

Graphic Products, Inc.

Bronco Max

FCC 15.225:2021 13.56MHz

Report: GRAP0078.1 Rev. 1, Issue Date: August 17, 2022

This report must not be used to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

EAR-Controlled Data - This document contains technical data whose export and reexport/retransfer is subject to control by the U.S. Department of Commerce under the Export Administration Act and the Export Administration Regulations. The Department of Commerce's prior written approval may be required for the export or re-export/retransfer of such technical data to any foreign person, foreign entity or foreign organization whether in the United States or abroad.

CERTIFICATE OF TEST

Last Date of Test: August 10, 2021 Graphic Products, Inc. EUT: Bronco Max

Radio Equipment Testing

Standards

Specification	Method
FCC 15.107:2021	ANSI C63.4:2014
FCC 15.207:2021	ANSI C63.10:2013
FCC 15.225:2021	ANSI C03. 10.2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.4	Field Strength of Fundamental	Yes	Pass	
6.4	Field Strength of Spurious Emissions Less Than 30 MHz	Yes	Pass	
6.5	Field Strength of Spurious Emissions Greater Than 30 MHz	Yes	Pass	
6.8 6.9	Frequency Stability	Yes	Pass	
6.9	Occupied Bandwidth	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Kyle Holgate, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
	Added power table	2022-08-17	11
	The frequency stability has been updated. Used the measured value at 20C as the nominal.	2022-08-17	38
	Added OBW to the GRAP0078.2 Rev. 1 report folder and updated the CoT.	2022-08-17	46
	Block diagram updated.	2022-08-17	7
01	Added OBW photos to photos only report	2022-08-17	N/A
	Updated the cover, accreditation and facilities pages.	2022-08-17	1, 4, 5
	Updated test dates	2022-08-17	1, 10, 13
	Updated the frequency range investigated and added a note in the deviations on Spurious above 30MHz.	2022-08-17	36-37

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

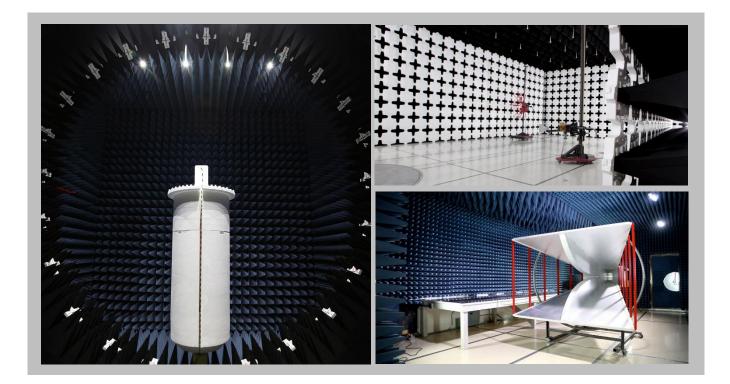
MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA - Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.


SCOPE							
For details on the Scopes of our Accreditations, please visit:							
<u>California</u>	CaliforniaMinnesotaOregonTexasWashington						

FACILITIES

California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-11 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600		
		A2LA				
Lab Code: 3310.04	Lab Code: 3310.05	Lab Code: 3310.02	Lab Code: 3310.03	Lab Code: 3310.06		
Innovation, Science and Economic Development Canada						
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1		
		BSMI				
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R		
VCCI						
A-0029	A-0109	A-0108	A-0201	A-0110		
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA						
US0158	US0175	US0017	US0191	US0157		

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

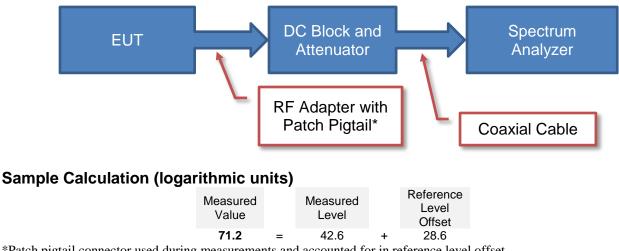
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

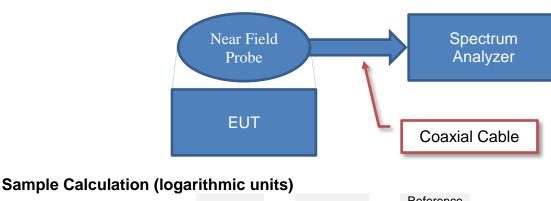
Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.6 dB	-2.6 dB

Test Setup Block Diagrams



Measurement Bandwidths

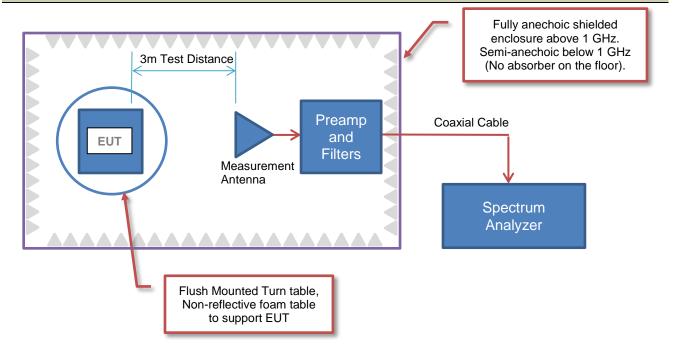
Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0


Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.

Antenna Port Conducted Measurements

*Patch pigtail connector used during measurements and accounted for in reference level offset.

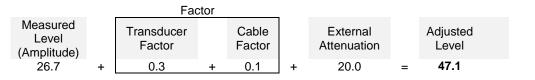
Near Field Test Fixture Measurements



Measured Value		Measured Level		Reference Level Offset
71.2	=	42.6	+	28.6

Test Setup Block Diagrams

Emissions Measurements

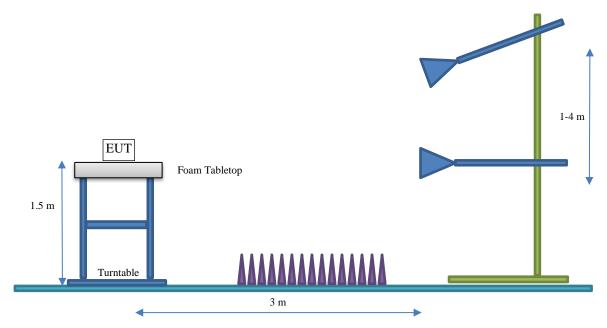


Sample Calculation (logarithmic units)

Radiated Emissions:

Conducted Emissions:

Radiated Power (ERP/EIRP) – Substitution Method:


Measured Level into Substitution Antenna (Amplitude dBm)		Substitution Antenna Factor (dBi)		EIRP to ERP (if applicable)		Measured power (dBm ERP/EIRP)
10.0	+	6.0	-	2.15	=	13.9/16.0

Test Setup Block Diagrams

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Graphic Products, Inc.
Address:	9825 SW Sunshine Court
City, State, Zip:	Beaverton, OR 97005
Test Requested By:	Michael Noble
EUT:	Bronco Max
First Date of Test:	February 17, 2021
Last Date of Test:	August 10, 2021
Receipt Date of Samples:	February 15, 2021
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Standalone thermal transfer printer with a display and keyboard

Testing Objective:

To demonstrate compliance to FCC Part 15.225 specifications.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information.

ANTENNA GAIN (dBi)

Туре	Model	Provided by:	Frequency Range (MHz)	ISO Protocol	Gain (dBi)
3.75" x 4.5" Single Turn Loop Antenna	DA-AN12	Manufacturer	13.56 MHz	ISO 15693	N/A

No adjustable power settings were provided. The EUT was tested using power settings pre-defined by the manufacturer.

Configuration GRAP0078-1

EUT							
Description	Manufacturer	Model/Part Number	Serial Number				
Thermal Transfer Printer	Graphic Products, Inc.	Bronco Max	Cert 1				

Peripherals in test setup boundary					
Description Manufacturer Model/Part Number Serial Number					
Power Supply	Wearnes	WDS5150240	20040000014		

Remote Equipment Outside of Test Setup Boundary						
Description	Description Manufacturer Model/Part Number Serial Number					
Laptop PC Acer V5-131-2887 3340294334						

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
AC Power Cable	No	1.8 m	No	Power Supply	AC Mains	
CAT 5e	No	4.6 m	No	Thermal Transfer Printer	Laptop PC	
DC Power Cable	No	1 m	Yes	Thermal Transfer Printer	Power Supply	

Configuration GRAP0078-2

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
Thermal Transfer Printer	Graphic Products, Inc.	Bronco Max	Cert 1		

Peripherals in test setup boundary					
Description Manufacturer Model/Part Number Serial Number					
Power Supply	Wearnes	WDS5150240	20040000014		

Remote Equipment Outside of Test Setup Boundary						
Description	escription Manufacturer Model/Part Number Serial Number					
Laptop PC	Acer	V5-131-2887	3340294334			

Cables	Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
AC Power Cable	No	1.8 m	No	Power Supply	AC Mains		
CAT 5e	No	4.6 m	No	Thermal Transfer Printer	Laptop PC		
DC Power Cable	No	1 m	Yes	Thermal Transfer Printer	Power Supply		
USB 1	Yes	4.6 m	No	Thermal Transfer Printer	Laptop PC		
USB 2	Yes	4.6 m	No	Thermal Transfer Printer	Laptop PC		

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2021-02-17	Field Strength of Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2021-02-17	Field Strength of Spurious Emissions Less Than 30 MHz	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2021-02-18	Field Strength of Spurious Emissions Greater Than 30 MHz	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2021-02-19	Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	2021-02-22	Frequency Stability	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	2021-08-10	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

TEST DESCRIPTION

The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT.

The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10.

In the event that the operating frequency of 13.56 MHz is causing the product to fail the FCC 15.207 limits, the following guidance can be used:

FCC KDB 174176 D01 AC Conducted FAQ v01r01, June 3, 2015 Section Q5:

For a device with a permanent or detachable antenna operating at or below 30 MHz, the FCC will accept measurements performed with a suitable dummy load in lieu of the antenna under the following conditions:

(1) perform the AC power-line conducted tests with the antenna connected to determine compliance with Section 15.207 limits outside the transmitter's fundamental emission band;

(2) retest with a dummy load in lieu of the antenna to determine compliance with Section 15.207 limits within the transmitter's fundamental emission band. For a detachable antenna, remove the antenna and connect a suitable dummy load to the antenna connector. For a permanent antenna, remove the antenna and terminate the RF output with a dummy load or network which simulates the antenna in the fundamental frequency band.

All measurements must be performed as specified in clause 6.2 of ANSI C63.10-2013.

TEST EQUIPMENT

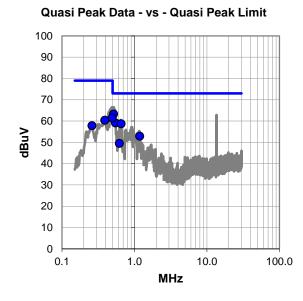
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Receiver	Rohde & Schwarz	ESR7	ARI	2020-07-09	2021-07-09
LISN	Solar Electronics	9252-50-R-24-BNC	LIP	2020-08-31	2021-08-31
Cable - Conducted Cable Assembly	Northwest EMC	EVG, HHD, RKT	EVGA	2021-01-05	2022-01-05

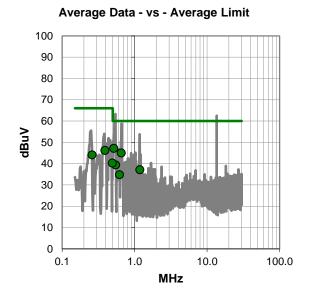
MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.6 dB	-2.6 dB

CONFIGURATIONS INVESTIGATED

GRAP0078-2


MODES INVESTIGATED


```
On, RFID continuous transmit at 13.56MHz
On, RFID off
```


EUT:	Bronco Max		Work Order:	GRAP0078			
Serial Number:	Cert 1	Date:	2021-02-19				
Customer:	Graphic Products, Inc.		Temperature:	23.4°C			
Attendees:	Chad Schaffer		Relative Humidity:	34.5%			
Customer Project:	None		Bar. Pressure:	1025 mb			
Tested By:	Cole Ghizzone		Job Site:	EV07			
Power:	110VAC/60Hz		Configuration:	GRAP0078-2			
	TEST SPECIFICATIONS						
Specification: Equip	oment Class A	Method:					
FCC 15.107:2021		ANSI C63.4:2014					
TEST PARAME	TERS						
Run #: 10	Line: Neutral	Ad	d. Ext. Attenuation (dB): 0			
COMMENTS							
The EUT is a class	A device and meets the class A limits in FO	CC 15.107.					
EUT OPERATING MODES							
On, RFID continuou	On, RFID continuous transmit at 13.56MHz						
DEVIATIONS FROM TEST STANDARD							

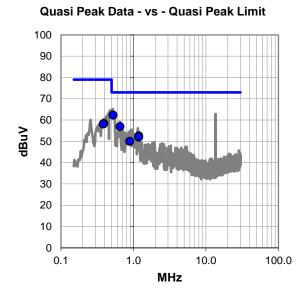
None

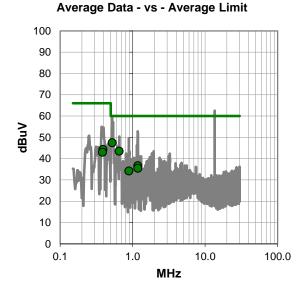
RESULTS - Run #10

Quasi Peak Data - vs - Quasi Peak Limit							
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
0.517	43.3	20.0	63.3	73.0	-9.7		
0.548	39.1	20.0	59.1	73.0	-13.9		
0.656	38.7	20.0	58.7	73.0	-14.3		
0.494	41.4	20.0	61.4	79.0	-17.6		
0.390	40.4	20.0	60.4	79.0	-18.6		
1.180	32.9	20.0	52.9	73.0	-20.1		
0.260	37.8	20.0	57.8	79.0	-21.2		
0.619	29.5	20.0	49.5	73.0	-23.5		

Average Data - vs - Average Limit									
Freq (MHz)	Amp. (dBuV)	Factor Adjusted Limit (dB) (dBuV) (dBuV)			Margin (dB)				
0.517	27.2	20.0	47.2	60.0	-12.8				
0.656	25.0	20.0	45.0	60.0	-15.0				
0.390	26.2	20.0	46.2	66.0	-19.8				
0.548	19.4	20.0	39.4	60.0	-20.6				
0.260	24.1	20.0	44.1	66.0	-21.9				
1.180	17.1	20.0	37.1	60.0	-22.9				
0.619	14.8	20.0	34.8	60.0	-25.2				
0.494	20.3	20.0	40.3	66.0	-25.7				

CONCLUSION


Pass


Cake Shapp Tested By

EUT:	Bronco Max				Work Order:	GRAP0078			
Serial Number:	Cert 1				Date:	2021-02-19			
Customer:	Graphic Proc	ducts, Inc.			Temperature:	23.4°C			
Attendees:	Chad Schaff	er			Relative Humidity:	34.5%			
Customer Project:	None				Bar. Pressure:	1025 mb			
Tested By:	Cole Ghizzor	ne			Job Site:	EV07			
Power:	110VAC/60F	lz			Configuration:	GRAP0078-2			
TEST SPECIFICATIONS									
Specification: Equip	Specification: Equipment Class A				Method:				
FCC 15.107:2021	FCC 15.107:2021				ANSI C63.4:2014				
TEST PARAME	TERS								
Run #: 11		Line:	High Line		Add. Ext. Attenuation (dB	3): 0			
COMMENTS									
The EUT is a class	A device and r	meets the c	lass A limits in F	CC 15.107.					
EUT OPERATING MODES									
On, RFID continuou	us transmit at 1	3.56MHz							
DEVIATIONS F	DEVIATIONS FROM TEST STANDARD								

None

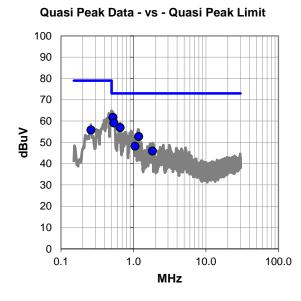
RESULTS - Run #11

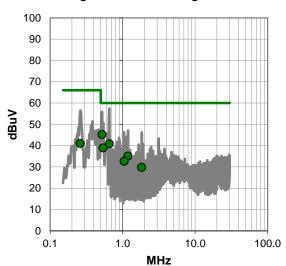
Quasi Peak Data - vs - Quasi Peak Limit									
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)				
0.524	42.3	20.0	62.3	73.0	-10.7				
0.653	36.9	20.0	56.9	73.0	-16.1				
1.181	32.6	20.0	52.6	73.0	-20.4				
0.390	38.4	20.0	58.4	79.0	-20.6				
0.384	38.1	20.0	58.1	79.0	-20.9				
1.185	32.0	20.0	52.0	73.0	-21.0				
0.888	30.0	20.0	50.0	73.0	-23.0				

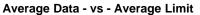
Average Data - vs - Average Limit									
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)				
0.524	27.5	20.0	47.5	60.0	-12.5				
0.653	23.5	20.0	43.5	60.0	-16.5				
0.390	24.3	20.0	44.3	66.0	-21.7				
0.384	23.0	20.0	43.0	66.0	-23.0				
1.181	16.7	20.0	36.7	60.0	-23.3				
1.185	15.5	20.0	35.5	60.0	-24.5				
0.888	14.2	20.0	34.2	60.0	-25.8				

CONCLUSION

Pass


Can Sign


Tested By



Max Products, Inc. chaffer			Work Order: Date: Temperature:	GRAP0078 2021-02-19		
			Temperature:	00.400		
chaffer				23.4°C		
			Relative Humidity:	34.5%		
		Bar. Pressure:	1025 mb			
izzone			Job Site:	EV07		
/60Hz			Configuration:	GRAP0078-2		
ss A						
		ANSI C63.4:2014	4			
Line:	High Line		dd. Ext. Attenuation (dB): 0			
t change to the	emissions with th	e radio powered of	f.			
ES						
ST STAND	ARD					
	nt change to the DES	C/60Hz	C/60Hz NS ass A Method: ANSI C63.4:201 Line: High Line nt change to the emissions with the radio powered of DES	C/60Hz Configuration: NS ass A Method: ANSI C63.4:2014 Line: High Line Add. Ext. Attenuation (dE nt change to the emissions with the radio powered off. DES		

None

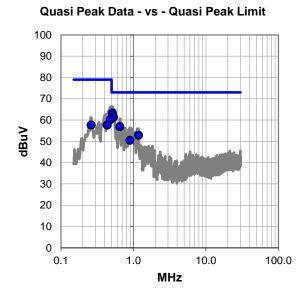
RESULTS - Run #12

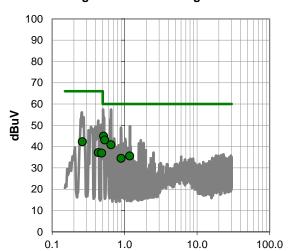
Quasi Peak Data - vs - Quasi Peak Limit									
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)				
0.520	41.7	20.0	61.7	73.0	-11.3				
0.537	39.1	20.0	59.1	73.0	-13.9				
0.657	36.9	20.0	56.9	73.0	-16.1				
1.183	32.7	20.0	52.7	73.0	-20.3				
0.260	35.8	20.0	55.8	79.0	-23.2				
1.052 28.2		20.0	48.2	73.0	-24.8				
1.836	25.9	20.0	45.9	73.0	-27.1				

Average Data - vs - Average Limit									
Freq (MHz)	Amp. (dBuV)								
0.520	25.2	20.0	45.2	60.0	-14.8				
0.657	20.9	20.0	40.9	60.0	-19.1				
0.537	18.9	20.0	38.9	60.0	-21.1				
1.183	15.1	20.0	35.1	60.0	-24.9				
0.260	21.0	20.0	41.0	66.0	-25.0				
1.052	12.6	20.0	32.6	60.0	-27.4				
1.836	9.8	20.0	29.8	60.0	-30.2				

CONCLUSION

Pass


Can Sign


Tested By

EUT:	Bronco Max				Work Order:	GRAP0078		
Serial Number:	Cert 1				Date:	2021-02-19		
Customer:		Graphic Products, Inc.				2021-02-19 23.4°C		
Attendees:	Chad Schaff				Temperature: Relative Humidity:	34.5%		
Customer Project:	None	ei			Bar. Pressure:	1025 mb		
Tested By:	Cole Ghizzo	20			Job Site:	EV07		
		-			Configuration:	GRAP0078-2		
Power:	110VAC/60F	110VAC/60Hz				GRAF0076-2		
TEST SPECIFIC	CATIONS							
Specification: Equip	Specification: Equipment Class A				Method:			
FCC 15.107:2021				ANSI C63.4:2014				
TEST PARAME	TERS							
Run #: 13		Line:	Neutral		Add. Ext. Attenuation (dB	B): 0		
COMMENTS								
The data shows no	cignificant cha	ngo to tho	omiccions with th	o radio powarad (∼ff			
	Significant cha	inge to the		le laulo powereu (
EUT OPERATIN	NG MODES							
On, RFID off								
DEVIATIONS F	ROM TEST	STAND	ARD					
Nono								

None

MHz

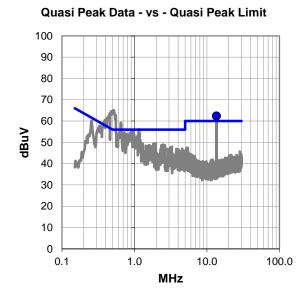
Average Data - vs - Average Limit

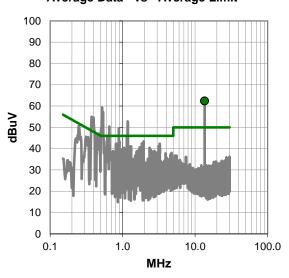
RESULTS - Run #13

Quasi Peak Data - vs - Quasi Peak Limit								
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)			
0.514	43.3	20.0	63.3	73.0	-9.7			
0.532	41.3	20.0	61.3	73.0	-11.7			
0.648	36.9	20.0	56.9	73.0	-16.1			
0.482	40.2	20.0	60.2	79.0	-18.8			
1.180	32.9	20.0	52.9	73.0	-20.1			
0.261	37.7	20.0	57.7	79.0	-21.3			
0.435	37.6	20.0	57.6	79.0	-21.4			
0.892	30.5	20.0	50.5	73.0	-22.5			

Average Data - vs - Average Limit									
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Margin (dB)						
0.514	24.9	20.0	44.9	60.0	-15.1				
0.532	23.1	20.0	43.1	60.0	-16.9				
0.648	20.9	20.0	40.9	60.0	-19.1				
0.261	22.3	20.0	42.3	66.0	-23.7				
1.180	15.6	20.0	35.6	60.0	-24.4				
0.892	14.5	20.0	34.5	60.0	-25.5				
0.435	17.2	20.0	37.2	66.0	-28.8				
0.482	17.0	20.0	37.0	66.0	-29.0				

CONCLUSION


Pass


Cake Shapp Tested By

EUT:	Bronco Max				Work Order:	GRAP0078		
Serial Number:	Cert 1				Date:	2021-02-19		
Customer:	Graphic Proc	ducto Inc			2021-02-19 23.4°C			
Attendees:	Chad Schaff	,			Temperature: Relative Humidity:	34.5%		
		ei			Bar. Pressure:			
Customer Project:	None					1025 mb		
Tested By:	Cole Ghizzor	-			Job Site:	EV07		
Power:	110VAC/60H	lz			Configuration:	GRAP0078-2		
TEST SPECIFIC	CATIONS							
Specification:	Specification:				Method:			
FCC 15.207:2021				ANSI C63.10:2013				
TEST PARAME	TERS							
Run #: 11		Line:	High Line		Add. Ext. Attenuation (dB): 0			
COMMENTS None								
EUT OPERATING MODES								
On, RFID continuou	us transmit at 1	3.56MHz						
DEVIATIONS FROM TEST STANDARD								

None

Average Data - vs - Average Limit

Margin

(dB)

12.4

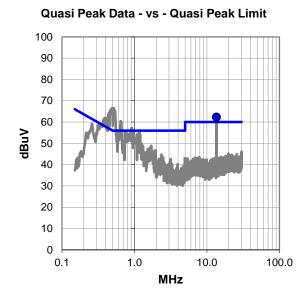
(dBuV)

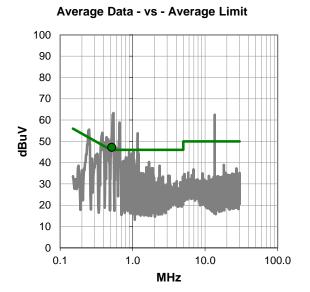
RESULTS - Run #11

Q		Average	Data - vs	- Average	Limit						
				Spec.							Spec.
Freq	Amp.	Factor	Adjusted	Limit	Margin		Freq	Amp.	Factor	Adjusted	Limit
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)		(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV
13.560	42.1	20.3	62.4	60.0	2.4		13.560	42.1	20.3	62.4	50.0

CONCLUSION

Fail


11	all
1 ph	Sum


Tested By

EUT.	Deserve Maria				Marte Orders	00400070	
EUT:	Bronco Max				Work Order:	GRAP0078	
Serial Number:	Cert 1				Date:	2021-02-19	
Customer:	Graphic Proc	ducts, Inc.			Temperature:	23.4°C	
Attendees:	Chad Schaff	er			Relative Humidity:	34.5%	
Customer Project:	None				Bar. Pressure:	1025 mb	
Tested By:	Cole Ghizzo	ne			Job Site:	EV07	
Power:	110VAC/60H	lz			Configuration:	GRAP0078-2	
TEST SPECIFIC	CATIONS						
Specification:				Method:			
FCC 15.207:2021				ANSI C63.10:20	013		
TEST PARAME	TERS						
Run #: 10		Line:	Neutral		Add. Ext. Attenuation (dB	3): 0	
COMMENTS None							
EUT OPERATING MODES							
On, RFID continuou	On, RFID continuous transmit at 13.56MHz						
DEVIATIONS F	DEVIATIONS FROM TEST STANDARD						

None

Margin

(dB)

1.2

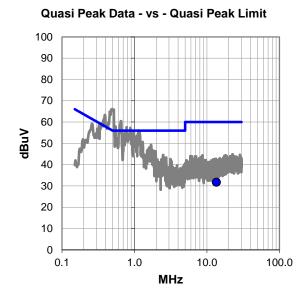
(dBuV)

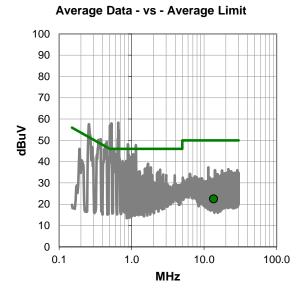
RESULTS - Run #10

Quasi Peak Data - vs - Quasi Peak Limit								Average	Data - vs	- Average	Limit
				Spec.							Spec.
Freq	Amp.	Factor	Adjusted	Limit	Margin		Freq	Amp.	Factor	Adjusted	Limit
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)		(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV
13.561	42.0	20.3	62.3	60.0	2.3		0.517	27.2	20.0	47.2	46.0

CONCLUSION

Fail


11	all
1 th	Man
\mathcal{C}	


Tested By

	D M					00400070
EUT:	Bronco Max				Work Order:	GRAP0078
Serial Number:	Cert 1				Date:	2021-02-19
Customer:	Graphic Pro	ducts, Inc.			Temperature:	23.4°C
Attendees:	Chad Schaff	er			Relative Humidity:	34.5%
Customer Project:	None				Bar. Pressure:	1025 mb
Tested By:	Cole Ghizzo	ne			Job Site:	EV07
Power:	110VAC/60H	Ηz			Configuration:	GRAP0078-2
TEST SPECIFI	CATIONS					
Specification:				Method:		
FCC 15.207:2021				ANSI C63.10:2	2013	
TEST PARAME	TERS					
Run #: 14		Line:	Neutral		Add. Ext. Attenuation (dB	3): 0
COMMENTS						
RFID antenna remo	oved.					
EUT OPERATING MODES						
On, RFID continuo	us transmit at 1	13.56MHz				
		OTANE				
DEVIATIONS F	ROM IEST	SIAND	AKD			
None						

None

Margin

(dB)

-27.5

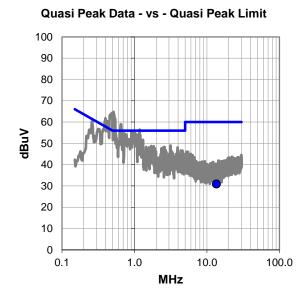
(dBuV)

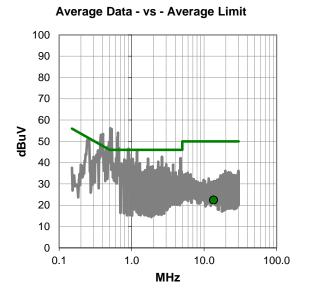
RESULTS - Run #14

Quasi Peak Data - vs - Quasi Peak Limit								Average	Data - vs	- Average	Limit
				Spec.							Spec.
Freq	Amp.	Factor	Adjusted	Limit	Margin		Freq	Amp.	Factor	Adjusted	Limit
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)		(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)
13.560	11.4	20.3	31.7	60.0	-28.3		13.560	2.2	20.3	22.5	50.0

CONCLUSION

Pass


11	all
the	MAN
\mathcal{C}	


Tested By

CUT						00400070
EUT:	Bronco Max				Work Order:	GRAP0078
Serial Number:	Cert 1				Date:	2021-02-19
Customer:	Graphic Proc	ducts, Inc.			Temperature:	23.4°C
Attendees:	Chad Schaff	er			Relative Humidity:	34.5%
Customer Project:	None				Bar. Pressure:	1025 mb
Tested By:	Cole Ghizzor	ne			Job Site:	EV07
Power:	110VAC/60F	łz			Configuration:	GRAP0078-2
TEST SPECIFIC	CATIONS					
Specification:				Method:		
FCC 15.207:2021				ANSI C63.10:20	13	
TEST PARAME	TERS					
Run #: 15		Line:	High Line		Add. Ext. Attenuation (dE	3): 0
COMMENTS RFID antenna remo	wed					
EUT OPERATING MODES						
On, RFID continuou	is transmit at 1	3.56MHz				
DEVIATIONS F	ROM TEST	STAND	ARD			_

None

Margin

(dB)

-27.6

(dBuV)

RESULTS - Run #15

Quasi Peak Data - vs - Quasi Peak Limit								Average	Data - vs	- Average	Limit
				Spec.							Spec.
Freq	Amp.	Factor	Adjusted	Limit	Margin		Freq	Amp.	Factor	Adjusted	Limit
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)		(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV
13.560	10.6	20.3	30.9	60.0	-29.1		13.560	2.1	20.3	22.4	50.0

CONCLUSION

Pass

11	all
the	Man
C	

Tested By

FIELD STRENGTH OF FUNDAMENTAL

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

On, continuous transmit RFID at 13.56MHz.

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

GRAP0078 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency 9 kHz

Stop Frequency

30 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	None	10m Test Distance Cable	EVL	2021-02-02	2022-02-02
Antenna - Loop	EMCO	6502	AOA	2020-07-06	2022-07-06
Analyzer - Spectrum Analyzer	Agilent	E4443A	AFB	2020-06-26	2021-06-26

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data Quasi-Peak Data (kHz) (kHz)		Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

The fundamental carrier of the EUT was maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity. The reference point of the loop antenna was maintained at 1m above the ground plane during the testing.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.5, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

FIELD STRENGTH OF FUNDAMENTAL

											EmiR5 2021.01.08.0		PSA-ESCI 2021.01.22.0
	Work	Order:	GRAF	P0078		Date:	2021.	02-17		~ /	01	1	
		Project:	No	one	Te	mperature:		3°C	1	in	1	m	
	J	ob Site:		/11		Humidity:	33.3	% RH			01		
S	erial N	lumber:	Ce	ert 1	Barom	etric Pres.:	1031	mbar		Tested by:	Cole Ghizz	one	
		EUT:	Bronco Ma										
C	Config	uration:											
	Cu	stomer:	Graphic Pr	roducts, Inc									
			Chad Scha										
	FUT	Power:	110VAC/6	0Hz									
Оре		g Mode:	On, contin	uous transr	nit RFID a	t 13.56MHz.							
	Dev	iations:	None										
	Con	nments:	See data c	comments fo	or EUT ori	entation.							
Test S	pecific	ations						Test Met	hod	1			
FCC 15			1					ANSI C63		I			
Ru	n #	12	Test Die	stance (m)	10	Antenna	Height(s)		1 (m)		Results		Pass
Nu		12	1031 Dis		10	Antenna	noigin(3)	<u> </u>	- (11)		Results	Г	
8	30												
6	60												
dBuV/m	40												
р													
2	20 +									+ $+$ $+$ $+$			+
	0												
	20												
-2	20 13		13	13		13	14		14	14		14	14
	15		15	13		15			14	14			14
							MHz				PK	♦ AV	o QP

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
13.567	28.4	12.0	1.0	187.0	10.0	0.0	Perp EUT	QP	-19.1	21.3	50.5	-29.2	EUT Vertical
13.000	6.2	12.1	1.0	187.0	10.0	0.0	Perp EUT	QP	-19.1	-0.8	29.5	-30.3	EUT Vertical
14.119	6.2	12.0	1.0	187.0	10.0	0.0	Perp EUT	QP	-19.1	-0.9	29.5	-30.4	EUT Vertical
13.553	24.5	12.0	1.0	181.0	10.0	0.0	Perp EUT	QP	-19.1	17.4	50.5	-33.1	EUT Vertical
13.401	7.4	12.1	1.0	181.0	10.0	0.0	Perp EUT	QP	-19.1	0.4	40.5	-40.1	EUT Vertical
13.712	6.1	12.0	1.0	187.0	10.0	0.0	Perp EUT	QP	-19.1	-1.0	40.5	-41.5	EUT Vertical
13.561	42.2	12.0	1.0	192.0	10.0	0.0	Perp EUT	QP	-19.1	35.1	84.0	-48.9	EUT Vertical
13.561	40.3	12.0	1.0	114.0	10.0	0.0	Perp EUT	QP	-19.1	33.2	84.0	-50.8	EUT Horizontal
13.561	34.9	12.0	1.0	200.0	10.0	0.0	Para Floor	QP	-19.1	27.8	84.0	-56.2	EUT Vertical
13.561	34.1	12.0	1.0	286.0	10.0	0.0	Para EUT	QP	-19.1	27.0	84.0	-57.0	EUT Vertical
13.561	33.3	12.0	1.0	202.0	10.0	0.0	Para EUT	QP	-19.1	26.2	84.0	-57.8	EUT Horizontal
13.561	33.0	12.0	1.0	93.0	10.0	0.0	Para Floor	QP	-19.1	25.9	84.0	-58.1	EUT Horizontal
13.561	30.6	12.0	1.0	47.0	10.0	0.0	Perp EUT	QP	-19.1	23.5	84.0	-60.5	EUT On Side
13.561	22.1	12.0	1.0	190.0	10.0	0.0	Para Floor	QP	-19.1	15.0	84.0	-69.0	EUT On Side
13.560	18.7	12.0	1.0	112.0	10.0	0.0	Para EUT	QP	-19.1	11.6	84.0	-72.4	EUT On Side

FIELD STRENGTH OF SPURIOUS EMISSIONS LESS THAN 30 MHZ

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

n, continuous transmit RFID at 13.56MHz.
OWER SETTINGS INVESTIGATED
10VAC/60Hz
ONFIGURATIONS INVESTIGATED
RAP0078 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency 9 kHz	Stop Frequency	30 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	None	10m Test Distance Cable	EVL	2021-02-02	2022-02-02
Antenna - Loop	EMCO	6502	AOA	2020-07-06	2022-07-06
Analyzer - Spectrum Analyzer	Agilent	E4443A	AFB	2020-06-26	2021-06-26

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

As outlined in 15.209(e), 15.31(f)(2), and RSS-GEN, 6.5, measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

FIELD STRENGTH OF SPURIOUS EMISSIONS LESS THAN 30 MHZ

						EmiR5 2021.01.08.0	PSA-ESCI 2021.01.22.
Wor			2021-02-17	an	al		
	Project:	None	Temperature:	22.8 °C	(na	100	1 million
	Job Site:	EV11	Humidity:	33.3% RH		14	8
Serial	Number:	Cert 1	Barometric Pres.:	1031 mbar	Tested by:	Cole Ghizzone	
	EUT:	Bronco Max					
Config	guration:	2					
		Graphic Products, Inc					
		Chad Schaffer 110VAC/60Hz					
Operatin	ng Mode:	On, continuous transr	nit RFID at 13.56MHz.				
		None					
De	viations:	NONE					
		See data comments f	or FUT orientation				
Co	mments:						
				— (1 (1 (
Test Specifi FCC 15.225				Test Met ANSI C63			
FUC 15.225	2021			ANSI Cos	3.10:2013		
Run #	12	Test Distance (m)	10 Antenna	Height(s)	1(m)	Results	Pass
						Hoound	1 400
50							
45							
40							
35							
35							
30							
E							
ш/Л ₂₅ —							
<u>a</u>							
D 20							
20							
15							
10							
						_	
5							
5							
0 –					10		
0			1		10		100
			1	MHz	10	■ PK ◆	100

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
27.121	14.2	10.2	0.1	284.0	10.0	0.0	Perp EUT	QP	-9.5	14.9	29.5	-14.6	EUT On Side
27.121	13.6	10.2	1.0	323.0	10.0	0.0	Perp EUT	QP	-9.5	14.3	29.5	-15.2	EUT Vertical
27.121	13.0	10.2	1.0	27.0	10.0	0.0	Perp EUT	QP	-9.5	13.7	29.5	-15.8	EUT Horizontal
27.121	8.6	10.2	1.0	325.0	10.0	0.0	Para Floor	QP	-9.5	9.3	29.5	-20.2	EUT On Side
27.120	7.5	10.2	1.0	322.0	10.0	0.0	Para Floor	QP	-9.5	8.2	29.5	-21.3	EUT Horizontal
27.121	7.5	10.2	1.0	250.0	10.0	0.0	Para Floor	QP	-9.5	8.2	29.5	-21.3	EUT Vertical
27.123	6.0	10.2	1.0	256.0	10.0	0.0	Para EUT	QP	-9.5	6.7	29.5	-22.8	EUT Vertical
27.123	5.5	10.2	1.0	176.0	10.0	0.0	Para EUT	QP	-9.5	6.2	29.5	-23.3	EUT Horizontal
27.117	5.4	10.2	1.0	169.0	10.0	0.0	Para EUT	QP	-9.5	6.1	29.5	-23.4	EUT On Side

FIELD STRENGTH OF SPURIOUS EMISSIONS GREATER THAN 30 MHZ

PSA-ESCI 2021.01.22.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

On, continuous transmit RFID 13.56MHz

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

GRAP0078 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz

Stop Frequency 10 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Filter - Low Pass	Fairview Microwave	FMFL020	PLE	2021-02-02	2022-02-02
Amplifier - Pre-Amplifier	Fairview Microwave	FMAM63001	PAY	2021-02-02	2022-02-02
Antenna - Biconilog	Teseq	CBL 6141B	AXR	2020-10-13	2022-10-13
Analyzer - Spectrum Analyzer	Agilent	E4443A	AFB	2020-06-26	2021-06-26

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting while set at the operating channel.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

FIELD STRENGTH OF SPURIOUS EMISSIONS GREATER THAN 30 MHZ

								EmiR5 2021.01.08.0	PSA-ESCI 2021.01.
Wor	rk Order:	GRAP0078		Date:		-02-18	01	all	
	Project:	None	Ter	mperature:	22.	3 °C	1 na	1 mg	1
	Job Site:	EV11		Humidity:		% RH		10	
Serial	Number:	Cert 1	Barome	etric Pres.:	1024	mbar	Tested by:	Cole Ghizzone	
	EUT:	Bronco Max	•			-			
Config	guration:	2							
C	ustomer:	Graphic Products, Ir	nc.						
		Chad Schaffer							
EU		110VAC/60Hz							
Operatir	ig mode:	On, continuous trans							
De	viations:	Measurements in th	e 1 GHz - 10	GHz range v	vere done	e using an 80c	m table height.		
Co	mments:	See data comments	for EUT orie	entation.					
est Specif	ications					Test Method			
CC 15.225	:2021					ANSI C63.10):2013		
Run #	21	Test Distance (m	1) 3	Antenna I	-leight(c)	1	to 4(m)	Results	Pass
Null #	21	Test Distance (ii	y 3	Antenna i	ieigiit(s)	1	10 4(11)	Results	F 833
80 -									
70 🕂									
~									
60									
_ 50 -									
E 00									
≥									
m/vub 40					┛┤─┤──				
d									
			–						
30 +					5 •				
				•]					
20			•						
20 -									
10 -									
o 🗕									
10					100				1000
					MHz				
								📕 PK 🔶	AV • QP

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
81.368	59.3	-27.1	1.0	178.0	3.0	0.0	Vert	QP	0.0	32.2	40.0	-7.8	EUT Vertical
40.686	49.3	-17.1	1.0	95.0	3.0	0.0	Vert	QP	0.0	32.2	40.0	-7.8	EUT Vertical
81.367	58.8	-27.1	3.86	288.0	3.0	0.0	Horz	QP	0.0	31.7	40.0	-8.3	EUT Horizontal
81.367	58.3	-27.1	3.87	122.0	3.0	0.0	Horz	QP	0.0	31.2	40.0	-8.8	EUT Vertical
108.488	56.3	-23.7	1.0	25.0	3.0	0.0	Vert	QP	0.0	32.6	43.5	-10.9	EUT Vertical
81.365	55.7	-27.1	1.0	291.0	3.0	0.0	Vert	QP	0.0	28.6	40.0	-11.4	EUT On Side
81.366	55.6	-27.1	1.0	54.0	3.0	0.0	Vert	QP	0.0	28.5	40.0	-11.5	EUT Horizontal
108.493	54.3	-23.7	2.72	310.0	3.0	0.0	Horz	QP	0.0	30.6	43.5	-12.9	EUT Horizontal
54.251	49.9	-23.3	1.0	63.0	3.0	0.0	Vert	QP	0.0	26.6	40.0	-13.4	EUT Vertical
81.367	51.4	-27.1	2.07	105.0	3.0	0.0	Horz	QP	0.0	24.3	40.0	-15.7	EUT On Side
40.685	39.2	-17.1	3.75	139.0	3.0	0.0	Horz	QP	0.0	22.1	40.0	-17.9	EUT Horizontal
54.246	44.1	-23.2	3.06	267.0	3.0	0.0	Horz	QP	0.0	20.9	40.0	-19.1	EUT Horizontal

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Probe - Near Field Set	EMCO	7405	IPD	NCR	NCR
Chamber - Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPH-8-2-SCT/AC	TBI	NCR	NCR
Thermometer	Omegaette	HH311	DTY	2021-02-04	2024-02-04
Meter - Multimeter	Tektronix	DMM912	MMH	2019-02-15	2022-02-15
Cable	Micro-Coax	UFD150A-1-0720-200200	EVH	2020-03-13	2021-03-13
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFA	2020-02-28	2021-02-28

TEST DESCRIPTION

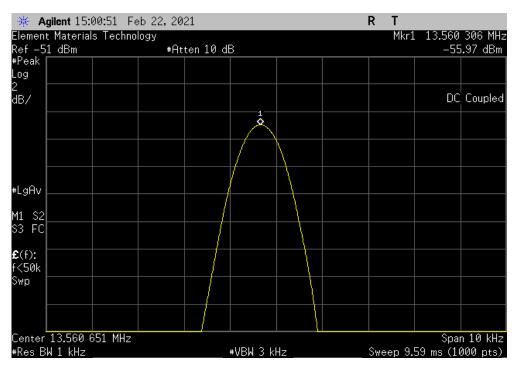
The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT.

Measurements were made on the single transmit frequency as called out on the data sheets. Testing was done while the EUT was continuously polling.

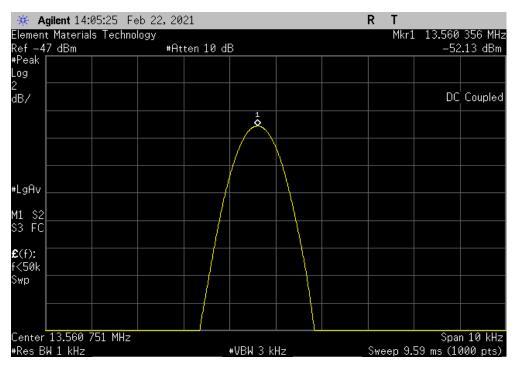
The primary supply voltage was varied from 85 % to 115% of the nominal voltage while at ambient temperature. Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range of -20 ° to +50° C and at 10°C intervals.

The requirement of a frequency tolerance of $\pm 0.01\%$ is equivalent to 100 ppm The formula to check for compliance is:

ppm = (Measured Frequency / Measured Nominal Frequency - 1) * 1,000,000

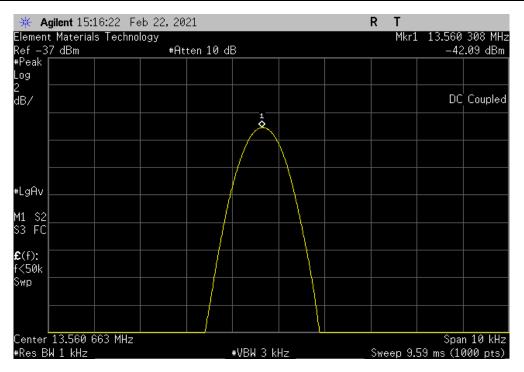


	Bronco Max										Work Order:	GRAP0078	
Serial Number:	Cert 1											22-Feb-21	
Customer:	Graphic Pro	ducts, Inc.									Temperature:	22.3 °C	
Attendees:	Chad Schaf	fer									Humidity:	33% RH	
Project:										Ba	arometric Pres.:		
	Cole Ghizzo	ne						10VAC/60Hz			Job Site:	EV06	
EST SPECIFICATION	IONS							est Method					
CC 15.225:2021							A	NSI C63.10:2013					
OMMENTS													
lone													
one													
EVIATIONS FROM	A TEST STAN												
		IDARD											
lone		IDARD											
lone Configuration #				Signature	ć	Jul	2	ing the second s					
				Signature	Ć	Jul	Ŋ	Ving and the second sec	Measured	Measured Nominal	Error	Limit	
				Signature	ć	Jul	20.	No portage and the second seco	Measured Value (MHz)	Measured Nominal Value (MHz)			Results
onfiguration #		1		Signature	ć	Juh	20.				Error (ppm)	Limit (ppm)	Results
onfiguration # ontinuous Tx, RFID		1		Signature	C	Juh	20.	ing port of the second s					Results Pass
onfiguration #	D, 13.56 MHz	1		Signature	C	Jul	10.	he for the second se	Value (MHz)	Value (MHz)	(ppm)	(ppm)	
onfiguration #	D, 13.56 MHz AC Voltage:	115%		Signature	C	Jul	20.	1. John Market Ma	Value (MHz) 13.560305	Value (MHz)	(ppm) 0.2	(ppm) 100	Pass
onfiguration #	D, 13.56 MHz AC Voltage: AC Voltage:	1 115% 100% 85%		Signature	ć	Jul	20.	Sing -	Value (MHz) 13.560305 13.560306	Value (MHz) 13.560308 13.560308	(ppm) 0.2 0.2	(ppm) 100 100	Pass Pass
onfiguration #	D, 13.56 MHz AC Voltage: AC Voltage: AC Voltage:	1 115% 100% 85% 5 +50°	_	Signature	ć	Joh	20.	Y.	Value (MHz) 13.560305 13.560306 13.560307	Value (MHz) 13.560308 13.560308 13.560308	(ppm) 0.2 0.2 0.1	(ppm) 100 100 100	Pass Pass Pass
onfiguration #	D, 13.56 MHz AC Voltage: AC Voltage: AC Voltage: Temperature	1 115% 100% 85% :: +50° :: +40°		Signature	Ć	Jul	20.	Ving	Value (MHz) 13.560305 13.560306 13.560307 13.560356	Value (MHz) 13.560308 13.560308 13.560308 13.560308	(ppm) 0.2 0.2 0.1 0.1	(ppm) 100 100 100 100	Pass Pass Pass Pass
onfiguration #	D, 13.56 MHz AC Voltage: AC Voltage: AC Voltage: Temperature Temperature	1 115% 100% 85% : +50° : +40° : : +30°		Signature	C	Jul.	10.	Sugar -	Value (MHz) 13.560305 13.560306 13.560307 13.560356 13.560326	Value (MHz) 13.560308 13.560308 13.560308 13.560308 13.560308	(ppm) 0.2 0.2 0.1 0.1 1.3	(ppm) 100 100 100 100 100	Pass Pass Pass Pass Pass
onfiguration #	D, 13.56 MHz AC Voltage: AC Voltage: AC Voltage: Temperature Temperature	1 115% 100% 86% : +50° : +40° : +40° : +30° : +20°		Signature	C	Jul	10	he for the second se	Value (MHz) 13.560305 13.560306 13.560307 13.560356 13.560326 13.560315	Value (MHz) 13.560308 13.560308 13.560308 13.560308 13.560308 13.560308	(ppm) 0.2 0.2 0.1 0.1 1.3 1.3	(ppm) 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass
onfiguration #	D. 13.56 MHz AC Voltage: AC Voltage: Temperature Temperature Temperature	1 115% 100% 85% :: +50° :: +40° :: +30° :: +20° :: +10°	_	Signature	C	Jul	10	Ving	Value (MHz) 13.560305 13.560306 13.560307 13.560356 13.560326 13.560315 13.560308	Value (MHz) 13.560308 13.560308 13.560308 13.560308 13.560308 13.560308 13.560308	(ppm) 0.2 0.2 0.1 0.1 1.3 1.3 0.0	(ppm) 100 100 100 100 100 100 100	Pass Pass Pass Pass Pass Pass Pass
onfiguration #	D, 13.56 MHz AC Voltage: AC Voltage: AC Voltage: Temperature Temperature Temperature Temperature Temperature	1 115% 100% 85% : +50° : +40° : +30° : +30° : +20° : +10° : 0°		Signature	0	Jul.	19.	Ser and the second seco	Value (MHz) 13.560305 13.560306 13.560307 13.560356 13.560326 13.560315 13.560308 13.560308	Value (MHz) 13.560308 13.560308 13.560308 13.560308 13.560308 13.560308 13.560308 13.560308	(ppm) 0.2 0.1 0.1 1.3 1.3 0.0 0.0	(ppm) 100 100 100 100 100 100 100 10	Pass Pass Pass Pass Pass Pass Pass Pass

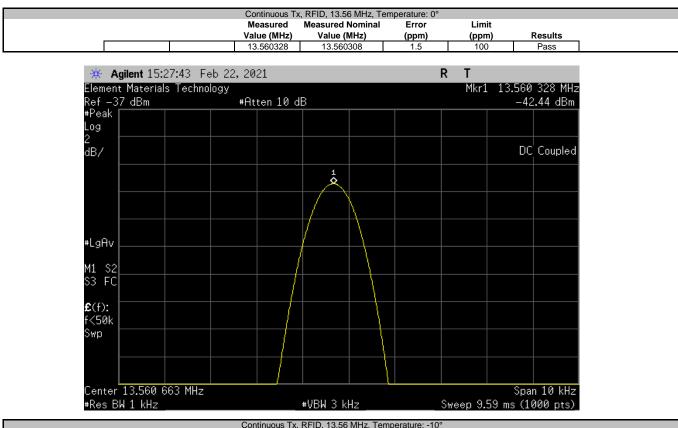

	Measured	Measured Nominal	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.560306	13.560308	0.2	100	Pass

	Continuous IX,	RFID, 13.56 MHZ, 1em	iperature: +50°		
	Measured	Measured Nominal	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.560356	13.560308	0.1	100	Pass

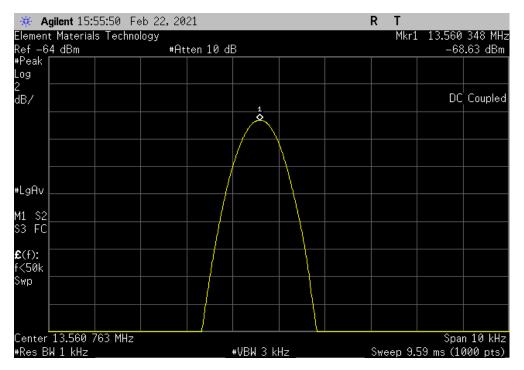
		Continuous Tx.	RFID, 13.56 MHz, Ten	operature: +40°		
		Measured	Measured Nominal	Error	Limit	
		Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
		13.560326	13.560308	1.3	100	Pass
Siz a mana	14-00-04 E.L.O.	0 0001		D	т	
	14:29:24 Feb 2			R	•	20 226 MU-
Ref -48 dB	erials Technology m	#Atten 10 d	P		Mkr1 13.50	о0 326 МНZ 52.86 dBm
#Peak		#Hiteli 10 u				J2.00 UDIII
Log						
2						
dB/						DC Coupled
			$ \langle \rangle \rangle$			
			/\			
			()			
#LgAv			<u>├</u>			
M1 S2		(
S3 FC		//	<u>├</u>			
£ (f):						
f<50k						
Swp						
Contor 135	60 751 MHz				<.	pan 10 kHz
#Res BW 1 H			₩VBW 3 kHz	5.	ہں) eep 9.59 ms	<u>מח וט גרב</u> (1000 nt <u>s)</u>
MOJ DM I M					00p 0.00 III3 ((1000 pt3/_
			RFID, 13.56 MHz, Ten		Lineit	


	Continuous IX,	RFID, 13.56 MHZ, Ten	nperature: +30°		
	Measured	Measured Nominal	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.560315	13.560308	1.3	100	Pass

🗰 Agilent 14:45:56			RT	
Element Materials Tec Ref -49 dBm	hnology #Atten 10 di	3	Mkr.	1 13.560 315 MHz -53.86 dBm
#Peak Log				
2 dB/		1		DC Coupled
		×.		
#LgAv	/			
M1 S2				
S3 FC				
£ (f): f<50k				
Swp				
Center 13.560 740 M #Res BW 1 kHz		#VBW 3 kHz	Sweep 9.	Span 10 kHz 59 ms (1000 pts)_



		Continuous Tx,						
		Measured Value (MHz)	Measured I Value (N		Error (ppm)	Limi (ppm		Results
		13.560308	13.560		0.0	100		Pass
	0:17 Feb 22,	2021				RT		
Element Materials						Mkr1		60 308 MHz
Ref -51 dBm		#Atten 10 d	B					56.06 dBm
#Peak Log								
2								
dB/							[DC Coupled
			\square					
				\backslash				
#LgAv								
*L9110								
M1 S2								
\$3 FC								
£(f):		<u>_</u>						
f<50k								
Swp								
Center 13.560 60	63 MHz							pan 10 kHz
#Res BW 1 kHz _			₩VBW 3 k	Hz		Sweep 9.	59 ms -	(1000 pts)_
		Continuous Tx,	RFID, 13.56	MHz, Temp	erature: +10	۰		


	Continuous Tx,	RFID, 13.56 MHz, Ter	mperature: +10°		
	Measured	Measured Nominal	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.560308	13.560308	0.0	100	Pass

	Continuous Tx,	RFID, 13.56 MHz, Ter	mperature: -10°		
	Measured	Measured Nominal	Error	Limit	
	Value (MHz)	Value (MHz)	(ppm)	(ppm)	Results
	13.560348	13.560308	1.5	100	Pass

Continuous Tx, RFID, 13.56 MHz, Temperature: -20°								
			Measured Measured Nominal		Error	Lim		D
		Value (M 13.56034		ue (MHz) 3.560308	(ppm) 2.6	(ppn 100		Results Pass
		10.0000			2.0	100	'	1 435
🔆 Aaile	ent 16:10:41 F	eb 22.2021				RT		
	laterials Techno						13.56	0 343 MHz
Ref -58		#Atten 1	0 dB					63.17 dBm
#Peak								
Log								
2								C Courted
dB/							U	C Coupled
				1 🛇				
			/	\sim				
				\sim				
#LgAv			/					
			1					
M1 S2				$ \rightarrow $				
S3 FC								
£ (f):								
f<50k				-1				
Swp			┦ ┼──	— 				
0.10								
			\vdash					
Center 13	3.560 608 MHz				¥		Sp	an 10 kHz
#Res BW :			#VBW	3 kHz		Sweep <u>9.</u>		1000 pts)_

OCCUPIED BANDWIDTH

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due	
Probe - Near Field Set	EMCO	7405	IPD	NCR	NCR	
Cable	None	Conducted Cable	EVN	2021-02-16	2022-02-16	
Analyzer - Spectrum Analyzer	Agilent	E4440A	AAW	2020-12-16	2021-12-16	

TEST DESCRIPTION

When the occupied bandwidth limit is not stated in the applicable RSS or reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth as defined in RSS-Gen.

The 99% As defined in FCC 15.215 Part (c), intentional radiators must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise by specified in the specific rule section under which the equipment operates, is contained within the frequency band designed in the rule section under which the equipment is operated.

The 20 dB bandwidth must be contained within the band 13.110-14.010 MHz.

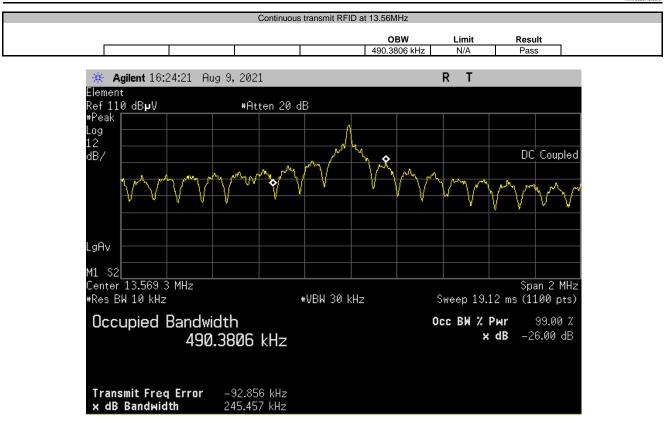
The emissions bandwidth was measured with the EUT configured for continuous modulated operation.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

The resolution bandwidth (RBW) of the spectrum analyzer was set to the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) bandwidth was set to at least 3 times the resolution bandwidth. The analyzer sweep time was set to auto to prevent video filtering or averaging. A sample detector was used unless the device was not able to be operated in a continuous transmit mode, in which case a peak detector was used.

The spectrum analyzer occupied bandwidth measurement function was used to find the emissions bandwidth.

OCCUPIED BANDWIDTH


						AMIL 2020.12.30.0
EUT:	Bronco Max		Work Order:	GRAP0085		
Serial Number:	Cert 1		Date:	10-Aug-21		
Customer:	Graphic Products, Inc.		Temperature:	22.7 °C		
Attendees:	Chad Schaffer			35.5% RH		
Project:			Barometric Pres.:			
Tested by:	Cole Ghizzone Power: 110VAC/60Hz			Job Site:	EV11	
TEST SPECIFICATI	ONS		Test Method			
FCC 15.225:2021						
COMMENTS						
Emissions bandwid	dth taken with a 26 dB bar	ndwidth. This is worst case as compa	ared with the 20 dB bandwidth called out in FCC 15.215.			
DEVIATIONS FROM	I TEST STANDARD					
None						
Configuration #	2	Signature	in Sign			
				OBW	Limit	Result
Continuous transmit	RFID at 13.56MHz, reading	n tag.	490.3806 kHz	N/A	Pass	

1Hz, reading tag.

Report No. GRAP0078.1 Rev. 1

OCCUPIED BANDWIDTH

