TEST REPORT

CTK Co., Ltd. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501

Report No.: CTK-2022-01659 Page (1) / (38) Pages

1. Applicant • Name : Haier US Appliance Solutions, Inc. Address : Appliance Park AP5-2N-65, Louisville, Kentucky, United States, 40225 • Date of Receipt : 2022-04-13 2. Manufacturer • Name : Haier US Appliance Solutions, Inc. Address : Appliance Park AP5-2N-65, Louisville, Kentucky, United States, 40225 3. Use of Report : For FCC Conformance / ISED Conformance 4. Test Sample / Model: Android Board for GEA Wall Oven / CBA-L80 5. Date of Test : 2022-04-20 to 2022-06-22 6. Test Standard(method) used : FCC 47 CFR part 15 subpart C 15.247 ISED RSS-247 & RSS-Gen **7. Testing Environment:** Temp.: (23 ± 1) °C, Humidity: (48 ± 3) % R.H. 8. Test Results : Compliance **9. Location of Test :** 🛛 Permanent Testing Lab On Site Testing The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This report cannot be reproduced or copied without the written consent of CTK. Tested by Technical Manager worth Approval Won-Jae, Hwang: (Signature) Ji-Hye, Kim: (Signa Remark. This report is not related to KOLAS accreditation and relevant regulation. 2022-06-23 CTK Co., Ltd.

Report No.: CTK-2022-01659 Page (2) / (38) Pages

REPORT REVISION HISTORY

Date	Revision	Page No
2022-06-23	Issued (CTK-2022-01659)	all

This report shall not be reproduced except in full, without the written approval of CTK Co., Ltd. This document may be altered or revised by CTK Co., Ltd. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by CTK Co., Ltd. will constitute fraud and shall nullify the document.

Report No.: CTK-2022-01659 Page (3) / (38) Pages

CONTENTS

1. General Product Description
1.1 Applicant Information4
1.2 Product Information4
1.3 Peripheral Devices
1.4 Model Differences
2. Facility and Accreditations
2.1 Test Facility5
2.2 Laboratory Accreditations and Listings5
2.3 Calibration Details of Equipment Used for Measurement
3. Test Specifications
3.1 Standards6
3.2 Mode of operation during the test7
3.3 Device Modifications7
3.4 Maximum Measurement Uncertainty7
3.5 Test Software7
4. Technical Characteristic Test
4.1 6dB Bandwidth8
4.2 Maximum peak Conducted Output Power12
4.3 Transmitter Power Spectral Density15
4.4 Conducted Spurious emission18
4.5 Radiated Emission 21
4.6 AC Conducted Emissions
APPENDIX A – Test Equipment Used For Tests

Report No.: CTK-2022-01659 Page (4) / (38) Pages

1. General Product Description

1.1 Applicant Information

Company	Haier US Appliance Solutions, Inc.	
Contact Point	Appliance Park AP5-2N-65, Louisville, Kentucky, United States, 40225	
Contact Person	Name : Park, Hansung E-mail : hansung.park@geappliances.com Tel : +82-31-8094-6732 Fax : +82-31-8094-6888	

1.2 Product Information

FCC ID	ZKJ-CBA-L80
ISED	10229A-CBAL80
Product Description	Android Board for GEA Wall Oven
Model name	CBA-L80
Variant Model name	-
Operating Frequency	2 402 MHz - 2 480 MHz
RF Output Power	1 Mbps : 14.339 dBm (27.158 mW) 2 Mbps : 14.308 dBm (26.965 mW)
Antenna Specification	Antenna type : Chip Antenna Peak Gain : 3.52 dBi
Number of channels	40
Channel Spacing	1 MHz, 2 MHz
Type of Modulation	GFSK
Power Source	DC 5 V
Hardware Rev	v4.0
Software Rev	v0.0.2.3
RF Power setting in Test SW	Initial value

1.3 Peripheral Devices

Device	Manufacturer	Model No.	Serial No.
Note Computer	HP	15-bs563TU	CND7253QPR
AC/DC Adapter	HP	HSTNN-LA40	-

1.4 Model Differences

Not applicable

2. Facility and Accreditations

2.1 Test Facility

The radiated measurement facility is located at (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yong-in-si, Gyeonggi-do, Korea.

The conducted measurement facility is located at 5, Dongbu-ro 221beon-gil, Cheoin-gu, Yong-in-si, Gyeonggi-do, Korea.

2.2 Laboratory Accreditations and Listings

Country	Agency	Registration Number
USA	FCC	805871
CANADA	ISED	8737A-2
KOREA	NRRA	KR0025

2.3 Calibration Details of Equipment Used for Measurement

Test equipment and test accessories are calibrated on regular basis. The maximum time between calibrations is one year or what is recommended by the manufacturer, whichever is less. All test equipment calibrations are traceable to the Korea Research Institute of Standards and Science (KRISS), therefore, all test data recorded in this report is traceable to KRISS.

3. Test Specifications

3.1 Standards

FCC Part Section(s)	Requirement(s)	Status (Note 1)	Test Condition
15.247(a)	6 dB Bandwidth	С	
15.247(b)	Maximum Output Power	С	
15.247(d)	Conducted Spurious emission	С	Conducted
15.247(d)	Unwanted Emission(Conducted)	С	
15.247(e)	Transmitter Power Spectral Density	С	
15.209	Radiated Emissions	С	Radiated
15.207	AC Conducted Emissions	С	Line Conducted
Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable			
Note 2: The data in this test report are traceable to the national or international standards.			
Note 3: The sample was tested according to the following specification: FCC Part 15.247			
<i>Note 4</i> : The tests were performed according to the method of measurements prescribed in KDB No.558074, ANSI C63.10-2013			

ISED Part Section(s)	Requirement(s)	Status (Note 1)	Test Condition
RSS-247 5.2(a)	6 dB Bandwidth	С	
RSS-247 5.4(d)	Maximum Output Power	С	
RSS-247 5.5	Conducted Spurious emission	С	Conducted
RSS-247 5.5	Unwanted Emission(Conducted)	С	
RSS-247 5.2(b)	Transmitter Power Spectral Density	С	
RSS-Gen 6.13	Radiated Emissions	С	Radiated
RSS-Gen 8.8	AC Conducted Emissions	С	Line Conducted
<u>Note 1</u> : C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable			
Note 2: The data in this test report are traceable to the national or international standards.			
Note 3: The sample was tested according to the following specification: RSS-247, RSS-GEN			
Note 4: The tests were performed according to the method of measurements prescribed in ANSI C63.10-2013			

Report No.: CTK-2022-01659 Page (7) / (38) Pages

3.2 Mode of operation during the test

The EUT is operated in a manner representative of the typical of the equipments. During at testing, system components were manipulated within the confines of typical usage to maximize each emission. All modulation modes were tests. The results are only attached worst cases.

Test Frequency

Lowest channel	Middle channel	Highest channel
2 402 MHz	2 440 MHz	2 480 MHz

Test mode

Mode	Duty Cycle	Duty Cycle Factor
1 Mbps	86.0 %	0.66 dB
2 Mbps	58.3 %	2.34 dB

3.3 Device Modifications

The following modifications were necessary for compliance:

Not applicable

3.4 Maximum Measurement Uncertainty

The value of the measurement uncertainty for the measurement of each parameter. Coverage factor k = 2, Confidence levels of 95 %

Description	Uncertainty
Conducted RF Output Power	1.5 dB (C.L.: Approx. 95 %, <i>k</i> = 2)
Power Spectral Density	1.5 dB (C.L.: Approx. 95 %, <i>k</i> = 2)
Occupied Bandwidth	0.1 MHz (C.L.: Approx. 95 %, k = 2)
Unwanted Emission(conducted)	3.0 dB (C.L.: Approx. 95 %, k = 2)
Radiated Emissions (f \leq 1 GHz)	3.98 dB (C.L.: Approx. 95 %, k = 2)
Radiated Emissions (f > 1 GHz)	4.42 dB (C.L.: Approx. 95 %, k = 2)
Line Conducted Emission	2.06 dB (C.L.: Approx. 95 %, k = 2)

3.5 Test Software

Conducted Test	Ics Pro Ver. 6.0.3
Radiated Test	TOYO EMI software EP5RE Ver. 6.0.1.0
Line Conducted Test	ESCI7, ESCI3 : EMC32 Ver. 8.50.0
Line Conducted Test	ESR7 : EMC32 Ver. 10.20.01

Report No.: CTK-2022-01659 Page (8) / (38) Pages

4. Technical Characteristic Test

4.1 6dB Bandwidth

Test Procedures

KDB 558074 - Section 8.2 ANSI C63.10-2013 - Section 11.8.2 RSS-Gen – Section 6.7

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Procedures

ANSI C63.10-2013 - Section 6.9 RSS-Gen – Section 6.7

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

Use the 99% power bandwidth function of the instrument and report the measured bandwidth.

<u>Test Settings :</u>

Center frequency = the highest, middle and the lowest channels

a) RBW = 100 kHz

b) VBW \geq 3 x RBW

c) Detector = peak

d) Trace mode = Max hold

- e) Sweep = auto couple
- f) Allow trace to fully stabilize
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Minimum Standard :

6 dB Bandwidth > 500kHz

Test Data :

Test mode : 1 Mbps

Frequency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	Result
2 402	0.664	1.052	Complies
2 440	0.665	1.051	Complies
2 480	0.668	1.052	Complies

Test mode : 2 Mbps

Frequency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	Result
2 402	1.183	2.077	Complies
2 440	1.159	2.072	Complies
2 480	1.245	2.076	Complies

See next pages for actual measured spectrum plots.

RL RF 50 Ω AC Center Freq 2.40200000	Trig	SENSE:INT Iter Freq: 2.40200 g: Free Run	ALIGN AU 0000 GHz Avg Hold: 10/10	Radio Std: Non	
10 dB/div Ref 20.00 dE	an ouncow	en:24 dB	Ext Gain: -0.35 dE	Radio Device: E	ITS
-og	-m				— —
10.0					Center Fre
0.00					2.402000000 GH
0.0					
1.0					
0.0					
0.0					— I
enter 2.402 GHz Res BW 100 kHz		#VBW 300 k	Hz	Span 2 Sweep	
Occupied Bandwic	lth	Total P	ower 2	0.8 dBm	Auto M
	.0524 MHz				Freq Offs
Transmit Freq Error	-890 Hz	OBW P	ower	99.00 %	0
x dB Bandwidth	663.8 kHz	x dB		-6.00 dB	
G			ST.	ATUS	

1 Mbps - Lowest Frequency (2 402 MHz)

1 Mbps - Middle Frequency (2 440 MHz)

	Analyzer - Occupied RF 50 Ω AC		SENSE:INT	ALIGN	NAUTO 04:01:	33 PM Apr 20, 2022	[
	q 2.4400000	O GHZ C	enter Freq: 2.44000	00000 GHz	Radio	Std: None	Frequency
			ig: Free Run itten: 24 dB	Avg Hold: 10/1 Ext Gain: -0.35		Device: BTS	
10 dB/div	Ref 20.00 dB	m			_		
Log 10.0				\sim			Center Fre
0.00							2.440000000 GH
-10.0							2.44000000000
-20.0					~		
-30.0							
-40.0							
50.0							
60.0							
70.0							
Center 2.44 #Res BW 10			#VBW 300 P	KHz		Span 2 MHz weep 1 ms	CF Ster
							200.000 kH Auto Mar
Occupie	ed Bandwid		Total P	ower	20.8 dBm		
	1	.0508 MHz					Freq Offse
Transmit	Freq Error	-1.166 kHz	OBW P	ower	99.00 %		0 H
x dB Bar		665.2 kHz	x dB		-6.00 dB		
	awaan	005.2 KHZ	A GD		-0.00 ub		
ASG					STATUS		
					514105		

1 Mbps - Highest Frequency (2 480 MHz)

Center Freq 2.40200000	Trig: F		ALIGNAUTO O GHz wg Hold: 10/10 ixt Gain: -0.35 dB	04:14:11 PM Apr 20, 2022 Radio Std: None Radio Device: BTS	Frequency
0 dB/div Ref 20.00 dBn	1				
	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Center Free 2.402000000 GH
20.0					
60.0					
Center 2.402 GHz		VBW 300 kHz		Span 4 MHz Sweep 1 ms	CF Ste
Occupied Bandwidt		Total Pow		3 dBm	400.000 kH <u>Auto</u> Ma
2.	0771 MHz				Freq Offs
Transmit Freq Error	3.872 kHz	OBW Pov	/er 9	9.00 %	01
x dB Bandwidth	1.183 MHz	x dB	-6	00 dB	

#### 2 Mbps - Lowest Frequency (2 402 MHz)

#### 2 Mbps - Middle Frequency (2 440 MHz)

RL RE 50 Q AC Center Freq 2.44000000		SENSE:INT rFreg: 2.440000000 GHz		1 PM Apr 20, 2022 td: None	Frequency
	Trig: F	ree Run Avg Hol I:26 dB Ext Gair		evice: BTS	
10 dB/div Ref 20.00 dB	m				
-og 10.0 0.00					Center Fr 2.440000000 G
0.0					
.0					
0.0 0.0					
enter 2.44 GHz				ipan 4 MHz	CF St
Res BW 100 kHz Occupied Bandwid		VBW 300 kHz Total Power	21.4 dBm	veep 1ms	400.000 k <u>Auto</u> M
2	.0723 MHz				Freq Offs
Transmit Freq Error	3.876 kHz	OBW Power	99.00 %		0
x dB Bandwidth	1.159 MHz	x dB	-6.00 dB		
G			STATUS		



## 2 Mbps - Highest Frequency (2 480 MHz)



Report No.: CTK-2022-01659 Page (12) / (38) Pages

## 4.2 Maximum peak Conducted Output Power

#### **Test Procedures**

KDB 558074 - Section 8.3.1.1 ANSI C63.10-2013 - Section 11.9.1.1 RSS-Gen – Section 6.12

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

Test Settings:

Center frequency = the highest, middle and the lowest channels

a) RBW  $\geq$  DTS bandwidth

- c) span  $\geq$  3 x RBW
- e) Detector = peak

- b) VBW  $\geq$  3 x RBW
- d) Sweep time = auto couple
- f) Trace mode= max hold
- g) Allow trace to fully stabilize
- h) Use peak marker function to determine the peak amplitude level.

#### Limit :

Maximum Output Power < 1 W (30 dBm)

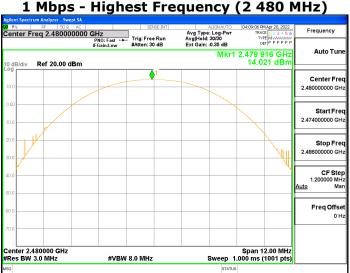
#### Test Data :

٦	est mode : 1 M	bps		
	Frequency	-	ak Conducted Power	Result
	(MHz)	(dBm)	(mW)	
	2 402	14.229	26.479	Complies
	2 440	14.339	27.158	Complies
	2 480	14.021	25.241	Complies

#### Test mode : 2 Mbps

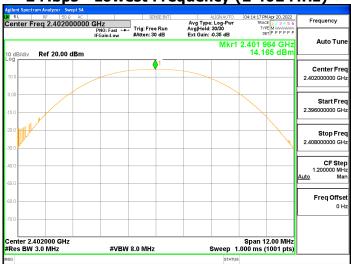
Frequency	Maximum pea Output	Result	
(MHz)	(dBm)	(mW)	
2 402	14.165	26.092	Complies
2 440	14.308	26.965	Complies
2 480	14.125	25.852	Complies

See next pages for actual measured spectrum plots.





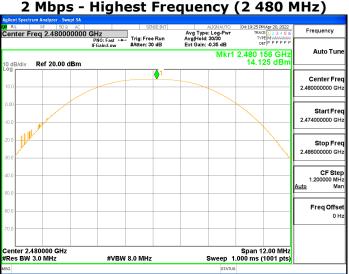

#### 1 Mbps - Lowest Frequency (2 402 MHz)












#### 2 Mbps - Lowest Frequency (2 402 MHz)







### 2 Mbps - Highest Frequency (2 480 MHz)



Report No.: CTK-2022-01659 Page (15) / (38) Pages

## 4.3 Transmitter Power Spectral Density

#### **Test Procedures**

KDB 558074 - Section 8.4 ANSI C63.10-2013 - Section 11.10.2

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance.

#### Test Settings:

Center frequency = the highest, middle and the lowest channels

a) RBW : 3 kHz  $\leq$  RBW  $\leq$  100 kHz

c) span  $\geq$  1.5 x DTS bandwidth

e) Detector = peak

g) Allow trace to fully stabilize

b) VBW  $\geq$  3 x RBW

d) Sweep time = auto couple

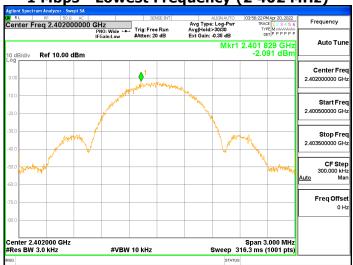
f) Trace mode= max hold

h) Use the peak marker function to determine the maximum amplitude level within the RBW.

#### Limit :

Power Spectral Density < 8dBm @ 3 kHz BW

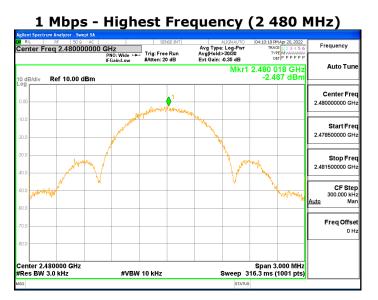
#### Test Data :


Test mode : 1 M	est mode : 1 Mbps					
Frequency	Power Spectral Density	Result				
(MHz)	(dBm)	Kesuit				
2 402	-2.091	Complies				
2 440	-2.064	Complies				
2 480	-2.467	Complies				

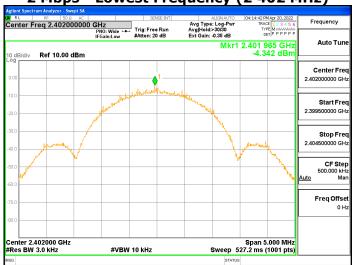
#### Test mode : 2 Mbps

Frequency	Power Spectral Density	Result
(MHz)	(dBm)	Result
2 402	-4.342	Complies
2 440	-4.408	Complies
2 480	-4.588	Complies

See next pages for actual measured spectrum plots.



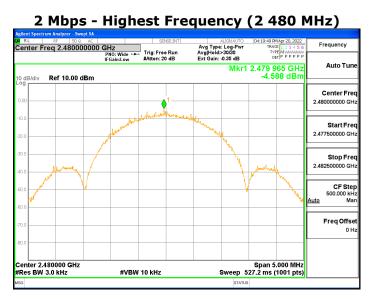




#### 1 Mbps - Lowest Frequency (2 402 MHz)












#### 2 Mbps - Lowest Frequency (2 402 MHz)









Report No.: CTK-2022-01659 Page (18) / (38) Pages

## 4.4 Conducted Spurious emission

#### **Test Procedures**

KDB 558074 - Section 8.5 ANSI C63.10-2013 - Section 11.11.3 RSS-Gen - Section 6.13

The Unwanted emission from the EUT were measured according to the dictates PKPSD measurement procedure in section 11.11 of ANSI C63.10-2013.

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

#### Test Settings:

Center frequency = the highest, middle and the lowest channels

a) RBW = 100 kHz

b) VBW  $\geq$  3 x RBW

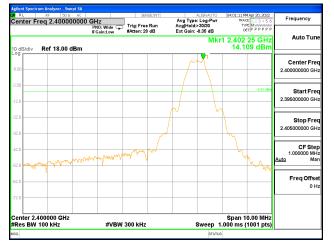
c) Detector = peak d) Sweep time = auto couple

e) Trace mode= max hold

- f) Allow trace to fully stabilize
- g) Use the peak marker function to determine the maximum amplitude level.

#### Limit :

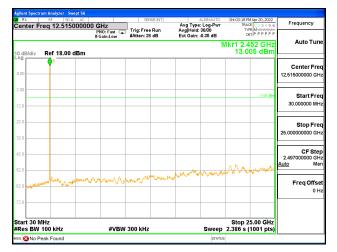
Emission level < 20 dBc


#### **Test results: Complies**

- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest in-band spectral density. Therefore the applying equipment meets the requirement.

#### See next pages for actual measured spectrum plots.




Report No.: CTK-2022-01659 Page (19) / (38) Pages



#### Test Mode : 1 Mbps

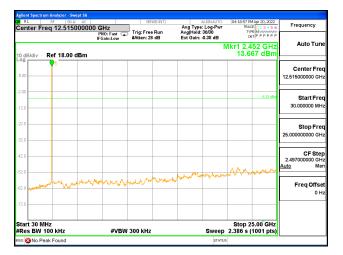


	AC	SENSE:INT	ALIGNAUTO	04:00:56 PM Apr 20, 2022	Frequency
tart Freq 30.000000	PNO: East	Trig: Free Run #Atten: 28 dB	Avg Type: Log-Pwr Avg Hold:>30/30 Ext Gain: -0.35 dB	TRACE 1 2 3 4 5 6 TYPE M MANANANA DET P P P P P P	
dB/div Ref 18.00 dE	ŝm		N	1kr1 2.402 GHz 13.631 dBm	Auto Tu
- <b>1</b>					Center Fr
00					12.515000000 G
00				-6.37 dBm	Start Fr
.0					30.000000 M
					Stop Fr
.0					25.000000000 G
.0					CF St
				A. B	2.497000000 G Auto M
.0	mmm	monthe	han marker was		
.0 Manhandra					Freq Offs 0
.0					
art 30 MHz				Stop 25.00 GHz	
tes BW 100 kHz	#VBW 3	00 kHz	Sweep	2.386 s (1001 pts)	



RL RF 50.0 AC		ALIGNAU		Frequency
enter Freq 12.5150000	PNO: Fast Trig: Free IFGain:Low #Atten: 28	Avg Type: Log-P Run Avg Hold: 30/30 3 dB Ext Gain: -0.35 dB	TYPE MIMAAAAAA	
dB/div Ref 18.00 dBm			Mkr1 2.477 GHz 12.155 dBm	Auto Tur
29 <b>1</b>				Center Fr 12.515000000 G
2.0			-7.85 dBm	Start Fr 30.000000 M
2.0				<b>Stop Fr</b> 25.000000000 G
2.0			Maria	CF St 2.497000000 G <u>Auto</u> M
2.0 portunity of the particular	mannam	hourse the states		Freq Offs 0
art 30 MHz Res BW 100 KHz	#VBW 300 kHz		Stop 25.00 GHz	




Report No.: CTK-2022-01659 Page (20) / (38) Pages





#### Test Mode : 2 Mbps

a RL Center F	RF 50 R	0000 GHz	E:INT ALIGN AUTO Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6	Frequency
		PNO: Fast Trig: Free IFGain:Low #Atten: 28	Run Avg Hold: 30/30 dB Ext Gain: -0.35 dB	DET P P P P P	
0 dB/div	Ref 18.00 dB	m		Mkr1 2.402 GHz 11.721 dBm	Auto Tu
°g	<b>1</b>				Center Fr
3.00					12.515000000 G
.00					Start Fr
2.0				-8.28 abn	30.000000 N
2.0					Stop Fr
2.0					25.00000000 0
2.0					CF St
					2.497000000 G Auto
2.0	ment white the presence	A AMA LA C LAND MY	work with the	the Arthouse the second	
2.0	when any but	A war do A Awards A			Freq Off
2.0					
tart 30	MH7			Stop 25.00 GHz	
	100 kHz	#VBW 300 kHz	Sweet	2.386 s (1001 pts)	



RL RF	50 Q AC		SENSE:INT		ALIGNAUTO	04:21:13 PM Apr 20, 2022	-
enter Freq 12.5	PN	0 East 😱 In	g: Free Run ten: 28 dB	Avg Type Avg Hold: Ext Gain:		TRACE 1 2 3 4 5 6 TYPE MUMOUND DET P P P P P P	
	00 dBm				N	/kr1 2.477 GHz 11.386 dBm	Auto Tu
g1							Center Fr 12.515000000 G
0						-8.61 dBn	Start Fr 30.000000 M
0							Stop Fr 25.000000000 G
0						AAra	CF Si 2.497000000 G <u>Auto</u> M
· · · · · · · · · · · · · · · · · · ·	woodensterve	nu Noraali	Nathanan	and the second of	nryn,Astri		Freq Off: 0
art 30 MHz		#VBW 300			0	Stop 25.00 GHz	
.cs Dwv 100 KHZ		#4044 300	ND2		oweep	2.386 s (1001 pts)	



Report No.: CTK-2022-01659 Page (21) / (38) Pages

### 4.5 Radiated Emission

#### **Test Location**

 $\boxtimes$  10 m SAC (test distance :  $\square$  10 m,  $\boxtimes$  3 m)  $\boxtimes$  3 m SAC (test distance : 3 m)

#### **Test Procedures**

KDB 558074 - Section 8.5, 8.6 ANSI C63.10-2013 - Section 11.11, 11.12 RSS-Gen - Section 6.13

- In the frequency range of 9 kHz to 30 MHz, magnetic field is measured with Loop Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- 2) In the frequency range above 30 MHz, Bi-Log Test Antenna(30 MHz to 1 GHz) and Horn Test Antenna(above 1 GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is carried from 1m to 4m above the ground to determine the maximum value of the field strength. The emissions levels at both horizontal and vertical polarizations should be tested.

```
Test Settings:
Frequency Range = 9 kHz ~ 1 GHz
a) RBW = 100 kHz for f < 1 GHz, 9 kHz for f < 30 MHz
b) VBW \geq RBW
c) Detector = CISPR Quasi-peak
                                             d) Sweep time = auto couple
- Peak
Frequency Range = 1 GHz ~ 25 GHz (2.4 GHz 10^{th} harmonic)
a) RBW = 1 MHz
b) VBW \geq 3 x RBW
                                              c) Detector = Peak
d) Sweep time = auto
                                              e) Trace mode = max hold
- Average (duty cycle \geq 98%)
Frequency Range = 1 GHz ~ 25 GHz (2.4 GHz 10^{th} harmonic)
a) RBW = 1 MHz
b) VBW \geq 3 x RBW
                                              c) Detector = RMS
d) Sweep time = auto
                                              e) Averaging type = power (i.e., RMS)
f) Trace mode = average (at least 100 traces)
```



Frequency Range = 1 GHz ~ 25 GHz (2.4 GHz 10th harmonic)

- a) RBW = 1 MHz
- b) VBW  $\geq$  3 x RBW
- d) Sweep time = auto

c) Detector = RMS

e) Averaging type = power (i.e., RMS)

f) Trace mode = average (at least 100 traces)

A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 % duty cycle.

If power averaging (RMS) mode, then the applicable correction factor is  $10 \log(1/x)$ , where x is the duty cycle.

Test Mode	Duty Cycle Factor
1 Mbps	0.66 dB
2 Mbps	2.34 dB

#### Limit :

FCC Part 15 § 15.205 (a) Except as shown in paragraph (d) of this section, only

spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	MHz	GHz
0.09-0.11	8.37626-8.38675	73-74.6	399.9-410	2690-2900	10.6-12.7
¹ 0.495-0.505	8.41425-8.41475	74.8-75.2	608-614	3260-3267	13.25-13.4
2.1735-2.1905	12.29-12.293	108-121.94	960-1240	3332-3339	14.47-14.5
4.125-4.128	12.51975-12.52025	123-138	1300-1427	3345.8-3358	15.35-16.2
4.17725-4.17775	12.57675-12.57725	149.9-150.05	1435-1626.5	3600-4400	17.7-21.4
4.20725-4.20775	13.36-13.41	156.52475- 156.52525	1645.5-1646.5	4500-5150	22.01-23.12
6.215-6.218	16.42-16.423	156.7-156.9	1660-1710	5350-5460	23.6-24
6.26775-6.26825	16.69475-16.69525	162.0125-167.17	1718.8-1722.2	7250-7750	31.2-31.8
6.31175-6.31225	16.80425-16.80475	167.72-173.2	2200-2300	8025-8500	36.43-36.5
8.291-8.294	25.5-25.67	240-285	2310-2390	9000-9200	² Above 38.6
8.362-8.366	37.5-38.25	322-335.4	2483.5-2500	9300-9500	

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§ 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

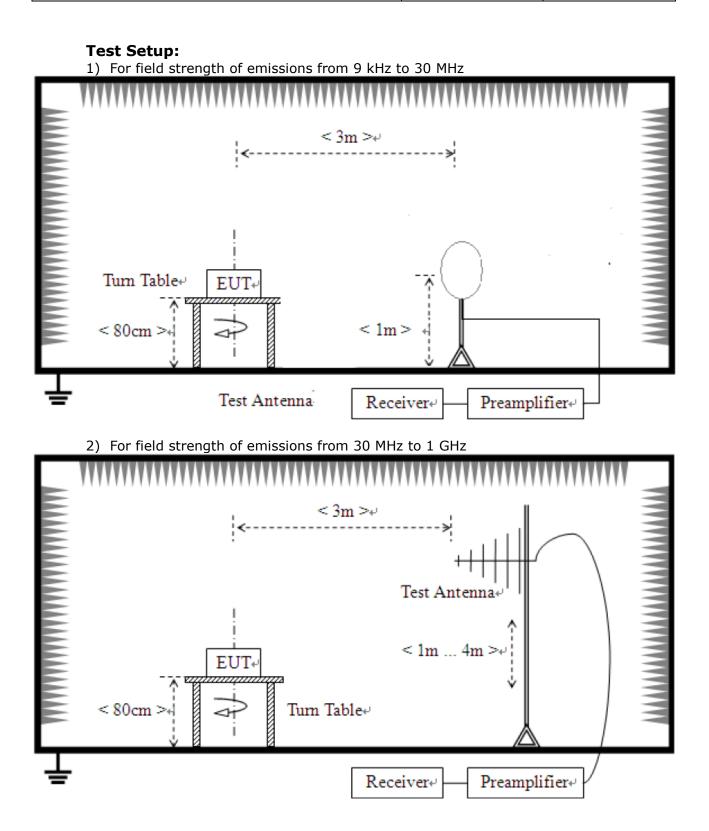


FCC Part 15 § 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 2 Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

Frequency(MHz)	Field Strength uV/m@3m	Field Strength dBuV/m@3m	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	-	300
0.490-1.705	24000/F(kHz)	-	30
1.705-30	30	-	30
30-88	100**	40	3
88-216	150**	43.5	3
216-960	200**	46	3
Above 960	500	54	3

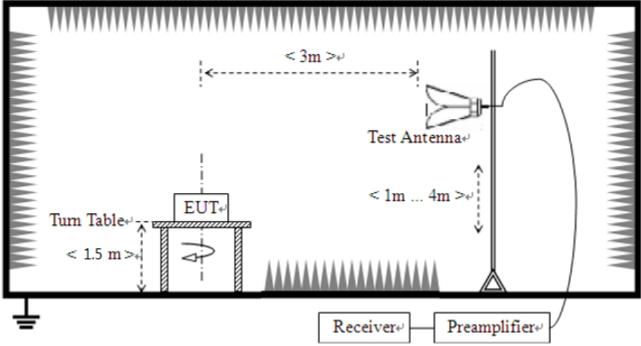
#### Table 2. General Field Strength Limits for Licence-Exempt Transmitters


** Except as provided in 15.209(g).fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72MHz, 76-88MHz, 174-216MHz, 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g.15.231 and 15.241.

Note :

- 1) For above 1 GHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.
- For above 1 GHz, limit field strength of harmonics : 54 dBuV/m@3m (AV) and 74 dBuV/m@3m (PK)




Report No.: CTK-2022-01659 Page (24) / (38) Pages





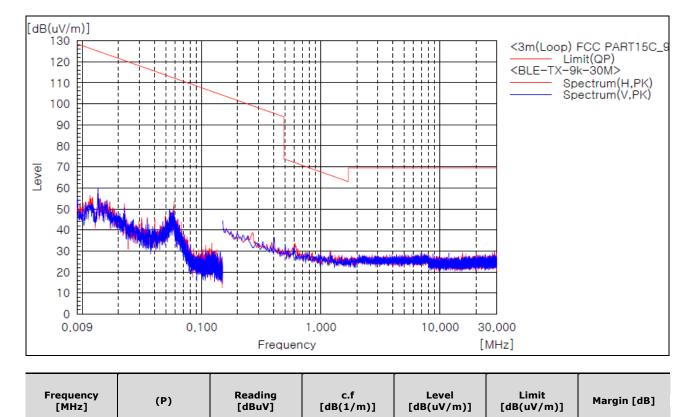
Report No.: CTK-2022-01659 Page (25) / (38) Pages







Report No.: CTK-2022-01659 Page (26) / (38) Pages


#### **Test results**

#### 1) 9 kHz to 30 MHz

Test mode : Transmitter (Worst Case)

The requirements are:  $\square$  Complies

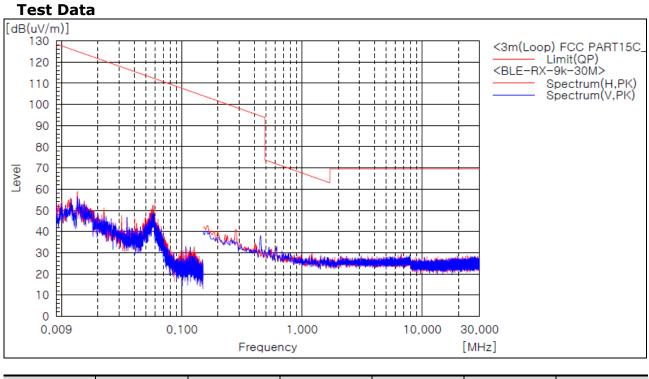
#### Test Data



Remark :

 The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(X axis) and the worst case was recorded.

The emissions 9 kHz to 30 MHz were 20 dB lower than the limit.


- 2. Result = Reading + c.f(Correction factor)
- 3. Correction factor = Antenna factor + Cable loss + 6 dB attenuator
- 4. This data is the Peak(PK) value.



Report No.: CTK-2022-01659 Page (27) / (38) Pages

#### Test mode : Receiver (Worst Case)

The requirements are: Complies

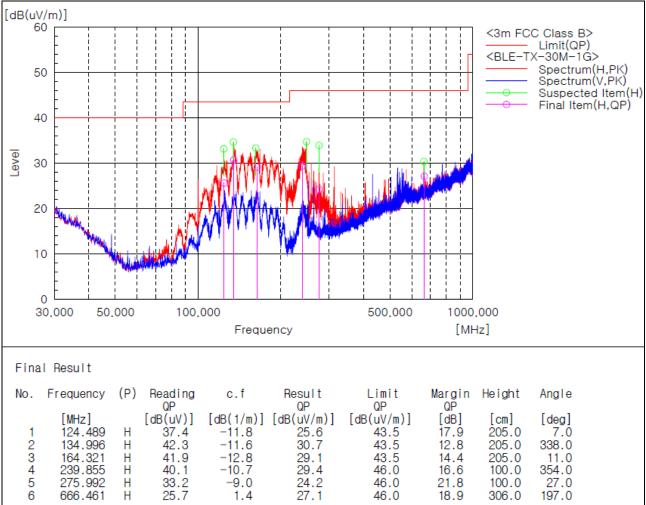


Frequency [MHz]	(P)	Reading [dBuV]	c.f [dB(1/m)]	Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
	The er	nissions 9 kHz to	30 MHz were 20	dB lower than the	e limit.	

#### Remark :

- The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(X axis) and the worst case was recorded.
- 2. Result = Reading + c.f(Correction factor)
- 3. Correction factor = Antenna factor + Cable loss + 6 dB attenuator
- 4. This data is the Peak(PK) value.




Report No.: CTK-2022-01659 Page (28) / (38) Pages

### 2) 30 MHz to 1 GHz

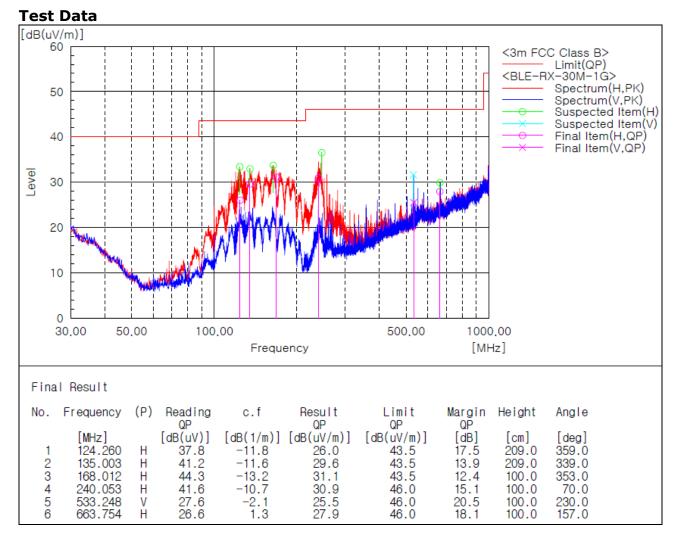
Test mode : Transmitter (Worst Case)

The requirements are:  $\square$  Complies

#### Test Data



#### Remark :


- The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(X axis) and the worst case was recorded.
- 2. Result = Reading + c.f(Correction factor)
- 3. Correction factor = Antenna factor + Cable loss + 6 dB attenuator Amp Gain



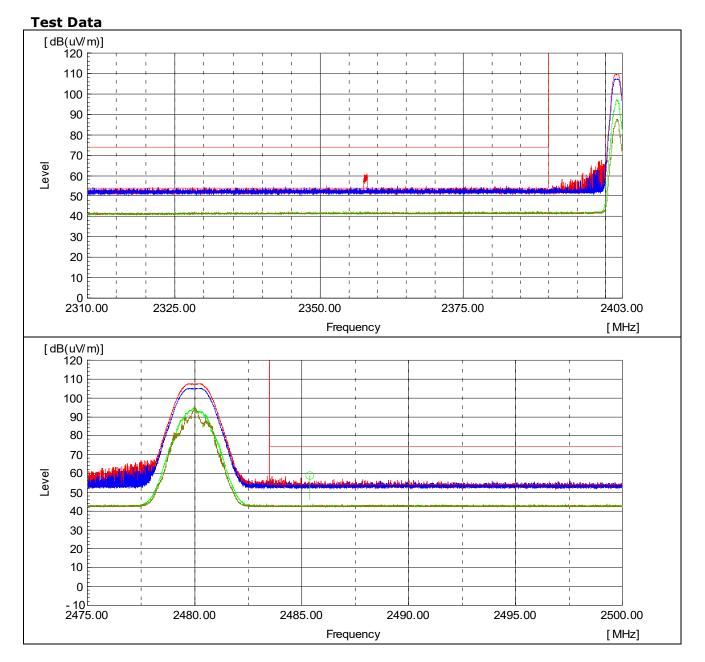
Report No.: CTK-2022-01659 Page (29) / (38) Pages

#### Test mode : Receiver (Worst Case)

The requirements are:  $\Box$  Complies

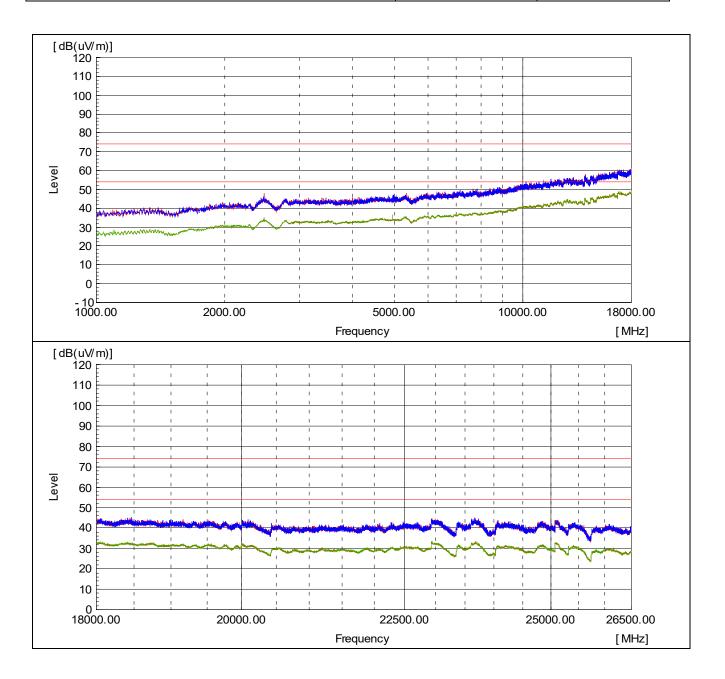


#### Remark :


- The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(X axis) and the worst case was recorded.
- 2. Result = Reading + c.f(Correction factor)
- 3. Correction factor = Antenna factor + Cable loss + 6 dB attenuator Amp Gain



Report No.: CTK-2022-01659 Page (30) / (38) Pages


### 3) above 1 GHz

The requirements are:  $\square$  Complies





Report No.: CTK-2022-01659 Page (31) / (38) Pages





Report No.: CTK-2022-01659 Page (32) / (38) Pages

#### **Test mode : 1 Mbps - Transmitter**

Lowest	Lowest channel (2 402 MHz)											
Frequency [MHz]	<->	Reading PK [dBuV]		c.f [dB(1/m)]	Duty Cycle Factor [dB]	Level PK [dB(uV/m)]	Level AV [dB(uV/m)]	Limit PK [dB(uV/m)]	Limit AV [dB(uV/m)]	PK	Margin AV [dB]	
The emissions above 1 GHz were 20 dB lower than the limit												

The emissions above 1 GHz were 20 dB lower than the limit.

Middle channel (2 440 MHz)

		unner (									
Frequency [MHz]	(-)	Reading PK [dBuV]		c.f [dB(1/m)]	Duty Cycle Factor [dB]	Level PK [dB(uV/m)]	Level AV [dB(uV/m)]	Limit PK [dB(uV/m)]	Limit AV [dB(uV/m)]	PK	Margin AV [dB]
4 879.68	Н	45.7		1.0		46.7		74.0		27.3	
4 879.53	н		33.1	1.0	0.7		34.8		54.0		19.2
4 880.79	v	47.2		1.0		48.2		74.0		25.8	
4 879.72	v		37.1	1.0	0.7		38.8		54.0		15.2

#### Highest channel (2 480 MHz)

Frequency [MHz]	(P)	Reading PK [dBuV]	AV	c.f [dB(1/m)]	Duty Cycle Factor [dB]	Level PK [dB(uV/m)]	Level AV [dB(uV/m)]	Limit PK [dB(uV/m)]	Limit AV [dB(uV/m)]	DK	Margin AV [dB]
4 960.53	Н	45.3		1.2		46.5		74.0		27.5	
4 957.96	н		32.8	1.2	0.7		34.7		54.0		19.3
4 959.99	V	47.2		1.2		48.4		74.0		25.6	
4 959.86	V		37.8	1.2	0.7		39.7		54.0		14.3

#### Remarks

- The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(X axis) and the worst case was recorded.
- 2. Peak Result = Reading + c.f(Correction factor)
- Average Result = Reading + c.f(Correction factor) + Duty Cycle Factor
- 3. Correction factor = Antenna factor + Cable loss Amp Gain



Report No.: CTK-2022-01659 Page (33) / (38) Pages

#### **Test mode : 2 Mbps - Transmitter**

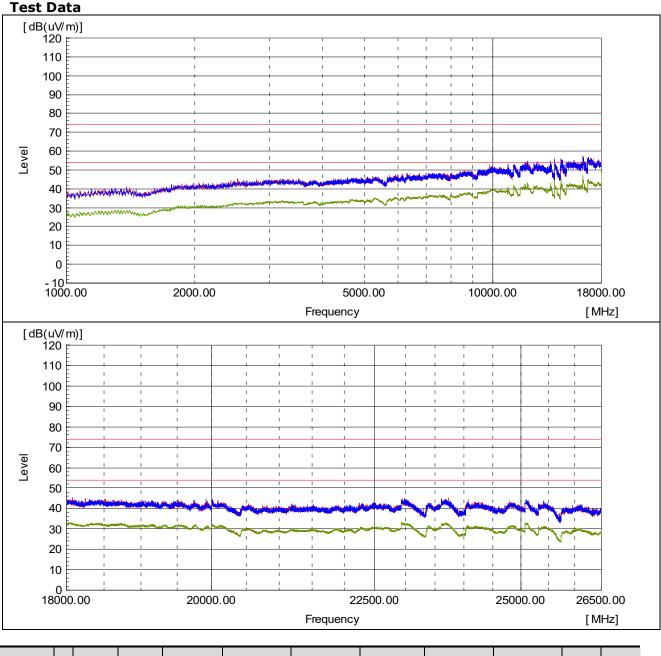
Lowest	Lowest channel (2 402 MHz)											
Frequency [MHz]		Reading PK [dBuV]		c.f [dB(1/m)]	Duty Cycle Factor [dB]	Level PK [dB(uV/m)]	Level AV [dB(uV/m)]	Limit PK [dB(uV/m)]	LIMIT AV	DK	Margin AV [dB]	
The emissions above 1 GHz were 20 dB lower than the limit												

The emissions above 1 GHz were 20 dB lower than the limit.

Middle channel (2 440 MHz)

Thaare	0	annier	2 110								
Frequency [MHz]	( )	Reading PK [dBuV]	A 1 /	c.f [dB(1/m)]	Duty Cycle Factor [dB]	Level PK [dB(uV/m)]	Level AV [dB(uV/m)]	Limit PK [dB(uV/m)]		DK	Margin AV [dB]
4 880.86	н	45.9		1.0		46.9		74.0		27.1	
4 880.55	н		33.0	1.0	2.3		36.3		54.0		17.7
4 880.84	v	47.0		1.0		48.0		74.0		26.0	
4 879.07	v		34.8	1.0	2.3		38.1		54.0		15.9

#### Highest channel (2 480 MHz)


Frequency [MHz]	(P)		Reading AV [dBuV]	c.f [dB(1/m)]	Duty Cycle Factor [dB]	Level PK [dB(uV/m)]	Level AV [dB(uV/m)]	Limit PK [dB(uV/m)]	Limit AV	Margin PK [dB]	Margin AV [dB]
2 483.51	Н	62.3		-2.5		59.8		74.0		14.2	
2 483.50	н		46.8	-2.5	2.3		46.6		54.0		7.4
2 483.59	V	59.0		-2.5		56.5		74.0		17.5	
2 483.66	V		46.5	-2.5	2.3		46.3		54.0		7.7
4 960.37	н	45.3		1.2		46.5		74.0		27.5	
4 961.91	н		32.8	1.2	2.3		36.3		54.0		17.7
4 961.05	V	47.4		1.2		48.6		74.0		25.4	
4 959.29	v		35.0	1.2	2.3		38.5		54.0		15.5

#### Remarks

- 4. The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(X axis) and the worst case was recorded.
- 5. Peak Result = Reading + c.f(Correction factor) Average Result = Reading + c.f(Correction factor) + Duty Cycle Factor
- 6. Correction factor = Antenna factor + Cable loss Amp Gain



Report No.: CTK-2022-01659 Page (34) / (38) Pages



#### Test mode : Receiver (Worst Case)

Frequency [MHz]		Reading PK [dBuV]		c.f [dB(1/m)]	Duty Cycle Factor [dB]	Level PK [dB(uV/m)]	Level AV [dB(uV/m)]	Limit PK [dB(uV/m)]	LIMIT AV	рй	Margin AV [dB]
	The emissions above 1 CHz were 20 dB lower than the limit										

The emissions above 1 GHz were 20 dB lower than the limit.

#### Remarks

- 1. The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in lie-down position(X axis) and the worst case was recorded.
- 2. Peak Result = Reading + c.f(Correction factor)
- Average Result = Reading + c.f(Correction factor) + Duty Cycle Factor
- 3. Correction factor = Antenna factor + Cable loss Amp Gain



## 4.6 AC Conducted Emissions

#### **Frequency Range of Measurement**

150 kHz to 30 MHz

#### **Instrument Settings**

IF Band Width: 9 kHz

#### **Test Procedures**

ANSI C63.10-2013 - Section 6.2 RSS-Gen - Section 8.8

The EUT was placed on a non-metallic table 0.8m above the metallic, grounded floor and 0.4m from the reference ground plane wall. The distance to other metallic surfaces was at least 0.8m.

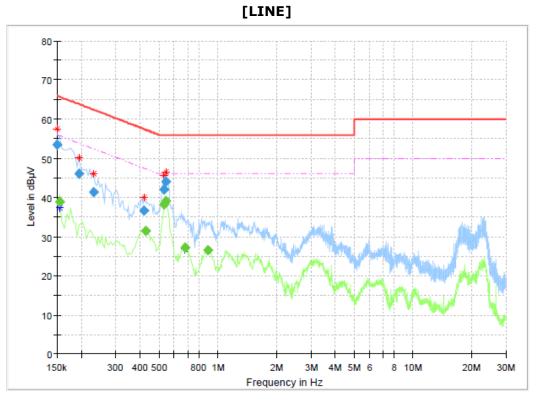
Amplitude measurements were performed with a quasi-peak detector and an average detector.

#### Limit - 15,207(a)

19:20/(0)								
Frequency (MHz)	Conducted Limit (dBuV)							
Frequency (MHz)	Quasi-peak	Average**						
0.15 ~ 0.5	66 to 56*	56 to 46*						
0.5 ~ 5	56	46						
5 ~ 30	60	50						

* The level decreases linearly with the logarithm of the frequency.

** A linear average detector is required.

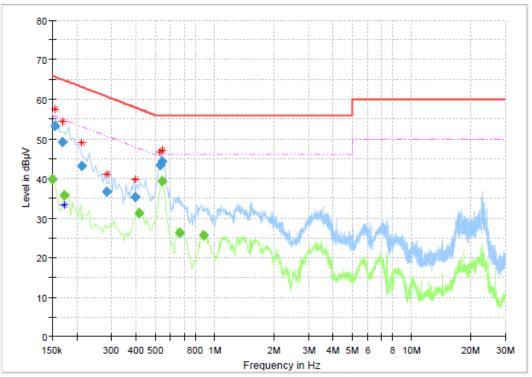

#### **Test Results**

The requirements are:  $\square$  Complies



Report No.: CTK-2022-01659 Page (36) / (38) Pages

#### **Test Data**




## **Final Result**

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	Time	(kHz)	Line	1 1100	(dB)
(1112)	(ubµv)	(uphA)	(ubµv)	(ub)	(ms)	(112)			(ub)
0.150000	53.49		66.00	12.51	3000.0	9.000	L1	ON	9.7
0.154500		38.85	55.75	16.90	3000.0	9.000	L1	ON	9.7
0.195000	46.01		63.82	17.81	3000.0	9.000	L1	ON	9.9
0.231000	41.42		62.41	21.00	3000.0	9.000	L1	ON	9.8
0.420000	36.56		57.45	20.89	3000.0	9.000	L1	ON	9.9
0.429000		31.50	47.27	15.77	3000.0	9.000	L1	ON	9.9
0.528000	41.94		56.00	14.06	3000.0	9.000	L1	ON	9.9
0.532500		38.26	46.00	7.74	3000.0	9.000	L1	ON	9.9
0.541500		39.18	46.00	6.82	3000.0	9.000	L1	ON	9.9
0.541500	44.05		56.00	11.95	3000.0	9.000	L1	ON	9.9
0.681000		27.08	46.00	18.92	3000.0	9.000	L1	ON	9.8
0.888000		26.62	46.00	19.38	3000.0	9.000	L1	ON	9.8



Report No.: CTK-2022-01659 Page (37) / (38) Pages



#### [NEUTRAL]

## **Final Result**

QuasiPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Line	Filter	Corr.
(dBµV)	(dBµV)	(dBµV)	(dB)	Time	(kHz)			(dB)
				(ms)				
	39.70	56.00	16.30	3000.0	9.000	N	ON	9.9
53.20		65.75	12.55	3000.0	9.000	N	ON	9.9
49.28		65.06	15.78	3000.0	9.000	N	ON	9.9
	35.70	54.84	19.14	3000.0	9.000	N	ON	9.9
43.18		63.09	19.91	3000.0	9.000	N	ON	9.9
36.53		60.67	24.14	3000.0	9.000	N	ON	9.9
35.35		57.91	22.55	3000.0	9.000	N	ON	10.0
	31.32	47.54	16.21	3000.0	9.000	N	ON	10.0
43.34		56.00	12.66	3000.0	9.000	N	ON	10.1
	39.42	46.00	6.58	3000.0	9.000	N	ON	10.1
44.19		56.00	11.81	3000.0	9.000	N	ON	10.1
	26.30	46.00	19.70	3000.0	9.000	N	ON	10.0
	25.53	46.00	20.47	3000.0	9.000	N	ON	9.9
	(dBµV)  53.20 49.28  43.18 36.53 35.35  43.34  44.19 	(dBµV) (dBµV) 39.70 53.20 49.28 35.70 43.18 36.53 35.35 31.32 43.34 39.42 44.19 26.30	(dBμV)         (dBμV)         (dBμV)            39.70         56.00           53.20          65.75           49.28          65.06            35.70         54.84           43.18          63.09           36.53          60.67           35.35          57.91            31.32         47.54           43.34          56.00            39.42         46.00           44.19          56.00            26.30         46.00	(dBμV)         (dBμV)         (dBμV)         (dBμV)         (dB)            39.70         56.00         16.30           53.20          65.75         12.55           49.28          65.06         15.78            35.70         54.84         19.14           43.18          63.09         19.91           36.53          60.67         24.14           35.35          57.91         22.55            31.32         47.54         16.21           43.34          56.00         12.66            39.42         46.00         6.58           44.19          56.00         11.81            26.30         46.00         19.70	(dBμV)         (dBμV)         (dBμV)         (dBμV)         (dB)         Time (ms)            39.70         56.00         16.30         3000.0           53.20          65.75         12.55         3000.0           49.28          65.06         15.78         3000.0            35.70         54.84         19.14         3000.0           43.18          63.09         19.91         3000.0           35.35          57.91         22.55         3000.0            31.32         47.54         16.21         3000.0            39.42         46.00         6.58         3000.0            39.42         46.00         11.81         3000.0            26.30         46.00         19.70         3000.0	(dBμV)         (dBμV)         (dBμV)         (dBμV)         (dB)         Time (ms)         (kHz)            39.70         56.00         16.30         3000.0         9.000           53.20          65.75         12.55         3000.0         9.000           49.28          65.06         15.78         3000.0         9.000            35.70         54.84         19.14         3000.0         9.000           43.18          63.09         19.91         3000.0         9.000           35.35          57.91         22.55         3000.0         9.000           35.35          57.91         22.55         3000.0         9.000            31.32         47.54         16.21         3000.0         9.000            39.42         46.00         6.58         3000.0         9.000            39.42         46.00         11.81         3000.0         9.000            26.30         46.00         19.70         3000.0         9.000	(dBμV)         (dBμV)         (dBμV)         (dB)         Time (ms)         (kHz)            39.70         56.00         16.30         3000.0         9.000         N           53.20          65.75         12.55         3000.0         9.000         N           49.28          65.06         15.78         3000.0         9.000         N            35.70         54.84         19.14         3000.0         9.000         N           43.18          63.09         19.91         3000.0         9.000         N           35.35          57.91         22.55         3000.0         9.000         N           35.35          57.91         22.55         3000.0         9.000         N            31.32         47.54         16.21         3000.0         9.000         N            39.42         46.00         6.58         3000.0         9.000         N            39.42         46.00         11.81         3000.0         9.000         N            26.30         46.00         19.70         3000.0	(dBμV)         (dBμV)         (dBμV)         (dB)         Time (ms)         (kHz)            39.70         56.00         16.30         3000.0         9.000         N         ON           53.20          65.75         12.55         3000.0         9.000         N         ON           49.28          65.06         15.78         3000.0         9.000         N         ON            35.70         54.84         19.14         3000.0         9.000         N         ON           43.18          63.09         19.91         3000.0         9.000         N         ON           35.35          57.91         22.55         3000.0         9.000         N         ON            31.32         47.54         16.21         3000.0         9.000         N         ON            39.42         46.00         6.58         3000.0         9.000         N         ON            39.42         46.00         11.81         3000.0         9.000         N         ON            26.30         46.00         19.70         3000.



Report No.: CTK-2022-01659 Page (38) / (38) Pages

## **APPENDIX A – Test Equipment Used For Tests**

	Name of Equipment	Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date
1	Signal Analyzer	Agilent	N9020A	MY46471102	2022-01-13	2023-01-13
2	Signal Generator	Rohde & Schwarz	SMB100A	175528	2022-03-25	2023-03-25
3	EMI Test Receiver	Rohde & Schwarz	ESCI7	100814	2021-10-20	2022-10-20
4	BILOG ANTENNA	TESEQ	CBL6111D	58490	2021-03-03	2023-03-03
5	Active Loop Antenna	SCHWARZBECK	FMZB 1513	1513-126	2022-05-11	2024-05-11
6	ATTENUATOR	PASTERNACK	PE7047-6	NONE	2022-02-22	2023-02-22
7	6dB Attenuator	BIRD	5W 6dB	1744	2021-11-18	2022-11-18
8	AMPLIFIER	SONOMA	310	291721	2022-01-21	2023-01-21
9	EMI Test Receiver	Rohde & Schwarz	ESU40	100336	2022-01-11	2023-01-11
10	Preamplifier	Agilent	8449B	3008A01504	2021-12-17	2022-12-17
11	Double Ridged Guide Antenna	ETS-Lindgren	3117	00154525	2021-10-21	2022-10-21
12	Horn Antenna	SCHWARZBECK	BBHA9170	00967	2022-05-18	2023-05-18
13	Low Noise Amplifier	TESTEK	TK-PA1840H	200115-L	2022-05-11	2023-05-11
14	Band Reject Filter	Micro Tronics	BRM50702	G444	2021-10-08	2022-10-08
15	LISN	Rohde & Schwarz	ENV216	102324	2022-03-23	2023-03-23
16	EMI Test Receiver	Rohde & Schwarz	ESR7	101088	2022-03-23	2023-03-23

	Cable	Manufacturer	Model No.	Serial No.	Check Date
1	RF Cable (Conducted)	Junkosha Inc.	MWX221	1802S135	2022-04-20
2	RF Cable (Line Conducted)	Canare Corporation	L-5D2W	N/A	2022-04-21
3	RF Cable (9kHZ-30MHz Radiated)	HUBER+SUHNER	NA	NA	2022-04-16
4	RF Cable (9kHZ-1GHz Below Radiated)	HUBER+SUHNER	SUCOFLEX 104	MY27558/4	2022-04-16
5	RF Cable (30MHz-1GHz Below Radiated)	HUBER+SUHNER	SUCOFLEX 104	N/A	2022-04-16
6	RF Cable (1GHz-18GHz Radiated)	HUBER+SUHNER	SUCOFLEX 102	MY2374/2	2022-04-16
7	RF Cable (1GHz-40GHz Radiated)	HUBER+SUHNER	SUCOFLEX 102	MY4728/2	2022-04-16
8	RF Cable (18GHz-40GHz Radiated)	HUBER+SUHNER	SUCOFLEX 102	803010/2	2022-04-16