

Full

SAR TEST REPORT

No. ECIT-2013-0076-FCC-SAR

For

Client: Micron Electronics LLC

Production: 3G GPS tracker

Model Name: VL3000

Hardware Version: VL3000 V1.02

Software Version: VL3000B01V03

Issued date: 2013-8-13

FCC ID: ZKQ-0508201300001

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of ECIT Shanghai.

Test Laboratory:

ECIT Shanghai, East China Institute of Telecommunications

Add: 7F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China

Tel: (+86)-021-63843300, E-Mail: welcome@ecit.org.cn

Revision Version

Report Number	Revision	Date	Memo	
I13GW6847-FCC-SAR	00	2013/8/13	Initial creation of test report	

East China Institute of Telecommunications ECIT-2013-0076-FCC-SAR

CONTENTS

1 lest Laboratory	ວ
1.1 Testing Location	5
1.2 Testing Environment	5
1.3 Project Data	5
1.4 Signature	5
2 Statement of Compliance	6
3 Client Information	7
3.1 Applicant Information	7
3.2 Manufacturer Information	7
4 Equipment Under Test (EUT) and Ancillary Equipment (AE)	8
4.1 About EUT	8
4.2 Internal Identification of EUT used during the test	9
4.3 Internal Identification of AE used during the test	9
5 TEST METHODOLOGY	10
5.1 Applicable Limit Regulations	10
5.2 Applicable Measurement Standards	10
6 Specific Absorption Rate (SAR)	11
6.1 Introduction	11
6.2 SAR Definition	11
7 Tissue Simulating Liquids	12
7.1 Targets for tissue simulating liquid	12
7.2 Dielectric Performance	12
8 System verification	14
8.1 System Setup	14
8.2 System Verification	15
9 Measurement Procedures	17
9.1 Tests to be performed	17
9.2 General Measurement Procedure	18
9.3 WCDMA Measurement Procedures for SAR	19
9.4 Bluetooth & Wi-Fi Measurement Procedures for SAR	20
9.5 Power Drift	

10.1 Manufacturing tolerance	22
10.2 GSM Measurement result	26
10.3 WCDMA Measurement result	28
11 SAR Test Result	29
12 SAR Measurement Variability	31
13 Measurement Uncertainty	33
14 Main Test Instrument	35
ANNEX A GRAPH RESULTS	36
ANNEX B SYSTEM VALIDATION RESULTS	73
ANNEX C SAR Measurement Setup	75
C.1 Measurement Set-up	75
C.2 DASY5 E-field Probe System	76
C.3 E-field Probe Calibration	76
C.4 Other Test Equipment	77
C.4.1 Data Acquisition Electronics(DAE)	77
C.4.2 Robot	78
C.4.3 Measurement Server	79
C.4.4 Device Holder for Phantom	79
C.4.5 Phantom	80
ANNEX D Position of the wireless device in relation to the phantom	81
D.1 General considerations	81
D.2 Body-worn device	82
D.3 Desktop device	82
D.4 DUT Setup Photos	84
ANNEX E Equivalent Media Recipes	85
ANNEX F System Validation	86
ANNEX G Probe and DAE Calibration Certificate	87
ANNEX H Dipole Calibration Certificate	101

1 Test Laboratory

1.1 Testing Location

Company Name: ECIT Shanghai, East China Institute of Telecommunications

Address: 7F, G Area, No. 668, Beijing East Road, Huangpu District, Shanghai,

P. R. China

Postal Code: 200001

Telephone: 00862163843300 Fax: 00862163843301

1.2 Testing Environment

Normal Temperature: $15-35^{\circ}$ C Relative Humidity: 20-75%

Ambient noise & Reflection: < 0.012 W/kg

1.3 Project Data

Project Leader: Liu Jianquan
Testing Start Date: Aug 9, 2013
Testing End Date: Aug 10, 2013

1.4 Signature

Gong Yujuan

(Testing engineer)

Yu Naiping

(Reviewed this test report)

Zheng Zhongbin

Director of the laboratory

(Approved this test report)

East China Institute of Telecommunications

2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for VL3000 are as follows (with expanded uncertainty 22.4%)

Table 2.1: Max. Reported SAR (1g)

Band	Position	Reported SAR 1g (W/Kg)		
GSM 850	Body	0.648		
GSM 1900	Body	0.325		
WCDMA 850	Body	1.176		
WCDMA 1900	Body	0.781		

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The measurement together with the test system set-up is described in chapter 7 of this test report. A detailed description of the equipment under test can be found in chapter 3 of this test report. The maximum reported SAR value is obtained at the case of **(Table 2.1)**, and the values are: **1.176W/kg (1g)**.

3 Client Information

3.1 Applicant Information

Company Name: Micron Electronics LLC

Address /Post: 601 N. Congress Ave, Suite 439 Florida, USA

City: Florida Country: USA

Telephone: 561-450-5022 Contact: Michael Xu

3.2 Manufacturer Information

Address /Post:

Company Name: Shanghai SIMCOM LTD.,

Building A, SIM Technology Building, No. 633 Jinzhong Road,

Changning District, Shanghai, China

City: Shanghai Country: China

Telephone: +86 21 32523134 Contact: Yongsheng.li

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Description: 3G GPS tracker

Model name: VL3000

Operation Model(s): GSM835/1900,WCDMA1900/850

Tx Frequency: 824.2-848.8, 1850.2-1909.8MHz (GSM)

1852.4-1907.6 MHz, 826.4-846.6MHz (WCDMA)

Test device Production information: Production unit

GPRS Class Mode: B
GPRS Multislot Class: 12

Device type: Portable device

Antenna type: Inner antenna

Form factor: 7.5cm×4.2cm

FCC ID: ZKQ-0508201300001

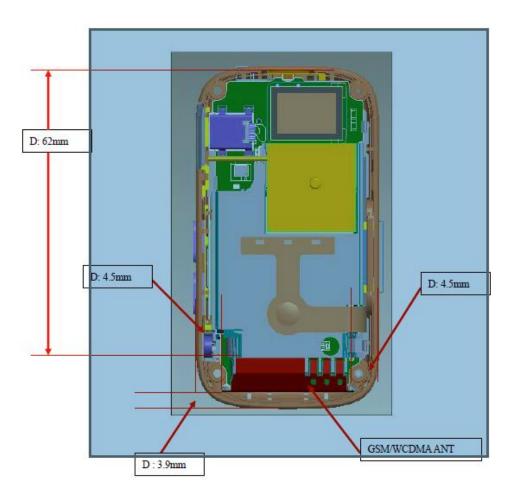


Figure: Antenna Location

East China Institute of Telecommunications ECIT-2013-0076-FCC-SAR

4.2 Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version:		
N13	IMEI:012813000559056	VL3000_V1.02	VL3000B01V03		

^{*}EUT ID: is used to identify the test sample in the lab internally.

4.3 Internal Identification of AE used during the test

AE ID*	Description Model		SN	Manufacturer
AE1	Battery	N/A	N/A	N/A
AE2	Headset	N/A	N/A	N/A

^{*}AE ID: is used to identify the test sample in the lab internally.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IC RSS-102 ISSUE4: Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

OET Bulletin 65 (Edition 97-01) and Supplement C(Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits.

KDB941225 D02 HSPA and 1x Advanced v02r02: SAR Guidance for HSPA, HSPA+, DC-HSDPA and 1x-Advanced

KDB447498 D01 General RF Exposure Guidance v05: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB865664 D01 SAR Measurement 100 MHz to 6 GHz v01r01: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB941225 D01 SAR test for 3G devides v02: Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE.

KDB941225 D03 SAR test Redution GSM GPRS EDGE v01: Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE.

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ) . The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

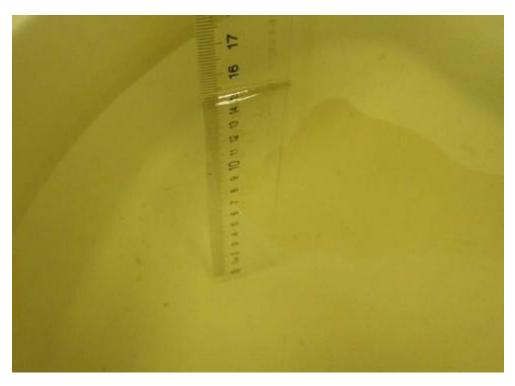
Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

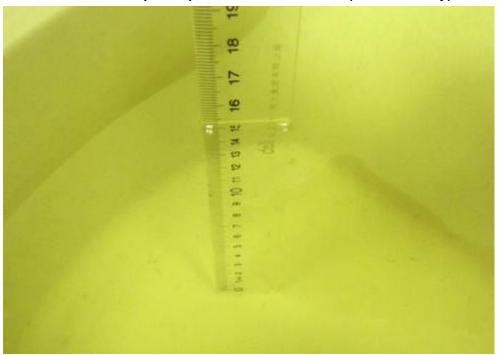
7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid

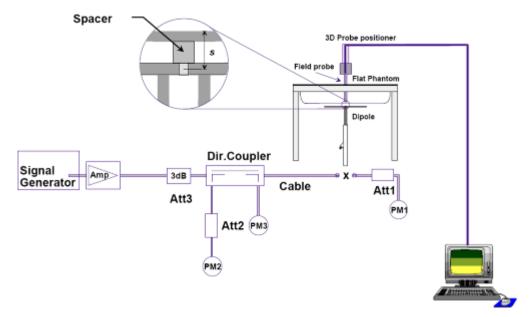

Frequency (MHz)	Liquid Type	Conductivity (σ)	± 5% Range	Permittivity (ε)	± 5% Range
835	Body	0.97	0.92~1.02	55.2	52.4~58.0
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0

7.2 Dielectric Performance


Table 7.2: Dielectric Performance of Tissue Simulating Liquid

rabio riel Biolognio i errormanos er riesas emianamig elquia									
Measurement Date: 835 MHz Body <u>Aug 9, 2013</u> 1900 MHz Body <u>Aug 10, 2013</u>									
/ Ту		Frequency	Permittivity ε	Drift (%)	Conductivity σ (S/m)	Drift (%)			
Measurement	Body	835 MHz	55.15	0.09%	0.9989	2.97%			
value	Body	1900 MHz	53.24	0.11%	1.524	0.26%			

Picture 7-1: Liquid depth in the Flat Phantom (835 MHz Body)



Picture 7-2: Liquid depth in the Flat Phantom (1900 MHz Body)

8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

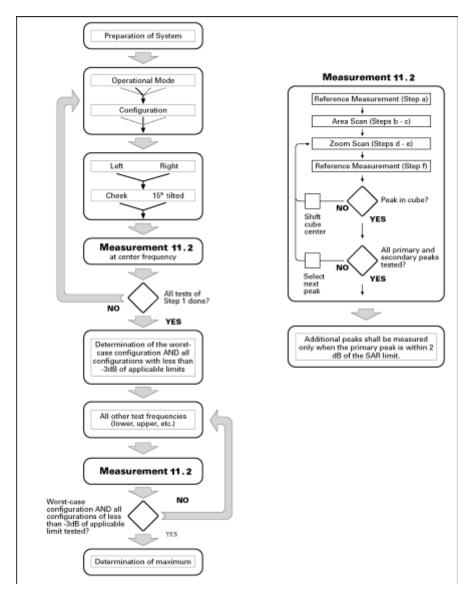
Table 8.1: System Verification of Body

Measurement Date: 835 MHz Body Aug 9, 2013 1900 MHz Body Aug 10, 2013										
Input power level: 250mW										
		Target val	ue (W/kg)	Measured v	alue (W/kg)	Devia	Deviation			
Varification	Frequency	10 g	1 g	10 g	1 g	10 g	1 g			
Verification results		Average	Average	Average	Average	Average	Average			
resuits	835 MHz	6.29	9.50	6.60	10.12	4.93%	6.53%			
	1900 MHz	21.2	40.3	21.88	41.6	3.20%	3.22%			

9 Measurement Procedures

9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in Picture 11.1. Step 1: The tests described in 11.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:


- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in Chapter 8),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., N_c > 3), then all

frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 11.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 9.1 Block diagram of the tests to be performed

9.2 General Measurement Procedure

The following procedure shall be performed for each of the test conditions (see Picture 11.1) described in 11.1:

- a) Measure the local SAR at a test point within 8 mm or less in the normal direction from the inner surface of the phantom.
- b) Measure the two-dimensional SAR distribution within the phantom (area scan procedure). The boundary of the measurement area shall not be closer than 20 mm from the phantom side walls. The distance between the measurement points should enable the detection of the location of local maximum with an accuracy of better than half the linear dimension of the tissue cube after interpolation. A maximum grip spacing of 20 mm for frequencies below 3 GHz and (60/f [GHz]) mm for frequencies of 3GHz and greater is recommended. The maximum distance between the

geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and δ In(2)/2 mm for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and In(x) is the natural logarithm. The maximum variation of the sensor-phantom surface shall be ± 1 mm for frequencies below 3 GHz and ± 0.5 mm for frequencies of 3 GHz and greater. At all measurement points the angle of the probe with respect to the line normal to the surface should be less than 5°. If this cannot be achieved for a measurement distance to the phantom inner surface shorter than the probe diameter, additional uncertainty evaluation is needed.

- From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that are not within the zoom-scan volume; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR limit. This is consistent with the 2 dB threshold already stated; d) Measure the three-dimensional SAR distribution at the local maxima locations identified in step c). The horizontal grid step shall be (24/f[GHz]) mm or less but not more than 8 mm. The minimum zoom size of 30 mm by 30 mm and 30 mm for frequencies below 3 GHz. For higher frequencies, the minimum zoom size of 22 mm by 22 mm and 22 mm. The grip step in the vertical direction shall be (8-f[GHz]) mm or less but not more than 5 mm, if uniform spacing is used. If variable spacing is used in the vertical direction, the maximum spacing between the two closest measured points to the phantom shell shall be (12 / f[GHz]) mm or less but not more than 4 mm, and the spacing between father points shall increase by an incremental factor not exceeding 1.5. When variable spacing is used, extrapolation routines shall be tested with the same spacing as used in measurements. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and δ In(2)/2 mm for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and $\ln(x)$ is the natural logarithm. Separate grids shall be centered on each of the local SAR maxima found in step c). Uncertainties due to field distortion between the media boundary and the dielectric enclosure of the probe should also be minimized, which is achieved is the distance between the phantom surface and physical tip of the probe is larger than probe tip diameter. Other methods may utilize correction procedures for these boundary effects that enable high precision measurements closer than half the probe diameter. For all measurement points, the angle of the probe with respect to the flat phantom surface shall be less than 5° . If this cannot be achieved an additional uncertainty evaluation is needed.
- e) Use post processing(e.g. interpolation and extrapolation) procedures to determine the local SAR values at the spatial resolution needed for mass averaging.

9.3 WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA)

modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

For Release 5 HSDPA Data Devices:

Sub-test	$oldsymbol{eta}_c$	$oldsymbol{eta}_d$	β_d (SF)	β_c/β_d	$oldsymbol{eta}_{hs}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1. 0
3	15/15	8/15	64	15/8	30/15	1. 5
4	15/15	4/15	64	15/4	30/15	1. 5

For Release 6 HSDPA Data Devices

Sub-	$oldsymbol{eta}_c$	$oldsymbol{eta_d}$	eta_d	$oldsymbol{eta_c}$ / $oldsymbol{eta_d}$	$oldsymbol{eta_{hs}}$	$oldsymbol{eta}_{ec}$	$oldsymbol{eta}_{ed}$	$oldsymbol{eta_{ed}}$ (SF)	$eta_{\it ed}$ (codes)	CM (dB)	MPR (dB)	AG Index	E-TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	eta_{ed1} :47/15 eta_{ed2} :47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	3.0	2.0	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1.0	0.0	21	81

9.4 Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each

SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.5 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 14.2 to Table 14.11 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Conducted Output Power

10.1 Manufacturing tolerance

Table 10.1: GSM Speech

GSM 835									
Channel	Channel 251	Channel 190	Channel 128						
Target (dBm)	32.0	32.0	32.0						
Tolerance \pm (dB)	1.0	1.0	1.0						
	GSM	1 1900							
Channel	Channel 810	Channel 661	Channel 512						
Target (dBm)	29.0	29.0	29.0						
Tolerance ±(dB)	1.0	1.0	1.0						

Table 10.2: GPRS (GMSK Modulation)

GSM 850 GPRS						
	Channel	251	190	128		
1 Txslots	Target (dBm)	32.0	32.0	32.0		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance \pm (dB)	1.0	1.0	1.0		
2 Txslots	Target (dBm)	31.0	31.0	31.0		
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance \pm (dB)	1.0	1.0	1.0		
3 Txslots	Target (dBm)	30.0	30.0	30.0		
3 1 X S 10 L S	Tolerance \pm (dB)	1.0	1.0	1.0		
4 Txslots	Target (dBm)	28.0	28.0	28.0		
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance \pm (dB)	1.0	1.0	1.0		
		GSM 1900 GPRS	6			
	Channel	810	661	512		
1 Txslots	Target (dBm)	30.0	30.0	30.0		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance \pm (dB)	1.0	1.0	1.0		
2 Txslots	Target (dBm)	28.0	190 1 32.0 33 1.0 1 31.0 3 1.0 1 30.0 30 1.0 1 28.0 20 1.0 1 GPRS 661 5 30.0 30 1.0 1 28.0 20 1.0 1 27.0 1 27.0 22 1.0 1	28.0		
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance \pm (dB)	1.0	1.0	1.0		
3 Txslots	Target (dBm)	27.0	27.0	27.0		
3 1 721012	Tolerance \pm (dB)	1.0	2.0 32.0 32.0 32.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	1.0		
4 Txslots	Target (dBm)	25.0	25.0	25.0		
4 1 3 5 10 15	Tolerance \pm (dB)	1.0	1.0	1.0		

	Table 10.3: E-GPRS (GMSK Modulation)									
	GSM 850 E-GPRS									
	Channel 251 190 128									
1 Txslots	Target (dBm)	32.0	32.0	32.0						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance \pm (dB)	1.0	1.0	1.0						
2 Txslots	Target (dBm)	30.0	30.0	30.0						
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance \pm (dB)	1.0	1.0	1.0						
3 Txslots	Target (dBm)	28.0	28.0	28.0						
3 1 X 510 15	Tolerance \pm (dB)	1.0	1.0	1.0						
4 Txslots	Target (dBm)	27.0	27.0	27.0						
4 1 3 5 10 15	Tolerance \pm (dB)	1.0	1.0	1.0						
		GSM 1900 E-GPR	RS							
	Channel	810	661	512						
1 Txslots	Target (dBm)	30.0	30.0	30.0						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance \pm (dB)	1.0	1.0	1.0						
2 Txslots	Target (dBm)	28.0	28.0	28.0						
2 1 X 510 (5	Tolerance \pm (dB)	1.0	1.0	1.0						
3 Txslots	Target (dBm)	26.0	26.0	26.0						
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance \pm (dB)	32.0 B) 1.0 1.0 30.0 B) 1.0 1.0 28.0 B) 1.0 28.0 B) 1.0 27.0 COMB 1.0 COMB	1.0							
4 Txslots	Target (dBm)	25.0	25.0	25.0						
4 1 351015	Tolerance \pm (dB)	1.0	1.0	1.0						

Table 10.4: E-GPRS (8PSK Modulation)

	Table I	0.4. E-GFR3 (8F3R)	wiodulation)					
GSM 850 E-GPRS								
Channel 251 190 128								
4 Tuelete	Target (dBm)	26.0	26.0	26.0				
1 Txslots	Tolerance \pm (dB)	1.0	1.0	1.0				
2 Typloto	Target (dBm)	25.0	25.0	25.0				
2 Txslots	Tolerance \pm (dB)	1.0	1.0	1.0				
2 Typloto	Target (dBm)	23.0	23.0	23.0				
3 Txslots	Tolerance \pm (dB)	1.0	1.0	1.0				
4 Typloto	Target (dBm)	22.0	22.0	22.0				
4 Txslots	Tolerance \pm (dB)	1.0	1.0	1.0				
		GSM 1900 E-GPR	S					
	Channel	810	661	512				
1 Typloto	Target (dBm)	26.0	26.0	26.0				
1 Txslots	Tolerance \pm (dB)	1.0	1.0	1.0				
O Typloto	Target (dBm)	25.0	25.0	25.0				
2 Txslots	Tolerance \pm (dB)	1.0	1.0	1.0				
2 Typloto	Target (dBm)	24.0	24.0	24.0				
3 Txslots	Tolerance \pm (dB)	1.0	1.0	1.0				
4 Typloto	Target (dBm)	23.0	23.0	23.0				
4 Txslots	Tolerance \pm (dB)	1.0	1.0	1.0				

Table 10.5: WCDMA

	WCDMA 850 CS										
Channel	Channel Channel 4132 Channel 4182 Channel 4233										
Target (dBm)	22.5	22.5	22.5								
Tolerance ±(dB)	1.0	1.0	1.0								
	WCDMA	1900 CS									
Channel	Channel 9262	Channel 9400	Channel 9538								
Target (dBm)	22.0	22.0	22.0								
Tolerance \pm (dB)	1.0	1.0	1.0								

Table 10.6: HSDPA

		Table 10.6: HSDP	^						
	WCDMA 850								
Channel 4132 4182 4233									
4	Target (dBm)	21.5	21.5	21.5					
1	Tolerance ±(dB)	1.0	1.0	1.0					
2	Target (dBm)	22.0	22.0	22.0					
	Tolerance ±(dB)	1.0	1.0	1.0					
3	Target (dBm)	20.5	20.5	20.5					
3	Tolerance ±(dB)	1.0	1.0	1.0					
4	Target (dBm)	21.0	21.0	21.0					
4	Tolerance \pm (dB)	1.0	1.0	1.0					
		WCDMA 1900							
	Channel	9262	9400	9538					
1	Target (dBm)	21.0	21.0	21.0					
Į.	Tolerance \pm (dB)	1.0	1.0	1.0					
2	Target (dBm)	21.0	21.0	21.0					
2	Tolerance \pm (dB)	1.0	1.0	1.0					
2	Target (dBm)	21.0	21.0	21.0					
1 2 3	Tolerance ±(dB)	1.0	1.0	1.0					
4	Target (dBm)	21.0	21.0	21.0					
4	Tolerance \pm (dB)	1.0	1.0	1.0					

10.2 GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

Table 11.1: The conducted power measurement results for GSM850/1900

GSM 835MHZ	Conducted Power (dBm)						
	Channel 251(848.8MHz)	Channel 190(836.6MHz)	Channel 128(824.2MHz)				
	32.6	32.5	32.6				
CCM		Conducted Power (dBm)					
GSM 1900MHZ	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)				
I SOUMINZ	29.8	29.9	29.8				

Table 11.2: The conducted power measurement results for GPRS and EGPRS

GSM 850	Measi	ured Power	(dBm)	calculation	Avera	Averaged Power (dBm)		
GPRS (GMSK)	251	190	128		251	190	128	
1 Txslot	32.61	32.40	32.60	-9.03dB	23.58	23.37	23.57	
2 Txslots	31.38	31.77	31.27	-6.02dB	25.36	25.76	25.25	
3Txslots	29.97	30.19	29.94	-4.26dB	25.71	25.93	25.68	
4 Txslots	28.89	28.92	28.82	-3.01dB	25.88	25.91	25.81	
GSM 850	Measi	ured Power	(dBm)	calculation	Avera	ged Power	(dBm)	
E-GPRS (GMSK)	251	190	128		251	190	128	
1 Txslot	32.62	32.34	32.65	-9.03dB	23.59	23.31	23.62	
2 Txslots	30.12	30.03	30.06	-6.02dB	24.00	24.01	24.04	
3Txslots	28.56	28.42	28.37	-4.26dB	24.30	24.16	24.11	
4 Txslots	27.45	27.42	27.44	-3.01dB	24.43	24.41	24.43	
PCS1900	Measi	ured Power	(dBm)	calculation	Avera	ged Power	(dBm)	
GPRS (GMSK)	810	661	512		810	661	512	
1 Txslot	30.10	30.20	30.10	-9.03dB	21.07	21.17	21.07	
2 Txslots	28.62	28.67	28.53	-6.02dB	22.60	22.65	22.51	
3Txslots	26.95	26.99	26.88	-4.26dB	22.69	22.73	22.62	
4 Txslots	25.97	25.99	25.93	-3.01dB	22.96	22.98	22.92	
PCS1900	Measi	ured Power	(dBm)	calculation	Avera	ged Power	(dBm)	
E-GPRS (GMSK)	810	661	512		810	661	512	
1 Txslot	30.00	30.10	30.00	-9.03dB	20.97	21.07	20.97	
2 Txslots	28.44	28.46	28.33	-6.02dB	22.58	22.44	22.31	
3Txslots	26.64	26.66	26.69	-4.26dB	22.37	22.40	22.33	
4 Txslots	25.88	25.95	25.79	-3.01dB	22.87	22.94	22.78	
. TXOICIO								

NOTES:

East China Institute of Telecommunications ECIT-2013-0076-FCC-SAR

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 4Txslots for GSM850 and GSM1900.

10.3 WCDMA Measurement result

Table 11.3: The conducted power for WCDMA850/1900

	band		FDDV result(dBm)		
Item	ARFCN	ARFCN 4233		4132		
WCDMA	RMC	(846.6MHz) 23.21	4182 (836.4MHz) 22.66 22.29 21.91 20.60 21.10 FDDII result(dBn	(826.4MHz) 23.06		
WCDIVIA	_					
	1	22.37	22.29	22.40		
Перву	2	22.88	21.91	21.92		
HSDPA	3	20.67	20.60	20.71		
	4	21.16	21.10	21.12		
	band	FDDII result(dBm)				
Item	ADEON	9538	9400	9262		
	ARFCN	(1907.6MHz)	(1880MHz)	(1852.4MHz)		
WCDMA	RMC	21.71	22.56	23.00		
	1	21.48	21.22	21.01		
110004	-	21.41	21.22	21.14		
ПСБВУ	2	21.71				
HSDPA	3	21.50		21.02		

Note: HSDPA body SAR are not required, because maximum average output power of each RF channel with HSDPA active is not 1/4 dB higher than that measured without HSDPA and the maximum SAR for WCDMA850 and WCDMA1900 are not above 75% of the SAR limit.

East China Institute of Telecommunications ECIT-2013-0076-FCC-SAR

11 SAR Test Result

Table 11.1: Duty Cycle

	Duty Cycle
GPRS for GSM835/1900	1:2
WCDMA850/1900	1:1

Table 11.2: SAR Values (GSM 835 MHz Band - Body)

Frequ	ency	Mode	Test	Maximum allowed	Measured	Scaling	Measured	Reported	Power
MHz	Ch.	(number of timeslots)	Position	Power (dBm)	average power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
836.6	190	GPRS (4)	Phantom	29.0	28.92	1.019	0.636	0.648	-0.09
836.6	190	GPRS (4)	Ground	29.0	28.92	1.019	0.396	0.403	0.06
836.6	190	GPRS (4)	Left	29.0	28.92	1.019	0.295	0.300	0.10
836.6	190	GPRS (4)	Right	29.0	28.92	1.019	0.214	0.218	-0.13
836.6	190	GPRS (4)	Bottom	29.0	28.92	1.019	0.160	0.163	0.18
836.6	190	GPRS (4)	Тор	29.0	28.92	1.019	0.048	0.049	0.13
848.8	251	GPRS (4)	Phantom	29.0	28.89	1.026	0.497	0.510	0.06
824.2	128	GPRS (4)	Phantom	29.0	28.82	1.042	0.497	0.518	-0.12
836.6	190	E-GPRS (4)	Phantom	28.0	27.42	1.143	0.306	0.350	0.03

Note:

1. The distance between the EUT and the phantom bottom is 0mm.

Table 11.3: SAR Values (GSM 1900 MHz Band - Body)

	Table 11.3. SAN Values (GSM 1900 MITZ Ballu - Body)								
Freque	ency	Mode	T4	Maximum	Measured	O a a line as	Measured	Reported	Power
MHz	Ch.	(number of timeslots)	Test Position	allowed Power (dBm)	average power (dBm)	Scaling factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1880	661	GPRS (4)	Phantom	26.0	25.99	1.002	0.296	0.296	0.06
1880	661	GPRS (4)	Ground	26.0	25.99	1.002	0.237	0.238	0.17
1880	661	GPRS (4)	Left	26.0	25.99	1.002	0.134	0.134	0.18
1880	661	GPRS (4)	Right	26.0	25.99	1.002	0.088	0.088	-0.15
1880	661	GPRS (4)	Bottom	26.0	25.99	1.002	0.246	0.246	0.16
1880	661	GPRS (4)	Тор	26.0	25.99	1.002	0.012	0.012	0.18
1909.8	810	GPRS (4)	Phantom	26.0	25.97	1.007	0.323	0.325	0.15
1850.2	512	GPRS (4)	Phantom	26.0	25.93	1.016	0.296	0.300	-0.14
1909.8	810	E-GPRS (4)	Phantom	26.0	25.88	1.028	0.264	0.271	0.02

Note: The distance between the EUT and the phantom bottom is 0mm.

East China Institute of Telecommunications ECIT-2013-0076-FCC-SAR

Table 11.4: SAR Values (WCDMA 850 MHz Band - Body)

Frequ	ency	Test	Maximum allowed	Measured average	Scaling	Measured	Reported	Power
MHz	Ch.	Position	Power	power	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
			(dBm)	(dBm)			, ,,	
836.4	4182	Phantom	23.5	22.66	1.213	0.947	1.15	0.01
836.4	4182	Ground	23.5	22.66	1.213	0.490	0.594	-0.15
836.4	4182	Left	23.5	22.66	1.213	0.461	0.559	-0.07
836.4	4182	Right	23.5	22.66	1.213	0.448	0.543	-0.10
836.4	4182	Bottom	23.5	22.66	1.213	0.293	0.356	0.11
836.4	4182	Тор	23.5	22.66	1.213	0.077	0.093	0.11
846.6	4233	Phantom	23.5	23.21	1.069	1.1	1.176	0.11
826.4	4132	Phantom	23.5	23.06	1.107	0.967	1.070	0.19

Note1: The distance between the EUT and the phantom bottom is 0mm.

Table 11.5: SAR Values (WCDMA 1900 MHz Band - Body)

Frequency		Test	Maximum allowed	Measured average	Scaling	Measured	Reported	Power
MHz	Ch.	Position	Power (dBm)	power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1880	9400	Phantom	23.0	22.56	1.107	0.706	0.781	0.06
1880	9400	Ground	23.0	22.56	1.107	0.612	0.677	0.17
1880	9400	Left	23.0	22.56	1.107	0.227	0.251	0.13
1880	9400	Right	23.0	22.56	1.107	0.216	0.239	0.13
1880	9400	Bottom	23.0	22.56	1.107	0.460	0.509	-0.17
1880	9400	Тор	23.0	22.56	1.107	0.00935	0.010	0.15
1907.6	9538	Phantom	23.0	21.71	1.247	0.445	0.598	-0.18
1852.4	9262	Phantom	23.0	23.00	1.000	0.660	0.660	0.11

Note1: The distance between the EUT and the phantom bottom is 0mm.

12 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 12.1: SAR Measurement Variability for Head Value (1g)

Frequency		Side	Test	Original	First Repeated	The	
MHz	Ch.	Side	Position	SAR (W/kg)	SAR (W/kg)	Ratio	
N/A	N/A	N/A	N/A	N/A	N/A	N/A	

East China Institute of Telecommunications ECIT-2013-0076-FCC-SAR

Table 12.2: SAR Measurement Variability for Body Value (1g)

Frequency		Mode(number	Test	Spacing	Original	First	The	
MHz	Ch.	of timeslots)	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	
846.6	4233	Band V	Phantom	0	1.1	1.11	1.01	
836.4	4182	Band V	Phantom	0	0.947	0.925	1.02	
826.4	4132	Band V	Ground	0	0.967	0.958	1.01	

13 Measurement Uncertainty

Error Description	Unc.	Prob.	Div	C _i	C _i	Std.Unc.	Std.Unc.	Vi
	value	Dist.		1g	10g	±%,1g	±%,10g	V _{eff}
	, ±%							
Measurement System								
Probe Calibration	6.0	N	1	1	1	6.0	6.0	∞
Axial Isotropy	0.5	R	$\sqrt{3}$	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy	2.6	R	√3	0.7	0.7	1.1	1.1	∞
Boundary Effects	0.8	R	√3	1	1	0.5	0.5	∞
Linearity	0.6	R	$\sqrt{3}$	1	1	0.3	0.3	∞
System Detection Limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Readout Electronics	0.7	N	1	1	1	0.7	0.7	∞
Response Time	0	R	$\sqrt{3}$	1	1	0	0	∞
Integration Time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
RF Ambient Noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
RF Ambient Reflections	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Probe Positioner	1.5	R	√3	1	1	0.9	0.9	∞
Probe Positioning	2.9	R	√3	1	1	1.7	1.7	∞
Max. SAR Eval.	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Test Sample Related								
Device Positioning	2.9	N	1	1	1	2.9	2.9	145
Device Holder	3.6	N	1	1	1	3.6	3.6	5
Diople								
Power Drift	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Dipole Positioning	2.0	N	1	1	1	2.0	2.0	∞
Dipole Input Power	5.0	N	1	1	1	5.0	5.0	∞
Phantom and Setup								
Phantom Uncertainty	4.0	R	√3	1	1	2.3	2.3	∞
Liquid Conductivity (target)	5.0	R	√3	0.64	0.43	1.8	1.2	_∞
Liquid Conductivity (meas.)	2.5	N	1	0.64	0.43	1.6	1.1	8
Liquid Permittivity (target)	5.0	R	√3	0.6	0.49	1.7	1.4	∞

Liquid Permittivity	2.5	N	1	0.6	0.49	1.5	1.2	8
(meas.)								
Combined Std						±11.2%	±10.9%	387
Uncertainty								
Expanded Std						±22.4%	±21.8%	
Uncertainty								

14 Main Test Instrument

Table 14.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	N5242A	MY51221755	Aug 07, 2013	One year	
02	Power meter	NRVD	102257	Aug 20, 2013	One year	
03	Power sensor	NRV-Z5	100644,100241	Aug 20, 2013	One year	
04	Signal Generator	E4438C	MY49072044	Aug 07, 2013	One Year	
05	Amplifier	NTWPA-0086010F	12023024	No Calibration Requeste	ed	
06	Coupler	778D	MY48220551	Aug 06, 2013	One year	
07	BTS	E5515C	MY50266468	Aug 04, 2013	One year	
09	E-field Probe	EX3DV3	3252	Aug 5, 2013	One year	
10	DAE	SPEAG DAE4	1244	Jul 9, 2013	One year	
11	Dipole Validation Kit	SPEAG D835V2	4d092	Jun 13, 2013	One year	
12	Dipole Validation Kit	SPEAG D1900V2	5d134	Jul 12, 2013	One year	

ANNEX A GRAPH RESULTS

GSM 835MHz GPRS 4TS Body Toward Ground Middle

Date/Time: 8/9/2013

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; $\sigma = 1.001$ S/m; $\varepsilon_r = 55.152$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 835MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle:

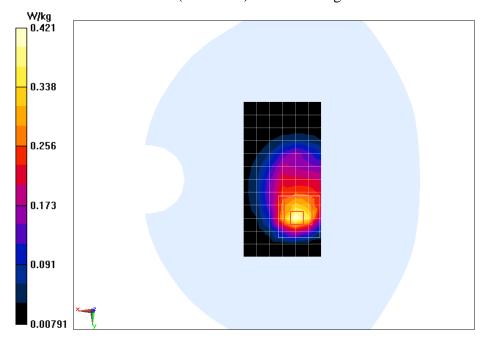
1:2

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14)

Middle Toward Ground GPRS 4TS 850MHz/Area Scan (7x13x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.424 W/kg


Middle Toward Ground GPRS 4TS 850MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.030 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.817 W/kg

SAR(1 g) = 0.396 W/kg; SAR(10 g) = 0.228 W/kgMaximum value of SAR (measured) = 0.421 W/kg

GSM 835MHz GPRS 4TS Body Toward Phantom Middle

Date/Time: 8/9/2013

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; σ = 1.001 S/m; ε_r = 55.152; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

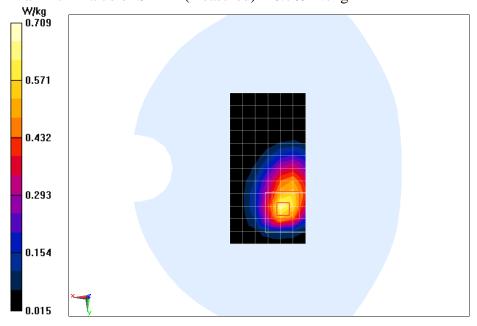
Communication System: GSM 835MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle:

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14)

Middle Toward Phantom GPRS 4TS 850MHz/Area Scan (7x13x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.661 W/kg


Middle Toward Phantom GPRS 4TS 850MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.171 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.20 W/kg

SAR(1 g) = 0.636 W/kg; SAR(10 g) = 0.366 W/kgMaximum value of SAR (measured) = 0.709 W/kg

GSM 835MHz GPRS 4TS Body Left Middle

Date/Time: 8/9/2013

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; σ = 1.001 S/m; ε_r = 55.152; ρ =

 1000 kg/m^3

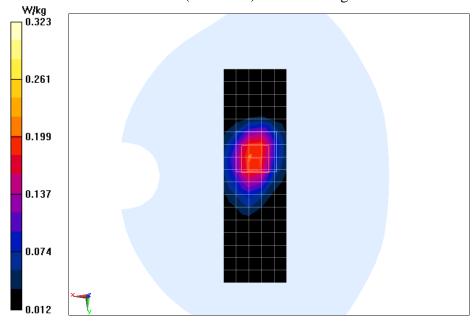
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 835MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle:

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14)

Middle Left GPRS 4TS 850MHz/Area Scan (6x18x1):

Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.203 W/kg


Middle Left GPRS 4TS 850MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.326 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.463 W/kg

SAR(1 g) = 0.295 W/kg; SAR(10 g) = 0.182 W/kgMaximum value of SAR (measured) = 0.323 W/kg

GSM 835MHz GPRS 4TS Body Right Middle

Date/Time: 8/9/2013

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; σ = 1.001 S/m; ε_r = 55.152; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

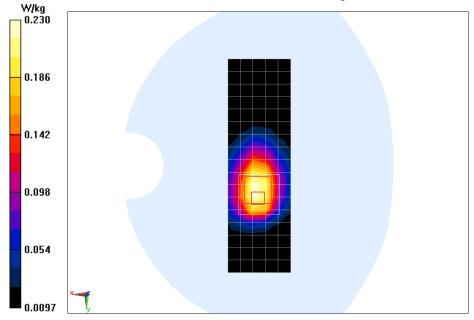
Communication System: GSM 835MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle:

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14)

Middle Right GPRS 4TS 850MHz/Area Scan (6x18x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.225 W/kg


Middle Right GPRS 4TS 850MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.950 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.392 W/kg

SAR(1 g) = 0.214 W/kg; SAR(10 g) = 0.131 W/kgMaximum value of SAR (measured) = 0.230 W/kg

GSM 835MHz GPRS 4TS Body Bottom Middle

Date/Time: 8/9/2013

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; σ = 1.001 S/m; ε_r = 55.152; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

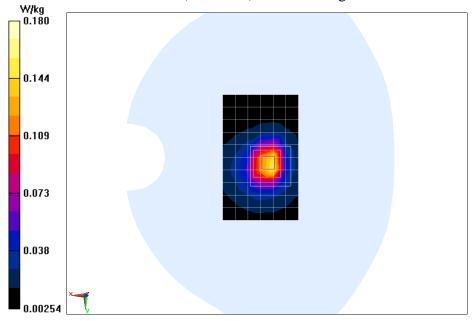
Communication System: GSM 835MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle:

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14)

Middle Bottom GPRS 4TS 850MHz/Area Scan (7x11x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.158 W/kg


Middle Bottom GPRS 4TS 850MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.178 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.472 W/kg

SAR(1 g) = 0.160 W/kg; SAR(10 g) = 0.067 W/kgMaximum value of SAR (measured) = 0.180 W/kg

GSM 835MHz GPRS 4TS Body Top Middle

Date/Time: 8/9/2013

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; σ = 1.001 S/m; ε_r = 55.152; ρ =

 1000 kg/m^3

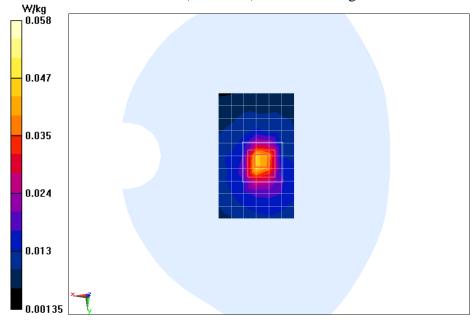
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 835MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle:

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14) Middle Top GPRS 4TS 850MHz/Area Scan (7x11x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.0450 W/kg


Middle Top GPRS 4TS 850MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.841 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.113 W/kg

SAR(1 g) = 0.048 W/kg; SAR(10 g) = 0.023 W/kgMaximum value of SAR (measured) = 0.0582 W/kg

GSM 835MHz GPRS 4TS Body Toward Phantom Low

Date/Time: 8/9/2013

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 835MHz GPRS 4TS; Frequency: 824.2 MHz; Duty Cycle:

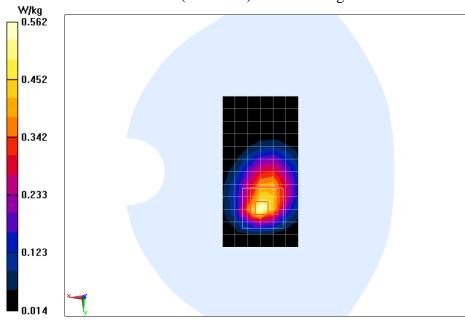
1:2

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14)

Low Toward Phantom GPRS 4TS 850MHz/Area Scan (7x13x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.586 W/kg


Low Toward Phantom GPRS 4TS 850MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.205 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.944 W/kg

SAR(1 g) = 0.497 W/kg; SAR(10 g) = 0.286 W/kgMaximum value of SAR (measured) = 0.562 W/kg

GSM 835MHz GPRS 4TS Body Toward Phantom High

Date/Time: 8/9/2013

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 849 MHz; σ = 1.015 S/m; ε_r = 55.205; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

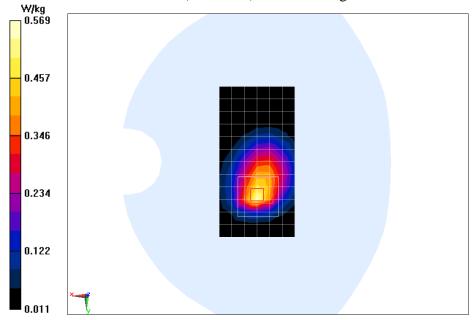
Communication System: GSM 835MHz GPRS 4TS; Frequency: 848.8 MHz; Duty Cycle:

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14)

High Toward Phantom GPRS 4TS 850MHz/Area Scan (7x13x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.546 W/kg


High Toward Phantom GPRS 4TS 850MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.174 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.940 W/kg

SAR(1 g) = 0.497 W/kg; SAR(10 g) = 0.285 W/kgMaximum value of SAR (measured) = 0.569 W/kg

GSM 835MHz E-GPRS 4TS Body Toward Phantom Middle

Date/Time: 8/9/2013

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; σ = 1.001 S/m; ε_r = 55.152; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

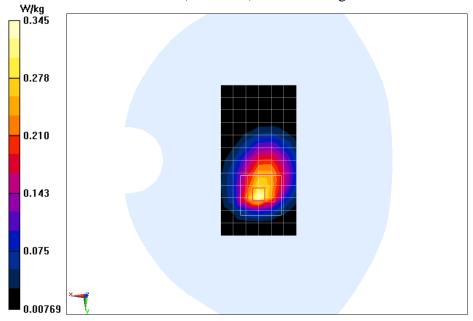
Communication System: GSM 835MHz GPRS 4TS; Frequency: 836.6 MHz; Duty Cycle:

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14)

Middle Toward Phantom E-GPRS 4TS 850MHz /Area Scan (7x13x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.344 W/kg


Middle Toward Phantom E-GPRS 4TS 850MHz /Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.200 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.585 W/kg

SAR(1 g) = 0.306 W/kg; SAR(10 g) = 0.175 W/kgMaximum value of SAR (measured) = 0.345 W/kg

GSM 1900MHz GPRS 4TS Body Toward Phantom Middle

Date/Time: 8/10/2013 Electronics: DAE4 Sn1244

Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; σ = 1.504 S/m; ε = 53.319; ρ = 1.504 S/m;

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle:

1:2

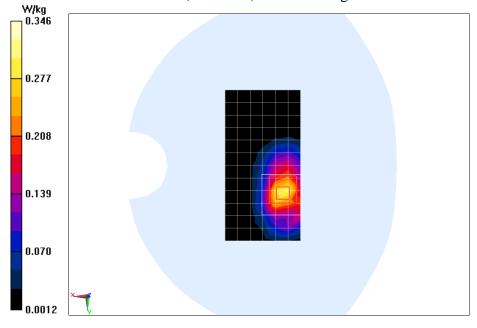
Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03)

Middle Toward Phantom GPRS 4TS 1900MHz/Area Scan (7x13x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.308 W/kg

Middle Toward Phantom GPRS 4TS 1900MHz/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.682 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.524 W/kg

SAR(1 g) = 0.296 W/kg; SAR(10 g) = 0.154 W/kg

Maximum value of SAR (measured) = 0.346 W/kg

GSM 1900MHz GPRS 4TS Body Toward Ground Middle

Date/Time: 8/10/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; σ = 1.504 S/m; ε_r = 53.319; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

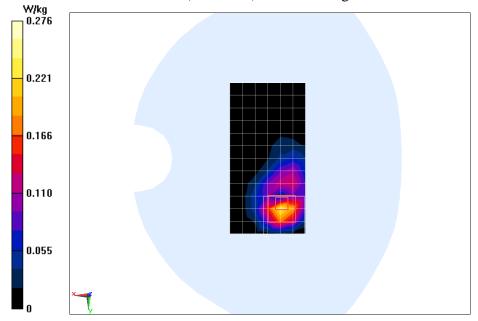
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle:

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03)

Middle Toward Ground GPRS 4TS 1900MHz/Area Scan (7x13x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.237 W/kg


Middle Toward Ground GPRS 4TS 1900MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.667 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.487 W/kg

SAR(1 g) = 0.237 W/kg; SAR(10 g) = 0.093 W/kgMaximum value of SAR (measured) = 0.276 W/kg

GSM 1900MHz GPRS 4TS Body Left Middle

Date/Time: 8/10/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; σ = 1.504 S/m; ε_r = 53.319; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

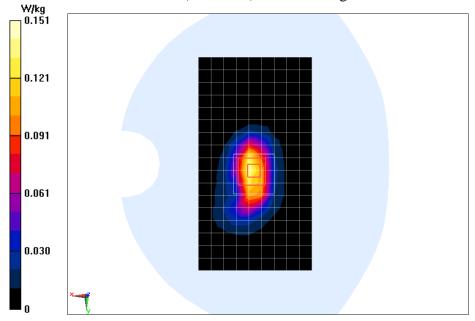
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle:

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03)

Middle Left GPRS 4TS 1900MHz/Area Scan (10x18x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.145 W/kg


Middle Left GPRS 4TS 1900MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.079 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.236 W/kg

SAR(1 g) = 0.134 W/kg; SAR(10 g) = 0.073 W/kgMaximum value of SAR (measured) = 0.151 W/kg

GSM 1900MHz GPRS 4TS Body Right Middle

Date/Time: 8/10/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; σ = 1.504 S/m; ε_r = 53.319; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

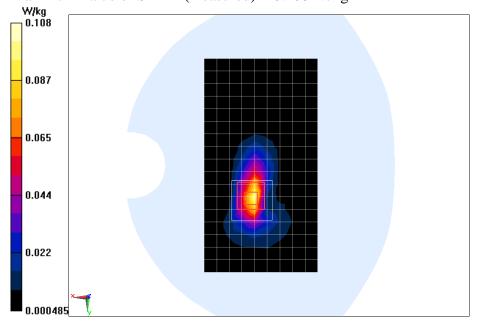
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle:

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03)

Middle Right GPRS 4TS 1900MHz/Area Scan (10x18x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.102 W/kg


Middle Right GPRS 4TS 1900MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.356 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.195 W/kg

SAR(1 g) = 0.088 W/kg; SAR(10 g) = 0.037 W/kgMaximum value of SAR (measured) = 0.108 W/kg

GSM 1900MHz GPRS 4TS Body Bottom Middle

Date/Time: 8/10/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; σ = 1.504 S/m; ε_r = 53.319; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

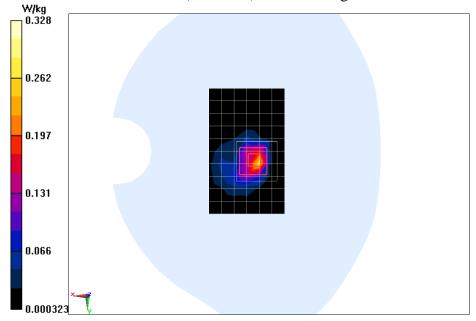
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle:

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03)

Middle Bottom GPRS 4TS 1900MHz/Area Scan (7x11x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.259 W/kg


Middle Bottom GPRS 4TS 1900MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.297 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.535 W/kg

SAR(1 g) = 0.246 W/kg; SAR(10 g) = 0.095 W/kgMaximum value of SAR (measured) = 0.328 W/kg

GSM 1900MHz GPRS 4TS Body Top Middle

Date/Time: 8/10/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; σ = 1.504 S/m; ε_r = 53.319; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

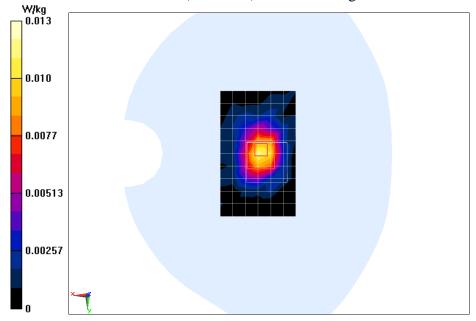
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1880 MHz; Duty Cycle:

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03)

Middle Top GPRS 4TS 1900MHz/Area Scan (7x11x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.0117 W/kg


Middle Top GPRS 4TS 1900MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.208 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.0220 W/kg

SAR(1 g) = 0.012 W/kg; SAR(10 g) = 0.00605 W/kgMaximum value of SAR (measured) = 0.0128 W/kg

GSM 1900MHz GPRS 4TS Body Toward Phantom High

Date/Time: 8/10/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1910 MHz; σ = 1.534 S/m; ε = 53.187; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 1900MHz

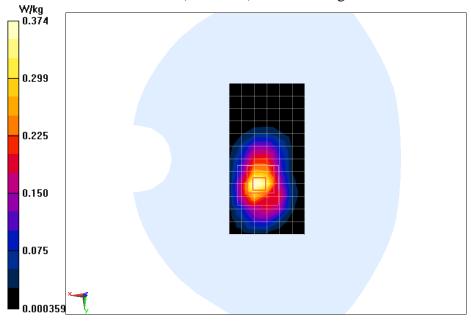
GPRS 4TS; Frequency: 1909.8 MHz; Duty Cycle: 1:2

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03)

High Toward Phantom GPRS 4TS 1900MHz/Area Scan (7x13x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.396 W/kg


High Toward Phantom GPRS 4TS 1900MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.040 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.570 W/kg

SAR(1 g) = 0.323 W/kg; SAR(10 g) = 0.172 W/kgMaximum value of SAR (measured) = 0.374 W/kg

GSM 1900MHz GPRS 4TS Body Toward Phantom Low

Date/Time: 8/10/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1850.2 MHz; Duty Cycle:

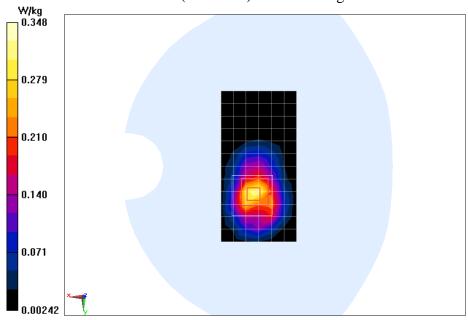
1:2

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03)

Low Toward Phantom GPRS 4TS 1900MHz/Area Scan (7x13x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.324 W/kg


Low Toward Phantom GPRS 4TS 1900MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.522 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.516 W/kg

SAR(1 g) = 0.296 W/kg; SAR(10 g) = 0.156 W/kgMaximum value of SAR (measured) = 0.348 W/kg

GSM 1900MHz E-GPRS 4TS Body Toward Phantom High

Date/Time: 8/10/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1910 MHz; σ = 1.534 S/m; ε_r = 53.187; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

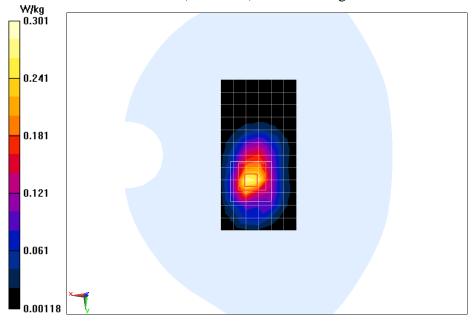
Communication System: GSM 1900MHz GPRS 4TS; Frequency: 1909.8 MHz; Duty Cycle:

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03)

High Toward Phantom E-GPRS 4TS 1900MHz/Area Scan (7x13x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.276 W/kg


High Toward Phantom E-GPRS 4TS 1900MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.696 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.462 W/kg

SAR(1 g) = 0.264 W/kg; SAR(10 g) = 0.140 W/kgMaximum value of SAR (measured) = 0.301 W/kg

WCDMA850MHz Body Toward Phantom Middle

Date/Time: 8/9/2013

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; σ = 1.001 S/m; ε_r = 55.152; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C

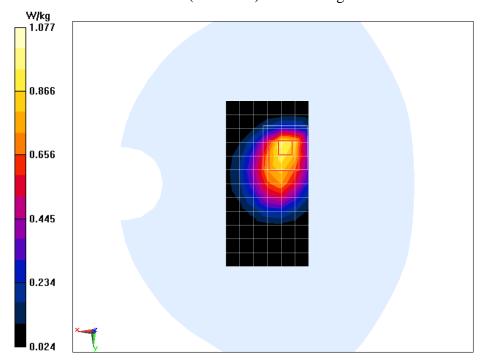
Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14)

Middle Toward Phantom WCDMA850MHz/Area Scan (7x13x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.954 W/kg


Middle Toward Phantom WCDMA850MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.889 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.69 W/kg

SAR(1 g) = 0.947 W/kg; SAR(10 g) = 0.565 W/kgMaximum value of SAR (measured) = 1.08 W/kg

WCDMA850MHz 2 Body Toward Phantom Middle

Date/Time: 8/9/2013

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; σ = 1.001 S/m; ε_r = 55.152; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

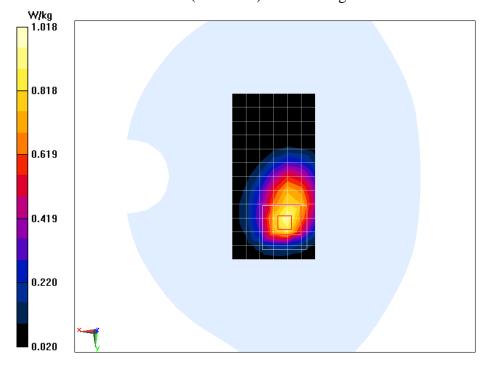
Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14)

Middle Toward Phantom WCDMA850MHz 2/Area Scan (7x13x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.956 W/kg


Middle Toward Phantom WCDMA850MHz 2/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.358 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.68 W/kg

SAR(1 g) = 0.925 W/kg; SAR(10 g) = 0.542 W/kgMaximum value of SAR (measured) = 1.02 W/kg

WCDMA850MHz Body Toward Ground Middle

Date/Time: 8/9/2013

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; σ = 1.001 S/m; ε_r = 55.152; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

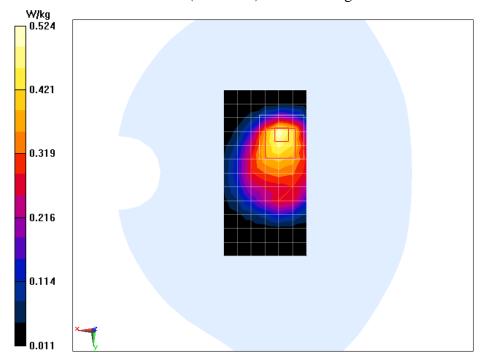
Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14)

Middle Toward Ground WCDMA850MHz/Area Scan (7x13x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.513 W/kg


Middle Toward Ground WCDMA850MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.626 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.912 W/kg

SAR(1 g) = 0.490 W/kg; SAR(10 g) = 0.307 W/kgMaximum value of SAR (measured) = 0.524 W/kg

WCDMA850MHz Body Right Middle

Date/Time: 8/9/2013

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; σ = 1.001 S/m; ε_r = 55.152; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

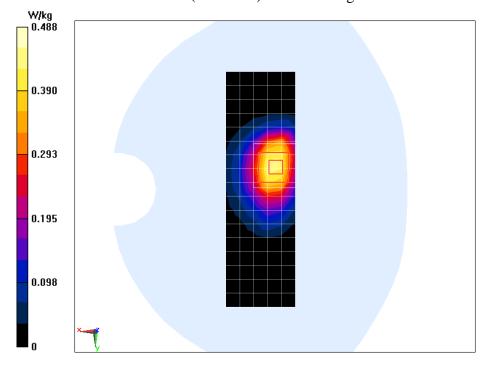
Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14)

Middle Right WCDMA850MHz/Area Scan (6x18x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.443 W/kg


Middle Right WCDMA850MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.351 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.684 W/kg

SAR(1 g) = 0.448 W/kg; SAR(10 g) = 0.274 W/kgMaximum value of SAR (measured) = 0.488 W/kg

WCDMA850MHz Body Left Middle

Date/Time: 8/9/2013

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; σ = 1.001 S/m; ε_r = 55.152; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

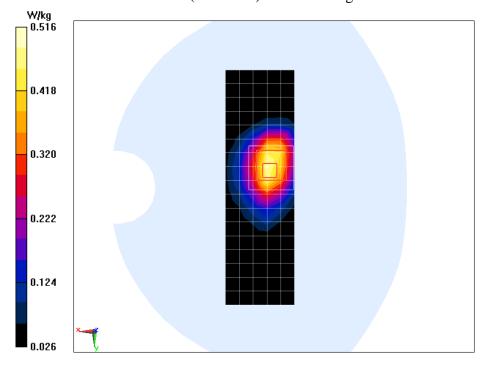
Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14)

Middle Left WCDMA850MHz/Area Scan (6x18x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.491 W/kg


Middle Left WCDMA850MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.126 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.778 W/kg

SAR(1 g) = 0.461 W/kg; SAR(10 g) = 0.276 W/kgMaximum value of SAR (measured) = 0.516 W/kg

WCDMA850MHz Body Bottom Middle

Date/Time: 8/9/2013

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; σ = 1.001 S/m; ε_r = 55.152; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

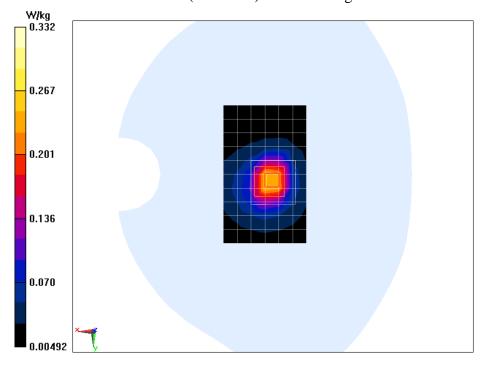
Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14)

Middle Bottom WCDMA850MHz/Area Scan (7x11x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.249 W/kg


Middle Bottom WCDMA850MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.284 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.892 W/kg

SAR(1 g) = 0.293 W/kg; SAR(10 g) = 0.121 W/kgMaximum value of SAR (measured) = 0.332 W/kg

WCDMA850MHz Body Top Middle

Date/Time: 8/9/2013

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 837 MHz; σ = 1.001 S/m; ε_r = 55.152; ρ =

 1000 kg/m^3

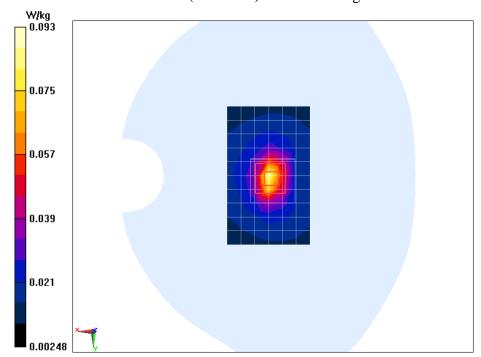
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14)

Middle Top WCDMA850MHz/Area Scan (7x11x1):

Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 0.0872 W/kg

Middle Top WCDMA850MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.425 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.180 W/kg

SAR(1 g) = 0.077 W/kg; SAR(10 g) = 0.036 W/kgMaximum value of SAR (measured) = 0.0931 W/kg

WCDMA850MHz Body Toward Phantom Low

Date/Time: 8/9/2013

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

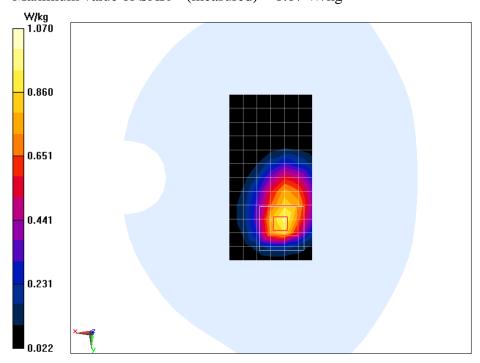
Communication System: WCDMA Band V; Frequency: 826.4 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14)

Low Toward Phantom WCDMA850MHz/Area Scan (7x13x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.963 W/kg


Low Toward Phantom WCDMA850MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.691 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 1.80 W/kg

SAR(1 g) = 0.967 W/kg; SAR(10 g) = 0.563 W/kgMaximum value of SAR (measured) = 1.07 W/kg

WCDMA850MHz Body Toward Phantom High

Date/Time: 8/9/2013

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 847 MHz; σ = 1.012 S/m; ε_r = 55.214; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: WCDMA Band V; Frequency: 846.6 MHz; Duty Cycle: 1:1

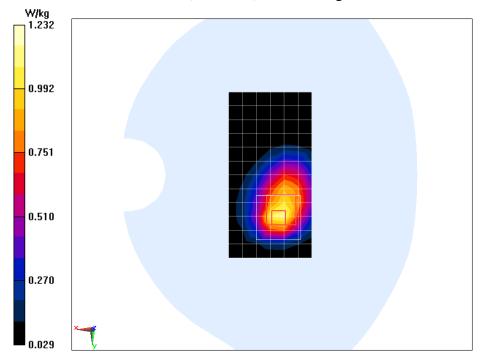
Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14)

High Toward Phantom WCDMA850MHz/Area Scan (7x13x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.12 W/kg

High Toward Phantom WCDMA850MHz/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.899 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 2.00 W/kg

SAR(1 g) = 1.1 W/kg; SAR(10 g) = 0.652 W/kg

Maximum value of SAR (measured) = 1.23 W/kg

WCDMA850MHz 2 Body Toward Phantom High

Date/Time: 8/9/2013

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Medium parameters used: f = 847 MHz; σ = 1.012 S/m; ε_r = 55.214; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

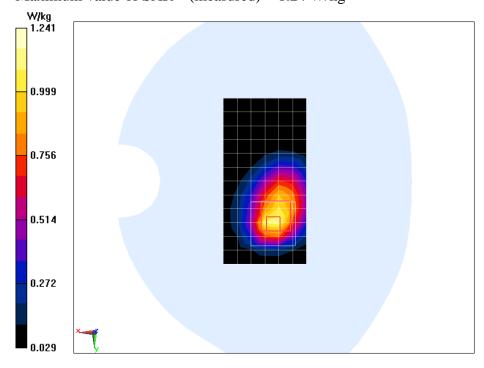
Communication System: WCDMA Band V; Frequency: 846.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14)

High Toward Phantom WCDMA850MHz 2/Area Scan (7x13x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.14 W/kg


High Toward Phantom WCDMA850MHz 2/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.516 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 2.03 W/kg

SAR(1 g) = 1.11 W/kg; SAR(10 g) = 0.660 W/kgMaximum value of SAR (measured) = 1.24 W/kg

WCDMA850MHz 2 Body Toward Phantom Low

Date/Time: 8/9/2013

Electronics: DAE4 Sn1244 Medium: Body 850MHz

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

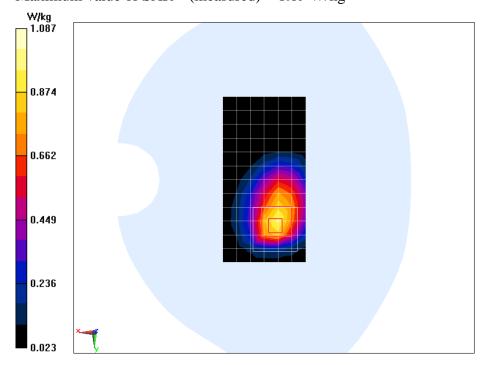
Communication System: WCDMA Band V; Frequency: 826.4 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14)

Low Toward Phantom WCDMA850MHz 2/Area Scan (7x13x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.970 W/kg


Low Toward Phantom WCDMA850MHz 2/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.371 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 1.77 W/kg

SAR(1 g) = 0.958 W/kg; SAR(10 g) = 0.563 W/kgMaximum value of SAR (measured) = 1.09 W/kg

WCDMA1900MHz Body Toward Phantom Middle

Date/Time: 8/10/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; σ = 1.504 S/m; ε = 53.319; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

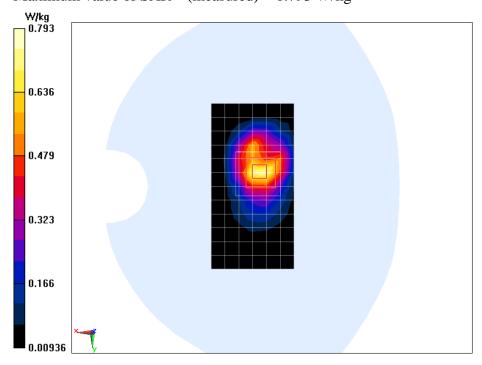
Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03)

Middle Toward Phantom WCDMA1900MHz/Area Scan (7x13x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.758 W/kg


Middle Toward Phantom WCDMA1900MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.678 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.35 W/kg

SAR(1 g) = 0.706 W/kg; SAR(10 g) = 0.373 W/kgMaximum value of SAR (measured) = 0.793 W/kg

WCDMA1900MHz Body Toward Ground Middle

Date/Time: 8/10/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; σ = 1.504 S/m; ε_r = 53.319; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

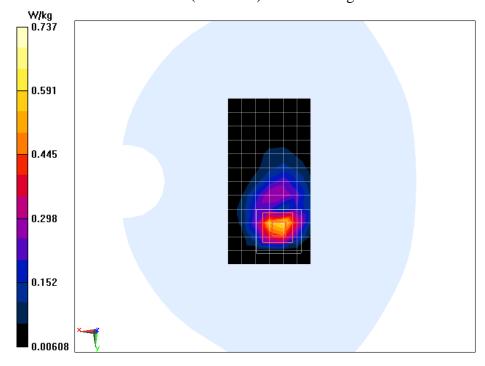
Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03)

Middle Toward Ground WCDMA1900MHz/Area Scan (7x13x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.613 W/kg


Middle Toward Ground WCDMA1900MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.142 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.612 W/kg; SAR(10 g) = 0.266 W/kgMaximum value of SAR (measured) = 0.737 W/kg

WCDMA1900MHz Body Left Middle

Date/Time: 8/10/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; σ = 1.504 S/m; ε_r = 53.319; ρ =

 1000 kg/m^3

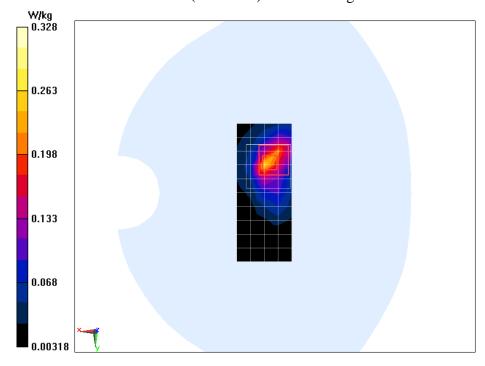
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03)

Middle Left WCDMA1900MHz/Area Scan (5x11x1):

Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 0.252 W/kg

Middle Left WCDMA1900MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.849 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.553 W/kg

SAR(1 g) = 0.227 W/kg; SAR(10 g) = 0.098 W/kgMaximum value of SAR (measured) = 0.328 W/kg

WCDMA1900MHz Body Right Middle

Date/Time: 8/10/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; σ = 1.504 S/m; ε_r = 53.319; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

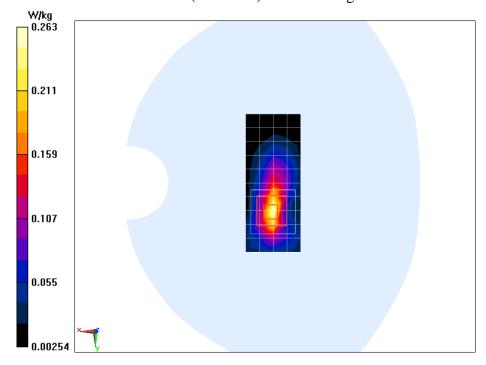
Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03)

Middle Right WCDMA1900MHz/Area Scan (5x11x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.265 W/kg


Middle Right WCDMA1900MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.141 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.491 W/kg

SAR(1 g) = 0.216 W/kg; SAR(10 g) = 0.093 W/kgMaximum value of SAR (measured) = 0.263 W/kg

WCDMA1900MHz Body Top Middle

Date/Time: 8/10/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; σ = 1.504 S/m; ε_r = 53.319; ρ =

 1000 kg/m^3

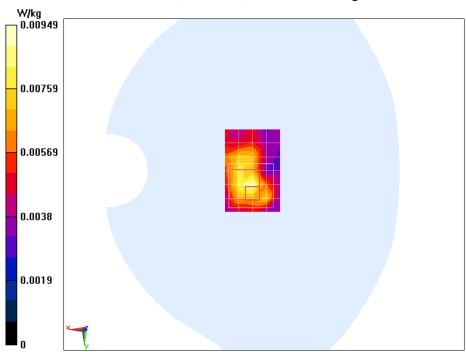
Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03)

Middle Top WCDMA1900MHz/Area Scan (5x7x1):

Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 0.00911 W/kg

Middle Top WCDMA1900MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.413 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.0350 W/kg

SAR(1 g) = 0.00935 W/kg; SAR(10 g) = 0.00484 W/kgMaximum value of SAR (measured) = 0.00949 W/kg

WCDMA1900MHz Body Bottom Middle

Date/Time: 8/10/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; σ = 1.504 S/m; ε_r = 53.319; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

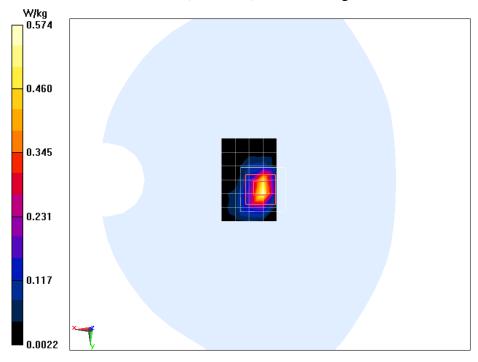
Communication System: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03)

Middle Bottom WCDMA1900MHz/Area Scan (5x7x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.556 W/kg


Middle Bottom WCDMA1900MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.123 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.460 W/kg; SAR(10 g) = 0.177 W/kgMaximum value of SAR (measured) = 0.574 W/kg

WCDMA1900MHz Body Toward Phantom Low

Date/Time: 8/10/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

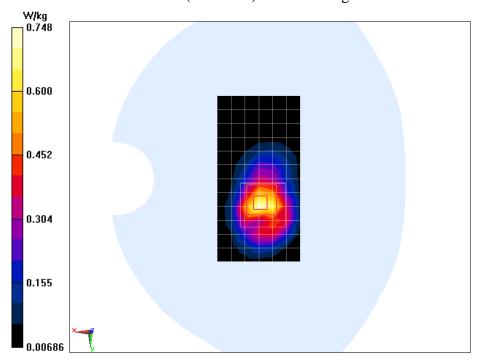
Communication System: WCDMA Band II; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03)

Low Toward Phantom WCDMA1900MHz/Area Scan (7x13x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.747 W/kg


Low Toward Phantom WCDMA1900MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.354 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.15 W/kg

SAR(1 g) = 0.660 W/kg; SAR(10 g) = 0.350 W/kgMaximum value of SAR (measured) = 0.748 W/kg

WCDMA1900MHz Body Toward Phantom High

Date/Time: 8/10/2013 Electronics: DAE4 Sn1244 Medium: Body 1900MHz

Medium parameters used: f = 1908 MHz; σ = 1.532 S/m; ε_r = 53.199; ρ =

 1000 kg/m^3

Ambient Temperature:22.5 ℃ Liquid Temperature:22.5 ℃

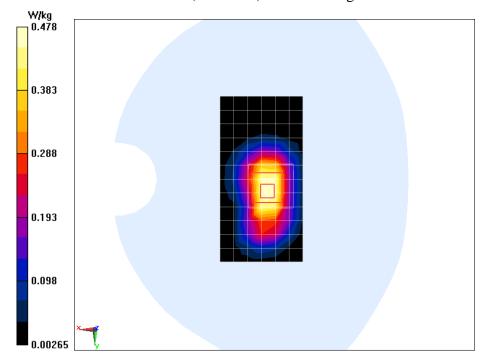
Communication System: WCDMA Band II; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03)

High Toward Phantom WCDMA1900MHz/Area Scan (7x13x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.458 W/kg


High Toward Phantom WCDMA1900MHz/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.812 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.756 W/kg

SAR(1 g) = 0.445 W/kg; SAR(10 g) = 0.261 W/kgMaximum value of SAR (measured) = 0.478 W/kg

ANNEX B SYSTEM VALIDATION RESULTS

835MHz-Body

Date/Time: 8/9/2013

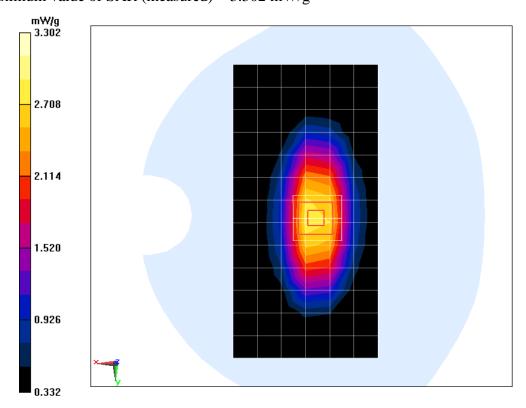
Electronics: DAE4 Sn1244 Medium: Body 850 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.999$ mho/m; $\epsilon r = 55.15$; $\rho = 1000$ kg/m³

Ambient Temperature:22.5° C Liquid Temperature:22.5° C Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(6.14, 6.14, 6.14)

System Validation/Area Scan(101x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.849 mW/g


System Validation/Zoom Scan(7x7x7)/Cube 0:Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.728 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 3.871 mW/g

SAR(1 g) = 2.53 mW/g; SAR(10 g) = 1.65 mW/g

Maximum value of SAR (measured) = 3.302 mW/g

1900MHz-Body

Date/Time: 8/10/2013

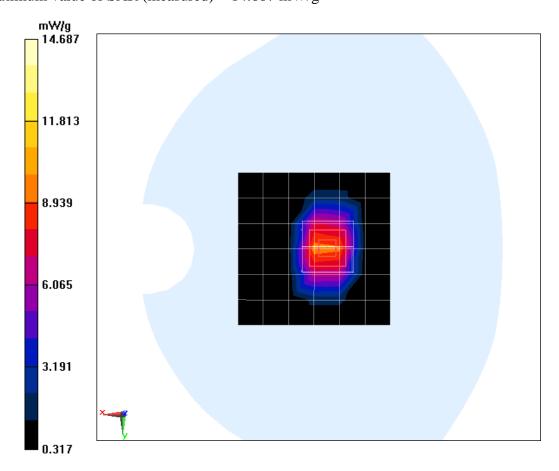
Electronics: DAE4 Sn1244 Medium: Body 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.524 \text{ mho/m}$; $\epsilon r = 53.237$; $\rho = 1000 \text{ kg/m}3$

Ambient Temperature:22.5° C Liquid Temperature:22.5° C Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Probe: ES3DV3 - SN3252ConvF(5.03, 5.03, 5.03)

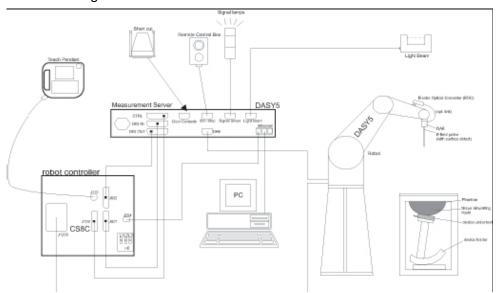
System Validation/Area Scan(101x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 9.585 mW/g


System Validation/Zoom Scan(7x7x7)/Cube 0:Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.021 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 18.419 mW/g

SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.47 mW/g


Maximum value of SAR (measured) = 14.687 mW/g

ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2 DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model: ES3DV3

Frequency 2.0GHz — 3.0GHz(EX3DV4)
Range: 700MHz — 2.0GHz(ES3DV3)

Calibration: In head and body simulating tissue at

Frequencies from 835 up to 2450MHz

Linearity: $\pm 0.2 \text{ dB}(2.0\text{GHz} - 3.0\text{GHz})$ for EX3DV4

± 0.2 dB(700MHz — 2.0GHz) for ES3DV3

Dynamic Range: 10 mW/kg — 100W/kg

Probe Length: 330 mm

Probe Tip

Length: 20 mm Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9 mm for ES3DV3)
Tip-Center: 1 mm (2.0mm for ES3DV3)
Application: SAR Dosimetry Testing

Compliance tests of mobile phones
Dosimetry in strong gradient fields

Picture C.2 Near-field Probe

Picture C.3 E-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 $\Delta t = \text{Exposure time (30 seconds)},$

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY5: RX90L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- ➤ High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- > Jerk-free straight movements (brushless synchron motors; no stepper motors)
- ➤ Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 5

C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture C.6 Server for DASY 5

C.4.4 Device Holder for Phantom

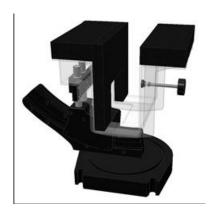
The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ±0.5mm would produce a SAR uncertainty of ±20%. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss

POM material having the following dielectric

parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.


<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper

part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.8: Laptop Extension Kit

C.4.5 Phantom

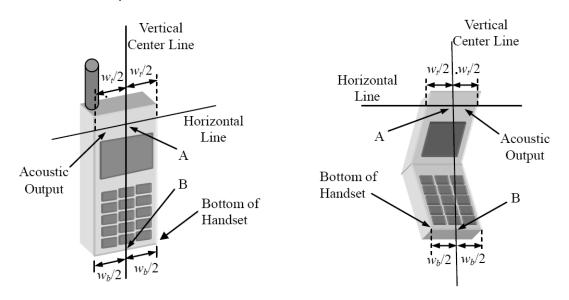
The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness: 2 ± 0. 2 mm Filling Volume: Approx. 25 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

Available: Special

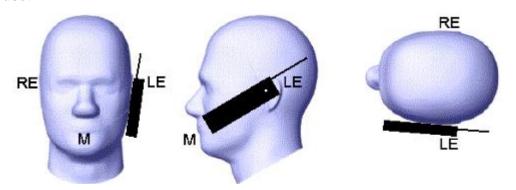


Picture C.9: SAM Twin Phantom

ANNEX D Position of the wireless device in relation to the phantom

D.1 General considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.

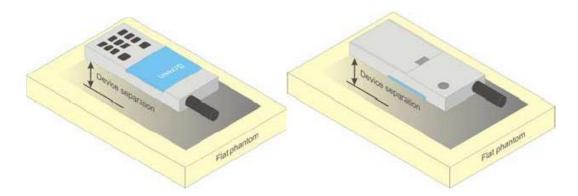

 W_t Width of the handset at the level of the acoustic

 W_b Width of the bottom of the handset

A Midpoint of the width w_i of the handset at the level of the acoustic output

B Midpoint of the width w_b of the bottom of the handset

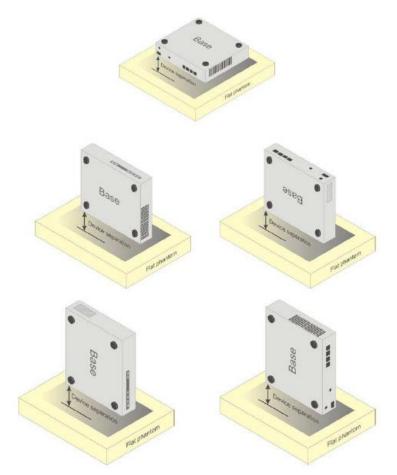
Picture D.1-a Typical "fixed" case handset
Picture D.1-b Typical "clam-shell" case handset


Picture D.2 Cheek position of the wireless device on the left side of SAM

Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.


Picture D.4 Test positions for body-worn devices

D.3 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

D.4 DUT Setup Photos

Picture D.6 DSY5 system Set-up

Note:

The photos of test sample and test positions show in additional document.

ANNEX E Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

Table E.1: Composition of the Tissue Equivalent Matter

Fraguanay (MHz)	835	1900 Body
Frequency (MHz)	Body	1900 Body
Ingredients (% by weight)		
Water	52.5	69.91
Sugar	45.0	\
Salt	1.4	0.13
Preventol	0.1	\
Cellulose	1.0	\
Glycol Monobutyl	\	29.96
Dielectric Parameters	ε=55.2	ε=53.3
Target Value	σ=0.97	σ=1.52

ANNEX F System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Table F.1: System Validation

System No.	Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)
	3252	Head 835MHz	Aug 6,2013	835MHz	OK
	3252	Head 1900MHz	Aug 6,2013	1900MHz	OK
	3252	Body 835MHz	Aug 6,2013	835MHz	OK
	3252	Body 1900MHz	Aug 6,2013	1900MHz	OK

NOTE: The parameters of tissue simulating liquids can be found in chapter 7 of this test report.

ANNEX G Probe and DAE Calibration Certificate

	R-SH	Cortif	icate No:JZ13-2-2040
CALIBRATION C			1000 1002 10 2 2010
Object	DAE4	- SN: 1244	
Calibration Procedure(s)		OS-E-01-198 ation Procedure for the Data /	Acquisition Electronics
Calibration date:	July 9,	2013	
all calibrations have been	en conducted in	the closed laboratory facility: (environment temperature(22±3) U
All calibrations have been numidity<70%. Calibration Equipment use Primary Standards	ed (M&TE critical 1		
Calibration Equipment use Primary Standards	ed (M&TE critical 1	for calibration)	No.) Scheduled Calibration
Calibration Equipment use Primary Standards	ed (M&TE critical 1 ID# Ca 1971018	for calibration) Il Date(Calibrated by, Certificate of the control of the calibrated by, Certificate of the calibrated by the calibra	No.) Scheduled Calibration) July-14
numidity<70%. Calibration Equipment use	ed (M&TE critical f	for calibration) I Date(Calibrated by, Certificate	No.) Scheduled Calibration
Calibration Equipment use Primary Standards Documenting Process Calibrator 753	ed (M&TE critical file # Ca 1971018	for calibration) I Date(Calibrated by, Certificate of the Calibrated by, Certificate	No.) Scheduled Calibration) July-14 Signature
Calibration Equipment use Primary Standards Documenting Process Calibrator 753	ed (M&TE critical f ID # Ca 1971018 Name Zhao Jing	for calibration) Il Date(Calibrated by, Certificate of the Calibrated by,	No.) Scheduled Calibration July-14 Signature

Page 1 of 3

Certificate No: JZ13-2-2040

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: JZ13-2-2040

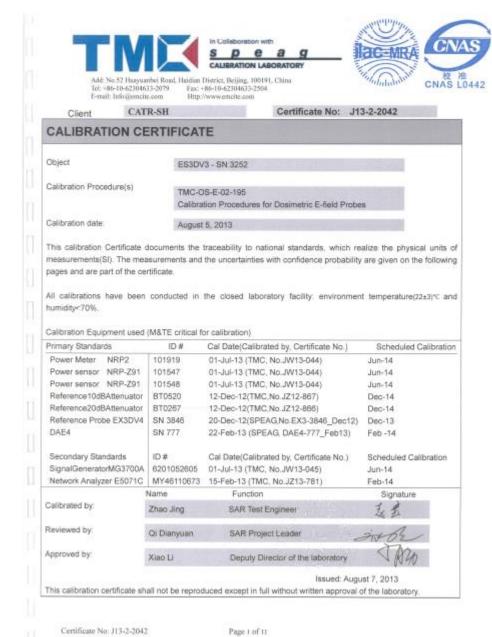
Page 2 of 3

Add: No.52 Huayuanhei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emeile.com Http://www.emeile.com

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1 µV, full range = -100...+300 mV Low Range: 1L5B = 61 nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec


Calibration Factors	X	Υ	Z
High Range	403.907 ± 0.15% (k=2)	403.655 ± 0.15% (k=2)	404.554 ± 0.15% (k=2)
Low Range	3.98600 ± 0.7% (k=2)	3.96971 ± 0.7% (k=2)	4.01324 ± 0.7% (k=2)

Connector Angle

1	Connector Angle to be used in DASY system	46°±1°

Certificate No: JZ13-2-2040

Page 3 of 3

Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ or totation around probe axis 6 or totation around an axis that is in the plane normal to probe axis (at measurement cente 8-0 is normal to probe axis Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-helid devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 Methods Applied and Interpretation of Parameters: • NORMx,y,z* Assessed for E-field polarization 6=0 (fs900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). • NORM(f)x,y,z = NORMx,y,z* frequency, response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. • DCPx,y,z* DCP are numerical linearization parameters assessed on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. • PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. • Ax,y,z* Bx,y,z* Cx,y,z*,VRx,y,z*A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. • Convertion and Boundary Effect Parameters: Asses		-10-62304633-2079 Fax: +86-10-62304633-2504 Info@gomcite.com Http://www.emcite.com
NORMx,y,z sensitivity in free space convF sensitivity in TSL / NORMx,y,z DCP diode compression point crest factor (1/duty_cycle) of the RF signal AB_C,D modulation dependent linearization parameters Polarization ⊕ rotation around an axis that is in the plane normal to probe axis (at measurement cente ⊕0 is normal to probe axis) Calibration is Performed According to the Following Standards: a) IEEE 3xi 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 Methods Applied and Interpretation of Parameters: NORMx,y,z: Assessed for E-field polarization ⊕0 (fs900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E³-field uncertainty inside TSL (see below ConvF). NORM(flx,y,z = NORMx,y,z* *frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. Ax,y,z; Bx,y;; Cx,y,z; VRx,y,z; A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. WR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for fs800MHz) and inside waveguide us	Glossary:	
ConvF sensitivity in TSL./ NORMx,y.z diode compression point CF crest factor (1/40ty, cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ rotation around probe axis Polarization ⊕ rotation around an axis that is in the plane normal to probe axis (at measurement centers) Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 36Hz)", February 2005 Methods Applied and Interpretation of Parameters: NORMM, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f≥1800MHz: waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E¹-field uncertainty inside TSL (see below ConvF). NORM(f), y, z = NORMx, y, z² frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. Ax, y, z: Ax, y, z: Cx, y, z; VRx, y, z: A, B, C are numerical linearization parameters assessed based on the parameters applied for boundary Effect Parameters: Assessed in Ital phantom using E-field (or Temperature Transfer Standard for f5800MHz) and inside waveguide using analytical field distributions based on power measurements for f>8000MHz. The same setups are used for assessment of the parameters applied for boundary compensati	TSL	tissue simulating liquid
DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Φ rotation around an axis that is in the plane normal to probe axis (at measurement cente θ-0 is normal to probe axis Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEG 6209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 Methods Applied and Interpretation of Parameters: NORMx, y,z: Assessed for E-field polarization θ=0 (fs900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y,z: Assessed for E-field polarization θ=0 (fs900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y,z: Assessed for E-field polarization θ=0 (fs900MHz in TEM-cell; f>1800MHz: waveguide). NORM/(y,x,z = NORMx,y,z: frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. Ax,y,z: Bx,y,z: Cx,y,z;VRx,y,z;A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in RMS voltage across the diode. ConvF and Boundary compensation (alpha, depth) of which typical uncertainty valued are given. These para		
CF Crest factor (1/duty_cycle) of the RF signal AB,C,D modulation dependent linearization parameters Polarization 0 Potation around probe axis B rotation around an axis that is in the plane normal to probe axis (at measurement centers) B-0 is normal to probe axis Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 Methods Applied and Interpretation of Parameters: **NORMX,y,z** Assessed for E-field polarization 6=0 (f≤900MHz) in TEM-cell; f> 1800MHz; waveguide). NORMx,y,z* are only Intermediate values, i.e., the uncertainties of NORMx,y,z* does not effect the E-1-field uncertainty inside TSL (see below ConvF). **NORM(f)x,y,z** = NORMx,y,z** frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. **DCPx,y,z** DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. **PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. **Ax,y,z**, Bx,y,z**, Cx,y,z*, VRx,y,z*, A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. **ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f5800MHz) and inside waveguide using analytical field distributions b		
A,B,C,D modulation dependent linearization parameters Polarization ⊕ Protation around probe axis Polarization ⊕ Protation around probe axis Calibration is Performed According to the Following Standards: B) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 B) IEC 62209-1, "Procadure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 Methods Applied and Interpretation of Parameters: NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E¹-field uncertainty inside TSL (see below ConvF). NORM(f)x,y,z = NORMx,y,z" frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. Ax,y,z', Bx,y,z', Cx,y,z,VRx,y,z,A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. YR is the maximum calibration range expressed in RMS voltage across the clode. ConvF and Boundary Effect Parameters'. Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and linside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software		
Polarization Φ		
Polarization 0 8 rotation around an axis that is in the plane normal to probe axis (at measurement cente 8-0 is normal to probe axis Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 Methods Applied and Interpretation of Parameters: NORMX, y, z: Assessed for E-field polarization 8=0 (fs900MHz in TEM-cell; f>1800MHz; waveguide). NORMX, y, z are only intermediate values, i.e., the uncertainties of NORMX, y, z does not effect the E ² -field uncertainty inside TSL (see below ConvF). NORM(f), x, y, z = NORMX, y, z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. Ax, y, z: Bx, y, z: Cx, y, z; VRx, y, z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters a on ot depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for fs800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensa		
 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEG 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 Methods Applied and Interpretation of Parameters: NORMx,y,z ** Assessed for E-field polarization 6=0 (fs900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E**-field uncertainty linside TSL (see below ConvF). NORMf(f)x,y,z = NORMx,y,z** frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for fs800MHz) and inside waveguide using analytical field istributions based on power measurements for f>800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the		θ rotation around an axis that is in the plane normal to probe axis (at measurement center
Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 Methods Applied and Interpretation of Parameters: NORMx,y,z: Assessed for E-field polarization 6=0 (fs900MHz in TEM-cell; f>1800MHz; waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E*-field uncertainty inside TSL (see below ConvF). NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. Ax,y,z: Bx,y,z; Cx,y,z; VRx,y,z;A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for fs800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY v	Calibration	is Performed According to the Following Standards:
in close proximity to the ear (frequency range of 300MHz to 3GHz)*, February 2005 Methods Applied and Interpretation of Parameters: NORMx,y,z: Assessed for E-field polarization θ=0 (fs900MHz in TEM-cell; f≥1800MHz; waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z;A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for fs800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.	Specific Al	osorption Rate (SAR) in the Human Head from Wireless Communications Devices:
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for fs800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,yz* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance re	in close pro	oximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E³-field uncertainty inside TSL (see below ConvF). NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for fs800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,yz* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. Spherical isotropy (3D deviation from±50MHz to±100MHz. Spherical isotropy: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.		
 NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. Ax,y,z: Bx,y,z; Cx,y,z;VRx,y,z;A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx 	NORMx.)	z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the
Inearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. **DCPx,y.z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. **PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. **Ax,y.z: βx,y.z; Cx,y.z;VRx,y.z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. **ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for fs800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. **Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. **Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. **Connector Angle: The angle is assessed using the information gained by determining the NORMx*		
 DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx 	linearizati	ion is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. Ax,yz: Bx,yz: Cx,yz:VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for fs800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx 		
 characteristics. Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z;A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for fs800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx 	frequency	
 Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx 	 frequency DCPx,y,z (no uncer 	DCP are numerical linearization parameters assessed based on the data of power sweep tainty required). DCP does not depend on frequency nor media.
 ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for fs800MHz) and inside waveguide using analytical field distributions based on power measurements for f>800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx 	DCPx,y,z (no uncer PAR: PAF	DCP are numerical linearization parameters assessed based on the data of power sweep tainty required). DCP does not depend on frequency nor media. R is the Peak to Average Ratio that is not calibrated but determined based on the signal
Transfer Standard for f<800MHz) and inside waveguide using analytical field distributions based on power measurements for f<800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx	PAR: PAF character Ax,y,z; B:	DCP are numerical linearization parameters assessed based on the data of power sweep tainty required). DCP does not depend on frequency nor media. R is the Peak to Average Ratio that is not calibrated but determined based on the signal istics. R, x, z, Cx, y, z, VRx, y, z, A, B, C are numerical linearization parameters assessed based on the
power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y.z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx	• DCPx,y,z (no uncer • PAR: PAF character • Ax,y,z; B) data of po	: DCP are numerical linearization parameters assessed based on the data of power sweep tainty required). DCP does not depend on frequency nor media. R is the Peak to Average Ratio that is not calibrated but determined based on the signal isitios. K, Y, Z; Cx, y, z; VRx, y, z; A, B, C are numerical linearization parameters assessed based on the ower sweep for specific modulation signal. The parameters do not depend on frequency nor
applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Cannector Angle: The angle is assessed using the information gained by determining the NORMx	frequency DCPx,y,z (no uncer PAR: PAR character Ax,y,z; B) data of pc media. Vi ConvF ar	DCP are numerical linearization parameters assessed based on the data of power sweep tainty required). DCP does not depend on frequency nor media. R is the Peak to Average Ratio that is not calibrated but determined based on the signal sistics. R, x, z, Cx, y, z, VRx, y, z, A, B, C are numerical linearization parameters assessed based on the ower sweep for specific modulation signal. The parameters do not depend on frequency nor R is the maximum calibration range expressed in RMS voltage across the diode. If Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature)
These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx	frequency DCPx,y,z (no uncer PAR: PAF character Ax,y,z; B) data of px media. Vi ConvF ar Transfer	EDCP are numerical linearization parameters assessed based on the data of power sweep tainty required). DCP does not depend on frequency nor media. R is the Peak to Average Ratio that is not calibrated but determined based on the signal istics. R, y, z; Cx, y, z; VRx, y, z; A, B, C are numerical linearization parameters assessed based on the ower sweep for specific modulation signal. The parameters do not depend on frequency nor R is the maximum calibration range expressed in RMS voltage across the diode. If Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Standard for f≤800MHz) and inside waveguide using analytical field distributions based on
The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx	frequency DCPx,y,z (no unoer PAR: PAF character Ax,y,z; B) data of po media. Vi ConvF ar Transfer: power me	DCP are numerical linearization parameters assessed based on the data of power sweep tainty required). DCP does not depend on frequency nor media. It is the Peak to Average Ratio that is not calibrated but determined based on the signal isistics. If it is the Peak to Average Ratio that is not calibrated but determined based on the signal isistics. If it is the parameters assessed based on the over sweep for specific modulation signal. The parameters do not depend on frequency nor R is the maximum calibration range expressed in RMS voltage across the diode. It is the maximum calibration range expressed in flat phantom using E-field (or Temperature Standard for fs800MHz) and inside waveguide using analytical field distributions based on lassurements for f >800MHz. The same setups are used for assessment of the parameters
that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx	frequency DCPx,yz (no uncer PAR: PAF character Ax,yz; B) data of po media. Vi ConvF ar Transfers : power me applied fo	EDCP are numerical linearization parameters assessed based on the data of power sweep tainty required). DCP does not depend on frequency nor media. R is the Peak to Average Ratio that is not calibrated but determined based on the signal istics. K,Y,Z; Cx,Y,Z;VRx,y,Z;A,B,C are numerical linearization parameters assessed based on the ower sweep for specific modulation signal. The parameters do not depend on frequency nor R is the maximum calibration range expressed in RMS voltage across the diode. R is the maximum calibration range expressed in flat phantom using E-field (or Temperature Standard for fs800MHz) and inside waveguide using analytical field distributions based on easurements for f >800MHz. The same setups are used for assessment of the parameters or boundary compensation (alpha, depth) of which typical uncertainty valued are given.
allows extending the validity from±50MHz to±100MHz. Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Cannector Angle: The angle is assessed using the information gained by determining the NORMx.	frequency DCPx,yz (no uncer PAR: PAF character Ax,yz; B) data of po media. Vi ConvF an Transfer i power mapplied fo These pa	DCP are numerical linearization parameters assessed based on the data of power sweep tainty required). DCP does not depend on frequency nor media. R is the Peak to Average Ratio that is not calibrated but determined based on the signal istics. R, x, z; Cx, y, z; VRx, y, z; A, B, C are numerical linearization parameters assessed based on the ower sweep for specific modulation signal. The parameters do not depend on frequency nor R is the maximum calibration range expressed in RMS voltage across the diode. If Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Standard for fs800MHz) and inside waveguide using analytical field distributions based on assurements for f >800MHz. The same setups are used for assessment of the parameters or boundary compensation (alpha, depth) of which typical uncertainty valued are given. Irameters are used in DASY4 software to improve probe accuracy close to the boundary.
 phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx 	frequency DCPx,yz, g, (no uncer PAR: PAF character Ax,y,z, B) data of pr media. Vi ConvF ar Transfer: power me applied fr These pa The sens	EDCP are numerical linearization parameters assessed based on the data of power sweep tainty required). DCP does not depend on frequency nor media. R is the Peak to Average Ratio that is not calibrated but determined based on the signal istics. K,Y,Z; Cx,y,Z;VRx,y,Z;A,B,C are numerical linearization parameters assessed based on the ower sweep for specific modulation signal. The parameters do not depend on frequency nor R is the maximum calibration range expressed in RMS voltage across the diode. An additional signal and seven as a series of the diode. The parameters is a seven as a series of seven and seven as a seven and seven as a seven
 Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Connector Angle: The angle is assessed using the information gained by determining the NORMx 	frequency DCPx,yz (no uncer PAR: PAF character Ax,yz; B) data of po media. Vi ConvF ar Transfer : power m applied fo These pa The sens that given allows ex	DCP are numerical linearization parameters assessed based on the data of power sweep tainty required). DCP does not depend on frequency nor media. R is the Peak to Average Ratio that is not calibrated but determined based on the signal sistics. R, Z, Z, C, X, Z, VRx, Y, Z, A, B, C are numerical linearization parameters assessed based on the ower sweep for specific modulation signal. The parameters do not depend on frequency nor R is the maximum calibration range expressed in RMS voltage across the diode. M Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Standard for fs800MHz) and inside waveguide using analytical field distributions based on assurements for f >800MHz. The same setups are used for assessment of the parameters or boundary compensation (alpha, depth) of which typical uncertainty valued are given. rameters are used in DASY4 software to improve probe accuracy close to the boundary, titvity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to 1 for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which tending the validity from±50MHz to±100MHz.
probe tip (on probe axis). No tolerance required. • Connector Angle: The angle is assessed using the information gained by determining the NORMx	frequency DCPx,yz (no uncer PAR: PAF character Ax,yz; B) data of po media. Vi ConvF an Transfer i power m applied fo These pa The sens that given allows ex Sphericai	EDCP are numerical linearization parameters assessed based on the data of power sweep tainty required). DCP does not depend on frequency nor media. R is the Peak to Average Ratio that is not calibrated but determined based on the signal sistics. R, X, Z; Cx, y, Z; VRx, y, Z; A, B, C are numerical linearization parameters assessed based on the ower sweep for specific modulation signal. The parameters do not depend on frequency nor R is the maximum calibration range expressed in RMS voltage across the diode. Ris the maximum calibration range expressed in RMS voltage across the diode. Ris the maximum calibration range expressed in flat phantom using E-field (or Temperature Standard for fs800MHz) and inside waveguide using analytical field distributions based on assurements for f >800MHz. The same setups are used for assessment of the parameters or boundary compensation (alpha, depth) of which typical uncertainty valued are given. rameters are used in DASY4 software to improve probe accuracy close to the boundary, litvity in TSL corresponds to NORMx, y,z* ConvF whereby the uncertainty corresponds to for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which tending the validity from±50MHz to±100MHz. Isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat
 Connector Angle: The angle is assessed using the information gained by determining the NORMx 	frequency DCPx,yz (no uncer PAR: PAF character Ax,yz; 8) data of p media. Vi ConvF ar Transfer : power me applied fc These pa The sens that given allows ex Spherical phantom	DCP are numerical linearization parameters assessed based on the data of power sweep tainty required). DCP does not depend on frequency nor media. R is the Peak to Average Ratio that is not calibrated but determined based on the signal istics. K,Y,Z; CK,Y,Z;VRX,Y,Z;A,B,C are numerical linearization parameters assessed based on the ower sweep for specific modulation signal. The parameters do not depend on frequency nor R is the maximum calibration range expressed in RMS voltage across the diode. Ad Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Standard for f5800MHz) and inside waveguide using analytical field distributions based on sasurements for f5800MHz, he same setups are used for assessment of the parameters or boundary compensation (alpha, depth) of which typical uncertainty valued are given. rameters are used in DASY4 software to improve probe accuracy close to the boundary. Itivity in TSL corresponds to NORMX,y,z* ConvF whereby the uncertainty corresponds to 1 for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which tending the validity from±50MHz to±100MHz. I isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat exposed by a patch antenna.
	frequency DCPx,yz (no uncer PAR: PAF character Ax,yz; B) data of pr media. Vi ConvF ar Transfer : power me applied fo These pa The sens that given allows ex Spherical phantom Sensor O	EDCP are numerical linearization parameters assessed based on the data of power sweep tainty required). DCP does not depend on frequency nor media. R is the Peak to Average Ratio that is not calibrated but determined based on the signal istics. R, Z, Z, Cx, y, Z, VRx, y, z, A, B, C are numerical linearization parameters assessed based on the ower sweep for specific modulation signal. The parameters do not depend on frequency nor R is the maximum calibration range expressed in RMS voltage across the diode. At Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Standard for fs800MHz) and inside waveguide using analytical field distributions based on easurements for f >800MHz. The same setups are used for assessment of the parameters or boundary compensation (alpha, depth) of which typical uncertainty valued are given. rameters are used in DASY4 software to improve probe accuracy close to the boundary. It in the control of the validity from±50MHz to±100MHz. Isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat exposed by a patch antenna.
	frequency DCPx,yz (no uncer PAR: PAF character Ax,yz; B) data of po media. Vi ConvF an Transfer : power m applied fo These pa The sens that given allows ex Spherical phantom Sensor O probe tip	DCP are numerical linearization parameters assessed based on the data of power sweep tainty required). DCP does not depend on frequency nor media. R is the Peak to Average Ratio that is not calibrated but determined based on the signal istics. R, z, z, Cx, y, z, VRx, y, z, A,B,C are numerical linearization parameters assessed based on the ower sweep for specific modulation signal. The parameters do not depend on frequency nor R is the maximum calibration range expressed in RMS voltage across the diode. If Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Standard for fs800MHz) and inside waveguide using analytical field distributions based on sasurements for to 800MHz. The same setups are used for assessment of the parameters or boundary compensation (alpha, depth) of which typical uncertainty valued are given. rameters are used in DASY4 software to improve probe accuracy close to the boundary, titvity in TSL corresponds to NORMx, y,z* ConvF whereby the uncertainty corresponds to 1 for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which tending the validity from±50MHz to±100MHz. I isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat exposed by a patch antenna. Iffset: The sensor offset corresponds to the offset of virtual measurement center from the (on probe axis). No tolerance required.

Page 2 of 11

Certificate No: J13-2-2042

Probe ES3DV3

SN: 3252

Calibrated: August 5, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: J13-2-2042

Page 3 of 11

DASY - Parameters of Probe: ES3DV3 - SN: 3252

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)2) ^	1.29	1.34	1.32	±10.8%
DCP(mV) ⁸	103.4	104.6	102.4	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	207.8	±3.3%
		Y	0.0	0.0	1.0		209.7	
		z	0.0	0.0	1.0		209.5	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: J13-2-2042

Page 4 of 11

 $^{^{\}rm A}$ The uncertainties of Norm X, Y, Z do not affect the E 2 -field uncertainty inside TSL (see Page 5 and Page 6). $^{\rm B}$ Numerical linearization parameter: uncertainty not required. $^{\rm E}$ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China 86-10-62304633-2079 Fax: +86-10-62304633-2504 ti: Into@emerie.com Http://www.emerie.com

DASY - Parameters of Probe: ES3DV3 - SN: 3252

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
850	41.5	0.92	6.10	6.10	6.10	0.27	1.98	±12%
900	41.5	0.97	6.19	6.19	6.19	0.31	1.79	±12%
1750	40.1	1.37	5.58	5.58	5.58	0.37	1.87	±12%
1900	40.0	1.40	5.24	5.24	5.24	0.43	1.82	±12%

^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. FAt frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (r and rt) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: J13-2-2042

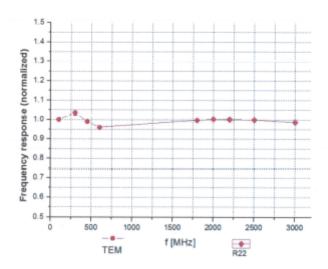
Page 5 of 11

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: info@emcite.com Hupp://www.emcite.com

DASY – Parameters of Probe: ES3DV3 - SN: 3252

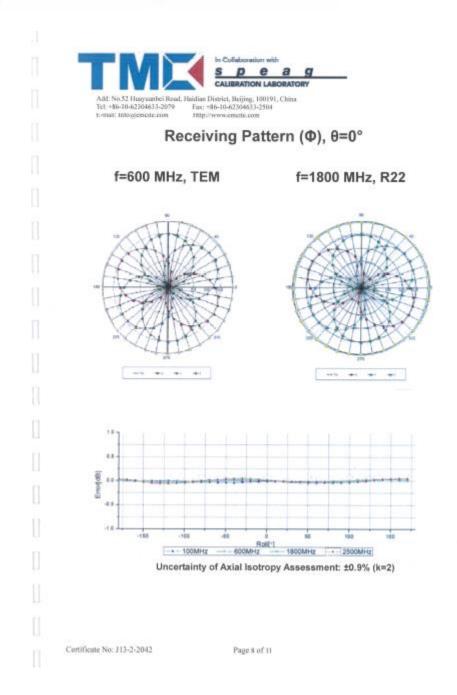
Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
850	55.2	0.99	6.14	6.14	6.14	0.40	1.69	±12%
900	55.0	1.05	6.11	6.11	6.11	0.39	1.60	±12%
1750	53.4	1.49	5.20	5.20	5.20	0.43	1.94	±12%
1900	53.3	1.52	5.03	5.03	5.03	0.46	1.85	±12%

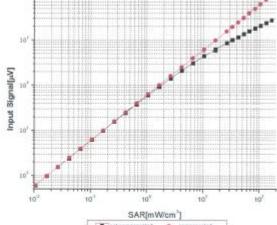

 $^{\circ}$ Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. FAt frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (r and d) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

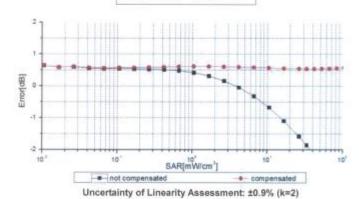
Certificate No: J13-2-2042

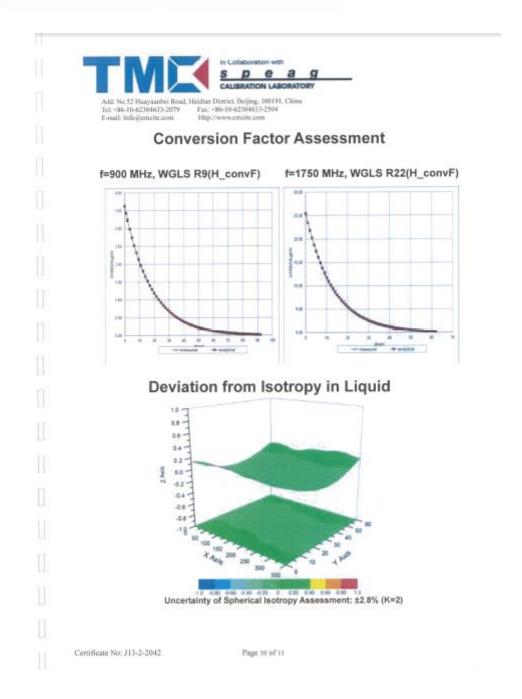
Page 6 of 11


Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

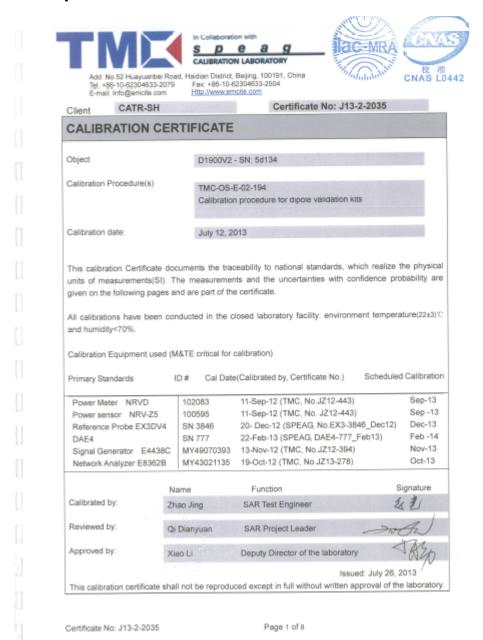

Certificate No: J13-2-2042


Page 7 of 11



Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Certificate No: J13-2-2042 Page 9 of 11


DASY - Parameters of Probe: ES3DV3 - SN: 3252

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	129.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Certificate No: J13-2-2042 Page 11 of 11

ANNEX H Dipole Calibration Certificate

S P e a g
CALIBRATION LABORATORY

Add: No.52 Huayuanbei Road, F Tel: +95-10-52304533-2079 E-mail: info@emcite.com

ad, Hardian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.ens.fec.com

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005.
- February 2005 c) KDR865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indirected.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms
 oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No. J13-2-2035

Page 2 of 8

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tet +86-10-62304633-2079 Fax: +95-10-62304633-2504 E-mail: Info@emoite.com HBp://www.emoite.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.7.1137
Extrapolation	Advanced Extrapolation	
Phantom	Twin Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.6 ± 6 %	1.37 mha/m ± 6 %
Head TSL temperature change during test	<0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.6 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	42.7 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.52 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	22.2 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.8 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	<0.5 °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.9 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	43.4 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.7 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	22.7 mW/g ± 20.4 % (k=2)

Certificate No: J13-2-2035

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.5Ω+0.78jΩ
Return Loss	- 26.8dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.9Ω+ 3.49jΩ
Return Loss	- 24.3dB

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 14, 2010

Certificate No: J13-2-2035

Page 4 of 8

Add. No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +85-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcire.com Hittle @www.emulie.com

DASY5 Validation Report for Head TSL

Date: 12.07.2013

Test Laboratory: TMC, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d134

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; σ = 1.365 mho/m; ϵ r = 38.576; ρ = 1000

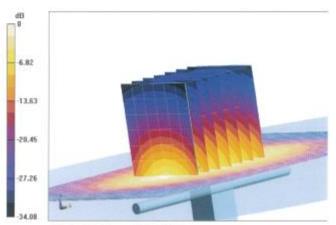
kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(8.01,8.01,8.01); Calibrated:20,12,2012
- . Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 22/2/2013
- Phantom: Flat Phantom; Type: QD000P40CC;
- Measurement SW: DASY52 52.8.7(1137); SEMCAD X Version 14.6.10

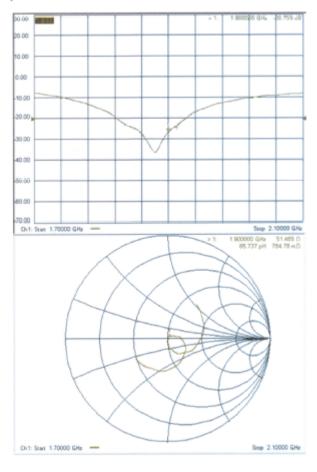

Dipole Calibration for Head Tissue/Pin=250mW, d=10mm/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.229 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 19.8 W/kg

SAR(1 g) = 10.6 W/kg; SAR(10 g) = 5.52 W/kg Maximum value of SAR (measured) = 12.0 W/kg


0 dB = 12.3 W/kg = 10.91 dBW/kg

Certificate No. J13-2-2035

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: J13-2-2035

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 12.07.2013

Test Laboratory: TMC, Beijing, China
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 • SN: 5d134
Communication System: CW; Frequency: 1900 MHz;

Medium parameters used: f = 1900 MHz; σ = 1.502 mho/m; εr = 50.787; ρ = 1000

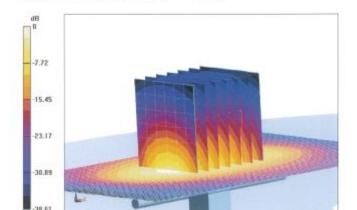
kg/m³

Phantom section: Flat Phantom

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(7.37,7.37,7.37); Calibrated: 20.12.2012
- . Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 22/2/2013
- Phantom: Flat Phantom; Type: QD000P40CC
- Measurement SW: DASY52 52.8.7(1137); SEMCAD X Version 14.6.10

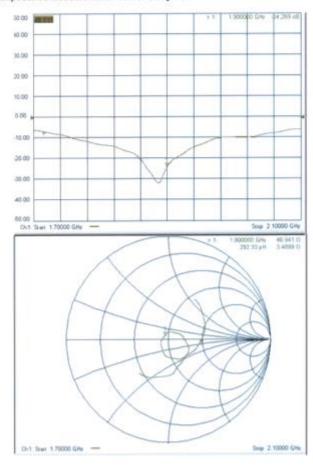

Dipole Calibration for Body Tissue/Pin=250mW, d=10mm/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 74.485 V/m; Power Drift = -0.01 dB

Maximum value of SAR (measured) = 12.3 W/kg

Peak SAR (extrapolated) = 19.8 W/kg SAR(1 g) = 10.9 W/kg; SAR(10 g) = 5.7 W/kg


0 dB = 12.4 W/kg = 10.95 dBW/kg

Certificate No: J13-2-2035

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: J13-2-2035

Page 8 of 8

Acceptable Conditions for SAR Measurements Using Probes and Dipoles Calibrated under the SPEAG-TMC Dual-Logo Calibration Program to Support FCC Equipment Certification

The acceptable conditions for SAR measurements using probes, dipoles and DAEs calibrated by TMC (Telecommunication Metrology Center of MITT in Beijing, China), under the Dual-Logo Calibration Certificate program and quality assurance (QA) protocols established between SPEAG (Schmid & Partner Engineering AG, Switzerland) and TMC, to support FCC (U.S. Federal Communications Commission) equipment certification are defined and described in the following.

- The agreement established between SPEAG and TMC is only applicable to calibration services performed by TMC where its clients (companies and divisions of such companies) are headquartered in the Greater China Region, including Taiwan and Hong Kong. This agreement is subject to renewal at the end of each calendar year between SPEAG and TMC. TMC shall inform the FCC of any changes or early termination to the agreement.
- 2) Only a subset of the calibration services specified in the SPEAG-TMC agreement, while it remains valid, are applicable to SAR measurements performed using such equipment for supporting FCC equipment certification. These are identified in the following:
 - a) Calibration of dosimetric (SAR) probes EX3DVx, ET3DVx and ES3DVx.
 - Free-space E-field and H-field probes, including those used for HAC (hearing aid compatibility) evaluation, temperature probes, other probes or equipment not identified in this document, when calibrated by TMC, are excluded and cannot be used for measurements to support FCC equipment certification.
 Signal specific and bundled probe calibrations based on PMR (probe
 - ii) Signal specific and bundled probe calibrations based on PMR (probe modulation response) characteristics are handled according to the requirements of KDB 865664; that is, "Until standardized procedures are available to make such determination, the applicability of a signal specific probe calibration for testing specific wireless modes and technologies is determined on a case-by-case basis through KDB inquiries, including SAR system verification requirements."
 - b) Calibration of SAR system validation dipoles, excluding HAC dipoles
 - c) Calibration of data acquisition electronics DAE3Vx, DAE4Vx and DAEasyVx.
 - d) For FCC equipment certification purposes, the frequency range of SAR probe and dipole calibrations is limited to 700 MHz - 6 GHz and provided it is supported by the equipment identified in the TMC QA protocol (a separate attachment to this document).
 - e) The identical system and equipment setup, measurement configurations, hardware, evaluation algorithms, calibration and QA protocols, including the format of calibration certificates and reports used by SPEAG shall be applied by TMC.
 - The calibrated items are only applicable to SPEAG DASY 4 and DASY 5 or higher version systems.

1

- 3) The SPEAG-TMC agreement includes specific protocols identified in the following to ensure the quality of calibration services provided by TMC under this SPEAG-TMC Dual-Logo calibration agreement are equivalent to the calibration services provided by SPEAG. TMC shall, upon request, provide copies of documentation to the FCC to substantiate program implementation.
 a) The Inter-laboratory Calibration Evaluation (ILCE) stated in the TMC QA
 - a) The Inter-laboratory Calibration Evaluation (ILCE) stated in the TMC QA protocol shall be performed between SPEAG and TMC at least once every 12 months. The ILCE acceptance criteria defined in the TMC QA protocol shall be satisfied for the TMC. SPEAG and FCC agreements to remain valid.
 - satisfied for the TMC, SPEAG and FCC agreements to remain valid.

 b) Check of Calibration Certificate (CCC) shall be performed by SPEAG for all calibrations performed by TMC. Written confirmation from SPEAG is required for TMC to issue calibration certificates under the SPEAG-TMC Dual-Logo calibration program. Quarterly reports for all calibrations performed by TMC under the program are also issued by SPEAG.
 - c) The calibration equipment and measurement system used by TMC shall be verified before each calibration service according to the specific reference SAR probes, dipoles, and DAE calibrated by SPEAG. The results shall be reproducible and within the defined acceptance criteria specified in the TMC QA protocol before each actual calibration can commence. TMC shall maintain records of the measurement and calibration system verification results for all calibrations.
 - d) Quality Check of Calibration (QCC) certificates shall be performed by SPEAG at least once every 12 months. SPEAG shall visit TMC facilities to verify the laboratory, equipment, applied procedures and plausibility of randomly selected certificates.
- 4) A copy of this document, to be updated annually, shall be provided to TMC clients that accept calibration services according to the SPEAG-TMC Dual-Logo calibration program, which should be presented to a TCB (Telecommunication Certification Body), to facilitate FCC equipment approval.
- TMC shall address any questions raised by its clients or TCBs relating to the SPEAG-TMC Dual-Logo calibration program and inform the FCC and SPEAG of any critical issues.

Change Note: Revised on June 26 to clarify the applicability of PMR and Bundled probe calibrations according to the requirements of KDB 865664.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisee d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

r the recognition of calibration certificates

Auden Certificate No: D835V2-4d092 Jun 13 CALIBRATION CERTIFICATE Object D835V2 - SN: 4d092 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz June 17, 2013 Calibration date: This colibration certificate documents the traceability to national standards, which realize the physical units of measurements (Si). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 01-Nov-12 (No. 217-01640) Oct-13 Power sensor HP 8481A US37292783 01-Nov-12 (No. 217-01640) Oct-13 Reference 20 dB Attenuator SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Apr-14 Type-N mismatch combination SN: 5047.3 / 06327 04-Apr-13 (No. 217-01739) Apr-14 Reference Probe ESSOV3 SN: 3205 28-Dec-12 (No. ES3-3205 Dec12) Dec-13 DAE4 25-Apr-13 (No. DAE4-601_Apr13) Apr-14 Secondary Standards DA Check Date (in house) Scheduled Check Power sensor HP 8481A RF generator R&S SMT-06 MY41092317 18-Oct-02 (in house check Oct-11) In house check: Oct-13 100005 04-Aug-99 (in house check Oct-11) In house check; Oct-13 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-12) In house check: Oct-13 Signature Calibrated by: Jeton Kastrati Approved by: Katia Pokovic Technical Manager lasued: June 17, 2013

Certificate No: D636V2-4d092_Jun13

Page 1 of 8

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurloh, Switzerland

S Schweizerischer Kalibrierdien:
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d092_Jun13

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.5 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.51 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.59 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.18 W/kg ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.37 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.27 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ² (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.56 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.14 W/kg ± 16.5 % (k=2)

Certificate No: D635V2-4d092_Jun13

East China Institute of Telecommunications

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.4 Ω - 1.1 jΩ	
Return Loss	- 31.8 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.9 Ω − 3.1 jΩ	
Return Loss	- 28.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.385 ns
Creditical Delay (one direction)	1.385 hs

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 15, 2009

Certificate No: D835V2-4d092_Jun13

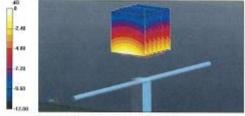
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 13.06.2013

Test Laboratory: Industry Canada - Certification & Engineering Bureau

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d092

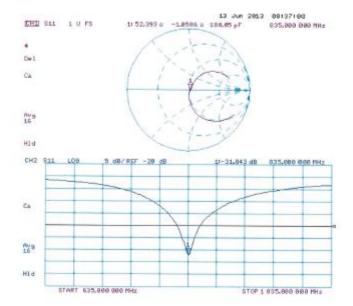

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\epsilon_r = 40.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.874 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.75 W/kg SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 2.89 W/kg


0 dB = 2.89 W/kg = 4.61 dBW/kg

Certificate No: D835V2-4d092_Jun13

Page 5 of 8

East China Institute of Telecommunications

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-4d092_Jun13

Page 6 of 8

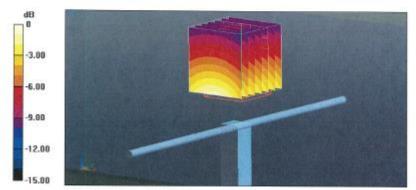
DASY5 Validation Report for Body TSL

Date: 17.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d092

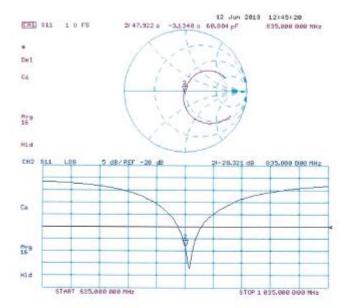
Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\epsilon_r = 53.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 28.12.2012;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm 2/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.483 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 3.47 W/kg SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.56 W/kgMaximum value of SAR (measured) = 2.76 W/kg

0 dB = 2.76 W/kg = 4.41 dBW/kg

Certificate No: D635V2-4d092_Jun13

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-4d092_Jun13 Page 8 of 8

The end of report