5.6. Power line conducted emissions

5.6.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Frequency Range	Limits (dBµV)				
(MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56*	56 to 46*			
0.50 to 5	56	46			
5 to 30	60	50			

* Decreasing linearly with the logarithm of the frequency

5.6.2 Block Diagram of Test Setup

5.6.3 Test Results

PASS.

The test data please refer to following page.

AC Conducted Emission of power by adapter @ AC 120V/60Hz @ IEEE 802.11a (worst case)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 44 of 58

AC Conducted Emission of power by adapter @ AC 240V/60Hz @ IEEE 802.11a (worst case)

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 45 of 58

5.7 Undesirable Emissions Measurement

5.7.1 LIMIT

According to ξ 15.407 (b) Undesirable emission limits. Except as shown in paragraph (b) (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (a) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (b) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (c) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (d) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
- (e) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (f) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.
- (g) The provisions of §15.205 apply to intentional radiators operating under this section.
- (h) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

5.7.2 TEST CONFIGURATION

5.7.3 TEST PROCEDURE

- 1. The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.
- 2. Set the RBW = 1MHz.
- 3. Set the VBW \geq 3MHz
- 4. Number of points in sweep ≥ 2 × span / RBW. (This ensures that bin-to-bin spacing is ≤ RBW/2, so that narrowband signals are not lost between frequency bins.)
- 5. Manually set sweep time ≥ 10 × (number of points in sweep) × (total on/off period of the transmitted signal).
- 6. Set detector = power averaging (rms).
- 7. Sweep time = auto couple.
- 8. Trace mode = max hold.
- 9. Allow trace to fully stabilize.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 46 of 58

5. 7.4 Test Results

For Antenna Chain 0

IEEE 802.11a									
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict		
5650.000	-53.901	2.000	-51.901	Peak	-27.000	-24.901	PASS		
5700.000	-50.137	2.000	-48.137	Peak	10.000	-58.137	PASS		
5720.000	-45.057	2.000	-43.057	Peak	15.600	-58.657	PASS		
5725.000	-39.050	2.000	-37.050	Peak	27.000	-64.05	PASS		
5850.000	-40.122	2.000	-38.122	Peak	27.000	-65.122	PASS		
5855.000	-44.918	2.000	-42.918	Peak	15.600	-58.518	PASS		
5875.000	-46.298	2.000	-44.298	Peak	10.000	-54.298	PASS		
5925.000	-50.593	2.000	-48.593	Peak	-27.000	-21.593	PASS		

IEEE 802.11n HT20									
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict		
5650.000	-52.057	2.000	-50.057	Peak	-27.000	-23.057	PASS		
5700.000	-49.432	2.000	-47.432	Peak	10.000	-57.432	PASS		
5720.000	-45.959	2.000	-43.959	Peak	15.600	-59.559	PASS		
5725.000	-37.643	2.000	-35.643	Peak	27.000	-62.643	PASS		
5850.000	-40.379	2.000	-38.379	Peak	27.000	-65.379	PASS		
5855.000	-47.392	2.000	-45.392	Peak	15.600	-60.992	PASS		
5875.000	-47.016	2.000	-45.016	Peak	10.000	-55.016	PASS		
5925.000	-52.292	2.000	-50.292	Peak	-27.000	-23.292	PASS		

IEEE 802.11ac VHT20									
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict		
5650.000	-54.065	2.000	-52.065	Peak	-27.000	-25.065	PASS		
5700.000	-50.831	2.000	-48.831	Peak	10.000	-58.831	PASS		
5720.000	-48.579	2.000	-46.579	Peak	15.600	-62.179	PASS		
5725.000	-39.928	2.000	-37.928	Peak	27.000	-64.928	PASS		
5850.000	-42.484	2.000	-40.484	Peak	27.000	-67.484	PASS		
5855.000	-49.585	2.000	-47.585	Peak	15.600	-63.185	PASS		
5875.000	-50.277	2.000	-48.277	Peak	10.000	-58.277	PASS		
5925.000	-52.411	2.000	-50.411	Peak	-27.000	-23.411	PASS		

IEEE 802.11n HT40									
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict		
5650.000	-54.840	2.000	-52.840	Peak	-27.000	-25.840	PASS		
5700.000	-51.393	2.000	-49.393	Peak	10.000	-59.393	PASS		
5720.000	-44.077	2.000	-42.077	Peak	15.600	-57.677	PASS		
5725.000	-40.475	2.000	-38.475	Peak	27.000	-65.475	PASS		
5850.000	-48.595	2.000	-46.595	Peak	27.000	-73.595	PASS		
5855.000	-49.978	2.000	-47.978	Peak	15.600	-63.578	PASS		
5875.000	-50.938	2.000	-48.938	Peak	10.000	-58.938	PASS		
5925.000	-54.437	2.000	-52.437	Peak	-27.000	-25.437	PASS		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 47 of 58

Report No.: LCS170421079AE

IEEE 802.11ac VHT40									
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict		
5650.000	-54.357	2.000	-52.357	Peak	-27.000	-25.357	PASS		
5700.000	-51.978	2.000	-49.978	Peak	10.000	-59.978	PASS		
5720.000	-45.410	2.000	-43.410	Peak	15.600	-59.010	PASS		
5725.000	-41.986	2.000	-39.986	Peak	27.000	-66.986	PASS		
5850.000	-49.529	2.000	-47.529	Peak	27.000	-74.529	PASS		
5855.000	-50.611	2.000	-48.611	Peak	15.600	-64.211	PASS		
5875.000	-50.967	2.000	-48.967	Peak	10.000	-58.967	PASS		
5925.000	-53.600	2.000	-51.600	Peak	-27.000	-24.600	PASS		

	IEEE 802.11ac VHT80									
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict			
5650.000	-53.216	2.000	-51.216	Peak	-27.000	-24.216	PASS			
5700.000	-50.573	2.000	-48.573	Peak	10.000	-58.573	PASS			
5720.000	-47.918	2.000	-45.918	Peak	15.600	-61.518	PASS			
5725.000	-46.330	2.000	-44.330	Peak	27.000	-71.330	PASS			
5850.000	-51.569	2.000	-49.569	Peak	27.000	-76.569	PASS			
5855.000	-50.074	2.000	-48.074	Peak	15.600	-63.674	PASS			
5875.000	-52.787	2.000	-50.787	Peak	10.000	-60.787	PASS			
5925.000	-54.847	2.000	-52.847	Peak	-27.000	-25.847	PASS			

For Antenna Chain 1

IEEE 802.11a									
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict		
5650.000	-51.807	2.000	-49.807	Peak	-27.000	-22.807	PASS		
5700.000	-48.020	2.000	-46.020	Peak	10.000	-56.020	PASS		
5720.000	-46.004	2.000	-44.004	Peak	15.600	-59.604	PASS		
5725.000	-41.154	2.000	-39.154	Peak	27.000	-66.154	PASS		
5850.000	-47.557	2.000	-45.557	Peak	27.000	-72.557	PASS		
5855.000	-47.082	2.000	-45.082	Peak	15.600	-60.682	PASS		
5875.000	-49.949	2.000	-47.949	Peak	10.000	-57.949	PASS		
5925.000	-52.492	2.000	-50.492	Peak	-27.000	-23.492	PASS		

IEEE 802.11n HT20									
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict		
5650.000	-54.423	2.000	-52.423	Peak	-27.000	-25.423	PASS		
5700.000	-49.114	2.000	-47.114	Peak	10.000	-57.114	PASS		
5720.000	-46.027	2.000	-44.027	Peak	15.600	-59.627	PASS		
5725.000	-36.863	2.000	-34.863	Peak	27.000	-61.863	PASS		
5850.000	-43.706	2.000	-41.706	Peak	27.000	-68.706	PASS		
5855.000	-46.536	2.000	-44.536	Peak	15.600	-60.136	PASS		
5875.000	-47.393	2.000	-45.393	Peak	10.000	-55.393	PASS		
5925.000	-53.704	2.000	-51.704	Peak	-27.000	-24.704	PASS		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 48 of 58

Report No.: LCS170421079AE

IEEE 802.11ac VHT20									
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict		
5650.000	-53.216	2.000	-51.216	Peak	-27.000	-24.216	PASS		
5700.000	-48.208	2.000	-46.208	Peak	10.000	-56.208	PASS		
5720.000	-46.785	2.000	-44.785	Peak	15.600	-60.385	PASS		
5725.000	-42.421	2.000	-40.421	Peak	27.000	-67.421	PASS		
5850.000	-46.717	2.000	-44.717	Peak	27.000	-71.717	PASS		
5855.000	-48.815	2.000	-46.815	Peak	15.600	-62.415	PASS		
5875.000	-49.476	2.000	-47.476	Peak	10.000	-57.476	PASS		
5925.000	-53.104	2.000	-51.104	Peak	-27.000	-24.104	PASS		

IEEE 802.11n HT40									
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict		
5650.000	-54.569	2.000	-52.569	Peak	-27.000	-25.569	PASS		
5700.000	-51.852	2.000	-49.852	Peak	10.000	-59.852	PASS		
5720.000	-41.246	2.000	-39.246	Peak	15.600	-54.846	PASS		
5725.000	-40.496	2.000	-38.496	Peak	27.000	-65.496	PASS		
5850.000	-50.535	2.000	-48.535	Peak	27.000	-75.535	PASS		
5855.000	-49.211	2.000	-47.211	Peak	15.600	-62.811	PASS		
5875.000	-50.980	2.000	-48.980	Peak	10.000	-58.980	PASS		
5925.000	-54.225	2.000	-52.225	Peak	-27.000	-25.225	PASS		

IEEE 802.11ac VHT40									
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict		
5650.000	-55.181	2.000	-53.181	Peak	-27.000	-26.181	PASS		
5700.000	-50.286	2.000	-48.286	Peak	10.000	-58.286	PASS		
5720.000	-44.906	2.000	-42.906	Peak	15.600	-58.506	PASS		
5725.000	-43.512	2.000	-41.512	Peak	27.000	-68.512	PASS		
5850.000	-49.751	2.000	-47.751	Peak	27.000	-74.751	PASS		
5855.000	-49.361	2.000	-47.361	Peak	15.600	-62.961	PASS		
5875.000	-51.332	2.000	-49.332	Peak	10.000	-59.332	PASS		
5925.000	-53.027	2.000	-51.027	Peak	-27.000	-24.027	PASS		

IEEE 802.11ac VHT80											
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict				
5650.000	-53.950	2.000	-51.950	Peak	-27.000	-24.950	PASS				
5700.000	-52.521	2.000	-50.521	Peak	10.000	-60.521	PASS				
5720.000	-48.570	2.000	-46.570	Peak	15.600	-62.170	PASS				
5725.000	-48.363	2.000	-46.363	Peak	27.000	-73.363	PASS				
5850.000	-50.035	2.000	-48.035	Peak	27.000	-75.035	PASS				
5855.000	-51.901	2.000	-49.901	Peak	15.600	-65.501	PASS				
5875.000	-50.855	2.000	-48.855	Peak	10.000	-58.855	PASS				
5925.000	-54.846	2.000	-52.846	Peak	-27.000	-25.846	PASS				

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 49 of 58 For Combined Antenna Chain 0 and Antenna Chain 1

	IEEE 802.11n HT20											
Frequency	Conducted Power (dBm)			Directional	EIRP	Detector	Limit	Over	Vordiot			
(MHz)	Antenna 0	Antenna 1	Sum	(dB)	(dBm/1MHz)	Delector	(dBm/1MHz)	dB	verdict			
5650.000	-52.057	-54.423	-50.071	5.010*	-45.061	Peak	-27.000	-18.061	PASS			
5700.000	-49.432	-49.114	-46.260	5.010*	-41.250	Peak	10.000	-51.250	PASS			
5720.000	-45.959	-46.027	-42.983	5.010*	-37.973	Peak	15.600	-53.573	PASS			
5725.000	-37.643	-36.863	-34.225	5.010*	-29.215	Peak	27.000	-56.215	PASS			
5850.000	-40.379	-43.706	-38.721	5.010*	-33.711	Peak	27.000	-60.711	PASS			
5855.000	-47.392	-46.536	-43.933	5.010*	-38.923	Peak	15.600	-54.523	PASS			
5875.000	-47.016	-47.393	-44.190	5.010*	-39.180	Peak	10.000	-49.180	PASS			
5925.000	-52.292	-53.704	-49.931	5.010*	-44.921	Peak	-27.000	-17.921	PASS			

	IEEE 802.11ac VHT20											
Frequency	Conducted Power (dBm)			Directional	EIRP	Dotoctor	Limit	Over	Vordiot			
(MHz)	Antenna 0	Antenna 1	Sum	(dB)	(dBm/1MHz)	Delector	(dBm/1MHz)	dB	verdict			
5650.000	-54.065	-53.216	-50.609	5.010*	-45.599	Peak	-27.000	-18.599	PASS			
5700.000	-50.831	-48.208	-46.314	5.010*	-41.304	Peak	10.000	-51.304	PASS			
5720.000	-48.579	-46.785	-44.580	5.010*	-39.570	Peak	15.600	-55.170	PASS			
5725.000	-39.928	-42.421	-37.988	5.010*	-32.978	Peak	27.000	-59.978	PASS			
5850.000	-42.484	-46.717	-41.094	5.010*	-36.084	Peak	27.000	-63.084	PASS			
5855.000	-49.585	-48.815	-46.173	5.010*	-41.163	Peak	15.600	-56.763	PASS			
5875.000	-50.277	-49.476	-46.848	5.010*	-41.838	Peak	10.000	-51.838	PASS			
5925.000	-52.411	-53.104	-49.733	5.010*	-44.723	Peak	-27.000	-17.723	PASS			

	IEEE 802.11n HT40											
Frequency	Conducted Power (dBm)			Directional	EIRP	Dotoctor	Limit	Over limit	Vordict			
(MHz)	Antenna 0	Antenna 1	Sum	(dB)	(dBm/1MHz)	Delector	(dBm/1MHz)	dB	veruici			
5650.000	-54.840	-54.569	-51.692	5.010*	-46.682	Peak	-27.000	-19.682	PASS			
5700.000	-51.393	-51.852	-48.606	5.010*	-43.596	Peak	10.000	-53.596	PASS			
5720.000	-44.077	-41.246	-39.424	5.010*	-34.414	Peak	15.600	-50.014	PASS			
5725.000	-40.475	-40.496	-37.475	5.010*	-32.465	Peak	27.000	-59.465	PASS			
5850.000	-48.595	-50.535	-46.447	5.010*	-41.437	Peak	27.000	-68.437	PASS			
5855.000	-49.978	-49.211	-46.567	5.010*	-41.557	Peak	15.600	-57.157	PASS			
5875.000	-50.938	-50.980	-47.949	5.010*	-42.939	Peak	10.000	-52.939	PASS			
5925.000	-54.437	-54.225	-51.319	5.010*	-46.309	Peak	-27.000	-19.309	PASS			

	IEEE 802.11ac VHT40											
Frequency	Conducted Power (dBm)			Directional	EIRP	Detector	Limit	Over	Vordiot			
(MHz)	Antenna 0	Antenna 1	Sum	(dB)	(dBm/1MHz)	Delector	(dBm/1MHz)	dB	verdict			
5650.000	-54.357	-55.181	-51.739	5.010*	-46.729	Peak	-27.000	-19.729	PASS			
5700.000	-51.978	-50.286	-48.040	5.010*	-43.030	Peak	10.000	-53.030	PASS			
5720.000	-45.410	-44.906	-42.140	5.010*	-37.130	Peak	15.600	-52.730	PASS			
5725.000	-41.986	-43.512	-39.672	5.010*	-34.662	Peak	27.000	-61.662	PASS			
5850.000	-49.529	-49.751	-46.628	5.010*	-41.618	Peak	27.000	-68.618	PASS			
5855.000	-50.611	-49.361	-46.931	5.010*	-41.921	Peak	15.600	-57.521	PASS			
5875.000	-50.967	-51.332	-48.135	5.010*	-43.125	Peak	10.000	-53.125	PASS			
5925.000	-53.600	-53.027	-50.294	5.010*	-45.284	Peak	-27.000	-18.284	PASS			

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 50 of 58

Report No.: LCS170421079AE

	IEEE 802.11ac VHT80											
Frequency	Conducted Power (dBm)			Directional	EIRP	Dotoctor	Limit	Over	Vordict			
(MHz)	Antenna 0	Antenna 1	Sum	(dB)	(dBm/1MHz)	Delector	(dBm/1MHz)	dB	verdict			
5650.000	-53.216	-53.95	-50.557	5.010*	-45.547	Peak	-27.000	-18.547	PASS			
5700.000	-50.573	-52.521	-48.428	5.010*	-43.418	Peak	10.000	-53.418	PASS			
5720.000	-47.918	-48.57	-45.221	5.010*	-40.211	Peak	15.600	-55.811	PASS			
5725.000	-46.330	-48.363	-44.218	5.010*	-39.208	Peak	27.000	-66.208	PASS			
5850.000	-51.569	-50.035	-47.724	5.010*	-42.714	Peak	27.000	-69.714	PASS			
5855.000	-50.074	-51.901	-47.882	5.010*	-42.872	Peak	15.600	-58.472	PASS			
5875.000	-52.787	-50.855	-48.704	5.010*	-43.694	Peak	10.000	-53.694	PASS			
5925.000	-54.847	-54.846	-51.836	5.010*	-46.826	Peak	-27.000	-19.826	PASS			

Remark:

- 1. Measured unwanted emission at difference data rate for each mode and recorded worst case for each mode.
- 2. Test results including cable loss;
- 3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11a VHT20, IEEE 802.11ac VHT40 and IEEE 802.11ac VHT80;
- 4. For MIMO with CCD technology device, The Directional Gain= Gain of individual transmit antennas (dBi) + Array gain;

Array gain = 10 log (N_{ant}), where N_{ant} is the number of transmit antennas.

- 5. *5.010=2.00+10*log(2).
- 6. E.I.R.P = Conducted power + Directional Gain
- 7. Please refer to following test plots;

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: ZJU-1E7D4N Report No.: LCS170421079AE

Unwanted emission									
Antenna Chain 0	Antenna Chain 1								
Adlent Spectrum Analyzer - Sweyt SA RF 502 AC SPECIAL Marker 5 5.747020000000 GHz Tule Fund Put Avg Type: Log-Pwr TRAC[1:2:3:4:5:6 Marker 5 5.747020000000 GHz Tule Fund Put Avg Type: Log-Pwr TRAC[1:2:3:4:5:6	Agtient Spectrum Analyzer - Swept SA.								
PBG: fast	Proto: Fast Program Normal Normal Normal Next Pear ek Ref Offset 0.5 dB Mkr5 5.746 390 GHz Next Pear Next Pear 10 dB/div Ref 15.00 dBm 4.608 dBm 10 dB/div 10 dB/div								
500 500 550 500 500 500 500 500 500 500	Sco Sco Sco Sco Next Pk Right 450								
-50 350 450 1 450 1 450 1 450 1 4 4 4 4 4 4 4 4 4 4 4 4 4	1 350 1 350 450 1 350 1 3500 1 3500 1 3500 1 3500 1 3500 1 3500 1 3500 1 3500								
550 million and a second and a	50 Marker Del								
Start 5.65000 GHz Stop 5.75500 GHz #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts) MR HODE TRC SQL X Y RANCTION HOTH RANCTION VALUE	Start 5.65000 GHz Stop 5.75500 GHz gr #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts) Mkr.→C Mkr.→C Note: Stop 5.75500 GHz Mkr.→C								
1 N f 5660 000 GHz 453 001 dBm 2 N f 5720 000 GHz 450 137 dBm 3 N f 5,720 000 GHz 450,57 dBm 4 N f 5,720 000 GHz 39,060 dBm 5 N f 5,747 020 GHz 4.751 dBm c 9 F 5 1 N f 5,747 020 GHz 4.751 dBm	1 N f 565000 GHz 51807 dBm 2 N f 570000 GHz 48.020 dBm 3 N f 572000 GHz 48.020 dBm 4 N f 5725 000 GHz 44.024 dBm 5 N f 5726 000 GHz 41.154 dBm 5 N f 57.45 390 GHz 41.094 dBm								
7 8 9 10 11	re 9 22 10 10 10 10 10 10 10 10 10 10 10 10 10								
	S STATUS								
Channel 149 / 5745 MHz – Peak	Channel 149 / 5745 MHz – Peak								
Marker 1 5.823685000000 GHz Frig: Free Run IFGaint.ow Frig: Free Run Atten: 26 dB Aug Type: Log Pur Avg Type: Log Pur Bioline Frig: Free Run CEIP IN NN N Peak Search	Marker 1 5.827650000000 GHz SENEERT ALIGNAUTO 093809 PM May 04, 2017 Peak Search Marker 1 5.827650000000 GHz Trig: Free Run Avg Type: Log-Pwr Three Run Three Run Peak Search Pi00: Fast Control (FGaint.ew Atten: 26 dB Atten: 26 dB Next Peak Next Peak								
Ref Offset 0.5 dB MKr1 5.823 69 GHz 10 dB/div Ref 15.00 dBm Log 6.266 dBm 500 Maxt bk Bit	Ref Offset0.5 dB Mkr1 5.82/ 65 GHz 10 dB/div Ref 15.00 dBm 500 0								
350 450 50 50 50 50 50 50 50 50 50	10 350 Next Pr Le								
45.0 Marker Di .750	ra %0 350 Start 5.81500 GHz Stop 5.92500 GHz								
MKR MKR MKR State State MKR	CF #KEE BUY 1.0 WITZ #YEW 3.0 WITZ Sweep 1.000 TIS (100 T pts)) KEE BUY 1.0 WITZ #YEW 3.0 WITZ Sweep 1.000 TIS (100 T pts)) KEE BUY 1.0 WITZ #YEW 3.0 WITZ WITZ Sweep 1.000 TIS (100 T pts)) 1 N f 5.927 65 GHz 4.327 68T 2 N f 5.955 00 GHz 4.757 GBm 3 N f 5.955 00 GHz 4.757 GBm 3 N f 5.955 00 GHz 4.7597 GBm 4.7597 GBm								
4 N f 587500GHz 46298 dBm 5 N f 552500GHz 50.593 dBm 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	VI 4 N f 587500 GHz 49.949 dBm 5 N f 592500 GHz 52.492 dBm 7 T T T T T T T T T T T T T T T T T T T								
	2 10 1 1 of 1 1 of MSG STATUS								
Channel 165 / 5825 MHz – Peak	Channel 165 / 5825 MHz – Peak								
IEEE 802	.11n HT20								
Aglend Spectrum Analyzer Swigt SA Spectrum Analyzer Swigt SA IP 90 a Ac Spectrum Analyzer NUMMar(04,2017) Marker 5 5,749855000000 GHz Trig: Free Run Avg Type: Log-Pwr Titxet [1:2:3 4 5 6] PH0: Est PH0: Est Trig: Free Run Avg Type: Log-Pwr Titxet [1:2:3 4 5 6] PH0: Est GB Atten: 25 dB Cel P NINNN Cel P NINNN	Aglent Spectrum Analyzer - Swegt SA SHREER(1) ALIGNAUTO (09/26/12 PM My/04, 2017) W HF 150.9 AC SHREER(1) ALIGNAUTO (09/26/12 PM My/04, 2017) Marker 5 5.7483855000000 GHz Trig: Free Run Avg/IpieLog-Pwr TRIKE [1] 2.3 4.5 6 Peak Search Marker 5 5.748385000000 GHz Trig: Free Run Avg/IpieLog-Pwr TriveE[1] 2.3 4.5 6 Peak Search								
Ref Offset 0.5 dB Mkr5 5.749 855 GHz Next Performance 10 dB/div Ref 15.00 dBm 3.471 dBm 0 500 0 0 0 0	ek Ref Offset 0.5 dB Mkr5 5.748 385 GHz Next Pea								
500	ht 6:0 Next Pk Right								
35.0 35.0 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	en 350 Next Pk Le								
650 750 Start 5.65000 GHz Stop 5.75500 GHz	ta 650 Marker Del 750 Start 5,65000 GHz Stop 5,75500 GHz								
#Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts) Mkr-1 MR/ HODE TRC SCI X Function Function value 1 1 N f 5.560 000 GHz 452.577 dBm Function value 1 2 N f 5.700 000 GHz 49.432 dBm 1 1 1 1 1 1 49.432 dBm 1	F #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts) Mkr-C #RR MODE THE SEL X FUNCTION FUNCTION FUNCTION FUNCTION WITH FUNCTION WILLE Mkr-C 1 N f 5,650 000 GHz 544 423 dBm FUNCTION FUNCTION FUNCTION FUNCTION WILLE FUNCTION FUNCTION WILLE FUNCTION								
3 N f 5,720 000 GHz 45,929 dBm 4 N f 5,725 000 GHz 37,743 dBm 5 N f 5,749 855 GHz 3,471 dBm 6 G	V 3 N f 5.720.000 GHz 46.0027 dBm 4 N r 5.725.000 GHz 36.985 dBm Mkr→RefL 5 N r 6.748 385 GHz 4.512 dBm Mkr→RefL								
M 11	Moo 12 10 11 11 11 11 11 11 11 11 11 11 11 11								
Channel 149 / 5745 MHz – Peak	Channel 149 / 5745 MHz – Peak								
This report shall not be reproduced except in full, without the writt	en approval of Shenzhen LCS Compliance Testing Laboratory Ltd.								

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: ZJU-1E7D4N Report No.: LCS170421079AE

Unwanted emission									
Antenna Chain 0	2 002.	Antenna Chain 1							
Agiterit Spectrum Austyter - Swept SA SBOELINT AUSHAUTO (092657 PM May 04, 2017) Warker 1 5.828285000000 GHz Frig: Free Run Avg Type: Log-Pvr Tract [12:3:4:5:0 PB0: Fust PB0: Fust Avg Type: Log-Pvr Tract [12:3:4:5:0 Ref Offset 0.6 gB Mkr1 5.828 26 GHz Sec GHz	Peak Search Next Peal	Applend Spectrum Analyzer - Swept SA SEREE INT ALIXINATIO (09:340/764 May 04:2017) Marker 1 5.827540000000 GHz Trig: Free Run Avg19eiLeg-Pwr Trig: Tree Run Avg19eiLeg-Pwr Trig: Free Run If Geint.ow Trig: Free Run Avg19eiLeg-Pwr Trig: Free Run Avg19eiLeg-Pwr Trig: Free Run Ref Offset 0.5 dB Mkr1 5.827 54 GHz 2.009 4 GHz 2.009 4 GHz	Peak Search Next Pea						
10 dB/div Ref 13.00 dBm 3.002 dBm 5.002 dBm 5.	Next Pk Righ	10 dB(div Ref 15.00 dBm 5.056 dBm 5.	Next Pk Righ						
350	Next Pk Ler Marker Deta	4 50 111111111111111111111111111111111111	Marker Delt						
Start 5.81000 GHz Stop 5.92500 GHz #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts) MRR MODE TRC SCL X Y Function	Mkr→¢F	Start 5.81500 GHz Stop 5.92500 GHz #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts) MRR MODE TRC SC X Y RUNCTION FUNCTION WOTH RUNCTION WOTH 1 N f 5827.54 GHz 3098 GBm 3098 GBm	Mkr→C						
2 N f 6-950 00 CHz 40.379 dBm 3 N f 6-855 00 CHz 47.392 dBm 4 N f 6-855 00 CHz 47.392 dBm 5 N f 5-875 00 CHz 47.016 dBm 6 N f 5-925 00 CHz 5-2.292 dBm 7 8 9	Mkr→RefLv More 1 of2	2 N f 5.85000 cHz 43.706 dBm 3 N f 5.85600 cHz 45.536 dBm 4 N f 5.87500 cHz 47.383 dBm 6 N f 5.92500 GHz 47.383 dBm 6 F f 5.92500 GHz 53.704 dBm 7 5.92500 GHz 53.704 dBm	Mkr→RefLv Mon 1 of						
lation of the second status o		ti e → wso status							
Channel 165 / 5825 MHz – Peak	000 1	Channel 165 / 5825 MHz – Peak							
Aglent Spectrum Analyzer - Swept SA	802.1	1ac VH12U Agilent Spectrum Analyzer - Swept SA							
Marker 5 5,748175000000 GHz Stepsent Relative Log-Purity Avg Type: Log-Purity Trig: Free Run HGB:nLow Avg Type: Log-Purity Trig: Free Run Avg]Hold>100/100 Avg Type: Log-Purity Trig: Free Run HGB:nLow Avg Type: Log-Purity Trig: Free Run Avg]Hold>100/100 Avg Type: Log-Purity Trig: Free Run HGB:nLow Tri	Peak Search Next Peak	Image: Product of the state st	Peak Search Next Pea						
10 dB/div Ref 15.00 dBm 2.024 dBm	Next Pk Righ	10 dBldiv Ref 15.00 dBm 5.400 dBm 5.400 dBm	Next Pk Rigi						
-50 -50 -50 -50 -50 -50 -50 -50	Next Pk Lef	250 450 500 1 1 1 1 1 1 1 1 1 1 1 1 1	Next Pk Le						
450 750 Start 5,85000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts)	Marker Deta Mkr→CF	a 650 750 Start 5.65000 GHz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts)	Marker Dell Mkr→C						
MRR MORE TRC SCL X Y FINCTION RARCTION MODIL FLACCTION VALUE 1 N f 6560 000 GHz 540 656 dBm 6 7 6	Mkr→RefLv	NR MOSE TRC: SQ. X Y PRACTION FUNCTION FUNCTION WOTH FUNCTION VALUE 1 N f 6.566.000.0FHz -43.216.0Bm -	Mkr→RefL						
8 9 10 11 € wsg status	More 1 of 2	8 9 9 10 11 € 8 8 9 9 9 10 11 11 11 11 11 11 11 11 11 11 11 11	Mor 1 of						
Channel 149 / 5745 MHz – Peak		Channel 149 / 5745 MHz – Peak							
Agilent Spectrum Analyzer - Swept SA. SBREINT RUSHATO 09:18:12 PM May 04, 2017 Marker 1 5.826215000000 GHz Trig: Free Run Avg Type: Leg-Pvr Avg]Hidd>100100 PMAC[1:2:3:4:5:6 House 1:5:000000 Marker 1 5.826215000000 GHz Trig: Free Run HitGainLaw Avg Type: Leg-Pvr Avg]Hidd>100100 PMAC[1:2:3:4:5:6 House 1:5:000000 ReofFree 1 5.8262 EGG GEG GEG GEG GEG GEG GEG GEG GEG GE	Peak Search Next Peak	Agtent Spectrum Analyzer Swyst SA SENEE INT ALISNAUTO 009-34-33744 May04_2007 Marker 1 5.8266650000000 GHz Trig: Free Run IFGeind.ew Arg Type: Leg Avr Atten: 28 dB Arg Type: Leg Avr AvgHold: 84/100 Trig: Free Run Arg Type: Leg Avr Arg Type: Leg Avr	Peak Search NextPea						
	Next Pk Righ		Next Pk Rigi						
150 We Way Market Marke	Next Pk Lef	50 50 50 50 50 50 50 50 50 50	Next Pk Le						
400	Marker Deta Mkr→CF	50 750 750 Stop 5.92500 GHz Start 5.81500 GHz Stop 5.92500 GHz #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts)	Marker Del Mkr→C						
Non-topic PE SQL Y PLANCTION PLANCTION PLANCTION PLANCTION VIALUE A 1 N f 6.58/25 20 Hz 3.057 dBm A	Mkr→RefLv	IAMP MODE THE SD. X Y FUNCTION FUNCTION FUNCTION WOTH FUNCTION WALLE A 1 N f 5.826 66 GHz 2.544 dBm A	Mkr→RefL						
7 9 9 10 11	More 1 of 2		Mor 1 of						
Channel 165 / 5825 MHz – Peak		Channel 165 / 5825 MHz – Peak							
This report shall not be reproduced except in full, without t	the writte	n approval of Shenzhen LCS Compliance Testing Laboratory	Ltd.						

Report No.: LCS170421079AE

Report No.: LCS170421079AE

5.8. Antenna Requirements

5.8.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

And according to FCC 47 CFR Section 15.407 (a), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

5.8.2. Antenna Connector Construction

The directional gains of antenna used for transmitting is 2.0dBi which is a PIFA antenna and no consideration of replacement. Please see EUT photo for details.

5.8.3. Results: Compliance.

6. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Cal Date	Due Date
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	June 18, 2016	June 17, 2017
Signal analyzer	Agilent	E4448A(External mixers to 40GHz)	US44300469	9kHz~40GHz	July 16, 2016	July 15, 2017
Signal analyzer	Agilent	N9020A	MY50510140	9kHz~26.5GHz	October 27, 2017	October 27, 2017
LISN	MESS Tec	NNB-2/16Z	99079	9KHz-30MHz	June 18, 2016	June 17, 2017
LISN (Support Unit)	EMCO	3819/2NM	9703-1839	9KHz-30MHz	June 18, 2016	June 17, 2017
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9KHz-30MHz	June 18, 2016	June 17, 2017
ISN	SCHAFFNER	ISN ST08	21653	9KHz-30MHz	June 18, 2016	June 17, 2017
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30M-18GHz 3m	June 18, 2016	June 17, 2017
Amplifier	SCHAFFNER	COA9231A	18667	9kHz-2GHzz	June 18, 2016	June 17, 2017
Amplifier	Agilent	8449B	3008A02120	1GHz-26.5GHz	July 16, 2016	July 15, 2017
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5GHz-40GHz	July 16, 2016	July 15, 2017
Loop Antenna	R&S	HFH2-Z2	860004/001	9k-30MHz	June 18, 2016	June 17, 2017
By-log Antenna	SCHWARZBEC	VULB9163	9163-470	30MHz-1GHz	June 10, 2016	June 09, 2017
Horn Antenna	EMCO	3115	6741	1GHz-18GHz	June 10, 2016	June 09, 2017
Horn Antenna	SCHWARZBEC	BBHA9170	BBHA9170154	15GHz-40GHz	June 10, 2016	June 09, 2017
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz-1GHz	June 18, 2016	June 17, 2017
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz-40GHz	June 18, 2016	June 17, 2017
Power Meter	Anritsu	ML2495A	1204011	N/A	June 18, 2016	June 17, 2017
Power Sensor	Anritsu	MA2411B	1126166	N/A	June 18, 2016	June 17, 2017
AC Power Source	HPC	HPA-500E	HPA-9100024	AC 0~300V	June 18, 2016	June 17, 2017
DC power source	GW	GPC-6030D	C671845	DC 1V-60V	June 18, 2016	June 17, 2017
Temp. and Humidify Chamber	Giant Force	GTH-225-20-S	MAB0103-00	N/A	June 18, 2016	June 17, 2017
RF CABLE-1m	JYE Bao	RG142	CB034-1m	20MHz-7GHz	June 18, 2016	June 17, 2017
RF CABLE-2m	JYE Bao	RG142	CB)35-2m	20MHz-1GHz	June 18, 2016	June 17, 2017
EMC Test	Audix	E3	N/A	N/A	N/A	N/A

Note: All equipment through GRGT EST calibration

Report No.: LCS170421079AE

7. TEST SETUP PHOTOGRAPHS OF EUT

Please refer to separated files for Test Setup Photos of the EUT.

8. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

9. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

-----THE END OF REPORT------