Report No: C141009R01-RPB

IC: 12373A-GT141A04D

RADIO FREQUENCY EXPOSURE

LIMIT

According to §15.247(i) and §15.407(f), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b) of this chapter.

EUT Specification

EUT	ATV1220A					
Frequency band (Operating)	 WLAN: 2.412GHz ~ 2.462GHz WLAN: 5.15GHz ~ 5.25GHz WLAN: 5.25GHz ~ 5.35GHz WLAN: 5.47GHz ~ 5.725GHz WLAN: 5.725GHz ~ 5.85GHz Others 					
Device category	☐ Portable (<20cm separation)☐ Mobile (>20cm separation)☐ Others					
Exposure classification	☐ Occupational/Controlled exposure (S = 5mW/cm²) ☐ General Population/Uncontrolled exposure (S=1mW/cm²)					
Antenna diversity	 Single antenna Multiple antennas ☐ Tx diversity ☐ Rx diversity ☐ Tx/Rx diversity 					
Max. output power	2.412-2.462GHz 802.11b mode: 17.95dBm 802.11g mode: 13.67 dBm 802.11n HT20 MHz Channel mode: 12.69 dBm 802.11n HT40 MHz Channel mode: 12.54 dBm					
Antenna gain (Max)	Dipole antennas for 2.4GHz Gain 2.0 dBi					
Evaluation applied	✓ MPE Evaluation*✓ SAR Evaluation✓ N/A					
Remark:						

- 1. The maximum output power is 17.95dBm (62.4mW) at 2412MHz (with 2.000 numeric antenna gain.)
- 2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.
- 3. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm2 even if the calculation indicates that the power density would be larger.
- 4. All two antennas are completely uncorrelated with each other.

Report No: C141009R01-RPB

TEST RESULTS

No non-compliance noted.

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = *Distance in meters*

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d(cm) = d(m) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where

d = Distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

Maximum Permissible Exposure

Substituting the MPE safe distance using d = 20 cm into Equation 1:

Yields

$$S = 0.000199 \times P \times G$$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

Date of Issue: November 11, 2014

IC: 12373A-GT141A04D

Modulation Mode	Frequency band (MHz)	Max. tune up power(dBm)	Antenna gain (dBi)	Distance (cm)	Power density (mW/cm2)	Limit (mW/cm2)
802.11b	2412-2462	18.00	2.0	20	0.019900	1
802.11g		14.00	2.0	20	0.007922	1
802.11 n(20MHz)		13.00	2.0	20	0.006293	1
802.11 n(40MHz)		13.00	2.0	20	0.006293	1

Note:

Only the WLAN 2.4G can transmit, the formula of calculated the MPE is:

CPD1 / LPD1 < 1

CPD = Calculation power density

LPD = Limit of power density

WLAN 2.4G Max Power density =0.0199 < 1

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.)