog Project Coordinator: Irene Radel Standard: FCC Part 15.247 Class: - reliminary peak readings captured during pre-scan requency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dB _µ V/m v/h Limit Margin Pk/QP/Avg degrees meters								T-	Log Number:	T94588
Standard: FCC Part 15.247 Class: - climinary peak readings captured during pre-scan requency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dB μ V/m v/h Limit Margin Pk/QP/Avg degrees meters	WUUC.	K99110-IN-1	-22							
reliminary peak readings captured during pre-scan requency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dB μ V/m v/h Limit Margin Pk/QP/Avg degrees meters 34.058 50.2 V 100.0 -49.8 Peak 353 1.0 37.674 42.1 V 40.0 -6.1 Peak 318 1.0 37.674 42.1 V 40.0 -6.1 Peak 318 1.0 33.9 V 40.0 -6.7 Peak 264 4.0 255.078 255.078 32.5 C Comments MHz -71.6			-					Project		
requency Level Poi FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 34.058 50.2 V 100.0 -49.8 Peak 353 1.0 37.674 42.1 V 40.0 2.1 Peak 318 1.0 73.743 33.9 V 40.0 -6.1 Peak 151 1.5 117.047 36.8 H 43.5 -6.7 Peak 264 4.0 255.078 35.7 H 46.0 -10.3 Peak 212 1.5 540.031 36.2 V 100.0 -63.8 Peak 326 2.5 requency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 73.743	Standard:	FCC Part 15.	247						Class:	-
irequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters										
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 34.058 50.2 V 100.0 -49.8 Peak 353 1.0 37.674 42.1 V 40.0 2.1 Peak 318 1.0 73.743 33.9 V 40.0 -6.1 Peak 151 1.5 117.047 36.8 H 43.5 -6.7 Peak 264 4.0 255.078 35.7 H 46.0 -10.3 Peak 212 1.5 540.031 36.2 V 100.0 -63.8 Peak 326 2.5 requency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 73.743 30.6 V 40.0 -9.4 QP 151 1.0 QP (1.00s) 255.078 22.5 H 46.0 -23.5 QP						Dotoctor	∧≂imuth	Loight	Commonte	
34.058 50.2 V 100.0 -49.8 Peak 353 1.0 37.674 42.1 V 40.0 2.1 Peak 318 1.0 73.743 33.9 V 40.0 -6.1 Peak 151 1.5 117.047 36.8 H 43.5 -6.7 Peak 264 4.0 255.078 35.7 H 46.0 -10.3 Peak 212 1.5 540.031 36.2 V 100.0 -63.8 Peak 326 2.5 reliminary quasi-peak readings (no manipulation of EUT interface cables) requency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 73.743 30.6 V 40.0 -9.4 QP 151 1.0 QP (1.00s) 255.078 22.5 H 46.0 -23.5 QP 227 1.0 QP (1.00s) 117.047 1									Comments	
37.674 42.1 V 40.0 2.1 Peak 318 1.0 73.743 33.9 V 40.0 -6.1 Peak 151 1.5 117.047 36.8 H 43.5 -6.7 Peak 264 4.0 255.078 35.7 H 46.0 -10.3 Peak 212 1.5 540.031 36.2 V 100.0 -63.8 Peak 326 2.5 eliminary quasi-peak readings (no manipulation of EUT interface cables) requency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 73.743 30.6 V 40.0 -9.4 QP 151 1.0 QP (1.00s) 255.078 22.5 H 46.0 -23.5 QP 227 1.0 QP (1.00s) 117.047 15.5 H 43.5 -28.0 QP 266 2.5 QP (1.00s) 3							1			
73.743 33.9 V 40.0 -6.1 Peak 151 1.5 117.047 36.8 H 43.5 -6.7 Peak 264 4.0 255.078 35.7 H 46.0 -10.3 Peak 212 1.5 540.031 36.2 V 100.0 -63.8 Peak 326 2.5 eliminary quasi-peak readings (no manipulation of EUT interface cables) requency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 73.743 30.6 V 40.0 -9.4 QP 151 1.0 QP (1.00s) 255.078 22.5 H 46.0 -23.5 QP 227 1.0 QP (1.00s) 117.047 15.5 H 43.5 -28.0 QP 266 2.5 QP (1.00s) 37.674 22.4 V 40.0 -17.6 QP 318 1.0 QP (1.00s)										
117.047 36.8 H 43.5 -6.7 Peak 264 4.0 255.078 35.7 H 46.0 -10.3 Peak 212 1.5 540.031 36.2 V 100.0 -63.8 Peak 326 2.5 eliminary quasi-peak readings (no manipulation of EUT interface cables) requency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 73.743 30.6 V 40.0 -9.4 QP 151 1.0 QP (1.00s) 255.078 22.5 H 46.0 -23.5 QP 227 1.0 QP (1.00s) 117.047 15.5 H 43.5 -28.0 QP 266 2.5 QP (1.00s) 37.674 22.4 V 40.0 -17.6 QP 318 1.0 QP (1.00s)										
255.078 35.7 H 46.0 -10.3 Peak 212 1.5 540.031 36.2 V 100.0 -63.8 Peak 326 2.5 eliminary quasi-peak readings (no manipulation of EUT interface cables) requency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 73.743 30.6 V 40.0 -9.4 QP 151 1.0 QP (1.00s) 255.078 22.5 H 46.0 -23.5 QP 227 1.0 QP (1.00s) 117.047 15.5 H 43.5 -28.0 QP 266 2.5 QP (1.00s) 37.674 22.4 V 40.0 -17.6 QP 318 1.0 QP (1.00s)										
540.031 36.2 V 100.0 -63.8 Peak 326 2.5 eliminary quasi-peak readings (no manipulation of EUT interface cables) requency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 73.743 30.6 V 40.0 -9.4 QP 151 1.0 QP (1.00s) 255.078 22.5 H 46.0 -23.5 QP 227 1.0 QP (1.00s) 117.047 15.5 H 43.5 -28.0 QP 266 2.5 QP (1.00s) 37.674 22.4 V 40.0 -17.6 QP 318 1.0 QP (1.00s)										
requency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters	540.031			100.0			326			
requency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 73.743 30.6 V 40.0 -9.4 QP 151 1.0 QP (1.00s) 255.078 22.5 H 46.0 -23.5 QP 227 1.0 QP (1.00s) 117.047 15.5 H 43.5 -28.0 QP 266 2.5 QP (1.00s) 37.674 22.4 V 40.0 -17.6 QP 318 1.0 QP (1.00s)	- liminon/			(ac moninul	-tion of El	IT :-torfaco o	- 6100)			
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 73.743 30.6 V 40.0 -9.4 QP 151 1.0 QP (1.00s) 255.078 22.5 H 46.0 -23.5 QP 227 1.0 QP (1.00s) 117.047 15.5 H 43.5 -28.0 QP 266 2.5 QP (1.00s) 37.674 22.4 V 40.0 -17.6 QP 318 1.0 QP (1.00s)						1 1		Height	Comments	
73.743 30.6 V 40.0 -9.4 QP 151 1.0 QP (1.00s) 255.078 22.5 H 46.0 -23.5 QP 227 1.0 QP (1.00s) 117.047 15.5 H 43.5 -28.0 QP 266 2.5 QP (1.00s) 37.674 22.4 V 40.0 -17.6 QP 318 1.0 QP (1.00s)									Commenta	
255.078 22.5 H 46.0 -23.5 QP 227 1.0 QP (1.00s) 117.047 15.5 H 43.5 -28.0 QP 266 2.5 QP (1.00s) 37.674 22.4 V 40.0 -17.6 QP 318 1.0 QP (1.00s)									OP (1.00s)	
117.047 15.5 H 43.5 -28.0 QP 266 2.5 QP (1.00s) 37.674 22.4 V 40.0 -17.6 QP 318 1.0 QP (1.00s)										
37.674 22.4 V 40.0 -17.6 QP 318 1.0 QP (1.00s)										
	540.031	22.1	V	46.0	-23.9	QP	313	1.0		Note 1
34.058 30.9 V 40.0 -9.1 QP 354 1.0 QP (1.00s), Note 1										
Note 1: Emission in non-restricted band, but restricted limit was used.		Emission in n	ion-restrict	ted band but	t restricted li	imit was used				

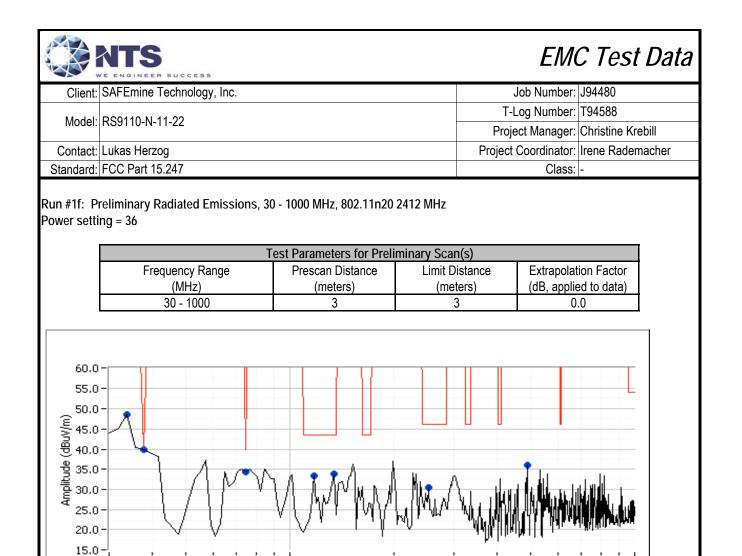
	EMO	C Test Data
SAFEmine Technology, Inc.	Job Number:	J94480
	T-Log Number:	T94588
(59110-N-11-22	Project Manager:	Christine Krebill
Lukas Herzog	Project Coordinator:	Irene Rademacher
FCC Part 15.247	Class:	-
	SAFEmine Technology, Inc. RS9110-N-11-22 .ukas Herzog	SAFEmine Technology, Inc. RS9110-N-11-22 Lukas Herzog Project Manager: Job Number: T-Log Number: Project Manager: Project Coordinator:

Run #1d: Preliminary Radiated Emissions, 30 - 1000 MHz, 802.11b 2472 MHz Power setting = 37





Client SAFEmine Technology, Inc. Job Number: Job Number: </th <th></th> <th>WE ENGINEER</th> <th>SUCCESS</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>C Test Da</th>		WE ENGINEER	SUCCESS							C Test Da
Model: RS9110-N-11-22 Project Manager: Christine Krei Contact: Lukas Herzog Project Coordinator: Irene Radem: Standard: FCC Part 15.247 Class: - Preliminary peak readings captured during pre-scan Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dB _µ V/m v/h Limit Margin Pk/QP/Avg degrees meters 34.164 48.9 V 100.0 -51.1 Peak 88 1.0 - 73.736 33.6 V 40.0 -1.4 Peak 10 - - 17.017 36.1 H 43.5 -7.4 Peak 187 4.0 - 132.015 38.9 V 43.5 -4.6 Peak 208 1.0 - 540.020 39.4 V 100.0 -60.6 Peak 2 2.5 - Preliminary quasi-peak readings (no manipulation of EUT interfac	Client	SAFEmine T	echnology	, Inc.						
Contact: Lukas Herzog Project Coordinator: Irene Radem. Standard: FCC Part 15.247 Class: - Preliminary peak readings captured during pre-scan Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dB _{IL} //m v/h Limit Margin Pk/QP/Avg degrees meters - 34.164 48.9 V 100.0 -51.1 Peak 88 1.0 - 73.736 33.6 V 40.0 -1.4 Peak 10.0 - - 117.017 36.1 H 43.5 -7.4 Peak 187 4.0 - 132.015 38.9 V 43.5 -4.6 Peak 208 1.0 - 540.020 39.4 V 100.0 -60.6 Peak 2 2.5 - Preliminary quasi-peak readings (no manipulation of EUT interface cables) - - - - -	Model	RS9110-N-1	1-22						0	
Standard: FCC Part 15.247 Class: - Preliminary peak readings captured during pre-scan Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 34.164 48.9 V 100.0 -51.1 Peak 88 1.0 37.810 38.6 V 40.0 -1.4 Peak 203 1.0 73.736 33.6 V 40.0 -6.4 Peak 148 1.0 117.017 36.1 H 43.5 -7.4 Peak 187 4.0 132.015 38.9 V 43.5 -4.6 Peak 354 1.0 540.020 39.4 V 100.0 -60.6 Peak 2 2.5 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height C								-		
Preliminary peak readings captured during pre-scan Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 34.164 48.9 V 100.0 -51.1 Peak 88 1.0 37.810 38.6 V 40.0 -1.4 Peak 203 1.0 73.736 33.6 V 40.0 -6.4 Peak 148 1.0 117.017 36.1 H 43.5 -7.4 Peak 187 4.0 132.015 38.9 V 43.5 -4.6 Peak 208 1.0 540.020 39.4 V 100.0 -60.6 Peak 2 2.5 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m <								Project		
Frequency Level Poi FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 34.164 48.9 V 100.0 -51.1 Peak 88 1.0 37.810 38.6 V 40.0 -1.4 Peak 203 1.0 73.736 33.6 V 40.0 -6.4 Peak 148 1.0 117.017 36.1 H 43.5 -7.4 Peak 187 4.0 132.015 38.9 V 43.5 -4.6 Peak 208 1.0 254.399 31.9 V 46.0 -14.1 Peak 354 1.0 540.020 39.4 V 100.0 -60.6 Peak 2 2.5 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector <t< td=""><td>Standard:</td><td>FCC Part 15</td><td>.247</td><td></td><td></td><td></td><td></td><td></td><td>Class:</td><td>-</td></t<>	Standard:	FCC Part 15	.247						Class:	-
Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 34.164 48.9 V 100.0 -51.1 Peak 88 1.0 37.810 38.6 V 40.0 -1.4 Peak 203 1.0 73.736 33.6 V 40.0 -6.4 Peak 148 1.0 117.017 36.1 H 43.5 -7.4 Peak 187 4.0 132.015 38.9 V 43.5 -4.6 Peak 208 1.0 254.399 31.9 V 46.0 -14.1 Peak 354 1.0 540.020 39.4 V 100.0 -60.6 Peak 2 2.5 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector <t< td=""><td>Droliminary</td><td>u noak roadin</td><td>as cantur</td><td>od during r</td><td>vra-scan</td><td></td><td></td><td></td><td></td><td></td></t<>	Droliminary	u noak roadin	as cantur	od during r	vra-scan					
Hz dB _µ V/m v/h Limit Margin Pk/QP/Avg degrees meters 34.164 48.9 V 100.0 -51.1 Peak 88 1.0 37.810 38.6 V 40.0 -1.4 Peak 203 1.0 73.736 33.6 V 40.0 -6.4 Peak 148 1.0 117.017 36.1 H 43.5 -7.4 Peak 208 1.0 132.015 38.9 V 43.5 -4.6 Peak 354 1.0 254.399 31.9 V 46.0 -14.1 Peak 354 1.0 540.020 39.4 V 100.0 -60.6 Peak 2 2.5 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 254.399 23.4 V						Detector	Azimuth	Height	Comments	
34.164 48.9 V 100.0 -51.1 Peak 88 1.0 37.810 38.6 V 40.0 -1.4 Peak 203 1.0 73.736 33.6 V 40.0 -6.4 Peak 148 1.0 117.017 36.1 H 43.5 -7.4 Peak 187 4.0 132.015 38.9 V 43.5 -4.6 Peak 354 1.0 254.399 31.9 V 46.0 -14.1 Peak 354 1.0 540.020 39.4 V 100.0 -60.6 Peak 2 2.5 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 254.399 23.4 V 46.0 -22.6 QP 346 1.					1				Commonito	
73.736 33.6 V 40.0 -6.4 Peak 148 1.0 117.017 36.1 H 43.5 -7.4 Peak 187 4.0 132.015 38.9 V 43.5 -4.6 Peak 208 1.0 254.399 31.9 V 46.0 -14.1 Peak 354 1.0 540.020 39.4 V 100.0 -60.6 Peak 2 2.5 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 254.399 23.4 V 46.0 -22.6 QP 346 1.2 QP (1.00s) 132.015 25.8 V 43.5 -17.7 QP 222 1.0 QP (1.00s) 37.810 18.1 V 40.0 -21.9 QP 203 1.0 QP (1.00s) 73.736 <td></td>										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37.810	38.6		40.0	-1.4	Peak	203	1.0		
132.015 38.9 V 43.5 -4.6 Peak 208 1.0 254.399 31.9 V 46.0 -14.1 Peak 354 1.0 540.020 39.4 V 100.0 -60.6 Peak 2 2.5 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 254.399 23.4 V 46.0 -22.6 QP 346 1.2 QP (1.00s) 132.015 25.8 V 43.5 -17.7 QP 222 1.0 QP (1.00s) 132.015 25.8 V 43.5 -21.9 QP 203 1.0 QP (1.00s) 17.017 13.7 H 43.5 -29.8 QP 187 2.5 QP (1.00s) 34.164 26.5 V 40.0 -7.8 QP 88 1.0 QP (1.0										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
540.020 39.4 V 100.0 -60.6 Peak 2 2.5 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 254.399 23.4 V 46.0 -22.6 QP 346 1.2 QP (1.00s) 132.015 25.8 V 43.5 -17.7 QP 222 1.0 QP (1.00s) 37.810 18.1 V 40.0 -21.9 QP 203 1.0 QP (1.00s) 117.017 13.7 H 43.5 -29.8 QP 187 2.5 QP (1.00s) 73.736 32.2 V 40.0 -7.8 QP 158 1.0 QP (1.00s), Note 1 540.020 22.4 V 46.0 -23.6 QP 0 1.1 QP (1.00s), Note										
Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 254.399 23.4 V 46.0 -22.6 QP 346 1.2 QP (1.00s) 132.015 25.8 V 43.5 -17.7 QP 222 1.0 QP (1.00s) 37.810 18.1 V 40.0 -21.9 QP 203 1.0 QP (1.00s) 117.017 13.7 H 43.5 -29.8 QP 187 2.5 QP (1.00s) 73.736 32.2 V 40.0 -7.8 QP 158 1.0 QP (1.00s), Note 1 34.164 26.5 V 40.0 -13.5 QP 88 1.0 QP (1.00s), Note 1										
Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 24.399 23.4 V 46.0 -22.6 QP 346 1.2 QP (1.00s) 132.015 25.8 V 43.5 -17.7 QP 222 1.0 QP (1.00s) 37.810 18.1 V 40.0 -21.9 QP 203 1.0 QP (1.00s) 117.017 13.7 H 43.5 -29.8 QP 187 2.5 QP (1.00s) 73.736 32.2 V 40.0 -7.8 QP 158 1.0 QP (1.00s), Note 1 34.164 26.5 V 40.0 -13.5 QP 88 1.0 QP (1.00s), Note 1	540.020	39.4	V	100.0	-60.6	Реак	2	2.5		
Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 254.399 23.4 V 46.0 -22.6 QP 346 1.2 QP (1.00s) 132.015 25.8 V 43.5 -17.7 QP 222 1.0 QP (1.00s) 37.810 18.1 V 40.0 -21.9 QP 203 1.0 QP (1.00s) 117.017 13.7 H 43.5 -29.8 QP 187 2.5 QP (1.00s) 73.736 32.2 V 40.0 -7.8 QP 158 1.0 QP (1.00s), Note 1 34.164 26.5 V 40.0 -13.5 QP 88 1.0 QP (1.00s), Note 1 540.020 22.4 V 46.0 -23.6 QP 0 1.1 QP (1.00s), Note 1	Preliminary	<i>i</i> nuasi-neak	readings	(no maninu	lation of FL	IT interface c	ables)			
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 254.399 23.4 V 46.0 -22.6 QP 346 1.2 QP (1.00s) 132.015 25.8 V 43.5 -17.7 QP 222 1.0 QP (1.00s) 37.810 18.1 V 40.0 -21.9 QP 203 1.0 QP (1.00s) 117.017 13.7 H 43.5 -29.8 QP 187 2.5 QP (1.00s) 73.736 32.2 V 40.0 -7.8 QP 158 1.0 QP (1.00s), Note 1 34.164 26.5 V 40.0 -13.5 QP 88 1.0 QP (1.00s), Note 1 540.020 22.4 V 46.0 -23.6 QP 0 1.1 QP (1.00s), Note 1								Heiaht	Comments	
254.399 23.4 V 46.0 -22.6 QP 346 1.2 QP (1.00s) 132.015 25.8 V 43.5 -17.7 QP 222 1.0 QP (1.00s) 37.810 18.1 V 40.0 -21.9 QP 203 1.0 QP (1.00s) 117.017 13.7 H 43.5 -29.8 QP 187 2.5 QP (1.00s) 73.736 32.2 V 40.0 -7.8 QP 158 1.0 QP (1.00s) 34.164 26.5 V 40.0 -13.5 QP 88 1.0 QP (1.00s), Note 1					1					
37.810 18.1 V 40.0 -21.9 QP 203 1.0 QP (1.00s) 117.017 13.7 H 43.5 -29.8 QP 187 2.5 QP (1.00s) 73.736 32.2 V 40.0 -7.8 QP 158 1.0 QP (1.00s) 34.164 26.5 V 40.0 -13.5 QP 88 1.0 QP (1.00s), Note 1 540.020 22.4 V 46.0 -23.6 QP 0 1.1 QP (1.00s), Note 1									QP (1.00s)	
117.017 13.7 H 43.5 -29.8 QP 187 2.5 QP (1.00s) 73.736 32.2 V 40.0 -7.8 QP 158 1.0 QP (1.00s) 34.164 26.5 V 40.0 -13.5 QP 88 1.0 QP (1.00s), Note 1 540.020 22.4 V 46.0 -23.6 QP 0 1.1 QP (1.00s), Note 1	132.015	25.8	V	43.5	-17.7	QP	222	1.0	QP (1.00s)	
73.736 32.2 V 40.0 -7.8 QP 158 1.0 QP (1.00s) 34.164 26.5 V 40.0 -13.5 QP 88 1.0 QP (1.00s), Note 1 540.020 22.4 V 46.0 -23.6 QP 0 1.1 QP (1.00s), Note 1	37.810	18.1	V	40.0	-21.9	QP	203	1.0	QP (1.00s)	
34.164 26.5 V 40.0 -13.5 QP 88 1.0 QP (1.00s), Note 1 540.020 22.4 V 46.0 -23.6 QP 0 1.1 QP (1.00s), Note 1										
540.020 22.4 V 46.0 -23.6 QP 0 1.1 QP (1.00s), Note 1										
									· /·	
Note 1: Emission in non-restricted band, but restricted limit was used.	540.020	22.4	V	46.0	-23.6	QP	0	1.1	QP (1.00s),	Note 1
Note 1: JEmission in non-restricted band, but restricted limit was used.	Note 1.	Enviraina in 1		ted band by	.t. na atriata al I					
	Note 1:	Emission in I	non-restric	ted band, bl	it restricted i	imit was used.				

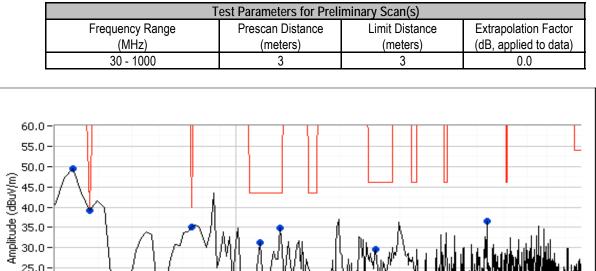

Client: SAFEmine Technology, Inc. Job Number: J94480 Model: RS9110-N-11-22 T-Log Number: T94588 Project Manager: Christine Krebill		EMC Test Data
Model: RS9110-N-11-22 Project Manager: Christine Krebill	Client: SAFEmine Technology, Inc.	Job Number: J94480
Project Manager: Christine Krebill	Madal: DS0110 N 11 22	T-Log Number: T94588
		Project Manager: Christine Krebill
Contact: Lukas Herzog Project Coordinator: Irene Rademacher	Contact: Lukas Herzog	Project Coordinator: Irene Rademacher
Standard: FCC Part 15.247 Class: -	Standard: FCC Part 15.247	Class: -

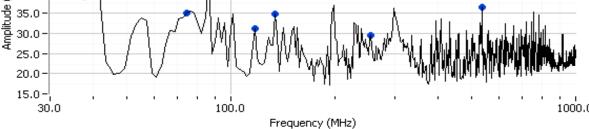
Run #1e: Preliminary Radiated Emissions, 30 - 1000 MHz, 802.11g 2472 MHz Power setting = 37

Model:	SAFEmine I	echnology	, Inc.					Job Number:	J94480
wouer.	DC0110 N 1	1 00					T-	Log Number:	T94588
	K28110-N-1	1-22					Proj	ect Manager:	Christine Krebill
Contact:	Lukas Herzo	g					Project	Coordinator:	Irene Rademacher
Standard:	FCC Part 15	.247						Class:	-
roliminary	/ peak readir	nas cantu	ed during r	ne-scan					
requency	Level	Pol	¥ I	15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	50	
33.377	49.4	V	100.0	-50.6	Peak	322	1.0		
37.727	41.1	V	40.0	1.1	Peak	353	1.0		
73.736	34.1	V	40.0	-5.9	Peak	162	1.5		
117.199	33.7	Н	43.5	-9.8	Peak	248	1.0		
132.007	39.1	V	43.5	-4.4	Peak	238	1.0		
254.005	38.1	V	46.0	-7.9	Peak	302	1.0		
540.696	38.6	Н	100.0	-61.4	Peak	333	1.0		
reliminary requency	r quasi-peak Level	readings Pol		lation of EU 15.209	T interface c Detector	ables) Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
73.736	32.3	V	40.0	-7.7	QP	162	1.0	QP (1.00s)	
	27.0	V	43.5	-16.5	QP	247	1.0	QP (1.00s)	
132.007	1	11	43.5	-28.6	QP	248	2.5	QP (1.00s)	
117.199	14.9	Н					4 5	(0,0,0)	
117.199 254.005	19.1	V	46.0	-26.9	QP	320	1.5	QP (1.00s)	
117.199 254.005 33.377	19.1 25.3	V V	46.0 40.0	-14.7	QP	322	1.0	QP (1.00s),	
117.199 254.005	19.1	V	46.0						

Frequency (MHz)

100.0


30.0


1000.0

Job Number: J94480 Model: RS9110-N-11-22 T-Log Number: T94588 Project Coordinato:: Irene Rademacher Standard: FCC Part 15.247 Class: - Preliminary peak readings captured during pre-scan Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dB _{IU} /m vh Limit Margin Pk/OP/Avg degrees meters 33.09 48.4 V 100.0 -51.6 Peak 97 2.0	Model: RS9110-N-11-22 T-Log Number: T94588 Project Manager: Christine Krebill Project Manager: Christine Krebill Contact: Lukas Herzog Project Coordinator: Irene Rademacher Standard: FCC Part 15.247 Class: - Preliminary peak readings captured during pre-scan Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m V/h Limit Margin Pk/QP/Avg degrees meters 33.309 44.4 V 100.0 -51.6 Peak 97 1.0 73.736 34.3 V 40.0 -5.7 Peak 172 1.0 117.411 33.4 H 43.5 -10.1 Peak 62 2.5 135.163 33.9 H 43.5 -9.6 Peak 177 1.5 253.437 30.6 V 46.0 -15.4 Peak 337 1.0 1492.037 36.1	Client:	SAFEmine T	success						Job Number:	C Test Da
Model: RS9110-N-11-22 Project Manager: Christine Krebill Contact: Lukas Herzog Project Coordinator: Irene Rademacher Standard: FCC Part 15.247 Class: - Preliminary peak readings captured during pre-scan Frequency Level Poi FCC 15.209 Detector Azimuth Height Comments MHz dBµU/m v/h Limit Margin Pk/QP/Avg degrees meters 33.309 48.4 V 100.0 -51.6 Peak 97 2.0 37.803 40.0 V 40.0 -57.7 Peak 97 1.0 117.411 33.4 H 43.5 -10.1 Peak 62 2.5 135.163 33.9 H 43.5 -9.6 Peak 177 1.5 253.437 30.6 V 46.0 -15.4 Peak 137 1.0 1492.037 36.1 V 100.0 -63.9 Peak 337 1.0 100.0 -63.9<	Model: RS9110-N-11-22 Project Manager: Christine Krebill Contact: Lukas Herzog Project Coordinator: Irene Rademacher Standard: FCC Part 15.247 Class: - Preliminary peak readings captured during pre-scan Frequency Level Poi FCC 15.209 Detector Azimuth Height Comments MHz dBµU/m v/h Limit Margin Pk/QP/Avg degrees meters 33.309 48.4 V 100.0 -51.6 Peak 97 2.0 37.803 40.0 V 40.0 -57.7 Peak 97 1.0 117.411 33.4 H 43.5 -10.1 Peak 62 2.5 135.163 33.9 H 43.5 -9.6 Peak 177 1.5 253.437 30.6 V 46.0 -15.4 Peak 117 1.0 492.037 36.1 V 100.0 -63.9 Peak 337 1.0 101.4 42.0.37 1.0 100.0	Olient.		connology	, 110.						
Contact: Lukas Herzog Project Coordinator: Irene Rademacher Standard: FCC Part 15.247 Class: - Preliminary peak readings captured during pre-scan Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters	Contact: Lukas Herzog Project Coordinator: Irene Rademacher Standard: FCC Part 15.247 Class: - Preliminary peak readings captured during pre-scan Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters	Model:	RS9110-N-1	1-22						-	
Standard: FCC Part 15.247 Class: - MHz dB _{II} V/m vh Class: - MHz dB _{II} V/m vh Class: - 33.309 48.4 V 100.0 -51.6 Peak 97 2.0 37.803 40.0 V 40.0 0.0 Peak 97 1.0 - 117.411 33.4 H 43.5 -9.6 Peak 117 1.0 - - Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Det	Standard: FCC Part 15.247 Class: - MHz dB _{II} V/m vh Class: - MHz dB _{II} V/m vh Class: - 33.309 48.4 V 100.0 -51.6 Peak 97 2.0 37.803 40.0 V 40.0 0.0 Peak 97 1.0 - 117.411 33.4 H 43.5 -9.6 Peak 117 1.0 - - Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Det	Contact	Lukas Herzo							-	
Preliminary peak readings captured during pre-scan Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 33.309 48.4 V 100.0 -51.6 Peak 97 2.0 37.803 40.0 V 40.0 0.0 Peak 97 1.0 73.736 34.3 V 40.0 -5.7 Peak 97 1.0 117.411 33.4 H 43.5 -10.1 Peak 62 2.5 135.163 33.9 H 43.5 -9.6 Peak 117 1.0 492.037 36.1 V 100.0 -63.9 Peak 337 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments	Preliminary peak readings captured during pre-scan Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 33.309 48.4 V 100.0 -51.6 Peak 97 2.0 37.803 40.0 V 40.0 0.0 Peak 97 1.0 73.736 34.3 V 40.0 -5.7 Peak 97 1.0 117.411 33.4 H 43.5 -10.1 Peak 62 2.5 135.163 33.9 H 43.5 -9.6 Peak 117 1.0 492.037 36.1 V 100.0 -63.9 Peak 337 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments			-					riojeci		
Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 33.309 48.4 V 100.0 -51.6 Peak 97 2.0 37.803 40.0 V 40.0 0.0 Peak 97 1.0 73.736 34.3 V 40.0 -5.7 Peak 172 1.0 117.411 33.4 H 43.5 -10.1 Peak 62 2.5 135.163 33.9 H 43.5 -9.6 Peak 117 1.0 492.037 36.1 V 100.0 -63.9 Peak 337 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin <td>Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 33.309 48.4 V 100.0 -51.6 Peak 97 2.0 37.803 40.0 V 40.0 0.0 Peak 97 1.0 73.736 34.3 V 40.0 -5.7 Peak 172 1.0 117.411 33.4 H 43.5 -9.6 Peak 62 2.5 135.163 33.9 H 43.5 -9.6 Peak 117 1.0 10 492.037 36.1 V 100.0 -63.9 Peak 337 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit</td> <td>Stanuaru.</td> <td>1001 att 15</td> <td>.247</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>01033.</td> <td>-</td>	Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 33.309 48.4 V 100.0 -51.6 Peak 97 2.0 37.803 40.0 V 40.0 0.0 Peak 97 1.0 73.736 34.3 V 40.0 -5.7 Peak 172 1.0 117.411 33.4 H 43.5 -9.6 Peak 62 2.5 135.163 33.9 H 43.5 -9.6 Peak 117 1.0 10 492.037 36.1 V 100.0 -63.9 Peak 337 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit	Stanuaru.	1001 att 15	.247						01033.	-
Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 33.309 48.4 V 100.0 -51.6 Peak 97 2.0 37.803 40.0 V 40.0 0.0 Peak 97 1.0 73.736 34.3 V 40.0 -5.7 Peak 172 1.0 117.411 33.4 H 43.5 -9.6 Peak 62 2.5 135.163 33.9 H 43.5 -9.6 Peak 117 1.0 492.037 36.1 V 100.0 -63.9 Peak 337 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin <td>Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 33.309 48.4 V 100.0 -51.6 Peak 97 2.0 37.803 40.0 V 40.0 0.0 Peak 97 1.0 73.736 34.3 V 40.0 -5.7 Peak 172 1.0 117.411 33.4 H 43.5 -9.6 Peak 62 2.5 135.163 33.9 H 43.5 -9.6 Peak 117 1.0 492.037 36.1 V 100.0 -63.9 Peak 337 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin<td>Preliminary</td><td>v peak readin</td><td>nas captur</td><td>ed durina p</td><td>re-scan</td><td></td><td></td><td></td><td></td><td></td></td>	Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 33.309 48.4 V 100.0 -51.6 Peak 97 2.0 37.803 40.0 V 40.0 0.0 Peak 97 1.0 73.736 34.3 V 40.0 -5.7 Peak 172 1.0 117.411 33.4 H 43.5 -9.6 Peak 62 2.5 135.163 33.9 H 43.5 -9.6 Peak 117 1.0 492.037 36.1 V 100.0 -63.9 Peak 337 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin <td>Preliminary</td> <td>v peak readin</td> <td>nas captur</td> <td>ed durina p</td> <td>re-scan</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Preliminary	v peak readin	nas captur	ed durina p	re-scan					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						Detector	Azimuth	Height	Comments	
37.803 40.0 V 40.0 0.0 Peak 97 1.0 73.736 34.3 V 40.0 -5.7 Peak 172 1.0 117.411 33.4 H 43.5 -10.1 Peak 62 2.5 135.163 33.9 H 43.5 -9.6 Peak 177 1.5 253.437 30.6 V 46.0 -15.4 Peak 117 1.0 492.037 36.1 V 100.0 -63.9 Peak 337 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 117.411 12.8 H 43.5 -30.7 QP 62 2.4 QP (1.00s) 33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s) 253.437 27.2 V 46.0 <td>37.803 40.0 V 40.0 0.0 Peak 97 1.0 73.736 34.3 V 40.0 -5.7 Peak 172 1.0 117.411 33.4 H 43.5 -10.1 Peak 62 2.5 135.163 33.9 H 43.5 -9.6 Peak 177 1.5 253.437 30.6 V 46.0 -15.4 Peak 117 1.0 492.037 36.1 V 100.0 -63.9 Peak 337 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 117.411 12.8 H 43.5 -30.7 QP 62 2.4 QP (1.00s) 33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s) 253.437 27.2 V 46.0<td></td><td>dBµV/m</td><td>v/h</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	37.803 40.0 V 40.0 0.0 Peak 97 1.0 73.736 34.3 V 40.0 -5.7 Peak 172 1.0 117.411 33.4 H 43.5 -10.1 Peak 62 2.5 135.163 33.9 H 43.5 -9.6 Peak 177 1.5 253.437 30.6 V 46.0 -15.4 Peak 117 1.0 492.037 36.1 V 100.0 -63.9 Peak 337 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 117.411 12.8 H 43.5 -30.7 QP 62 2.4 QP (1.00s) 33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s) 253.437 27.2 V 46.0 <td></td> <td>dBµV/m</td> <td>v/h</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		dBµV/m	v/h							
73.736 34.3 V 40.0 -5.7 Peak 172 1.0 117.411 33.4 H 43.5 -10.1 Peak 62 2.5 135.163 33.9 H 43.5 -9.6 Peak 177 1.5 253.437 30.6 V 46.0 -15.4 Peak 117 1.0 492.037 36.1 V 100.0 -63.9 Peak 337 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 117.411 12.8 H 43.5 -30.7 QP 62 2.4 QP (1.00s) 33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s) 253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s) <	73.736 34.3 V 40.0 -5.7 Peak 172 1.0 117.411 33.4 H 43.5 -10.1 Peak 62 2.5 135.163 33.9 H 43.5 -9.6 Peak 177 1.5 253.437 30.6 V 46.0 -15.4 Peak 117 1.0 492.037 36.1 V 100.0 -63.9 Peak 337 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 117.411 12.8 H 43.5 -30.7 QP 62 2.4 QP (1.00s) 33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s) 253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s) <	33.309							2.0		
117.411 33.4 H 43.5 -10.1 Peak 62 2.5 135.163 33.9 H 43.5 -9.6 Peak 177 1.5 253.437 30.6 V 46.0 -15.4 Peak 117 1.0 492.037 36.1 V 100.0 -63.9 Peak 337 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 117.411 12.8 H 43.5 -30.7 QP 62 2.4 QP (1.00s) 33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s), Note 1 37.803 13.5 V 40.0 -26.5 QP 97 1.0 QP (1.00s) 253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s)	117.411 33.4 H 43.5 -10.1 Peak 62 2.5 135.163 33.9 H 43.5 -9.6 Peak 177 1.5 253.437 30.6 V 46.0 -15.4 Peak 117 1.0 492.037 36.1 V 100.0 -63.9 Peak 337 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 117.411 12.8 H 43.5 -30.7 QP 62 2.4 QP (1.00s) 33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s), Note 1 37.803 13.5 V 40.0 -26.5 QP 97 1.0 QP (1.00s) 253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s)		40.0		40.0	0.0	Peak	97	1.0		
135.163 33.9 H 43.5 -9.6 Peak 177 1.5 253.437 30.6 V 46.0 -15.4 Peak 117 1.0 492.037 36.1 V 100.0 -63.9 Peak 337 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 117.411 12.8 H 43.5 -30.7 QP 62 2.4 QP (1.00s) 33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s), Note 1 37.803 13.5 V 40.0 -26.5 QP 97 1.0 QP (1.00s) 253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s) 73.736 32.3 V 40.0 -7.7 QP 172 1.0 <td< td=""><td>135.163 33.9 H 43.5 -9.6 Peak 177 1.5 253.437 30.6 V 46.0 -15.4 Peak 117 1.0 492.037 36.1 V 100.0 -63.9 Peak 337 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 117.411 12.8 H 43.5 -30.7 QP 62 2.4 QP (1.00s) 33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s), Note 1 37.803 13.5 V 40.0 -26.5 QP 97 1.0 QP (1.00s) 253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s) 73.736 32.3 V 40.0 -7.7 QP 172 1.0 <td< td=""><td></td><td>34.3</td><td></td><td></td><td>-5.7</td><td>Peak</td><td></td><td>1.0</td><td></td><td></td></td<></td></td<>	135.163 33.9 H 43.5 -9.6 Peak 177 1.5 253.437 30.6 V 46.0 -15.4 Peak 117 1.0 492.037 36.1 V 100.0 -63.9 Peak 337 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 117.411 12.8 H 43.5 -30.7 QP 62 2.4 QP (1.00s) 33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s), Note 1 37.803 13.5 V 40.0 -26.5 QP 97 1.0 QP (1.00s) 253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s) 73.736 32.3 V 40.0 -7.7 QP 172 1.0 <td< td=""><td></td><td>34.3</td><td></td><td></td><td>-5.7</td><td>Peak</td><td></td><td>1.0</td><td></td><td></td></td<>		34.3			-5.7	Peak		1.0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
492.037 36.1 V 100.0 -63.9 Peak 337 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 117.411 12.8 H 43.5 -30.7 QP 62 2.4 QP (1.00s) 33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s), Note 1 37.803 13.5 V 40.0 -26.5 QP 97 1.0 QP (1.00s) 253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s) 73.736 32.3 V 40.0 -7.7 QP 172 1.0 QP (1.00s) 135.163 19.0 H 43.5 -24.5 QP 193 2.2 QP (1.00s), Note 1 <	492.037 36.1 V 100.0 -63.9 Peak 337 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 117.411 12.8 H 43.5 -30.7 QP 62 2.4 QP (1.00s) 33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s), Note 1 37.803 13.5 V 40.0 -26.5 QP 97 1.0 QP (1.00s) 253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s) 73.736 32.3 V 40.0 -7.7 QP 193 2.2 QP (1.00s) 135.163 19.0 H 43.5 -24.5 QP 193 2.2 QP (1.00s), Note 1										
Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 117.411 12.8 H 43.5 -30.7 QP 62 2.4 QP (1.00s) 33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s), Note 1 37.803 13.5 V 40.0 -26.5 QP 97 1.0 QP (1.00s) 253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s) 73.736 32.3 V 40.0 -7.7 QP 172 1.0 QP (1.00s) 135.163 19.0 H 43.5 -24.5 QP 193 2.2 QP (1.00s), Note 1	Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 117.411 12.8 H 43.5 -30.7 QP 62 2.4 QP (1.00s) 33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s), Note 1 37.803 13.5 V 40.0 -26.5 QP 97 1.0 QP (1.00s) 253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s) 73.736 32.3 V 40.0 -7.7 QP 172 1.0 QP (1.00s) 135.163 19.0 H 43.5 -24.5 QP 193 2.2 QP (1.00s) 492.037 22.2 V 46.0 -23.8 QP 316 1.0										
Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 117.411 12.8 H 43.5 -30.7 QP 62 2.4 QP (1.00s) 33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s), Note 1 37.803 13.5 V 40.0 -26.5 QP 97 1.0 QP (1.00s) 253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s) 73.736 32.3 V 40.0 -7.7 QP 172 1.0 QP (1.00s) 135.163 19.0 H 43.5 -24.5 QP 193 2.2 QP (1.00s), Note 1 492.037 22.2 V 46.0 -23.8 QP 316 1.0 QP (1.00s), Note 1	Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 117.411 12.8 H 43.5 -30.7 QP 62 2.4 QP (1.00s) 33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s), Note 1 37.803 13.5 V 40.0 -26.5 QP 97 1.0 QP (1.00s) 253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s) 73.736 32.3 V 40.0 -7.7 QP 172 1.0 QP (1.00s) 135.163 19.0 H 43.5 -24.5 QP 193 2.2 QP (1.00s), Note 1 492.037 22.2 V 46.0 -23.8 QP 316 1.0 QP (1.00s), Note 1	492.037	36.1	V	100.0	-63.9	Peak	337	1.0		
Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 117.411 12.8 H 43.5 -30.7 QP 62 2.4 QP (1.00s) 33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s), Note 1 37.803 13.5 V 40.0 -26.5 QP 97 1.0 QP (1.00s) 253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s) 73.736 32.3 V 40.0 -7.7 QP 172 1.0 QP (1.00s) 135.163 19.0 H 43.5 -24.5 QP 193 2.2 QP (1.00s), Note 1 492.037 22.2 V 46.0 -23.8 QP 316 1.0 QP (1.00s), Note 1	Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 117.411 12.8 H 43.5 -30.7 QP 62 2.4 QP (1.00s) 33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s), Note 1 37.803 13.5 V 40.0 -26.5 QP 97 1.0 QP (1.00s) 253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s) 73.736 32.3 V 40.0 -7.7 QP 172 1.0 QP (1.00s) 135.163 19.0 H 43.5 -24.5 QP 193 2.2 QP (1.00s), Note 1 492.037 22.2 V 46.0 -23.8 QP 316 1.0 QP (1.00s), Note 1)			(T :	- h l)			
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 117.411 12.8 H 43.5 -30.7 QP 62 2.4 QP (1.00s) 33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s), Note 1 37.803 13.5 V 40.0 -26.5 QP 97 1.0 QP (1.00s) 253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s) 73.736 32.3 V 40.0 -7.7 QP 172 1.0 QP (1.00s) 135.163 19.0 H 43.5 -24.5 QP 193 2.2 QP (1.00s) 492.037 22.2 V 46.0 -23.8 QP 316 1.0 QP (1.00s), Note 1	MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 117.411 12.8 H 43.5 -30.7 QP 62 2.4 QP (1.00s) 33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s), Note 1 37.803 13.5 V 40.0 -26.5 QP 97 1.0 QP (1.00s) 253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s) 73.736 32.3 V 40.0 -7.7 QP 172 1.0 QP (1.00s) 135.163 19.0 H 43.5 -24.5 QP 193 2.2 QP (1.00s) 492.037 22.2 V 46.0 -23.8 QP 316 1.0 QP (1.00s), Note 1								Hoight	Commonto	
117.411 12.8 H 43.5 -30.7 QP 62 2.4 QP (1.00s) 33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s), Note 1 37.803 13.5 V 40.0 -26.5 QP 97 1.0 QP (1.00s) 253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s) 73.736 32.3 V 40.0 -7.7 QP 172 1.0 QP (1.00s) 135.163 19.0 H 43.5 -24.5 QP 193 2.2 QP (1.00s) 492.037 22.2 V 46.0 -23.8 QP 316 1.0 QP (1.00s), Note 1	117.411 12.8 H 43.5 -30.7 QP 62 2.4 QP (1.00s) 33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s), Note 1 37.803 13.5 V 40.0 -26.5 QP 97 1.0 QP (1.00s), Note 1 253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s) 73.736 32.3 V 40.0 -7.7 QP 172 1.0 QP (1.00s) 135.163 19.0 H 43.5 -24.5 QP 193 2.2 QP (1.00s) 492.037 22.2 V 46.0 -23.8 QP 316 1.0 QP (1.00s), Note 1									Comments	
33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s), Note 1 37.803 13.5 V 40.0 -26.5 QP 97 1.0 QP (1.00s), Note 1 253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s) 73.736 32.3 V 40.0 -7.7 QP 172 1.0 QP (1.00s) 135.163 19.0 H 43.5 -24.5 QP 193 2.2 QP (1.00s), Note 1 492.037 22.2 V 46.0 -23.8 QP 316 1.0 QP (1.00s), Note 1	33.309 24.6 V 40.0 -15.4 QP 97 1.0 QP (1.00s), Note 1 37.803 13.5 V 40.0 -26.5 QP 97 1.0 QP (1.00s), Note 1 253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s) 73.736 32.3 V 40.0 -7.7 QP 172 1.0 QP (1.00s) 135.163 19.0 H 43.5 -24.5 QP 193 2.2 QP (1.00s), Note 1 492.037 22.2 V 46.0 -23.8 QP 316 1.0 QP (1.00s), Note 1					Ŭ.	Ŭ.			OP (1.00s)	
37.803 13.5 V 40.0 -26.5 QP 97 1.0 QP (1.00s) 253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s) 73.736 32.3 V 40.0 -7.7 QP 172 1.0 QP (1.00s) 135.163 19.0 H 43.5 -24.5 QP 193 2.2 QP (1.00s) 492.037 22.2 V 46.0 -23.8 QP 316 1.0 QP (1.00s), Note 1	37.803 13.5 V 40.0 -26.5 QP 97 1.0 QP (1.00s) 253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s) 73.736 32.3 V 40.0 -7.7 QP 172 1.0 QP (1.00s) 135.163 19.0 H 43.5 -24.5 QP 193 2.2 QP (1.00s), Note 1 492.037 22.2 V 46.0 -23.8 QP 316 1.0 QP (1.00s), Note 1										Note 1
253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s) 73.736 32.3 V 40.0 -7.7 QP 172 1.0 QP (1.00s) 135.163 19.0 H 43.5 -24.5 QP 193 2.2 QP (1.00s) 492.037 22.2 V 46.0 -23.8 QP 316 1.0 QP (1.00s), Note 1	253.437 27.2 V 46.0 -18.8 QP 135 1.0 QP (1.00s) 73.736 32.3 V 40.0 -7.7 QP 172 1.0 QP (1.00s) 135.163 19.0 H 43.5 -24.5 QP 193 2.2 QP (1.00s) 492.037 22.2 V 46.0 -23.8 QP 316 1.0 QP (1.00s), Note 1										
73.736 32.3 V 40.0 -7.7 QP 172 1.0 QP (1.00s) 135.163 19.0 H 43.5 -24.5 QP 193 2.2 QP (1.00s) 492.037 22.2 V 46.0 -23.8 QP 316 1.0 QP (1.00s), Note 1	73.736 32.3 V 40.0 -7.7 QP 172 1.0 QP (1.00s) 135.163 19.0 H 43.5 -24.5 QP 193 2.2 QP (1.00s) 492.037 22.2 V 46.0 -23.8 QP 316 1.0 QP (1.00s), Note 1										
492.037 22.2 V 46.0 -23.8 QP 316 1.0 QP (1.00s), Note 1	492.037 22.2 V 46.0 -23.8 QP 316 1.0 QP (1.00s), Note 1			V							
		135.163	19.0	Н	43.5	-24.5	QP	193	2.2	QP (1.00s)	
Note 1: Emission in non-restricted band, but restricted limit was used.	Note 1: Emission in non-restricted band, but restricted limit was used.	492.037	22.2	V	46.0	-23.8	QP	316	1.0	QP (1.00s),	Note 1
Note 1: Emission in non-restricted band, but restricted limit was used.	Note 1: Emission in non-restricted band, but restricted limit was used.										
		Note 1:	Emission in r	non-restric	ted band, bu	t restricted li	mit was used				

		EMO	C Test Data
Client:	SAFEmine Technology, Inc.	Job Number:	J94480
Madalı	RS9110-N-11-22	T-Log Number:	T94588
wouer.	K39110-II-11-22	Project Manager:	Christine Krebill
Contact:	Lukas Herzog	Project Coordinator:	Irene Rademacher
Standard:	FCC Part 15.247	Class:	-

Run #1g: Preliminary Radiated Emissions, 30 - 1000 MHz, 802.11n20 2437 MHz Power setting = 36

T-Log Number: T94588 T-Log Number: T4588 Project Manager: Christine Kret Contact: Lukas Herzog Project Coordinator: Irene Radema Standard: FCC Part 15.247 Class: - Preliminary peak readings captured during pre-scan MHz dB _{IU} /m v/h Limit Margin Pk/QP/Avg degrees meters - 33.377 49.4 V 100.0 -50.6 Peak 318 1.0 - <td< th=""></td<>
Model: RS9110-N-11-22 Project Manager: Christine Kret Contact: Lukas Herzog Project Coordinator: Irene Radema Standard: FCC Part 15.247 Class: - Preliminary peak readings captured during pre-scan Class: - Preliminary peak readings captured during pre-scan MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 33.377 49.4 V 100.0 -50.6 Peak 318 1.0 37.696 39.2 V 40.0 -0.8 Peak 32 1.0 118.115 31.2 H 43.5 -12.3 Peak 267 3.0 255.230 29.5 H 46.0 -16.5 Peak 323 1.5 Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments Frequency Level Pol <
Standard: FCC Part 15.247 Class: - Preliminary peak readings captured during pre-scan Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dB μ V/m v/h Limit Margin Pk/QP/Avg degrees meters - 33.377 49.4 V 100.0 -50.6 Peak 318 1.0 - 37.696 39.2 V 40.0 -0.8 Peak 32 1.0 - 73.743 35.1 V 40.0 -4.9 Peak 192 1.5 - 118.115 31.2 H 43.5 -12.3 Peak 267 3.0 - 134.103 34.8 H 43.5 -8.7 Peak 193 2.5 - 255.230 29.5 H 46.0 -16.5 Peak 323 1.5 - Frequency Level Pol FCC 15.209
Preliminary peak readings captured during pre-scan Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 33.377 49.4 V 100.0 -50.6 Peak 318 1.0 37.696 39.2 V 40.0 -0.8 Peak 32 1.0 73.743 35.1 V 40.0 -4.9 Peak 192 1.5 118.115 31.2 H 43.5 -12.3 Peak 267 3.0 134.103 34.8 H 43.5 -8.7 Peak 193 2.5 255.230 29.5 H 46.0 -16.5 Peak 323 1.5 540.051 36.5 V 100.0 -63.5 Peak 22 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol<
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
HHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 33.377 49.4 V 100.0 -50.6 Peak 318 1.0 37.696 39.2 V 40.0 -0.8 Peak 32 1.0 73.743 35.1 V 40.0 -4.9 Peak 192 1.5 118.115 31.2 H 43.5 -12.3 Peak 267 3.0 134.103 34.8 H 43.5 -8.7 Peak 193 2.5 255.230 29.5 H 46.0 -16.5 Peak 323 1.5 540.051 36.5 V 100.0 -63.5 Peak 22 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Av
33.377 49.4 V 100.0 -50.6 Peak 318 1.0 37.696 39.2 V 40.0 -0.8 Peak 32 1.0 73.743 35.1 V 40.0 -4.9 Peak 192 1.5 118.115 31.2 H 43.5 -12.3 Peak 267 3.0 134.103 34.8 H 43.5 -8.7 Peak 193 2.5 255.230 29.5 H 46.0 -16.5 Peak 323 1.5 540.051 36.5 V 100.0 -63.5 Peak 22 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dB _µ V/m v/h Limit Margin Pk/QP/Avg degrees meters 255.230 21.9 H 46.0 -24.1 QP
37.696 39.2 V 40.0 -0.8 Peak 32 1.0 73.743 35.1 V 40.0 -4.9 Peak 192 1.5 118.115 31.2 H 43.5 -12.3 Peak 267 3.0 134.103 34.8 H 43.5 -8.7 Peak 193 2.5 255.230 29.5 H 46.0 -16.5 Peak 323 1.5 540.051 36.5 V 100.0 -63.5 Peak 22 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 255.230 21.9 H 46.0 -24.1 QP 315 1.3 QP (1.00s) 33.377 25.2 V 40.0 -14.8 QP 318 1.0 QP (1.00s), Note 1 118.115
73.743 35.1 V 40.0 -4.9 Peak 192 1.5 118.115 31.2 H 43.5 -12.3 Peak 267 3.0 134.103 34.8 H 43.5 -8.7 Peak 193 2.5 255.230 29.5 H 46.0 -16.5 Peak 323 1.5 540.051 36.5 V 100.0 -63.5 Peak 22 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 255.230 21.9 H 46.0 -24.1 QP 315 1.3 QP (1.00s) 33.377 25.2 V 40.0 -14.8 QP 318 1.0 QP (1.00s) 118.115 13.8 H 4
118.115 31.2 H 43.5 -12.3 Peak 267 3.0 134.103 34.8 H 43.5 -8.7 Peak 193 2.5 255.230 29.5 H 46.0 -16.5 Peak 323 1.5 540.051 36.5 V 100.0 -63.5 Peak 22 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 255.230 21.9 H 46.0 -24.1 QP 315 1.3 QP (1.00s) 33.377 25.2 V 40.0 -14.8 QP 318 1.0 QP (1.00s), Note 1 118.115 13.8 H 43.5 -29.7 QP 267 2.4 QP (1.00s) 134.103 18.5 H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
255.230 29.5 H 46.0 -16.5 Peak 323 1.5 540.051 36.5 V 100.0 -63.5 Peak 22 1.0 Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 255.230 21.9 H 46.0 -24.1 QP 315 1.3 QP (1.00s) 33.377 25.2 V 40.0 -14.8 QP 318 1.0 QP (1.00s), Note 1 118.115 13.8 H 43.5 -29.7 QP 267 2.4 QP (1.00s) 134.103 18.5 H 43.5 -25.0 QP 200 2.1 QP (1.00s) 73.743 32.0 V 40.0 -8.0 QP 192 1.0 QP (1.00s)
Preliminary quasi-peak readings (no manipulation of EUT interface cables) Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 255.230 21.9 H 46.0 -24.1 QP 315 1.3 QP (1.00s) 33.377 25.2 V 40.0 -14.8 QP 318 1.0 QP (1.00s), Note 1 118.115 13.8 H 43.5 -29.7 QP 267 2.4 QP (1.00s) 134.103 18.5 H 43.5 -25.0 QP 200 2.1 QP (1.00s) 73.743 32.0 V 40.0 -8.0 QP 192 1.0 QP (1.00s) 37.696 13.9 V 40.0 -26.1 QP 32 1.0 QP (1.00s)
Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 255.230 21.9 H 46.0 -24.1 QP 315 1.3 QP (1.00s) 33.377 25.2 V 40.0 -14.8 QP 318 1.0 QP (1.00s), Note 1 118.115 13.8 H 43.5 -29.7 QP 267 2.4 QP (1.00s) 134.103 18.5 H 43.5 -25.0 QP 200 2.1 QP (1.00s) 73.743 32.0 V 40.0 -8.0 QP 192 1.0 QP (1.00s) 37.696 13.9 V 40.0 -26.1 QP 32 1.0 QP (1.00s)
Frequency Level Pol FCC 15.209 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 255.230 21.9 H 46.0 -24.1 QP 315 1.3 QP (1.00s) 33.377 25.2 V 40.0 -14.8 QP 318 1.0 QP (1.00s), Note 1 118.115 13.8 H 43.5 -29.7 QP 267 2.4 QP (1.00s) 134.103 18.5 H 43.5 -25.0 QP 200 2.1 QP (1.00s) 73.743 32.0 V 40.0 -8.0 QP 192 1.0 QP (1.00s) 37.696 13.9 V 40.0 -26.1 QP 32 1.0 QP (1.00s)
MHzdBμV/mv/hLimitMarginPk/QP/Avgdegreesmeters255.23021.9H46.0-24.1QP3151.3QP (1.00s)33.37725.2V40.0-14.8QP3181.0QP (1.00s), Note 1118.11513.8H43.5-29.7QP2672.4QP (1.00s)134.10318.5H43.5-25.0QP2002.1QP (1.00s)73.74332.0V40.0-8.0QP1921.0QP (1.00s)37.69613.9V40.0-26.1QP321.0QP (1.00s)
255.230 21.9 H 46.0 -24.1 QP 315 1.3 QP (1.00s) 33.377 25.2 V 40.0 -14.8 QP 318 1.0 QP (1.00s), Note 1 118.115 13.8 H 43.5 -29.7 QP 267 2.4 QP (1.00s) 134.103 18.5 H 43.5 -25.0 QP 200 2.1 QP (1.00s) 73.743 32.0 V 40.0 -8.0 QP 192 1.0 QP (1.00s) 37.696 13.9 V 40.0 -26.1 QP 32 1.0 QP (1.00s)
33.377 25.2 V 40.0 -14.8 QP 318 1.0 QP (1.00s), Note 1 118.115 13.8 H 43.5 -29.7 QP 267 2.4 QP (1.00s) 134.103 18.5 H 43.5 -25.0 QP 200 2.1 QP (1.00s) 73.743 32.0 V 40.0 -8.0 QP 192 1.0 QP (1.00s) 37.696 13.9 V 40.0 -26.1 QP 32 1.0 QP (1.00s)
118.115 13.8 H 43.5 -29.7 QP 267 2.4 QP (1.00s) 134.103 18.5 H 43.5 -25.0 QP 200 2.1 QP (1.00s) 73.743 32.0 V 40.0 -8.0 QP 192 1.0 QP (1.00s) 37.696 13.9 V 40.0 -26.1 QP 32 1.0 QP (1.00s)
134.103 18.5 H 43.5 -25.0 QP 200 2.1 QP (1.00s) 73.743 32.0 V 40.0 -8.0 QP 192 1.0 QP (1.00s) 37.696 13.9 V 40.0 -26.1 QP 32 1.0 QP (1.00s)
73.743 32.0 V 40.0 -8.0 QP 192 1.0 QP (1.00s) 37.696 13.9 V 40.0 -26.1 QP 32 1.0 QP (1.00s)
37.696 13.9 V 40.0 -26.1 QP 32 1.0 QP (1.00s)
540.051 23.5 V 46.0 -22.5 QP 58 1.0 QP (1.00s), Note 1
Note 1: Emission in non-restricted band, but restricted limit was used.

Client:SAFEmine Technology, Inc.Job Number:J94480Model:RS9110-N-11-22T-Log Number:T94588Project Manager:Christine KrebillContact:Lukas HerzogProject Coordinator:Irene RademacherStandard:FCC Part 15.247Class:-

Run #2: Maximized Worst Case Mode Emissons From Run #1 802.11n20, 2472MHz Power setting = 37

Test Parameters for Maximized Reading(s)Frequency Range
(MHz)Test Distance
(meters)Limit Distance
(meters)Extrapolation Factor
(dB, applied to data)30 - 1000330.0

Maximized quasi-peak readings (includes manipulation of EUT interface cables)

		. oa an i go						
Frequency	Level	Pol	FCC 2	15.209	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
36.875	34.9	Н	40.0	-5.1	QP	300	2.0	QP (1.00s), Note 1
33.301	27.0	Н	40.0	-13.0	QP	300	1.0	QP (1.00s), Note 1
128.740	29.0	Н	43.5	-14.5	QP	246	1.0	QP (1.00s)
163.355	19.4	Н	43.5	-24.1	QP	141	1.0	QP (1.00s)
72.009	27.3	Н	40.0	-12.7	QP	136	1.3	QP (1.00s), Note 1
158.435	19.6	Н	43.5	-23.9	QP	131	1.3	QP (1.00s), Note 1
242.727	21.5	Н	46.0	-24.5	QP	131	1.0	QP (1.00s)
73.738	27.3	Н	40.0	-12.7	QP	96	1.4	QP (1.00s)

Note 1: Emission in non-restricted band, but restricted limit was used.

End of Report

This page is intentionally blank and marks the last page of this test report.