TEST REPORT

Report No.: CHTEW22010056

Report Verification:

Silvia Li Aaron.Fang

Project No...... SHT2112073501EW

FCC ID.....: ZKQ-PED2NG

Applicant's name: Micron Electronics LLC.

Test item description: Pendant

Trade Mark PRIME

Model/Type reference...... AIRE Mate202

Listed Model(s) -

Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.231

Date of receipt of test sample........... Dec. 28, 2021

Date of testing...... Dec. 29, 2021- Jan. 12, 2022

Date of issue....... Jan. 13, 2022

Result...... PASS

Compiled by

(Position+Printed name+Signature): File administrator Silvia Li

Supervised by

(Position+Printed name+Signature): Project Engineer Aaron Fang

Approved by

(Position+Printed name+Signature): RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Page: 1 of 27

Report No.: CHTEW22010056 Page: 2 of 27 Issued: 2022-01-13

Contents

<u> </u>	1EST STANDARDS AND REPORT VERSION	<u>ა</u>
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Radio Specification Description	5
3.4.	Testing Laboratory Information	5
<u>4.</u>	TEST CONFIGURATION	6
	To at the many services	
4.1.	Test frequency list	6
4.2.	Test mode	6
4.3.	Support unit used in test configuration and system	6 7
4.4.	Testing environmental condition	7
4.5.	Measurement uncertainty	
4.6.	Equipment Used during the Test	8
<u>5.</u>	TEST CONDITIONS AND RESULTS	10
5.1.	Antenna Requirement	10
5.2.	AC Conducted Emission	11
5.3.	20dB bandwidth	12
5.4.	99% Occupied Bandwidth	13
5.5.	Transmission Time	14
5.6.	Duty Cycle Corrected Factor	15
5.7.	Radiated field strength of the fundamental signal	16
5.8.	Radiated Spurious Emission	18
<u>6.</u>	TEST SETUP PHOTOS	22
7.	EXTERANAL AND INTERNAL PHOTOS	23
	EXTERMINE AND INTENNAL FILLION	<u> </u>

Report No.: CHTEW22010056 Page: 3 of 27 Issued: 2022-01-13

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

- FCC Rules Part 15.231(a): Periodic operation in the band 40.66–40.70 MHz and above 70 MHz.
- ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

1.2. Report version

Revision No.	Date of issue	Description
N/A	2022-01-13	Original

Report No.: CHTEW22010056 Page: 4 of 27 Issued: 2022-01-13

2. TEST DESCRIPTION

Report clause	Test Items	Standard Requirement	Result
5.1	Antenna Requirement	15.203	PASS
5.2	AC Conducted Emission	15.207	N/A
5.3	20dB Bandwidth	15.231(c)	PASS
5.4	99% Occupied Bandwidth	-	PASS*1
5.5	Transmission time	15.231(a)(1)	PASS
5.6	Duty cycle corrected factor	-	PASS*1
5.7	Field strength of the Fundamental signal	15.231(b)	PASS
5.8	Radiated Spurious Emission	15.231(b)/15.205/15.209	PASS

Note:

The measurement uncertainty is not included in the test result.

 ^{*1:} No requirement on standard, only report these test data.

Report No.: CHTEW22010056 Page: 5 of 27 Issued: 2022-01-13

3. **SUMMARY**

3.1. Client Information

Applicant:	Micron Electronics LLC.	
Address:	1001 Yamato Road, Suite 400, Boca Raton, FL 33431, USA	
Manufacturer:	Micron Electronics LLC.	
Address:	1001 Yamato Road, Suite 400, Boca Raton, FL 33431, USA	

3.2. Product Description

Name of EUT:	Pendant
Trade Mark:	PRIME
Model No.:	AIRE Mate202
Listed Model(s):	-
Power supply:	DC 3V
Hardware version:	PD002_v2
Software version:	PD002v01_01b07_FCC_CERT

3.3. Radio Specification Description

Operation frequency:	433.92MHz
Modulation:	ООК
Channel number:	1
Antenna type:	FPC
Antenna gain:	-2.5dBi

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.		
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		
Connect information:	Phone: 86-755-26715499 E-mail: cs@szhtw.com.cn http://www.szhtw.com.cn		
Qualifications	Туре	Accreditation Number	
Qualifications	FCC	762235	

Report No.: CHTEW22010056 Page: 6 of 27 Issued: 2022-01-13

4. TEST CONFIGURATION

4.1. Test frequency list

According to section ANSI C63.10 section 5.6.1,

Measurements of unlicensed wireless devices shall be performed and, if required, reported for each band in which the EUT can be operated with the device operating at the number of frequencies in each band specified in Table 4

Table 4—Number of frequencies to be tested

Frequency range in which device operates	Number of frequencies	Location in frequency range of operation
1 MHz or less	1	Middle
1 MHz to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom

So test frequency as follow:

Channel	Frequency (MHz)
CH _M	433.92

4.2. Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit.

The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

4.3. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Wheth	Whether support unit is used?				
✓	✓ No				
Item	Equipement	Trade Name	Model No.	FCC ID	Power cord
1					
2					

Report No.: CHTEW22010056 Page: 7 of 27 Issued: 2022-01-13

4.4. Testing environmental condition

Туре	Requirement	Actual
Temperature:	15~35°C	25°C
Relative Humidity:	25~75%	50%
Air Pressure:	860~1060mbar	1000mbar

4.5. Measurement uncertainty

Test Item	Measurement Uncertainty
AC Conducted Emission (150kHz~30MHz)	3.00 dB
Radiated Emission (30MHz~1000MHz	4.36 dB
Radiated Emissions (1GHz~25GHz)	5.10 dB
Peak Output Power	0.77dB
Power Spectral Density	0.77dB
Conducted Spurious Emission	0.77dB
6dB Bandwidth	70Hz for <1GHz 130Hz for >1GHz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: CHTEW22010056 Page: 8 of 27 Issued: 2022-01-13

4.6. Equipment Used during the Test

•	Conducted Emission						
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Shielded Room	Albatross projects	HTWE0114	N/A	N/A	2021/9/13	2022/9/12
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2021/9/13	2022/9/12
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2021/9/13	2022/9/12
•	Pulse Limiter	R&S	HTWE0033	ESH3-Z2	100499	2021/9/13	2022/9/12
•	RF Connection Cable	HUBER+SUHNER	HTWE0113-02	ENVIROFLE X_142	EF-NM- BNCM-2M	2021/9/13	2022/9/12
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

•	Radiated emission-6th test site						
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2022/09/29
•	EMI Test Receiver	R&S	HTWE0099	ESCI	100900	2021/9/14	2022/9/13
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2021/04/06	2022/04/05
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0123	VULB9163	538	2021/04/06	2022/04/05
•	Pre-Amplifer	SCHWARZBECK	HTWE0295	BBV 9742	N/A	2021/11/5	2022/11/4
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-01	N/A	N/A	2021/02/26	2022/02/25
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-02	SUCOFLEX104	501184/4	2021/02/26	2022/02/25
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

•	Radiated emission-7th test site						
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/27	2022/09/26
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2021/9/13	2022/9/12
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2020/04/01	2023/03/31
•	Broadband Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	BBHA9170472	2020/4/27	2023/4/27
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2021/11/5	2022/11/4
•	Broadband Pre- amplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2021/03/05	2022/03/04
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-01	6m 18GHz S Serisa	N/A	2021/02/26	2022/02/25
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-02	6m 3GHz RG Serisa	N/A	2021/02/26	2022/02/25
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-03	6m 3GHz RG Serisa	N/A	2021/02/26	2022/02/25
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-04	6m 3GHz RG Serisa	N/A	2021/02/26	2022/02/25
•	RF Connection Cable	HUBER+SUHNER	HTWE0121-01	6m 18GHz S Serisa	N/A	2021/02/26	2022/02/25
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A

Report No.: CHTEW22010056 Page: 9 of 27 Issued: 2022-01-13

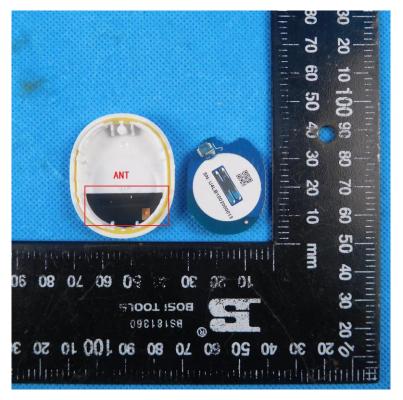
•	RF Conducted Method					
Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Signal and spectrum Analyzer	R&S	FSV40	100048	2021/9/13	2022/9/12
•	Spectrum Analyzer	Agilent	N9020A	MY50510187	2021/9/13	2022/9/12
•	Power Meter	Anritsu	ML249A	N/A	2021/9/13	2022/9/12
0	Radio communication tester	R&S	CMW500	137688-Lv	2021/9/13	2022/9/12

Report No.: CHTEW22010056 Page: 10 of 27 Issued: 2022-01-13

5. TEST CONDITIONS AND RESULTS

5.1. Antenna Requirement

Requirement


FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responseble party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

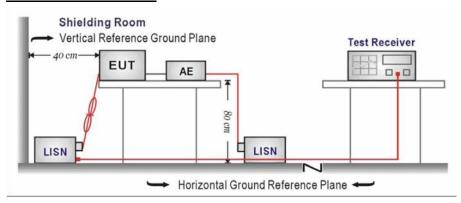
TEST RESULT

⊠ Passed	☐ Not Applicable
<u> </u>	

The antenna type is a FPC antenna, the directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

Report No.: CHTEW22010056 Page: 11 of 27 Issued: 2022-01-13

5.2. AC Conducted Emission


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

Fragues ou range (MHz)	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

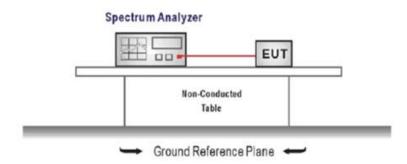
- 1. The EUT was setup according to ANSI C63.10 requirements.
- The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please refer to the clause 4.2

TEST RESULT

 Report No.: CHTEW22010056 Page: 12 of 27 Issued: 2022-01-13


5.3. 20dB bandwidth

LIMIT

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900 MHz.

For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency = channel center frequency

Span= approximately 2 to 3 times the 20 dB bandwidth

RBW = 100 kHz, VBW ≥ 3 × RBW

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

- Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

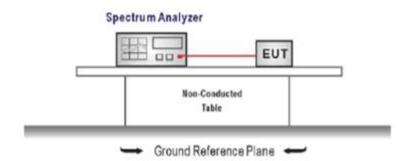
TEST MODE:

Please refer to the clause 4.2

TEST RESULT

TEST Data

Please refer to appendix A on the appendix report


Report No.: CHTEW22010056 Page: 13 of 27 Issued: 2022-01-13

5.4. 99% Occupied Bandwidth

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output andthe spectrum analyzer).

Center Frequency =channel center frequency

Span≥1.5 x OBW

RBW = 1%~5%OBW

VBW ≥ 3 × RBW

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.

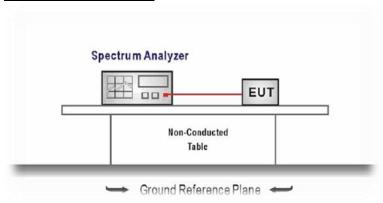
TEST MODE:

Please refer to the clause 4.2

TEST RESULT

TEST Data

Please refer to appendix B on the appendix report


Report No.: CHTEW22010056 Page: 14 of 27 Issued: 2022-01-13

5.5. Transmission Time

LIMIT

A manually operated transmitter shall employ a switch that will auto-matically deactivate the transmitter within not more than 5 seconds of being released.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:

Frequency=Center carrier frequency

RBW=100kHz, VBW=300kHz, Span= zero,

Sweep time= 10second, Detector function = peak, Trace = single

4. Measure and record the results in the test report.

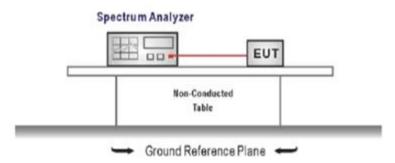
TEST MODE:

Please refer to the clause 4.2

TEST RESULTS

TEST Data

Please refer to appendix C on the appendix report


Report No.: CHTEW22010056 Page: 15 of 27 Issued: 2022-01-13

5.6. Duty Cycle Corrected Factor

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:

Span=zero span, Frequency=centered channel, RBW= 1MHz, VBW \geq RBW

Sweep time=as necessary to capture the entire dwell time,

Detector function = peak, Trigger mode

4. Measure and record the duty cycle data

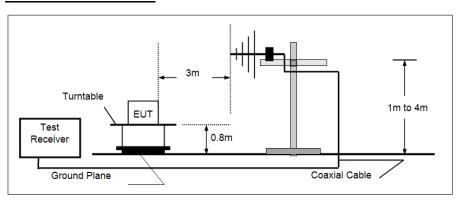
TEST MODE:

Please refer to the clause 4.2

TEST Data

Please refer to appendix D on the appendix report

Report No.: CHTEW22010056 Page: 16 of 27 Issued: 2022-01-13


5.7. Radiated field strength of the fundamental signal

LIMIT

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

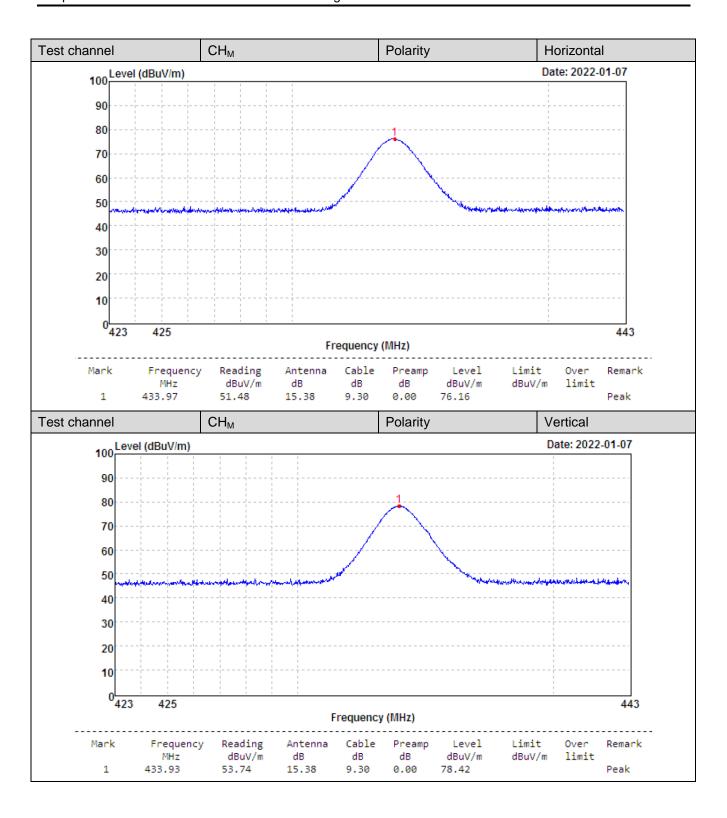
¹Linear interpolations.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1GHz, The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - a) Span shall wide enough to fully capture the emission being measured;
 - b) RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

TEST MODE:


Please refer to the clause 4.2

TEST RESULTS

Note:

- Level= Reading + Factor; Factor = Antenna Factor + Cable Loss- Preamp Factor
- 2) Over Limit = Level Limit

Report No.: CHTEW22010056 Page: 17 of 27 Issued: 2022-01-13

Report No.: CHTEW22010056 Page: 18 of 27 Issued: 2022-01-13

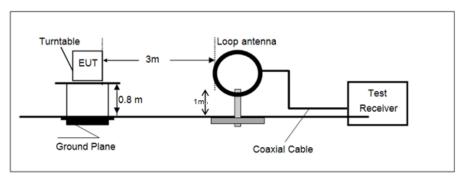
5.8. Radiated Spurious Emission

LIMIT

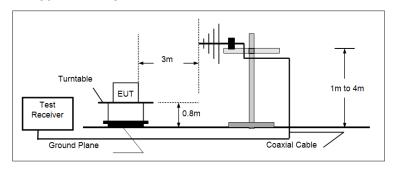
FCC CFR Title 47 Part 15 Subpart C Section 15.231(b)

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

FCC CFR Title 47 Part 15 Subpart C Section 15.209

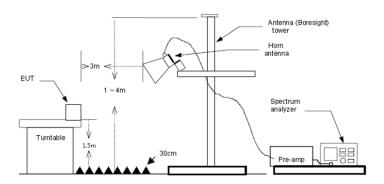

Frequency	Limit (dBuV/m)	Value
0.009 MHz ~0.49 MHz	2400/F(kHz) @300m	Quasi-peak
0.49 MHz ~ 1.705 MHz	24000/F(kHz) @30m	Quasi-peak
1.705 MHz ~30 MHz	30 @30m	Quasi-peak

Note: Limit dBuV/m @3m = Limit dBuV/m @300m + 40*log(300/3)= Limit dBuV/m @300m +80, Limit dBuV/m @3m = Limit dBuV/m @30m +40*log(30/3)= Limit dBuV/m @30m + 40.


Frequency	Limit (dBuV/m @3m)	Value
30MHz~88MHz	40.00	Quasi-peak
88MHz~216MHz	43.50	Quasi-peak
216MHz~960MHz	46.00	Quasi-peak
960MHz~1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
Above IGHZ	74.00	Peak

TEST CONFIGURATION

9 kHz ~ 30 MHz



30 MHz ~ 1 GHz

Above 1 GHz

Report No.: CHTEW22010056 Page: 19 of 27 Issued: 2022-01-13

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings
 - a) Span shall wide enough to fully capture the emission being measured;
 - b) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

 c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

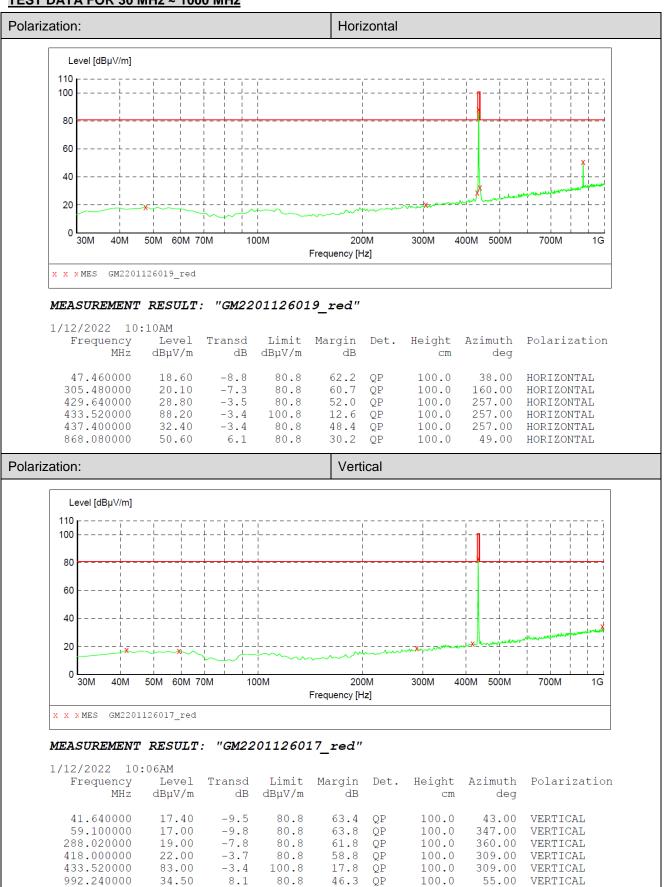
Average level = Peak level - DCCF

TEST MODE:

Please refer to the clause 4.2

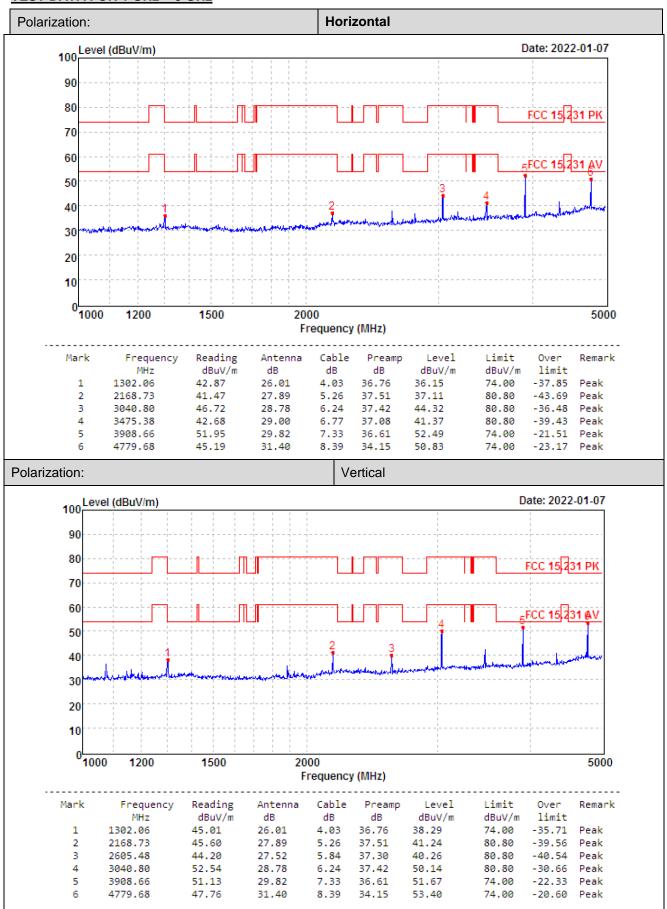
TEST RESULT

Note:


- Level= Reading + Factor/Transd; Factor/Transd = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Margin = Limit Level
- Over Limit = Level Limit

TEST DATA FOR 9 kHz ~ 30 MHz

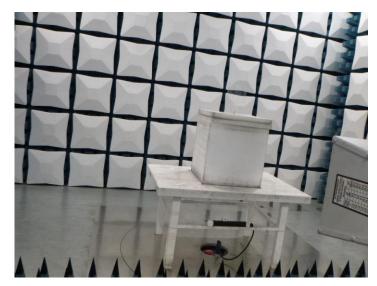
The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.

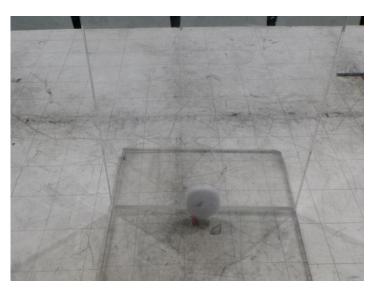

Report No.: CHTEW22010056 Page: 20 of 27 Issued: 2022-01-13

TEST DATA FOR 30 MHz ~ 1000 MHz

Report No.: CHTEW22010056 Page: 21 of 27 Issued: 2022-01-13

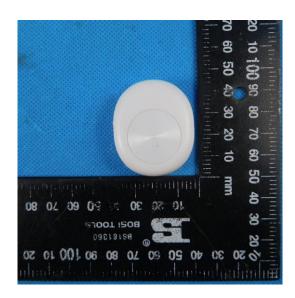
TEST DATA FOR 1 GHz ~ 5 GHz

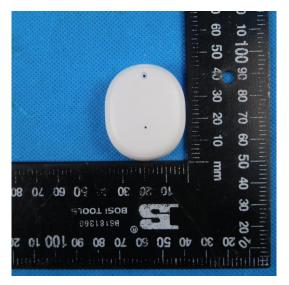



Report No.: CHTEW22010056 Page: 22 of 27 Issued: 2022-01-13

6. TEST SETUP PHOTOS

Radiated Emission





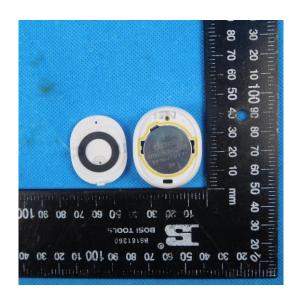

Report No.: CHTEW22010056 Page: 23 of 27 Issued: 2022-01-13

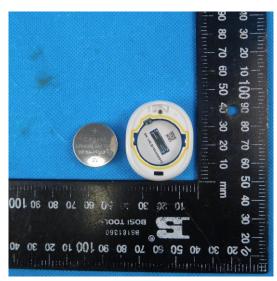
7. EXTERANAL AND INTERNAL PHOTOS

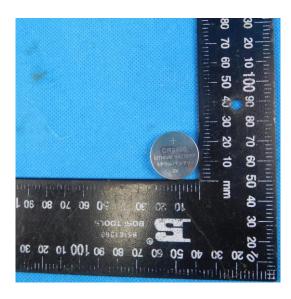
EXTERANAL PHOTOS



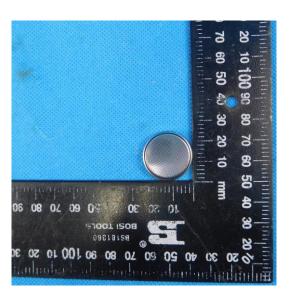
Report No.: CHTEW22010056 Page: 24 of 27 Issued: 2022-01-13

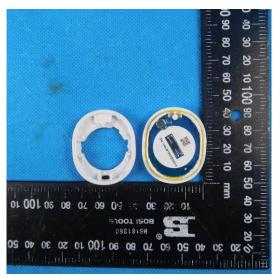


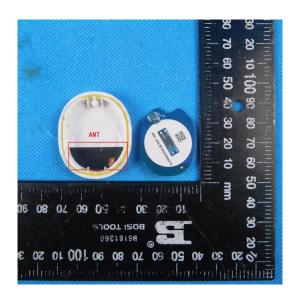


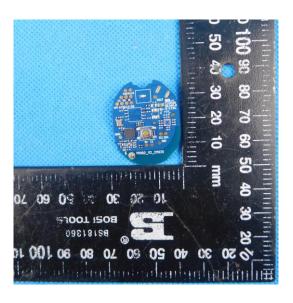


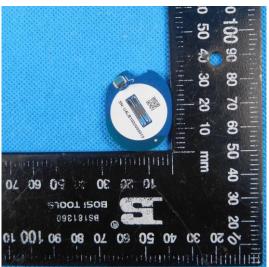
Report No.: CHTEW22010056 Page: 25 of 27 Issued: 2022-01-13

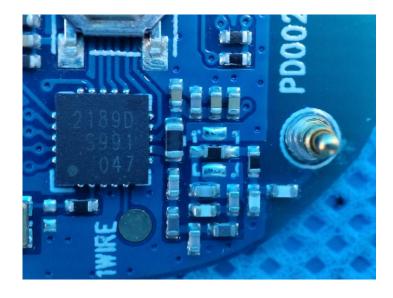

INTERNAL PHOTOS






Report No.: CHTEW22010056 Page: 26 of 27 Issued: 2022-01-13





Report No.: CHTEW22010056 Page: 27 of 27 Issued: 2022-01-13

-----End of Report-----