

Telephone: 859-226-1000 Facsimile: 859-226-1040 www.intertek-etlsemko.com

TEST REPORT

Report Number: 100659649LEX-001 Project Number: G100659649

Report Issue Date: 4/26/2012

Product Name: CAT Module Model Number Tested: 265D1887G002

FCCID: ZKJ-DSM04R01 ICID: 10229A-DSM04R01

ICID: 10229A-DSM04R01
FCC Standards: Title 47 CFR Part 15 Subpart B and C

Industry Canada Standards: RSS-210 Issue 8 & RSS-GEN Issue 3

Tested by: Intertek Testing Services NA, Inc. 731 Enterprise Drive Lexington, KY 40510 Client: GE Appliance & Lighting AP35-1403-02 Louisville, KY 40225

Report prepared by

Bryan Taylor, Team Leader

Report reviewed by

James Sudduth, Assistant Chief Engineer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek

Report Number: 100659649LEX-001 Issued: 4/26/2012

TABLE OF CONTENTS

1	Introduction and Conclusion	
2		
3		
4	Peak Conducted Power	6
5	Occupied Bandwidth	7
6	Conducted Spurious Emissions	12
7	Power Spectral Density	18
8	Radiated Spurious Emissions (Transmitter)	22
9	Radiated Spurious Emissions (Receiver)	34
10	AC Powerline Conducted Emissions	37
11	Antenna Requirement per FCC Part 15.203	40
12	Measurement Uncertainty	42
13	Revision History	43

1 Introduction and Conclusion

The tests indicated in section 2 were performed on the product constructed as described in Section 3. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test method, a list of the actual test equipment used, documentation photos, results and raw data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested complied with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

All testing was performed at the Intertek office located at 731 Enterprise Drive, Lexington Kentucky, 40510. The radiated emission test site is a 10-meter semi-anechoic chamber. The chamber meets the characteristics of CISPR 16-1 and ANSI C63.4. For measurements, a remotely controlled flush-mount metal-top turntable is used to rotate the EUT a full 360 degrees. A remote controlled non-conductive antenna mast is used to scan the antenna height from one to four meters. The test site is listed with the FCC under Registration Number 485103. The test site is listed with Industry Canada under Site Number IC 2042M-1.

2 Test Summary

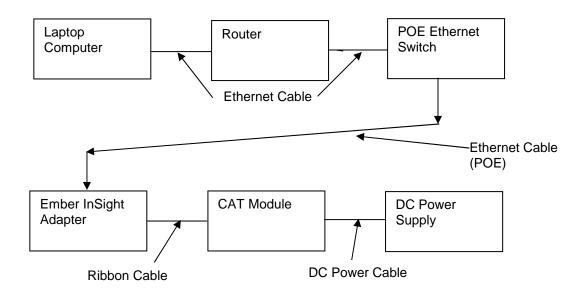
Page	Test full name	FCC Reference	IC Reference	Result
6	Peak Conducted Power	§ 15.247(b)(3)(4)	RSS210 A8.4 (4)	Pass
7	Occupied Bandwidth	§ 15.247(a)(2)	RSS210 A8.2(A)	Pass
12	Conducted Spurious Emissions	§ 15.247(d)	RSS210 (A8.5)	Pass
18	Power Spectral Density	§ 15.247(e)	RSS210 A8.2(B)	Pass
22	Radiated Spurious Emissions (Transmitter)	§ 15.247(d), § 15.209, and § 15.205	RSS-210 (2.2)	Pass
34	Radiated Spurious Emissions (Receiver)	§ 15.109	RSS-Gen (7.2.3)	Pass
37	AC Powerline Conducted Emissions	§ 15.207	RSS-Gen (7.2.2)	Pass
40	Antenna Requirement per FCC Part 15.203	§ 15.203	RSS-Gen (7.1.4)	Pass

3 Description of Equipment Under Test

Equipn	Equipment Under Test				
Manufacturer	GE Appliance & Lighting				
Model Number	265D1887G002				
Serial Number	007F35				
FCC Identifier	ZKJ-DSM04R01				
Industry Canada Identifier	10229A-DSM04R01				
Receive Date	3/1/2012				
Test Start Date	3/1/2012				
Test End Date	3/9/2012				
Device Received Condition	Good				
Test Sample Type	Production				
Frequency Band	2405MHz – 2480MHz				
Mode(s) of Operation	Zigbee				
Modulation Type	QPSK				
Transmission Control	Test Commands via Ember InSight Adapter				
Maximum Output Power	20.99dBm (conducted output)1				
Test Channels	11, 19, 25, and 26 (reduced power band edge)				
Antenna Type (15.203)	Internal PCB Antenna (0.5dBi Peak Gain)				
Operating Voltage	115VAC/60Hz				
Power Supply	Powered by 5VDC				

Description of Equipment Under Test

The 265D1887G002 is a communication module which attaches externally to various appliances allowing the user to control certain features wirelessly.


Operating modes of the EUT:

_	-	aunig medee et me ze t
	No.	Descriptions of EUT Exercising
	1	Transmitting on channels 11, 19, 25, and 26 (reduced power at band edge).
	2	Receive / idle mode

¹ The maximum output power measured was 21.15dBm on channel 25. However, the output power on channel 25 had to be reduced in order to comply with the band edge radiated emissions for restricted bands. Therefore the maximum output power of the CAT Module is 20.99dBm which occurred on channel 19.

3.1 System setup including cable interconnection details, support equipment and simplified block diagram

3.2 EUT Block Diagram:

3.3 Cables Connected to Test Sample:

Cables						
Description	Length	Shielding	Ferrites	Conne	ection	
Description	Lengin	Sillelailig	remies	From To		
Ribbon Cable	10 in	None	None	Ember InSight Adapter	Test Sample	
DC Power Cable	1 meter	None	None	DC Power Supply	Test Sample	

3.4 Support Equipment:

Support Equipment							
Description Manufacturer Model Number Serial Number							
Programming Adapter	Ember	InSight	Not Labeled				
Laptop Computer	Gateway	LT2802u	11906695725				
Ethernet Switch	Netgear	FS108P	1DL2013D00C6F				
Router	Cisco	E1000	CVN01K670165				
DC Power Supply	HP	6296A	1036				

4 Peak Conducted Power

4.1 Test Limits

§ 15.247(b)(3): For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

§ 15.247(b)(4): The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.2 Test Procedure

ANSI C63.10: 2009 and KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)

4.3 Test Equipment Used:

Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
Spectrum Analyzer	3099	Rohde & Schwarz	FSP7	9/23/2011	9/23/2012

4.4 Results:

Channel Number	Frequency (MHz)	Peak Conducted Power (dBm)	Peak Conducted Power Limit (dBm)	Margin (dB)	Result
11	2405	20.79	30	-9.21	Pass
19	2445	20.99	30	-9.01	Pass
25	2475	21.15	30	-8.85	Pass

Note: All results were obtained with a power setting of 5 in the control software.

5 Occupied Bandwidth

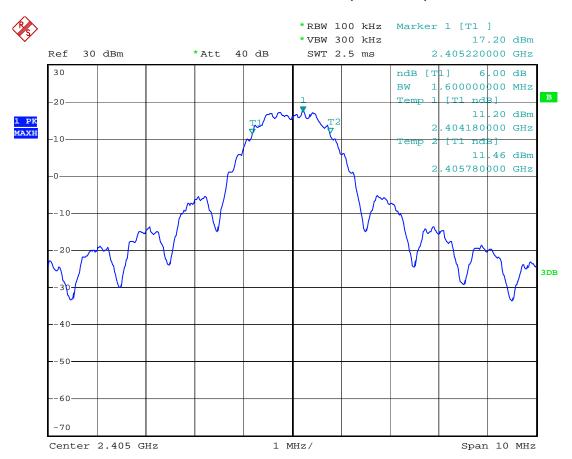
5.1 Test Limits

§ 15.247(a)(2): For digital modulation systems, the minimum 6dB bandwidth shall be at least 500kHz.

5.2 Test Procedure

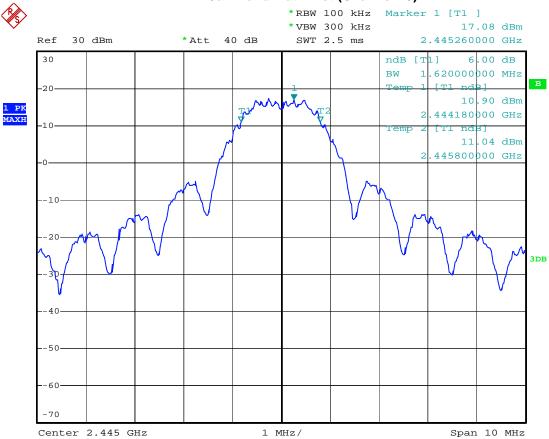
ANSI C63.10: 2009 and KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)

5.3 Test Equipment Used:


Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
Spectrum Analyzer	3099	Rohde & Schwarz	FSP7	9/23/2011	9/23/2012

5.4 Results:

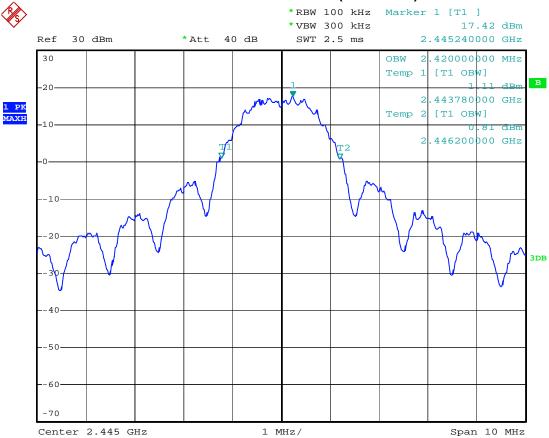
Channel Number	Frequency (MHz)	6dB Bandwidth	99% Power Bandwidth	Result
11	2405	1.60MHz		Pass
19	2445	1.62MHz	2.42MHz	Pass
25	2475	1.58MHz		Pass


Note: All results were obtained with a power setting of 5 in the control software.

6dB Bandwidth Plot (Channel 11)

Date: 7.MAR.2012 09:31:47

6dB Bandwidth Plot (Channel 19)


Date: 7.MAR.2012 09:36:27

6dB Bandwidth Plot (Channel 25)

Date: 7.MAR.2012 09:37:33

99% Bandwidth Plot (Channel 19)

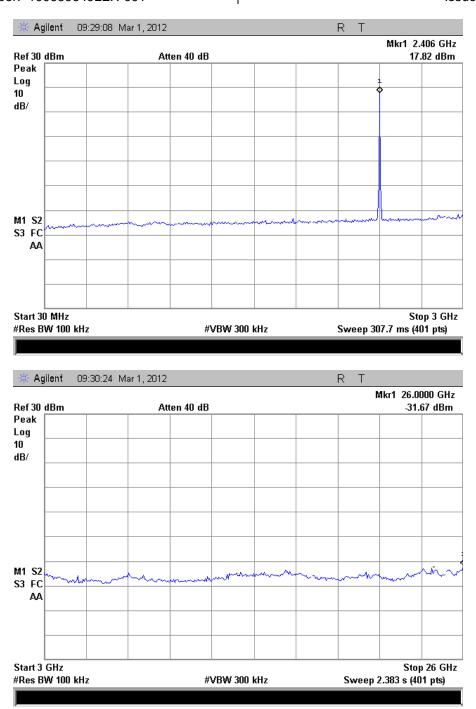
Date: 7.MAR.2012 09:39:38

6 Conducted Spurious Emissions

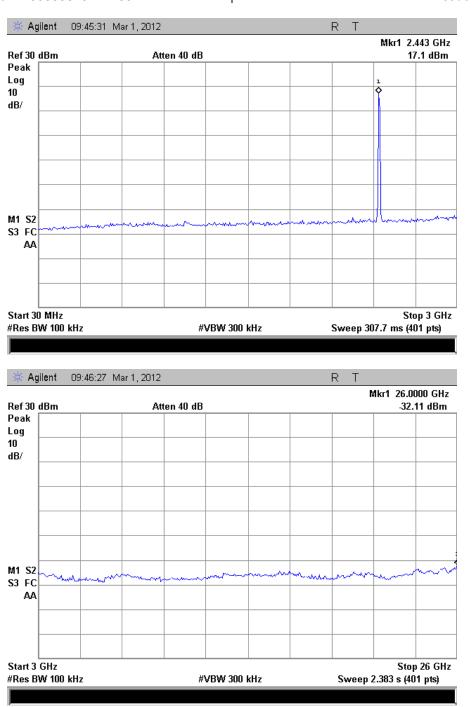
6.1 Test Limits

§ 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

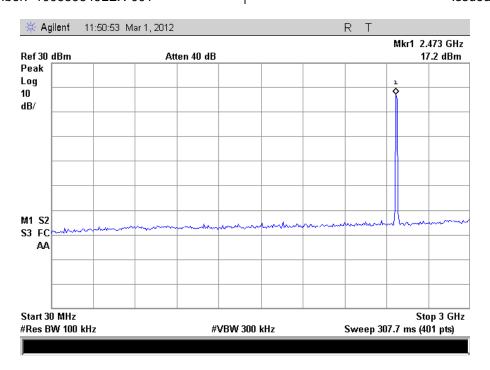
6.2 Test Procedure

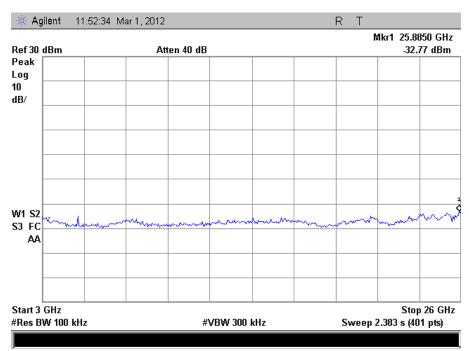

ANSI C63.10: 2009 and KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)

6.3 Test Equipment Used:


Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
EMC Analyzer	2142	HP	E7405	9/23/2011	9/23/2012

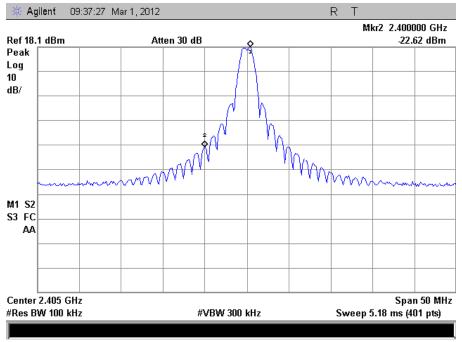
6.4 Results:

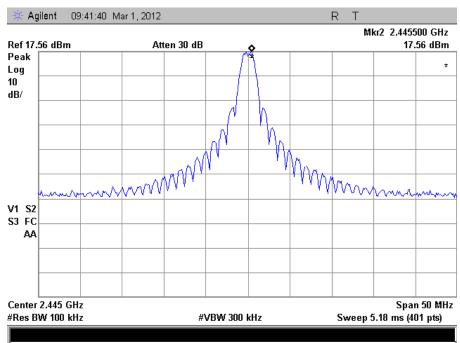

The following plots show that there are no conducted spurious emissions exceeding the 20dB down criteria.



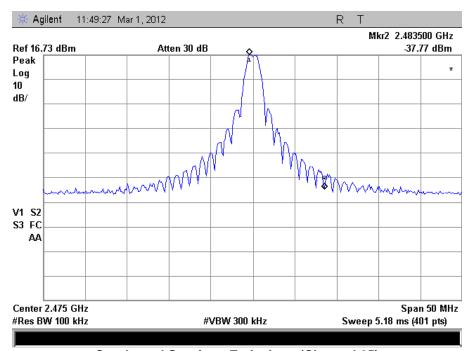
Conducted Spurious Emissions (Channel 11)

Conducted Spurious Emissions (Channel 19)




Conducted Spurious Emissions (Channel 25)

Conducted Spurious Emissions Close to Fundamental:


The following plots show that the conducted spurious emissions close to the fundamental signal but outside of the transmit band are at least 20dB down.

Conducted Spurious Emissions (Channel 11)

Conducted Spurious Emissions (Channel 19)

Conducted Spurious Emissions (Channel 25)

7 **Power Spectral Density**

Test Limits 7.1

§ 15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

7.2

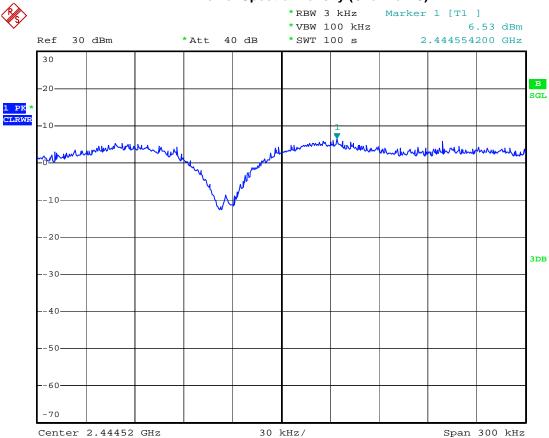
ANSI C63.10: 2009 and KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247) PSD Option 1 Method

Test Equipment Used: 7.3

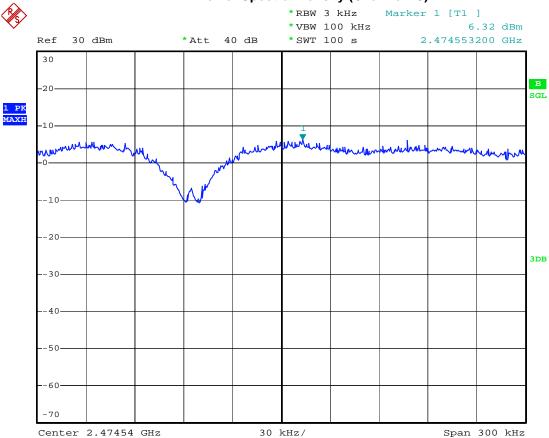
Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
Spectrum Analyzer	3099	Rohde & Schwarz	FSP7	9/23/2011	9/23/2012

7.4 Results:

*PSD Option 1 Method


Channel Number	PSD in 3kHz BW (dBm)	Limit (dBm)	Margin (dB)	Result
11	5.95 dBm	8	-2.05dB	Pass
19	6.53 dBm	8	-1.47dB	Pass
25	6.32 dBm	8	-1.68dB	Pass

Note: All results were obtained with a power setting of 5 in the control software.


Date: 7.MAR.2012 09:56:58

Power Spectral Density (Channel 19)

Date: 7.MAR.2012 10:10:33

Power Spectral Density (Channel 25)

Date: 7.MAR.2012 10:18:46

8 Radiated Spurious Emissions (Transmitter)

8.1 Test Limits

§ 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Part 15.205(a): Restricted Bands of Operations

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
1 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735–2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215–6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41.			355

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

Part 15.209(a): Field Strength Limits for Restricted Bands of Operation

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2,400 / F (kHz)	300
0.490 - 1.705	24,000 / F (kHz)	30
1.705 - 30.0	30	30
30 – 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

ZAbove 38.6

8.2 Test Procedure

ANSI C63.10: 2009 and KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)

8.3 Example of Field Strength Calculation Method:

The measured field strength was calculated by summing the readings taken from the spectrum analyzer with the appropriate correction factors associated with the antenna losses and cable losses. The calculation formula and sample calculations are listed below:

Formula:

FS = RA + AF + CF

 $FS = Field Strength in dB\mu V/m$

 $RA = Receiver Amplitude in dB\mu V$

AF = Antenna Factor in dB

CF = Cable Attenuation Factor in dB (Including preamplifier and filter attenuation)

Example Calculation:

 $RA = 19.48 dB\mu V$

 $AF = 18.52 \, dB$

CF = 0.78 dB

 $FS = 19.48 + 18.52 + 0.78 = 38.78 \, dB\mu V/m$

Level in $\mu V/m = Common Antilogarithm [(38.78 dB<math>\mu V/m)/20] = 86.89 \mu V/m$

8.4 Test Equipment Used:

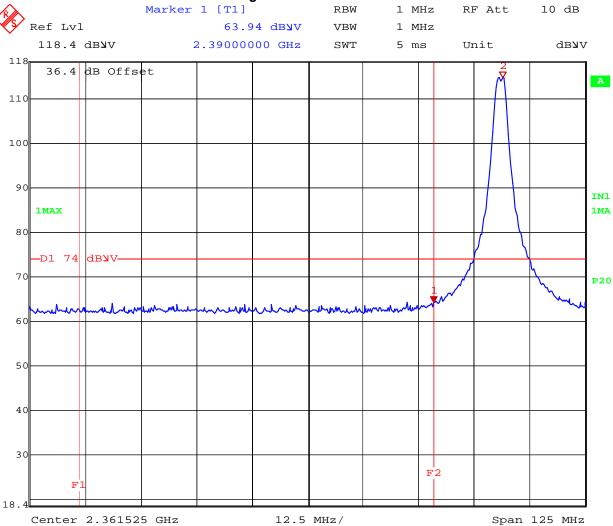
Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
EMI Test Receiver	10887490.26	Rohde & Schwarz	ESI26	6/29/2011	6/29/2012
Preamplifier	987410	Miteq	AFS44- 00102000-30- 10P-44	9/12/2011	9/12/2012
Preamplifier	SF456200904	Mini-Circuits	ZX60-3018G-S+	9/12/2011	9/12/2012
Biconnilog Antenna	00051864	ETS	3142C	12/20/2011	12/20/2012
Horn Antenna	6556	ETS	3115	8/24/2011	8/24/2012
Horn Antenna	1096	Antenna Research	DRG-118/A	7/20/2011	7/20/2012
System Controller	121701-1	Sunol Sciences	SC99V	Not Required	Not Required
High Pass Filter	3986-01 DC0408	Microwave Circuits, Inc.	H3G020G2	Verify At Time of Use	Verify At Time of Use

8.5 Results:

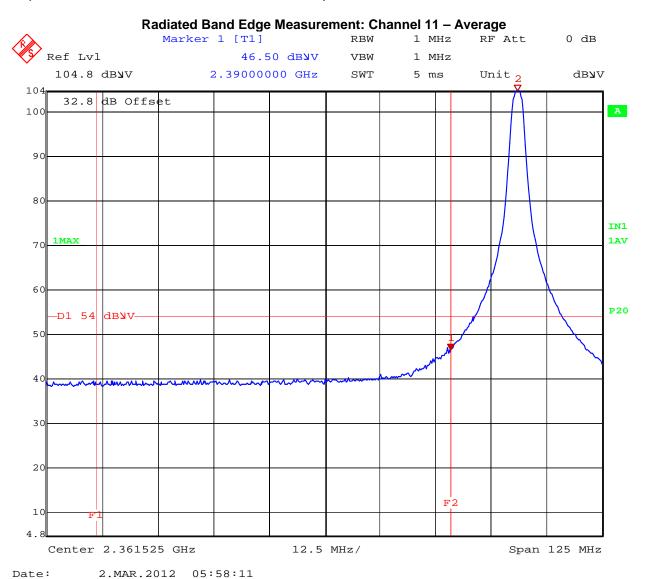
For each channel it was verified that no change in radiated signal level occurred with the input power varied from 85% to 115% of nominal voltage. All spurious emissions were attenuated by at least 20dB below the level of the fundamental as required by Part 15.247(d). Additionally, all emissions falling within restricted bands of operation and at the band edges were found to be below the limit specified in Part 15.209(a). The spurious emissions listed in the following tables are the worst case emissions. The emissions were measured to 10 times the fundamental with the test sample in three orthogonal positions. The worst case data is reported below.

TX Channel	Spurious Frequency	Polarity	Corr. Peak Reading. (dBuV/m)	Avg Reading. (dBuV/m)	Duty Cycle Factor (dB)	Corr. Avg Reading. (dBuV/m)	Peak Limit (dBuV/m)	Avg. Limit (dBuV/m)	Results
11	4.8089 GHz	V	50.471	42.431	3.6	38.831	74	54	Compliant
11	7.2164 GHz	V	57.608	49.588	3.6	45.988	74	54	Compliant
11	9.618 GHz	V	60.212	51.592	3.6	47.992	74	54	Compliant
11	12.022 GHz	V	61.856	53.886	3.6	50.286	74	54	Compliant
11	14.433 GHz	V	58.082	48.082	3.6	44.482	74	54	Compliant
11	16.835 GHz	V	52.586	39.356	3.6	35.756	74	54	Compliant
11	4.809 GHz	Н	54.162	47.122	3.6	43.522	74	54	Compliant
11	7.2164 GHz	Н	53.128	44.348	3.6	40.748	74	54	Compliant
11	9.6218 GHz	Н	61.048	55.218	3.6	51.618	74	54	Compliant
11	12.023 GHz	Н	64.916	57.036	3.6	53.436	74	54	Compliant
11	14.427 GHz	Н	60.957	51.017	3.6	47.417	74	54	Compliant
11	16.839 GHz	Н	53.26	40.07	3.6	36.47	74	54	Compliant

Worst Case Spurious Measurements (Channel 11)

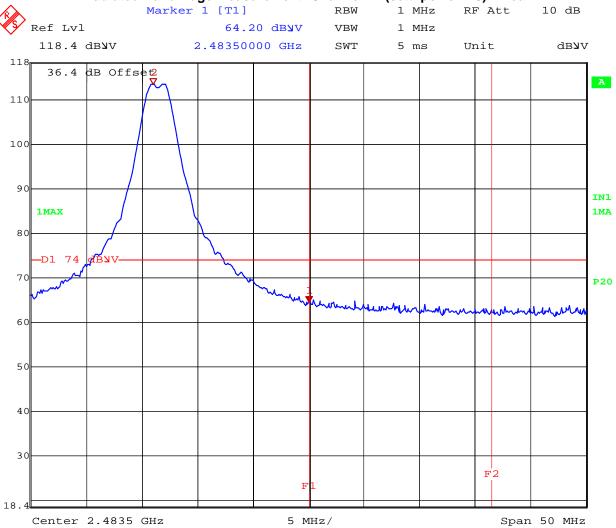

TX Channel	Spurious Frequency	Polarity	Corr. Peak Reading. (dBuV/m)	Avg Reading. (dBuV/m)	Duty Cycle Factor (dB)	Corr. Avg Reading. (dBuV/m)	Peak Limit (dBuV/m)	Avg. Limit (dBuV/m)	Results
19	4.8889 GHz	V	55.495	48.585	3.6	44.985	74	54	Compliant
19	7.3335 GHz	V	60.644	52.684	3.6	49.084	74	54	Compliant
19	9.7779 GHz	V	56.092	45.442	3.6	41.842	74	54	Compliant
19	12.222 GHz	V	61.524	53.404	3.6	49.804	74	54	Compliant
19	14.667 GHz	V	58.844	49.944	3.6	46.344	74	54	Compliant
19	17.111 GHz	V	55.878	42.378	3.6	38.778	74	54	Compliant
19	4.8909 GHz	Ι	57.639	50.929	3.6	47.329	74	54	Compliant
19	7.3334 GHz	Н	57.013	48.863	3.6	45.263	74	54	Compliant
19	9.782 GHz	Н	59.015	51.415	3.6	47.815	74	54	Compliant
19	12.223 GHz	Н	62.525	54.115	3.6	50.515	74	54	Compliant
19	14.667 GHz	Н	62.114	53.904	3.6	50.304	74	54	Compliant
19	17.111 GHz	Н	58.97	46.66	3.6	43.06	74	54	Compliant

Worst Case Spurious Measurements (Channel 19)

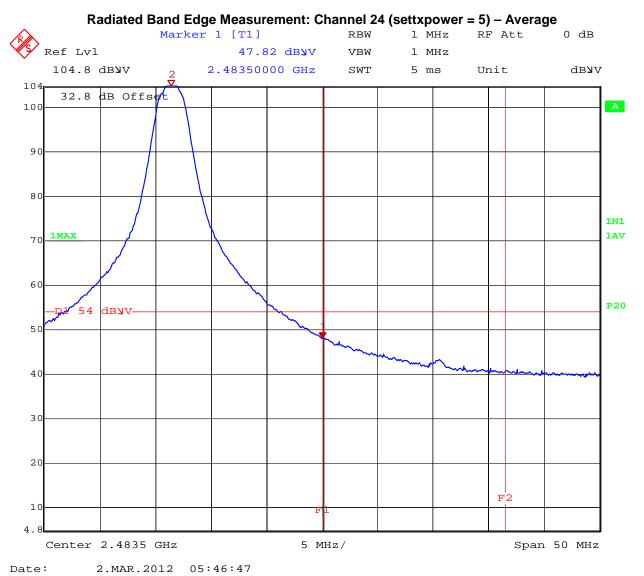

TX Channel	Spurious Frequency	Polarity	Corr. Peak Reading. (dBuV/m)	Avg Reading. (dBuV/m)	Duty Cycle Factor (dB)	Corr. Avg Reading. (dBuV/m)	Peak Limit (dBuV/m)	Avg. Limit (dBuV/m)	Results
25	4.949 GHz	Н	59.304	52.744	3.6	49.144	74	54	Compliant
25	7.4264 GHz	Н	52.607	43.477	3.6	39.877	74	54	Compliant
25	9.8978 GHz	Н	57.976	50.016	3.6	46.416	74	54	Compliant
25	12.377 GHz	Н	60.672	52.342	3.6	48.742	74	54	Compliant
25	14.853 GHz	Н	63.823	54.533	3.6	50.933	74	54	Compliant
25	17.321 GHz	Н	59.618	46.528	3.6	42.928	74	54	Compliant
25	4.951 GHz	V	57.704	50.984	3.6	47.384	74	54	Compliant
25	7.4234 GHz	V	58.319	50.439	3.6	46.839	74	54	Compliant
25	9.898 GHz	V	52.575	42.645	3.6	39.045	74	54	Compliant
25	12.372 GHz	V	64.362	56.442	3.6	52.842	74	54	Compliant
25	14.847 GHz	V	58.217	48.167	3.6	44.567	74	54	Compliant
25	17.321 GHz	V	58.406	45.396	3.6	41.796	74	54	Compliant

Worst Case Spurious Measurements (Channel 25)

Radiated Band Edge Measurement: Channel 11 – Peak

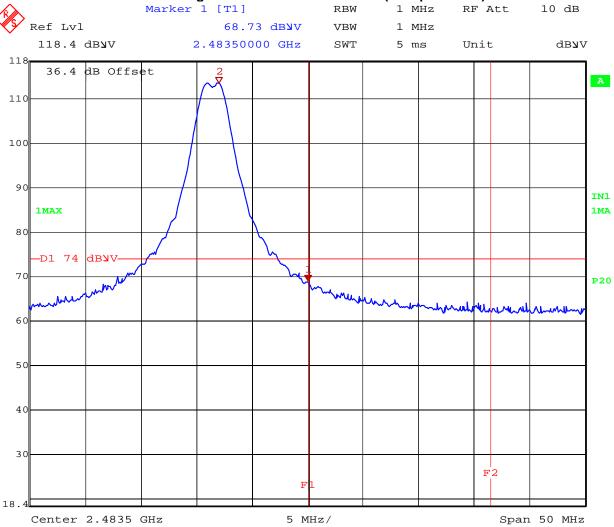


Date: 2.MAR.2012 05:56:43

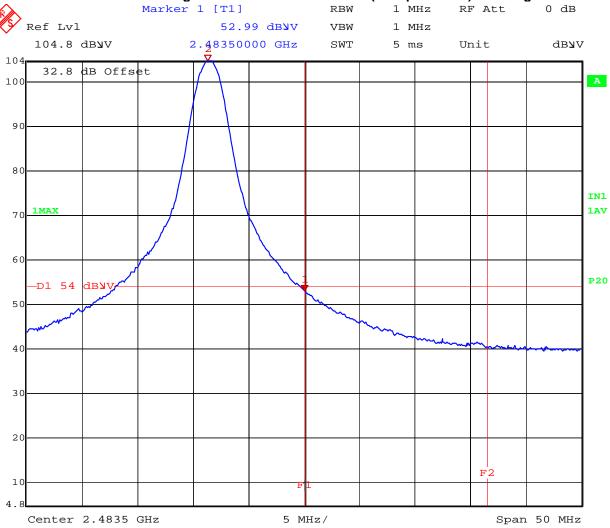


Note: A 3.6dB duty cycle correction factor was also applied to this measurement. See section 12 of this report for calculation of the duty cycle correction factor.

Radiated Band Edge Measurement: Channel 24 (settxpower = 5) – Peak

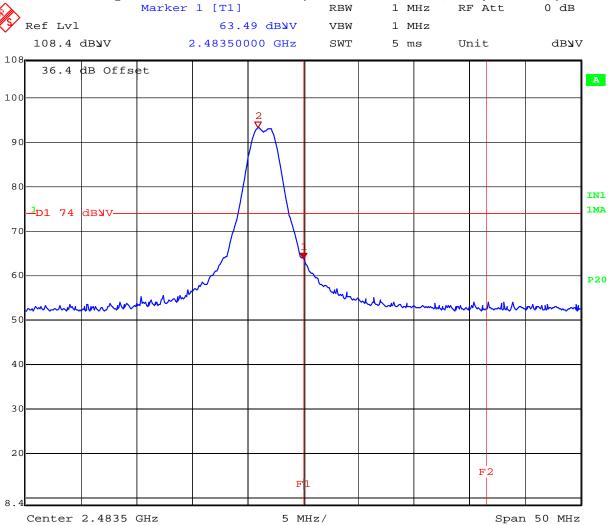


Date: 2.MAR.2012 05:49:05

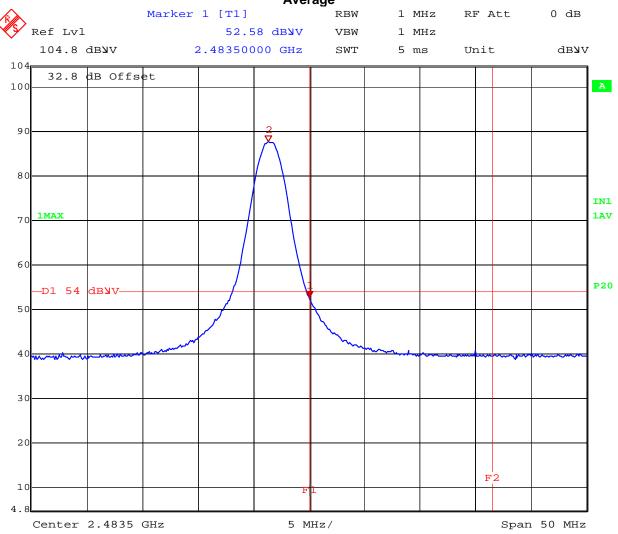


Note: A 3.6dB duty cycle correction factor was also applied to this measurement. See section 12 of this report for calculation of the duty cycle correction factor.

Radiated Band Edge Measurement: Channel 25 (settxpower = 5) – Peak



Date: 1.MAR.2012 13:59:38


Note: A 3.6dB duty cycle correction factor was also applied to this measurement. See section 12 of this report for calculation of the duty cycle correction factor.

Radiated Band Edge Measurement: Channel 26 (Reduced Power Level, settxpower = -13) – Peak

Date: 1.MAR.2012 13:53:03

Radiated Band Edge Measurement: Channel 26 (Reduced Power Level, settxpower = -13) – Average

Date: 1.MAR.2012 13:50:57

Note: A 3.6dB duty cycle correction factor was also applied to this measurement. See section 12 of this report for calculation of the duty cycle correction factor.

9 Radiated Spurious Emissions (Receiver)

9.1 Test Limits

§ 15.109: Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency of emission (MHz)	Field strength (microvolts/meter)	Field strength (dBuV/m)
30–88	100	40
88–216	150	43.5
216–960	200	46
Above 960	500	54

9.2 Test Procedure

ANSI C63.4: 2009

9.3 Example of Field Strength Calculation Method:

The measured field strength was calculated by summing the readings taken from the spectrum analyzer with the appropriate correction factors associated with the antenna losses and cable losses. The calculation formula and sample calculations are listed below:

Formula:

FS = RA + AF + CF

 $FS = Field Strength in dB\mu V/m$

 $RA = Receiver Amplitude in dB\mu V$

AF = Antenna Factor in dB

CF = Cable Attenuation Factor in dB (Including preamplifier and filter attenuation)

Example Calculation:

 $RA = 19.48 dB\mu V$

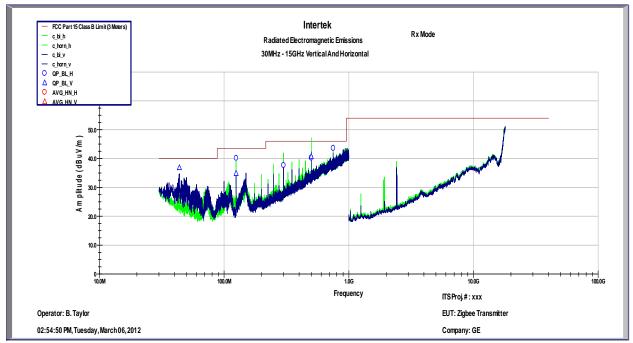
AF = 18.52 dB

CF = 0.78 dB

 $FS = 19.48 + 18.52 + 0.78 = 38.78 \, dB\mu V/m$

Level in μ V/m = Common Antilogarithm [(38.78 dB μ V/m)/20] = 86.89 μ V/m

9.4 Test Equipment Used:


- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-									
Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due				
EMI Test Receiver	10887490.26	Rohde & Schwarz	ESI26	6/29/2011	6/29/2012				
Preamplifier	987410	Miteq	AFS44- 00102000-30- 10P-44	9/12/2011	9/12/2012				
Preamplifier	SF456200904	Mini-Circuits	ZX60-3018G-S+	9/12/2011	9/12/2012				
Biconnilog Antenna	00051864	ETS	3142C	12/20/2011	12/20/2012				
Horn Antenna	6556	ETS	3115	8/24/2011	8/24/2012				
Horn Antenna	1096	Antenna Research	DRG-118/A	7/20/2011	7/20/2012				
System Controller	121701-1	Sunol Sciences	SC99V	Not Required	Not Required				
High Pass Filter	3986-01 DC0408	Microwave Circuits, Inc.	H3G020G2	Verify At Time of Use	Verify At Time of Use				

9.5 Results:

All spurious emissions with the test sample in receive mode were below the limits specified in Part 15.109 for a class B digital device.

	Radiated Emissions									
Test Engineer:	Bryan Tayl	or	Start Date:	3/6/2012		End Date:	3/6/2012			
Temperature:	25.1C		Humidity:	17.20%		Pressure:	998.98mbar			
Specification:	FCC Part 1	15B	Test Limit:	Class B						
Notes:	RX Mode									
Α	В	С	D	E	F	G	Н		J	K
Frequency	Polarity (H/V)	Raw Reading (dBuV)	Cab. (dB)	Ant. (dB)	Corr. Reading. (dBuV/m)	Limit (dBuV/m)	Delta (dB)	RBW / Detector	Test Distance	Results
125.0 MHz	Н	31.11	1.61	7.4	40.12	43.52	-3.4	120kHz / QP	3m	Compliant
300.0 MHz	Н	21.3	2.43	13.9	37.63	46.02	-8.39	120kHz / QP	3m	Compliant
500.02 MHz	Н	18.89	3.11	18.2	40.2	46.02	-5.82	120kHz / QP	3m	Compliant
750.01 MHz	Н	18.08	3.78	21.7	43.56	46.02	-2.46	120kHz / QP	3m	Compliant
43.798 MHz	V	25.28	0.86	10.7	36.84	40	-3.16	120kHz / QP	3m	Compliant
125.0 MHz	V	25.87	1.61	7.4	34.88	43.52	-8.64	120kHz / QP	3m	Compliant
500.0 MHz	V	19.36	3.11	18.2	40.67	46.02	-5.35	120kHz / QP	3m	Compliant
Calculations:	•		•	•	F = C + D +	Е	H = F - G			

Maximized Quasi Peak Emissions

Peak Scan (Receive Mode)

10 AC Powerline Conducted Emissions

10.1 Test Limits

§ 15.107(e): Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

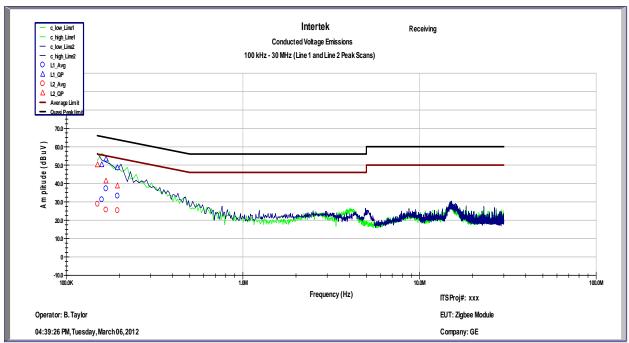
Frequency of emission	Conducted limit (dBµV)				
(MHz)	Quasi-peak	Average			
0.15–0.5	66 to 56*	56 to 46*			
0.5–5	56	46			
5–30	60	50			

^{*}Decreases with the logarithm of the frequency.

10.2 Test Procedure

ANSI C63.4: 2009

10.3 Test Equipment Used:

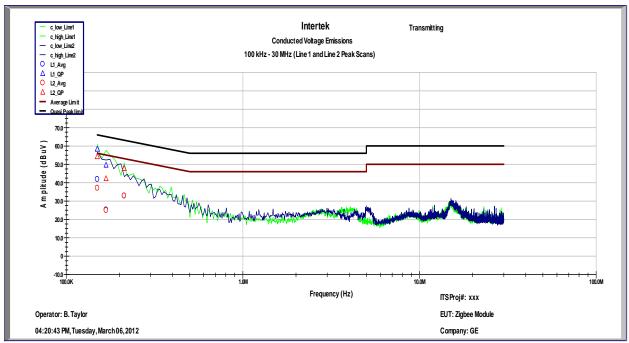

Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
EMI Test Receiver	10887490.26	Rohde & Schwarz	ESI26	6/29/2011	6/29/2012
LISN	1026	Fischer Custom Communication	FCC-LISN-50- 50-2M	6/16/2011	6/16/2012

10.4 Results:

Conducted Voltage Emissions on Power Lines								
Test Engineer:	B. Taylor		Start Date:	3/6/2012		End Date:	3/6/2012	
Temperature:	25.1C		Humidity:	17.20%		Pressure:	998.98mbar	
Specification:	FCC Part 15		Test Limit:	Class B		RBW:	9kHz	
Notes:	Receive Mode							
		Quasi-	Quasi-Peak			Average		
	Frequency	Peak	Limit	Quasi-Peak	Average	Limit	Average	
Line	(MHz)	(dBuV)	(dBuV)	Delta (dB)	(dBuV)	(dBuV)	Delta (dB)	Results
Line 1	159.0 KHz	50.23	65.52	-15.28	31.19	55.52	-24.32	Compliant
Line 1	168.0 KHz	53.3	65.06	-11.76	37.16	55.06	-17.9	Compliant
Line 1	195.0 KHz	48.58	63.82	-15.24	33.15	53.82	-20.67	Compliant
Line 2	150.4 KHz	50.15	65.98	-15.82	28.76	55.98	-27.21	Compliant
Line 2	168.0 KHz	41.36	65.06	-23.7	25.64	55.06	-29.42	Compliant
Line 2	195.0 KHz	38.65	63.82	-25.17	25.27	53.82	-28.55	Compliant

RX Mode

Quasi-Peak and Average Measurements


RX Mode

Peak Scan (Line 1 and 2)

Conducted Voltage Emissions on Power Lines								
Test Engineer:	Bryan Taylor		Start Date:	3/6/2012		End Date:	3/6/2012	
Temperature:	25.1C		Humidity:	17.20%		Pressure:	998.98mbar	
Specification:	FCC Part 15		Test Limit:	Class B		RBW:	9kHz	
Notes:	Transmitting on N	/liddle Char	nnel					
		Quasi-	Quasi-Peak			Average		
	Frequency	Peak	Limit	Quasi-Peak	Average	Limit	Average	
Line	(MHz)	(dBuV)	(dBuV)	Delta (dB)	(dBuV)	(dBuV)	Delta (dB)	Results
Line 1	150.0 KHz	58.23	66	-7.77	41.85	56	-14.15	Compliant
Line 1	168.2 KHz	49.54	65.05	-15.51	25.25	55.05	-29.8	Compliant
Line 1	212.8 KHz	47.75	63.1	-15.35	32.88	53.1	-20.22	Compliant
Line 2	150.0 KHz	54.13	66	-11.87	37.08	56	-18.92	Compliant
Line 2	168.2 KHz	42.21	65.05	-22.84	24.92	55.05	-30.13	Compliant
Line 2	212.8 KHz	47.75	63.1	-15.35	32.88	53.1	-20.22	Compliant

Transmitting on Middle Channel

Quasi-Peak and Average Measurements

Transmitting on Middle Channel Peak Scan (Line 1 and 2)

11 Antenna Requirement per FCC Part 15.203

11.1 Test Limits

§ 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

11.2 Results:

The sample tested met the antenna requirement. The antenna utilized a PCB antenna that was not detachable.

12 Duty Cycle Correction Factor Determination

The worst case duty cycle over a 100ms windows was calculated by the manufacture to determine the duty cycle factor.

Goal: Calculate the worse case time a ZigBee Node will be in TX Mode in any 100ms Time Window. Correction Factor is: 20*Log10(Duty Cycle)

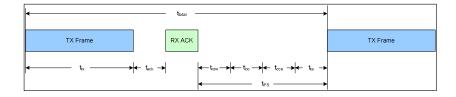
Procedure: In order to calculate the worse case TX on time, Ember started by reviewing the IEEE 802.15.4 MAC and PHY constants. In addition, Ember used the slotted ACK

LIFS and SIFS scenarios. Each scenario is described below.

Worst Case Scenario: The worst case scenario utilizes LIFS, and a TX, RX ACK, TX, RX ACK... from a single node.

It has been proven through calculation, this scenario keeps the node in TX Mode for the longest I

4 Pramble, SPD, Length


Summary: If you are using EmberZNet Stack SW, the TX duty cycle: 66%

IEEE 802.15.4-2003 2.4 GHz PHY Constants

250000 bits / sec Data Rate 31250 bytes / sec Symbols/byte 2 svm / bytes Symbol Timing 62500 sym / sec 0.000016 sec / sym 0.000032 sec / byte Byte Timing

PHY PSDU 6 bytes 127 bytes Max Length Total Packet Length

133 bytes 0.004256 sec Maximum Time TX PKT

Assume Frame is Data Frame

Long Frame Scenario: 1) TX Frame

- 2) Wait for ACK
- 3) RX ACK
- 4) CPU Processing of ACK
- 5) Wait for Backoff
- 6) Repeat 1)

MAC-Level Calculation (LIES)

WAC-Level Calculation (LIFS)			
Long InterFrame Spacing (
Long Frame	127	bytes	
Data Frame Payload	102	bytes	
ACK Frame	5	bytes	
tack	12	sym	
LIFS	40	sym	
Backoff Period	20	sym	
Maximum Backoff	7		Random between 0 and 7
Backoff Required	2		
Backoff Time	70	svm	Average at 3.5

Transmit Time X Time (Packet) 0.004256

NOT Transmit time (RX or Idle)						
Wait for ACK (tack)	0.000192					
RX Time (ACK)	0.000352					
Backoff Time (tbo)	0.00112					
CPU Processing (tcpu)	0.0002					
CCA Assessment (tcca)	0.000128					
Turn Around Time (RX to TX)	0.000192					
Total Off Time (sec)	0.002184					

(Backoff Time * Backoff Period) (0.2ms average on EM2xx running EmberZNet) (averaged over 8 symbols in RX Mode) (After CCA, Radio turns over to TX in 12 symbols)

Total Time (ttotal) 0.00644 Number of RX / TX cycles in 100ms 15.5279503

Worse Case (100ms window)

TX Frame 10 times 0.04256 RX or IDLE 10 Times 0.02184

Sum 0.0644

MAC TX Duty Cycle (On /total)	66.09%		Represents theoretical ZigBee / MAC performance		
	3.59768496	dB			

Intertek

Report Number: 100659649LEX-001 Issued: 4/26/2012

13 Measurement Uncertainty

The measured value related to the corresponding limit will be used to decide whether the equipment meets the requirements.

The measurement uncertainty figures were calculated and correspond to a coverage factor of k = 2, providing a confidence level of respectively 95.45 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian).

Measurement uncertainty Table

Parameter	Uncertainty	Notes
Radiated emissions, 30 to 1000 MHz	<u>+</u> 3.9dB	
Radiated emissions, 1 to 18 GHz	<u>+</u> 4.2dB	
Radiated emissions, 18 to 40 GHz	<u>+</u> 4.3dB	
Power Port Conducted emissions, 150kHz to 30	<u>+</u> 2.8dB	
MHz	_	

Intertek

Report Number: 100659649LEX-001 Issued: 4/26/2012

14 Revision History

Revision	Date	Report Number	Notes
Level			
0	4/26/2012	100659649LEX-001	Original Issue