

www.etl.re.kr

Electromagnetic Emission

FCC MEASUREMENT REPORT

CERTIFICATION OF COMPLIANCE

FCC Part 15 Certification Measurement

PRODUCT	:	Iris Recognition Device
MODEL/TYPE NO	;	iCAM7100 / Proto type
MULTIPLE MODEL	:	
BRAND NAME	;	IrisAccess
FCC ID	:	ZKE-ICAM7100
APPLICANT	:	Iris ID, Inc.
		Daerung Post Tower 1st 512, 212-8 Guro-dong,
		Guro-gu, Seoul 152-790, Korea
		Attn.: Jong-Wook Kim / Team Leader
MANUFACTURER	;	Iris ID, Inc.
		Daerung Post Tower 1st 512, 212-8 Guro-dong,
		Guro-gu, Seoul 152-790, Korea
FCC CLASSIFICATION	:	DXX - Part 15 Low Power Communication Device Transmitter
TYPE OF MODULATION	:	ASK
OPERATING FREQUENCY	1	13.56 MHz
ANTENNA TYPE	:	PCB Pattern Antenna
RULE PART(S)	3	FCC Part 15 Subpart C
PROCEDURE	:	ANSI C63.4-2003
TEST REPORT No.		ETLE110408.0278
DATES OF TEST	4	May 02, 2011 to May 05, 2011
REPORT ISSUE DATE	:	May 13, 2011
TEST LABORATORY	:	ETL Inc. (FCC Designation Number : KR0022)

The Iris Recognition Device, Model iCAM7100 has been tested in accordance with the measurement procedures specified in ANSI C63.4-2003 at the ETL Test Laboratory and has been shown to be complied with the electromagnetic radiated emission limits specified in FCC Rule Part15 Subpart C section 15.225.

I attest to the accuracy of data. All measurement herein was performed by me or was made under my supervision and is correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

The results of testing in this report apply to the product/system which was tested only. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Prepared by:

Jeong Hwan, Pyo (Test Engineer)

May 13, 2011

Reviewed by:

Yo Han, Park (Chief Engineer) May 13, 2011

ETL Inc. #371-51, Gasan-dong, Geumcheon-gu, Seoul, 153-803, Korea Tel: 82-2-858-0786 Fax: 82-2-858-0788

The test report merely corresponds to the test sample(s). This report shall not be reproduced, in whole or in part without the written approval of ETL Inc.

Table of Contents

FCC Measurement Report

- 1. Introduction
- 2. Product Information
- 3. Description of Tests
- 4. Test Condition
- 5. Test Results
 - 5.1 Summary of Test Results
 - **5.2 Conducted Emissions**
 - **5.3 Radiated Emissions**
 - 5.4 13.56 MHz Carrier Field Strength Within The Bands
 - 5.5 Occupied Bandwidth
 - 5.6 Frequency Tolerance
- 6. Sample Calculation
- 7. List of test Equipment used for Measurement

Appendix A. FCC ID Label and Location

Appendix B. Test Setup Photographs

Appendix C. External Photographs

Appendix D. Internal Photographs

Appendix E. Block Diagram

Appendix F. Circuit Diagram

Appendix G. Part list

Appendix H. User Manual

Appendix I. Operational Description

Report no. ETLE110408.0278, Page 2 of 23

FCC MEASUREMENT REPORT

Scope – Measurement and determination of electromagnetic emission(EME) of radio frequency devices including intentional radiators and/or unintentional radiators for compliance with the technical rules and regulations of the U.S Federal Communications Commission(FCC)

General Information

Applicant Name	: Iris ID, Inc.
Address	: Daerung Post Tower 1st 512, 212-8 Guro-dong,
	Guro-gu, Seoul 152-790, Korea
Attention	Leng Week Kim (Teens Leeder
Attention	: Jong-wook Kim / Team Leader

- EUT Type : Iris Recognition Device
- Model Number : iCAM7100
- S/N : Proto type
- Type of Modulation : ASK
- Operating Frequency : 13.56 MHz
- Antenna Type : PCB Pattern Antenna
- FCC Rule Part(s) : FCC Part 15 Subpart C
- Test Procedure : ANSI C63.4-2003
- FCC Classification : Part 15 Low Power Communication Device Transmitter
- Dates of Tests : May 02, 2011 to May 05, 2011
- Place of Tests : ETL Inc. Testing Lab.

Radiated Emission test; #499-1, Sagot-ri, Seosin-myeon, Hwaseong-si, Gyeonggi-do, 445-882, Korea

Conducted Emission test; ETL Inc. Testing Lab. 371-51, Gasan-dong, Geumcheon-gu, Seoul, 153-803, Korea

• Test Report No. : ETLE110408.0278

Report no. ETLE110408.0278, Page 3 of 23

1. INTRODUCTION

The measurement test for radiated and conducted emission test was conducted at the ETL Inc. The site is constructed in conformance with the requirements of the ANSI C63.4-2003 and CISPR Publication 16. The ETL has site descriptions on file with the FCC for 3 m and 10 m site configurations. Detailed description of test facility was found to be in compliance with FCC Rules according to the ANSI C63.4-2003 and registered to the Federal Communications Commission (FCC Designation Number : KR0022).

The measurement procedure described in American National Standard for Method of Measurement of Radio-Noise Emission from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2003) was used in determining radiated and conducted emissions from the Iris ID, Inc. Model: iCAM7100

Report no. ETLE110408.0278, Page 4 of 23

2. PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the Iris Recognition Device (model: iCAM7100).

2.2 General Specification

- Main Part

Item	Specification		
Dimension	178.0 mm x 213.4 mm x 76.7 mm		
Weight	1.6 kg		
CPU	Samsung S3C6410		
Memory	256 MB (m-DDR)		
Storage	1 GB (On-board)		
	4 GB (Up to 16 GB SD)		
Iris Sensor	752 x 480 (B/W WVGA)		
Face Sensor	5 M with AF		
Display	4.3" LCD		
	Allowable Operation Voltage: 12 V DC		
	During Operation Voltage: 12 V ~ 24 V DC		
Operation Temperature	-20 °C ~ +55 °C		
Operating Humidity	0 % R.H ~ 90 % R.H.		
Button	Power (Internal)		
Bullon	Motor Tilt (On both sides), 6 Function Keys		
Connectivity	10/100 Mbps LAN, USB 2.0, Wiegand, RS232, RS422, Relay		
Sound In/Out	Mono/external speaker Output, Mono Input		
RTC	CR2032 (Replaceable)		
Motor	12 V DC		

Report no. ETLE110408.0278, Page 5 of 23

- USB typed RF

Item	Specification
Dimension	26 mm x 94 mm x 15 mm
Weight	17 g
Power Supply	Bus Power
USB Speed	USB 2.0 Full Speed
Standard	ISO7816
Power Consumption	60 mA
MTBF	500 k Hour
LED	Blue
Card interface Speed	420 kbps
Card clock Frequency	Up to 8 MHz
Supporting Card type	iClass, Mifare, Desfire
Operation Temperature	-20 °C ~ +55 °C
Operating Humidity	0 % R.H. ~ 90 % R.H.
Type of Modulation	ASK
Operating Frequency	13.56 MHz
Antenna Type	PCB Pattern Antenna

Report no. ETLE110408.0278, Page 6 of 23

3. DESCRIPTION OF TESTS

3.1 Conducted Emission

Conducted emissions measurements were made in accordance with section 11, "Measurement of Information Technology Equipment" of ANSI C63.4-2003. The measurements were performed over the frequency range of 0.15 MHz to 30 MHz using a 50 Ω /50 μ H LISN as the input transducer to a Spectrum Analyzer or a Test Receiver. The measurements were made with the detector set for "Peak" amplitude within a bandwidth of 9 kHz or for "quasi-peak" within a bandwidth of 9 kHz.

The line-conducted emission test is conducted inside a shielded anechoic chamber room with 1 m x 1.5 m x 0.8 m wooden table which is placed 40 cm away from the vertical wall and 1.5 m away from the side wall of the chamber room. Two LISN are bonded to the shielded room. The EUT is powered from the LISN and the support equipment is powered from the other LISN. Power to the LISNs are filtered by a noise cut power line filters. All electrical cables are shielded by braided tinned steel tubing with inner ϕ 1.2 cm. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and these supply lines will be connected to the LISN. Non-inductive bundling to a 1 m length shortened all interconnecting cables more than 1 m. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the EMI Test Receiver to determine the frequency producing the maximum emission from the EUT. The frequency producing the maximum level was reexamined using to set Quasi-Peak mode by manual, after scanned by automatic Peak mode from 0.15 MHz to 30 MHz. The bandwidth of the spectrum analyzer was set to 9 kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission.

Photographs of the worst-case emission can be seen in photographs of conducted emission test setup in Appendix B.

Report no. ETLE110408.0278, Page 7 of 23

3.2 Radiated Emission

Radiated emission measurements were made in accordance with section 11, "Measurement of Information Technology Equipment" of ANSI C63.4-2003. The measurements were performed over the frequency range of 30 MHz to 1 GHz using antenna as the input transducer to a spectrum analyzer or a field intensity meter. The measurements were made with the detector set for "Quasi-peak" within a bandwidth of 120 kHz.

Preliminary measurements were made at 3 m using broadband antennas, and spectrum analyzer to determined the frequency producing the maximum emission in shielded room. Appropriate precaution was taken to ensure that all emission from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth and height with respect to the antenna were noted for each frequency found. The spectrum was scanned from 30 MHz to 1 000 MHz using Log-Bicon antenna. Above 1 GHz, linearly polarized double ridge horn antennas were used. Final measurements were made open site at 3 m. The test equipment was placed on a wooden turn-table. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. Each frequency found during pre-scan measurements was re-examined by manual. The detector function was set to CISPR Quasi-peak mode and the bandwidth of the receiver was set to 120 kHz or 1 MHz depending on the frequency of type of signal. The EUT, support equipment and interconnecting cables were re-configured to the set-up producing the maximum emission for the frequency and were placed on top of a 0.8 m high nonmetallic 1 m x 1.5 m table. The EUT, support equipment, and interconnecting cables were re-arranged and manipulated to maximize each emission. The turntable containing the system was rotated; the antenna height was varied 1 m to 4 m and stopped at the azimuth or height producing the maximum emission. Each emission was maximized by: varying the mode of operation to the EUT and/or support equipment and changing the polarity of the antenna, whichever determined the worst-case emission.

Photographs of the worst-case emission can be seen in Photographs of the worst-case emission test setup can be seen in Appendix B.

Report no. ETLE110408.0278, Page 8 of 23

3.2.1 Radiated Emission Limits:

(1) According to §15.209 Radiated emission limits, general requirements

(a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequencies [MHz]	Field Strength [µV/m]	Measurement Distance [m]
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

** Fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 MHz - 72 MHz, 76 MHz - 88 MHz, 174 MHz - 216 MHz or 470 MHz - 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241

Report no. ETLE110408.0278, Page 9 of 23

3.3 Carrier field strength and field strength outside 13.110 MHz - 14.010 MHz and occupied bandwidth

(1) According to §15.225 Operation within the band 13.110 MHz - 14.010 MHz

(a) The field strength of any emissions within the band 13.553 MHz - 13.567 MHz shall not exceed 15 848 micro volts/meter at 30 meters

(b) Within the bands 13.410 MHz - 13.553 MHz and 13.567 MHz - 13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters

(c) Within the bands 13.110 MHz - 13.410 MHz and 13.710 MHz - 14.010 MHz, the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters

(d) The field strength of any emissions appearing outside of the 13.110 MHz - 14.010 MHz band shall not exceed the general radiated emission limits in § 15.209

Frequency [MHz]	Field Strength Limit [µV/m] @ 30 m	Field Strength Limit [dB(µV/m)] @ 30 m	Field Strength Limit [dB(μV/m)] @ 3 m	
13.110 - 13.410	106	40.5	80.5	
13.410 - 13.553	334	50.5	90.5	
13.553 - 13.567	15 848	84.0	124.0	
13.567 - 13.710	334	50.5	90.5	
13.710 - 14.010	106	40.5	80.5	

(2) According to §15.215(c) Occupied bandwidth

(a) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in § 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80 % of the permitted band in order to minimize the possibility of out-of-band operation.

3.4 Frequency tolerance

(1) According to §15.225 Operation within the band 13.110 MHz - 14.010 MHz

(e) The frequency tolerance of the carrier signal shall be maintained within ± 0.01 % of the operating frequency over a temperature variation of -20 °C to +50 °C at normal supply voltage, and for a variation in the primary supply voltage from 85 % to 115 % of the rated supply voltage at a temperature of 20 °C. For battery-operated equipment, the equipment tests shall be performed using a new battery.

Report no. ETLE110408.0278, Page 10 of 23

3.5 FCC Part 15.205 Restricted Bands of Operations

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
$\begin{array}{c} 0.090 - 0.110 \\ {}^{1}0.495 - 0.505 \\ 2.173 5 - 2.190 5 \\ 4.125 - 4.128 \\ 4.177 25 - 4.177 75 \\ 4.207 25 - 4.207 75 \\ 6.215 - 6.218 \\ 6.267 75 - 6.268 25 \\ 6.311 75 - 6.312 25 \\ 8.291 - 8.294 \\ 8.362 - 8.366 \\ 8.376 25 - 8.386 75 \\ 8.414 25 - 8.414 75 \\ 12.29 - 12.293 \\ 12.519 75 - 12.520 25 \\ 12.576 75 - 12.577 25 \\ 13.36 - 13.41 \end{array}$	$\begin{array}{c} 16.42 - 16.423 \\ 16.694 \ 75 - 16.695 \ 25 \\ 16.804 \ 25 - 16.804 \ 75 \\ 25.5 - 25.67 \\ 37.5 - 38.25 \\ 73 - 74.6 \\ 74.8 - 75.2 \\ 108 - 121.94 \\ 123 - 138 \\ 149.9 - 150.05 \\ 156.524 \ 75 - 156.525 \ 25 \\ 156.7 - 156.9 \\ 162.012 \ 5 - 167.17 \\ 167.72 - 173.2 \\ 240 - 285 \\ 322 - 335.4 \end{array}$	$\begin{array}{c} 399.9 - 410 \\ 608 - 614 \\ 960 - 1 240 \\ 1 300 - 1 427 \\ 1 435 - 1 626.5 \\ 1 645.5 - 1 646.5 \\ 1 660 - 1 710 \\ 1 718.8 - 1 722.2 \\ 2 200 - 2 300 \\ 2 310 - 2 390 \\ 2 483.5 - 2 500 \\ 2 690 - 2 900 \\ 3 260 - 3 267 \\ 3 332 - 3 339 \\ 3 345.8 - 3 358 \\ 3 600 - 4 400 \end{array}$	$\begin{array}{c} 4.5-5.15\\ 5.35-5.46\\ 7.25-7.75\\ 8.025-8.5\\ 9.0-9.2\\ 9.3-9.5\\ 10.6-12.7\\ 13.25-13.4\\ 14.47-14.5\\ 15.35-16.2\\ 17.7-21.4\\ 22.01-23.12\\ 23.6-24.0\\ 31.2-31.8\\ 36.43-36.5\\ {2 \choose 2}\end{array}$

¹ Until February 1, 1999, this restricted band shall be 0.490 MHz - 0.510 MHz.

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1 000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1 000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Report no. ETLE110408.0278, Page 11 of 23

4. TEST CONDITION

4.1 Test Configuration

The device was configured for testing in a typical fashion (as a customer would normally use it). During the tests, the EUT and the supported equipments were installed to meet FCC requirement and operated in a manner and which tends to maximize its emission level in a typical application.

4.2 EUT operation

- RF transmitting continuously during the tested.

4.3 Support Equipment Used

Description	Model Name	Serial No.	Manufacturer
Notebook Computer	Satellite M200	87041323Q	TOSHIBA Corporation
Adapter (for Notebook Computer)	SADP-65KBD	6032B0009901- MMW0729072674	Delta Electronics
USB Drive	NONE	NONE	NONE
EAR-MIC	NONE	NONE	NONE
Iris test zig	NONE	NONE	NONE
LED 1	NONE	NONE	NONE
LED 2	NONE	NONE	NONE
LED 3	NONE	NONE	NONE
Card reader 1	NONE	2101-0307	HID CORPORATION
Card reader 2	NONE	NONE	NONE
DC Power Supply	DP30-05A	0300266	TOYO TECH

Report no. ETLE110408.0278, Page 12 of 23

FCC ID: ZKE-ICAM7100

4.4 Type of Cables Used

Device from	Device to	Device to Type of Cable(Port)		Type of shield
EUT	Notebook Computer	RJ-45	> 3.0	Unshielded
EUT	USB Drive	USB	-	-
EUT	EAR-MIC	Audio Out	1.2	Unshielded
EUT	LED 1	Terminal (Weigand)	> 3.0	Unshielded
EUT	LED 2	Terminal (Relay output)	> 3.0	Unshielded
EUT	LED 3	Terminal (RS-422)	> 3.0	Unshielded
EUT	Card reader 1	Terminal	> 3.0	Unshielded
EUT	Card reader 2	Terminal	> 3.0	Unshielded
EUT	DC Power Supply	DC Input	> 3.0	Unshielded
Notebook Computer	Adapter	DC Input	1.2	Shielded
DC Power Supply	Power socket	AD Input	1.2	Unshielded

Report no. ETLE110408.0278, Page 13 of 23

4.5 The setup drawing(s)

- Conducted Emission Measurement

- Radiated Emission Measurement

Report no. ETLE110408.0278, Page 14 of 23

5. TEST RESULTS

5.1 Summary of Test Results

The measurement results were obtained with the EUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum emission of the EUT are reported.

Test Rule Parts	Measurement Required	Result
15.207(a)(d)	Conducted emissions	Pass
15.209 15.225(d)	Radiated emissions Field strength outside 13.110 MHz - 14.010 MHz	Pass
15.225(a)(b)(c)	13.56 MHz carrier field strength within the bands	Pass
15.215	Occupied Bandwidth	Pass
15.225(e)	Frequency Tolerance	Pass

The data collected shows that the **Iris ID**, **Inc. / Iris Recognition Device / iCAM7100** complied with technical requirements of above rules part 15.207, 15.209, 15.215 and 15.225.

The equipment is not modified anything, mechanical or circuits to improve EMI status during a measurement. No EMI suppression device(s) was added and/or modified during testing.

Report no. ETLE110408.0278, Page 15 of 23

5.2 Conducted Emissions

EUT	Iris Recognition Device / iCAM7100 (S/N: Proto type)
Limit apply to	FCC Part 15.207(a)(d)
Test Date	May 04, 2011
Operating Condition	RF transmitting continuously during the tested
Result	Passed by 3.90 dB

Conducted Emission Test Data

The following table shows the highest levels of conducted emissions on both polarizations of hot and neutral line. Detector mode: CISPR Quasi-Peak mode (6 dB Bandwidth: 9 kHz)

Frequency	Result [dB(µV)]		Phase	Limit [dB(µV)]		Margin [dB]	
[MHz]	Quasi-peak	Average	(*H/**N)	Quasi-peak	Average	Quasi-peak	Average
0.151	60.90	33.80	Ν	65.90	55.90	5.00	22.10
0.160	60.60	34.00	Ν	65.40	55.40	4.80	21.40
0.168	60.00	33.30	Ν	65.10	55.10	5.10	21.80
0.463	48.70	27.20	N	56.60	46.60	7.90	19.40
0.501	49.10	27.40	Ν	56.00	46.00	6.90	18.60
0.537	48.90	27.70	Ν	56.00	46.00	7.10	18.30
1.246	33.80	29.10	Н	56.00	46.00	22.20	16.90
1.540	40.30	29.10	Н	56.00	46.00	15.70	16.90
2.175	33.80	32.10	Н	56.00	46.00	22.20	13.90
13.418	40.10	36.80	Н	60.00	50.00	19.90	13.20
14.214	40.40	35.60	N	60.00	50.00	19.60	14.40
16.000	46.30	46.10	Н	60.00	50.00	13.70	3.90

NOTES:

- 1. * H : HOT Line , **N : Neutral Line
- 2. The result value was included the antenna factor and cable loss.
- 3. Margin value = Limit Result
- 4. Measurement were performed at the AC Power Inlet in the frequency band of 150 kHz ~ 30 MHz according to the FCC Part 15.107(a)(d) Class B.
- 5. If the average limit is met when using a Quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Report no. ETLE110408.0278, Page 16 of 23

Line: Neutral Line

Report no. ETLE110408.0278, Page 17 of 23

5.3 Radiated Emissions

EUT	Iris Recognition Device / iCAM7100 (S/N: Proto type)
Limit apply to	FCC Part 15.209 and 15.225(d)
Test Date	May 03, 2011
Operating Condition	RF transmitting continuously during the tested
Result	Passed by 3.00 dB

Radiated Emission Test Data

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical. Detector mode: CISPR Quasi-Peak mode (6 dB Bandwidth: 9 KHz, 120 kHz)

- Frequency Range from 9 kHz to 30 MHz Test Data

Frequency [MHz]	Reading [dB(µV) @ 3 m]	Polarization (*H/**V)	Ant. Factor [dB/m]	Cable Loss [dB]	Result [dB(µV/m) @ 3 m]	Limit [dB(µV/m) @ 3 m]	Margin [dB]
23.90	14.52	Н	7.88	0.80	23.20	40.00	16.80

- Frequency Range from 30 MHz to 1 000 MHz Test Data

Frequency [MHz]	Reading [dB(µV) @ 3 m]	Polarization (*H/**V)	Ant. Factor [dB/m]	Cable Loss [dB]	Result [dB(µV/m) @ 3 m]	Limit [dB(µV/m) @ 3 m]	Margin [dB]
42.12	22.70	V	12.00	1.50	36.20	40.00	3.80
54.25	21.90	V	12.08	1.72	35.70	40.00	4.30
231.27	28.40	Н	10.62	3.98	43.00	46.00	3.00
267.65	23.61	Н	11.85	4.24	39.70	46.00	6.30
308.87	25.21	Н	13.11	4.58	42.90	46.00	3.10
481.05	19.27	Н	17.06	5.87	42.20	46.00	3.80

NOTES:

- 1. * H : Horizontal polarization , ** V : Vertical polarization
- 2. Result = Reading + Antenna factor + Cable loss
- 3. Margin value = Limit Result
- 4. The measurement was performed for the frequency range 9 kHz ~ 1 000 MHz according to FCC Part 15.209 and 15.225(d)

Report no. ETLE110408.0278, Page 18 of 23

5.4 13.56 MHz carrier field strength within bands

EUT	Iris Recognition Device / iCAM7100 (S/N: Proto type)
Limit apply to	FCC Part 15.225(a)(b)(c)
Test Date	May 03, 2011
Operating Condition	RF transmitting continuously during the tested
Result	Passed by 55.53 dB

Radiated Emission Test Data

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical. Detector mode: CISPR Quasi-Peak mode (6 dB Bandwidth: 9 kHz)

Frequency [MHz]	Reading [dB(µV) @ 3 m]	Polarization (*H/**V)	Ant. Factor [dB/m]	Cable Loss [dB]	Result [dB(µV/m) @ 3 m]	Limit [dB(µV/m) @ 3 m]	Margin [dB]
13.40	15.17	Н	9.10	0.70	24.97	80.50	55.53
13.47	10.14	Н	9.10	0.70	19.94	90.50	70.56
13.56	53.00	Н	9.10	0.70	62.80	124.00	61.20
13.63	9.81	Н	9.10	0.70	19.61	90.50	70.89
13.69	10.64	Н	9.10	0.70	20.44	90.50	70.06

NOTES:

- 1. * H : Horizontal polarization , ** V : Vertical polarization
- 2. Result = Reading + Antenna factor + Cable loss
- 3. Margin value = Limit Result
- 4. The measurement was performed for the frequency range 13.56 MHz according to FCC Part 15.225(a)(b)(c)

Report no. ETLE110408.0278, Page 19 of 23

5.5 Occupied Bandwidth

EUT	Iris Recognition Device / iCAM7100 (S/N: Proto type)
Limit apply to	FCC Part 15.215
Test Date	May 03, 2011
Operating Condition	RF transmitting continuously during the tested
Result	Passed

20 dB Bandwidth Test Data

The spectrum analyzer is set up to as following

- RBW: 1 kHz

- VBW: 1 kHz
- Span: 100 kHz

- Sweep: suitable duration based on the EUT specification

Report no. ETLE110408.0278, Page 20 of 23

5.6 Frequency Tolerance

EUT	Iris Recognition Device / iCAM7100 (S/N: Proto type)
Limit apply to	FCC Part 15.215(e)
Test Date	May 03, 2011
Operating Condition	RF transmitting continuously during the tested
Result	Passed

Frequency Tolerance Test Data

The Frequency Tolerance of the carrier signal shall be maintained within \pm 0.01 % of operating frequency over a temperature variation of -20 °C to +50 °C at normal supply voltage, and for a variation in the primary supply voltage from 85 % to 115 % of the rated supply voltage at a temperature of 20 °C.

- Operating frequency: 13.56 MHz
- Limit: ± 1 356 Hz
- Within the band: 13.558 644 MHz 13.561 356 MHz

Frequency Stability Versus Environment Temperature (+50 $^{\circ}$ C ~ -20 $^{\circ}$ C)

	Limit: ± 1 356 Hz										
Environment		Frequency Measure with Time Elapsed									
Temperature	Star	rt up	2 Minute		5 Minute		10 Minute				
[℃]	MHz	Deviation	MHz	Deviation	MHz	Deviation	MHz	Deviation			
50	13.559 800	-0.000 200	13.559 771	-0.000 229	13.559 774	-0.000 226	13.559 773	-0.000 227			
40	13.559 831	-0.000 169	13.559 787	-0.000 213	13.559 781	-0.000 219	13.559 777	-0.000 223			
30	13.559 869	-0.000 131	13.559 817	-0.000 183	13.559 807	-0.000 193	13.559 802	-0.000 198			
20	13.559 926	-0.000 074	13.559 874	-0.000 126	13.559 836	-0.000 164	13.559 833	-0.000 167			
10	13.559 949	-0.000 051	13.559 899	-0.000 101	13.559 887	-0.000 113	13.559 879	-0.000 121			
0	13.559 980	-0.000 020	13.559 970	-0.000 030	13.559 923	-0.000 077	13.559 921	-0.000 079			
-10	13.559 995	-0.000 005	13.559 969	-0.000 031	13.559 965	-0.000 035	13.559 962	-0.000 038			
-20	13.559 991	-0.000 009	13.559 985	-0.000 015	13.559 985	-0.000 015	13.559 985	-0.000 015			

Frequency Stability Versus Input Power (± 15 %): Environment Temperature: 25 °C

Reference Frequency: 13.56 MHz					Limit: ± 1 356 Hz				
Power Frequency Measure with Time Elapsed						Elapsed			
Supplied	Supplied Start up			2 Minute		5 Minute		10 Minute	
[Vdc]	MHz	Deviation	MHz	Deviation	MHz	Deviation	MHz	Deviation	
10.80	13.559 824	-0.000 176	13.559 816	-0.000 184	13.559 814	-0.000 186	13.559 814	-0.000 186	
12.00	13.559 793	-0.000 206	13.559 790	-0.000 210	13.559 788	-0.000 212	13.559 788	-0.000 212	
13.20	13.559 824	-0.000 176	13.559 807	-0.000 193	13.559 807	-0.000 193	13.559 805	-0.000 195	

Report no. ETLE110408.0278, Page 21 of 23

6. SAMPLE CALCU LATION

Sample Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF

Where FS = Field Strength RA = Receiver Amplitude AF = Antenna Factor CF = Cable Attenuation Factor

$$\begin{split} dB(\mu V) &= 20 \ \text{log}_{10} \ (\mu V) \\ dB(\mu V) &= dBm + 107 \end{split}$$

Example : @ 231.27 MHz

Class B Limit	= 46.00 dB(µV/m)
Reading	= 28.40 dB(µV)	
Antenna Factor + C	Cable Loss	= 10.62 + 3.98 = 14.60 dB(µV/m)
Total		= 43.00 dB(µV/m)
Margin	= 46.00 - 43.00 =	= 3.00 dB
	= 3.00 dB below	Limit

Report no. ETLE110408.0278, Page 22 of 23

7. List of test equipments used for measurements

Test Equipment	Model	Mfg.	Serial No.	Cal. Date	Cal. Due Date
EMI Test Receiver	ESVS 10	R&S	835165/001	11.03.22	12.03.22
EMI Test Receiver	ESPI3	R&S	100478	10.09.17	11.09.17
Two-Line V-Network	ENV216	R&S	958599/106	11.03.22	12.03.22
LISN	3816-2	EMCO	1002	10.09.17	11.09.17
Spectrum Analyzer	R3273	Advantest	95090411	11.03.23	12.03.23
LogBicon Antenna	VULB9160	Schwarzbeck	3082	10.02.22	12.02.22
Active Loop Antenna	6502	EMCO	00033743	10.10.13	12.10.13
Constant TEMP.&HUMID. Chamber	JYT-500H	Jinyoungtech	N/A	11.02.14	12.02.14
Attenuator	33-30-34	Weinschel	BG9477	10.09.16	11.09.16
DC Power Supply	DP30-05A	Toyo Tech	0300266	10.09.17	11.09.17
Turn-Table	MFT-120S	Max-Full Antenna Corp	-	N/A	N/A
Antenna Master	MFA-440E	Max-Full Antenna Corp	-	N/A	N/A

Report no. ETLE110408.0278, Page 23 of 23