

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057

 Telephone:
 +86 (0) 755 2601 2053

 Fax:
 +86 (0) 755 2671 0594

 Email:
 ee.shenzhen@sgs.com

Report No.: SZEM121200667801 Page: 1 of 76

FCC REPORT

Application No:	SZEM1212006678RF
Applicant:	Shenzhen SKY DRAGON Audio-video Technology Co., LTD
Manufacturer:	Shenzhen SKY DRAGON Audio-video Technology Co., LTD
Factory:	Shenzhen SKY DRAGON Audio-video Technology Co., LTD
Product Name:	Bluetooth Speaker
Model No.(EUT):	BC08
FCC ID:	ZJPBC08IME32516
Standards:	47 CFR Part 15, Subpart C (2011)
Date of Receipt:	2012-12-11
Date of Test:	2012-12-13 to 2012-12-18
Date of Issue:	2013-01-10
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEM121200667801 Page: 2 of 76

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2009)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2009)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 (2009)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2009)	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2009)	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (b)	ANSI C63.10 (2009)	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2009)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10 (2009)	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2009)	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2009)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2009)	PASS
Band Edge (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2009)	PASS

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM121200667801 Page: 3 of 76

3 Contents

1		OVER PAGE	
2	TE	EST SUMMARY	2
3	CC	ONTENTS	
4	GE	ENERAL INFORMATION	4
	4.1	CLIENT INFORMATION	4
	4.2	GENERAL DESCRIPTION OF EUT	
	4.3	Test Environment	6
	4.4	DESCRIPTION OF SUPPORT UNITS	
	4.5	TEST LOCATION	6
	4.6	Test Facility	6
	4.7	DEVIATION FROM STANDARDS	7
	4.8	ABNORMALITIES FROM STANDARD CONDITIONS	7
	4.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	7
	4.10	Equipment List	8
5	TE	EST RESULTS AND MEASUREMENT DATA	11
5	TE 5.1		
5		EST RESULTS AND MEASUREMENT DATA Antenna Requirement Conducted Emissions	11
5	5.1	ANTENNA REQUIREMENT	11 12
5	5.1 5.2	Antenna Requirement Conducted Emissions	11 12 16
5	5.1 5.2 5.3	ANTENNA REQUIREMENT Conducted Emissions Conducted Peak Output Power	
5	5.1 5.2 5.3 5.4	Antenna Requirement Conducted Emissions Conducted Peak Output Power 20DB Occupy Bandwidth	
5	5.1 5.2 5.3 5.4 5.5	ANTENNA REQUIREMENT Conducted Emissions Conducted Peak Output Power 20dB Occupy Bandwidth Carrier Frequencies Separation Hopping Channel Number Dwell Time	
5	5.1 5.2 5.3 5.4 5.5 5.6	ANTENNA REQUIREMENT Conducted Emissions Conducted Peak Output Power 20dB Occupy Bandwidth Carrier Frequencies Separation Hopping Channel Number Dwell Time Band-edge for RF Conducted Emissions	
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER 20DB OCCUPY BANDWIDTH CARRIER FREQUENCIES SEPARATION HOPPING CHANNEL NUMBER DWELL TIME BAND-EDGE FOR RF CONDUCTED EMISSIONS SPURIOUS RF CONDUCTED EMISSIONS	
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	ANTENNA REQUIREMENT Conducted Emissions Conducted Peak Output Power 20dB Occupy Bandwidth Carrier Frequencies Separation Hopping Channel Number Dwell Time Band-edge for RF Conducted Emissions Spurious RF Conducted Emissions Pseudorandom Frequency Hopping Sequence	
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	ANTENNA REQUIREMENT Conducted Emissions Conducted Peak Output Power 20dB Occupy Bandwidth Carrier Frequencies Separation Hopping Channel Number Dwell Time Band-edge for RF Conducted Emissions Spurious RF Conducted Emissions Pseudorandom Frequency Hopping Sequence Radiated Spurious Emission	
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.2	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER 20DB OCCUPY BANDWIDTH CARRIER FREQUENCIES SEPARATION HOPPING CHANNEL NUMBER DWELL TIME BAND-EDGE FOR RF CONDUCTED EMISSIONS SPURIOUS RF CONDUCTED EMISSIONS PSEUDORANDOM FREQUENCY HOPPING SEQUENCE RADIATED SPURIOUS EMISSION 11.1 Radiated Emission below 1GHz	
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.2	ANTENNA REQUIREMENT Conducted Emissions Conducted Peak Output Power 20dB Occupy Bandwidth Carrier Frequencies Separation Hopping Channel Number Dwell Time Band-edge for RF Conducted Emissions Spurious RF Conducted Emissions Pseudorandom Frequency Hopping Sequence Radiated Spurious Emission	

Report No.: SZEM121200667801 Page: 4 of 76

4 General Information

4.1 Client Information

Applicant:	Shenzhen SKY DRAGON Audio-video Technology Co., LTD
Address of Applicant:	B16, Laneway 3, Liuxian 2RD, District71, Baoan, shenzhen
Manufacturer:	Shenzhen SKY DRAGON Audio-video Technology Co., LTD
Address of Manufacturer:	B16, Laneway 3, Liuxian 2RD, District71, Baoan, shenzhen
Factory:	Shenzhen SKY DRAGON Audio-video Technology Co., LTD
Address of Factory:	B16, Laneway 3, Liuxian 2RD, District71, Baoan, shenzhen

4.2 General Description of EUT

Name:	Bluetooth Speaker
Model No.:	BC08
Trade Mark:	SAMESAY
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V2.1+EDR
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Sample Type:	Mobile production
Test Power Grade:	255.255 (manufacturer declare)
Test Software of EUT:	CSR (manufacturer declare)
Antenna Type:	Integral
Antenna Gain:	0dBi
Power Supply:	DYS SWITCHING MODE POWER SUPPLY P/N: DYS242-120200-12703 MODEL: DYS242-120200W-1 INPUT: 100-240V~50/60Hz 0.75A MAX OUTPUT: 12.0V = 2.0A Remote control DC 3V "CR2025"
DC Cable:	140 cm with one ferrite
Test Voltage:	AC 120V/60Hz

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM121200667801 Page: 5 of 76

Operation F	- requency each	of channel					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM121200667801 Page: 6 of 76

4.3 Test Environment

Operating Environment	
Temperature:	26.0 °C
Humidity:	57% RH
Atmospheric Pressure:	1015mbar

4.4 Description of Support Units

The EUT has been tested independent unit.

4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594 No tests were sub-contracted.

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• VCCI

The 3m Semi-anechoic chamber, Full-anechoic Chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2197, G-416, T-1153 and C-2383 respectively.

• FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

• Industry Canada (IC)

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1.

Report No.: SZEM121200667801 Page: 7 of 76

4.7 Deviation from Standards

None.

4.8 Abnormalities from Standard Conditions

None.

4.9 Other Information Requested by the Customer

None.

Report No.: SZEM121200667801 Page: 8 of 76

4.10 Equipment List

	Conducted Emission	n			
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2013-06-10
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2013-10-24
3	LISN	ETS-LINDGREN	3816/2	SEL0021	2013-05-17
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	SEL0162	2013-11-10
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	SEL0163	2013-11-10
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	SEL0164	2013-11-10
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2013-05-17
8	Coaxial Cable	SGS	N/A	SEL0025	2013-05-29
9	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2013-10-24
10	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2013-10-24
11	Barometer	Chang Chun	DYM3	SEL0088	2013-05-24

Report No.: SZEM121200667801 Page: 9 of 76

	RE in Chamber				
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2013-06-10
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEL0023	2013-05-17
3	EMI Test software	AUDIX	E3	SEL0050	N/A
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2013-10-24
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2013-10-24
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2013-10-24
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2013-05-17
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2013-10-24
9	Coaxial cable	SGS	N/A	SEL0027	2013-05-59
10	Coaxial cable	SGS	N/A	SEL0189	2013-05-29
11	Coaxial cable	SGS	N/A	SEL0121	2013-05-29
12	Coaxial cable	SGS	N/A	SEL0178	2013-05-29
13	Band filter	Amindeon	82346	SEL0094	2013-05-17
14	Barometer	Chang Chun	DYM3	SEL0088	2013-05-24
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2013-10-24
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2013-10-24
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2013-05-17
18	Signal Generator	Rohde & Schwarz	SMY01	SEL0155	2013-10-24
19	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2013-06-04

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM121200667801 Page: 10 of 76

	RF connected test				
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2013-10-24
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2013-10-24
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2013-10-24
4	Coaxial cable	SGS	N/A	SEL0178	2013-05-29
5	Coaxial cable	SGS	N/A	SEL0179	2013-05-29
6	Barometer	ChangChun	DYM3	SEL0088	2013-05-24
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2013-05-17
8	Band filter	amideon	82346	SEL0094	2013-05-17
9	POWER METER	R & S	NRVS	SEL0144	2013-10-24
10	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2013-05-17
11	Power Divider(splitter)	Agilent Technologies	11636B	SEL0130	2013-10-24

Note: The calibration interval is one year, all the instruments are valid.

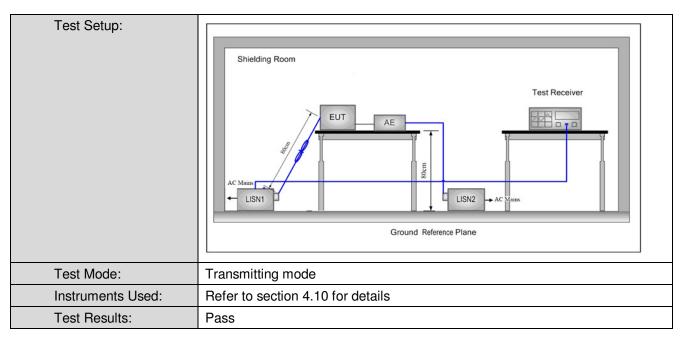
Report No.: SZEM121200667801 11 of 76 Page:

5 Test results and Measurement Data

5.1 Antenna Requirement

	47 CFR Part 15C Section 15.203 /247(c)
15.203 requirement:	
An intentional radiator shall	be designed to ensure that no antenna other than that furnished by the
responsible party shall be u	sed with the device. The use of a permanently attached antenna or of an
antenna that uses a unique	coupling to the intentional radiator, the manufacturer may design the unit
so that a broken antenna ca	an be replaced by the user, but the use of a standard antenna jack or
electrical connector is prohi	bited.
15.247(b) (4) requirement:	
The conducted output powe	er limit specified in paragraph (b) of this section is based on the use of
antennas with directional ga	ains that do not exceed 6 dBi. Except as shown in paragraph (c) of this
section, if transmitting anter	nnas of directional gain greater than 6 dBi are used, the conducted output
power from the intentional r	adiator shall be reduced below the stated values in paragraphs (b)(1),
(b)(2), and (b)(3) of this sec	tion, as appropriate, by the amount in dB that the directional gain of the
antenna exceeds 6 dBi.	
EUT Antenna:	
The antenna is integrated o	on the main PCB and no consideration of replacement. The best case gain
of the antenna is 0dBi.	
N +	
	S S S S S S S S S S S S S S S S S S S
	Antenna
	Reterentiation of the second sec
	Antenna

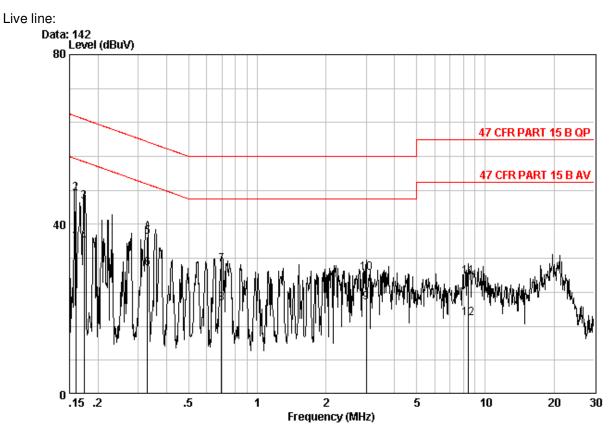
"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full within the limits of the company is the time of the company is determined effective of the intervention of the company of the company is determined effective of the company is determined of the company is determined of the company of the company of the company is determined of the company of the company of the company of the company is determined of the company of the comp full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."


Report No.: SZEM121200667801 Page: 12 of 76

Test Requirement:	47 CFR Part 15C Section 15.	47 CFR Part 15C Section 15.207		
Test Method:	ANSI C63.10: 2009	ANSI C63.10: 2009		
Test Frequency Rang	e: 150kHz to 30MHz			
Limit:		Limit (c	lBuV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithr	n of the frequency.		1
Test Procedure:	 The mains terminal disturnoom. The EUT was connected to Impedance Stabilization N impedance. The power calconnected to a second LIS reference plane in the same measured. A multiple sock power cables to a single L exceeded. The tabletop EUT was placed on the horizontal ground reference plane. A placed on the horizontal ground reference plane. The LISN unit under test and bonded mounted on top of the group between the closest points the EUT and associated ereformed and all of the implement and all of the	b AC power source thro etwork) which provides bles of all other units of SN 2, which was bonde ne way as the LISN 1 for set outlet strip was used ISN provided the rating ced upon a non-metalli- nd for floor-standing ar round reference plane, th a vertical ground ref from the vertical ground plane was bonded to the I 1 was placed 0.8 m fro d to a ground reference und reference plane. The s of the LISN 1 and the quipment was at least (um emission, the relative terface cables must be	bugh a LISN 1 (Line a $50\Omega/50\mu$ H + 5Ω line if the EUT were d to the ground or the unit being d to connect multiple of the LISN was not c table 0.8m above the rangement, the EUT erence plane. The real d reference plane for LISNs his distance was EUT. All other units of the positions of	near ne was ar ne he 0f 2.

5.2 Conducted Emissions

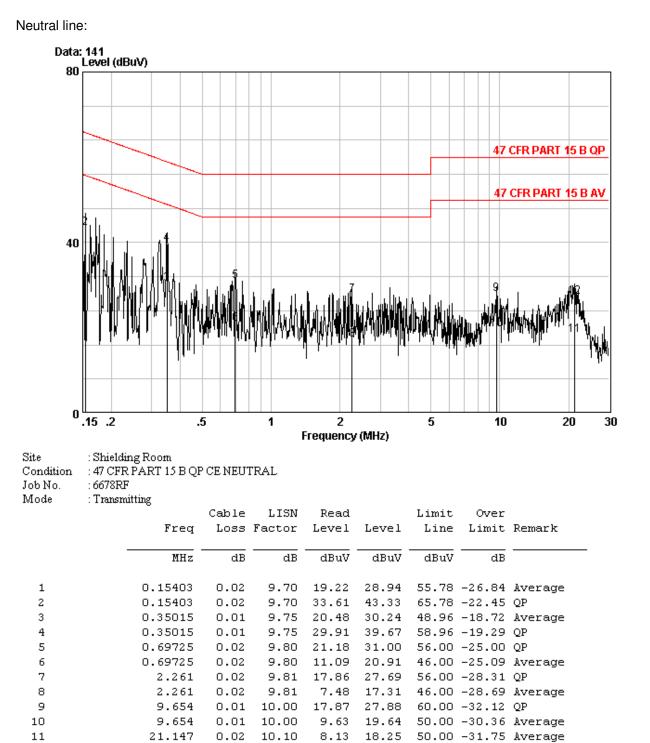
Report No.: SZEM121200667801 Page: 13 of 76


Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Report No.: SZEM121200667801 Page: 14 of 76


Site	: Shielding Room
Condition	: 47 CFR PART 15 B QP CE LINE
Job No.	: 6678RF

Job No. Mode : Transmitting

widde	Freq		LISN Factor 	Read Level dBuV	Level dBuV	Limit Line dBuV	Over Limit dB	Remark	_
1	0.15985	0.02	9.70	26.18	35.90	55.47	-19.58	Average	
2	0.15985	0.02	9.70	37.62	47.34	65.47	-18.13	QP	
3	0.17399	0.02	9.70	35.65	45.37	64.77	-19.40	QP	
4	0.17399	0.02	9.70	25.93	35.65	54.77	-19.12	Average	
5	0.33033	0.01	9.73	27.23	36.97	59.44	-22.47	QP	
6	0.33033	0.01	9.73	19.99	29.73	49.44	-19.71	Average	
7	0.69725	0.02	9.80	20.77	30.59	56.00	-25.41	QP	
8	0.69725	0.02	9.80	11.63	21.45	46.00	-24.55	Average	
9	3.009	0.02	9.85	11.64	21.51	46.00	-24.49	Average	
10	3.009	0.02	9.85	18.65	28.52	56.00	-27.48	QP	
11	8.412	0.01	9.90	17.87	27.78	60.00	-32.22	QP	
12	8.412	0.01	9.90	7.88	17.79	50.00	-32.21	Average	

Report No.: SZEM121200667801 Page: 15 of 76

Notes:

12

1. The following Quasi-Peak and Average measurements were performed on the EUT:

17.04

27.16

60.00 -32.84 QP

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

10.10

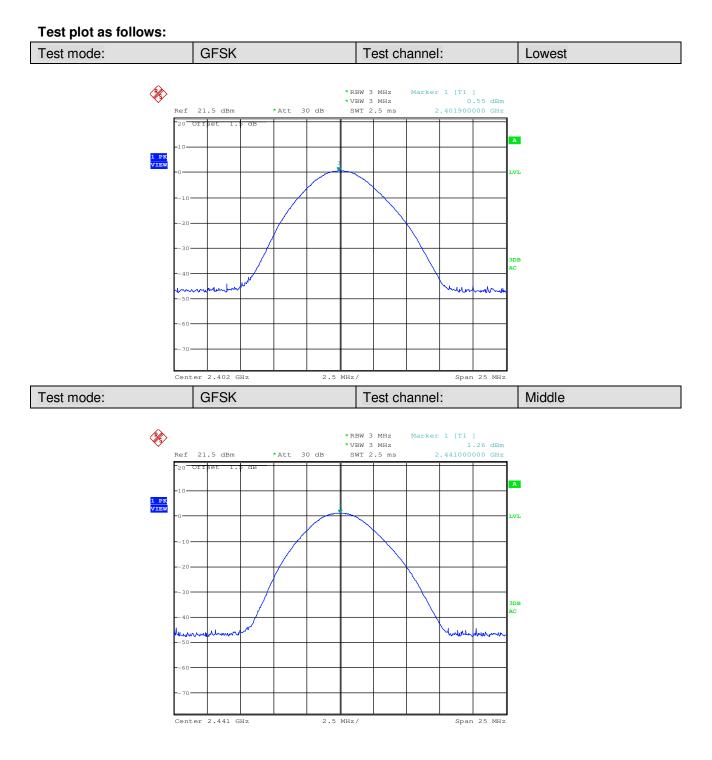
0.02

21.147

Report No.: SZEM121200667801 Page: 16 of 76

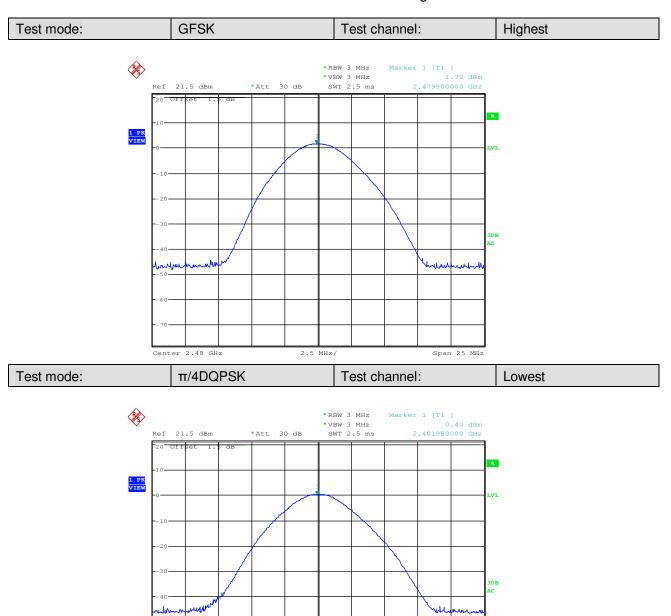
5.3 Conducted Peak Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2009		
Test Setup:	Spectrum Analyzer Image: Frequency cable loss 1.5dB in the spectrum analyzer.		
Limit:	30dBm		
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type		
Final Test Mode:	Through Pre-scan, find the DH1 of date type is the worse case of GFSK modulation type, 2-DH1 of date type is worse case of π /4DQPSK modulation type, 3-DH1 of date type is worse case of 8DPSK modulation type.		
Instruments Used:	Refer to section 4.10 for details		
Test Results:	Pass		


Report No.: SZEM121200667801 Page: 17 of 76

Measurement Data

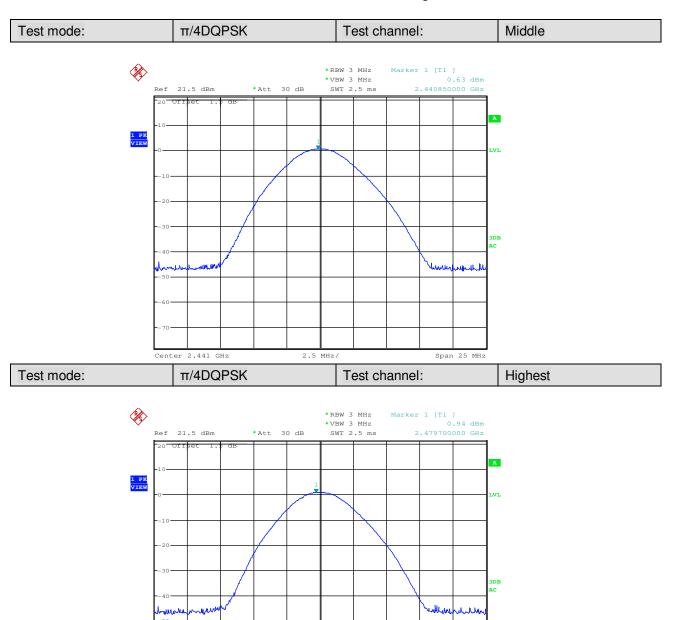
GFSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	0.55	30.00	Pass		
Middle	1.26	30.00	Pass		
Highest	1.72	30.00	Pass		
	π/4DQPSK m	node			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	0.40	30.00	Pass		
Middle	0.63	30.00	Pass		
Highest	0.94	30.00	Pass		
	8DPSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-0.08	30.00	Pass		
Middle	0.85	30.00	Pass		
Highest	1.10	30.00	Pass		



Report No.: SZEM121200667801 Page: 18 of 76

Report No.: SZEM121200667801 Page: 19 of 76

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

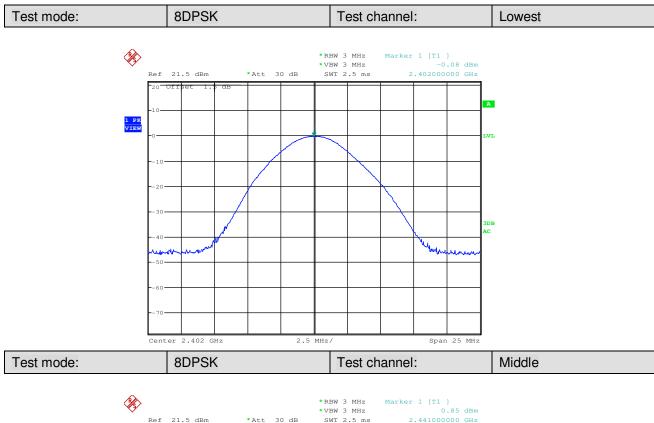

2.5 MHz/

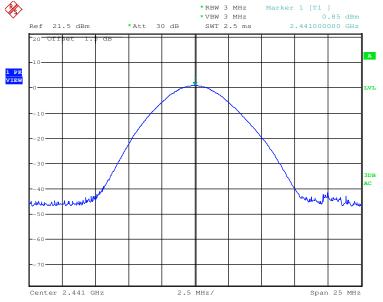
Span 25 MHz

Center 2.402 GHz

Report No.: SZEM121200667801 Page: 20 of 76

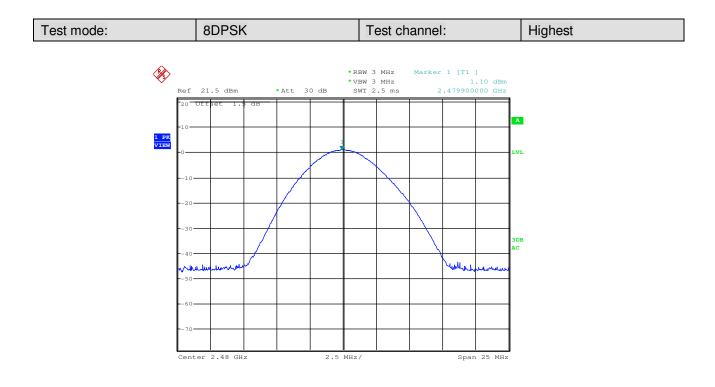
"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."


2.5 MHz/


Span 25 MHz

Center 2.48 GHz

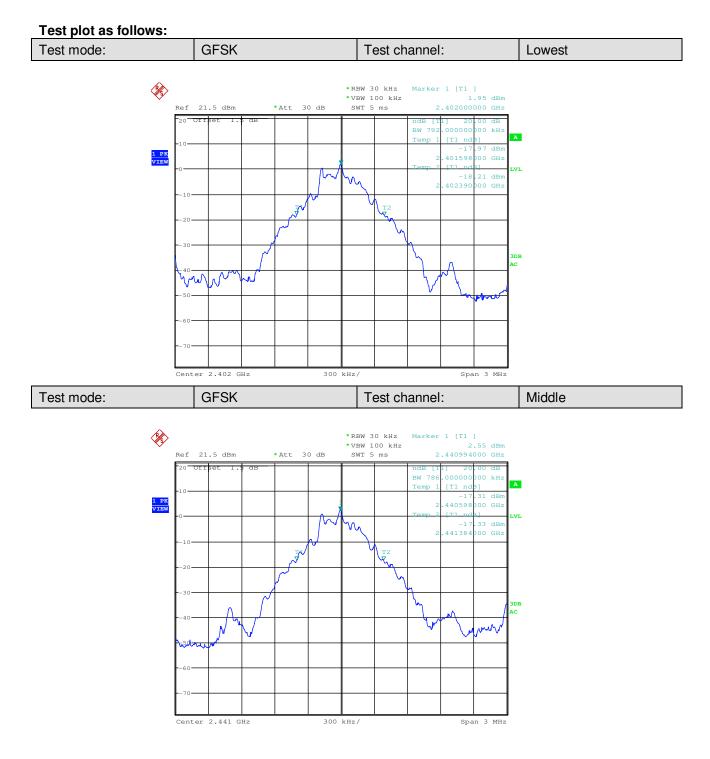
Report No.: SZEM121200667801 Page: 21 of 76



Report No.: SZEM121200667801 Page: 22 of 76

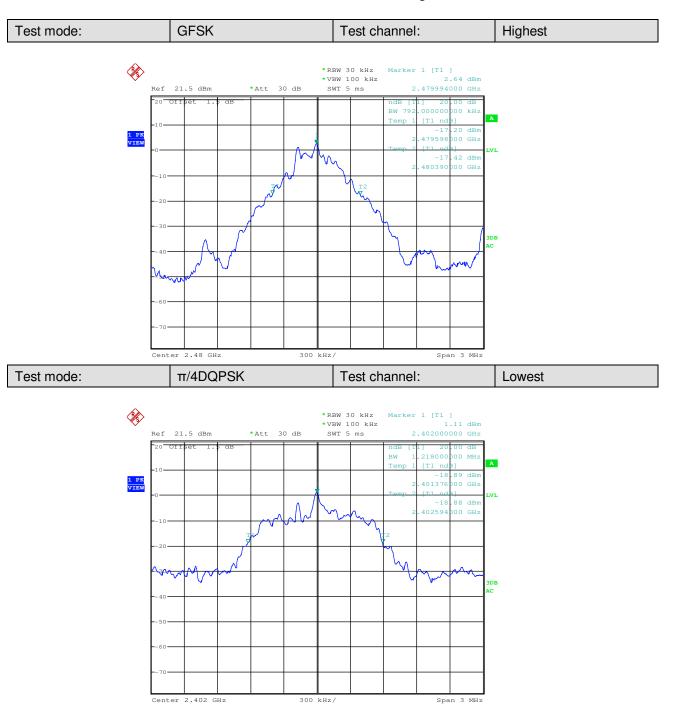
Report No.: SZEM121200667801 Page: 23 of 76

5.4 20dB Occupy Bandwidth

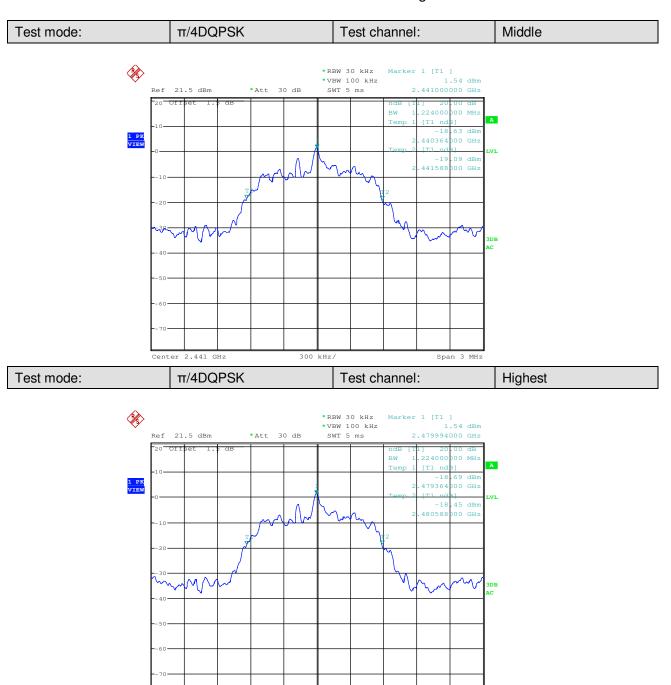

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2009		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Limit:	NA		
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type		
Final Test Mode:	Through Pre-scan, find the DH1 of date type is the worse case of GFSK modulation type, 2-DH1 of date type is worse case of π /4DQPSK modulation type, 3-DH1 of date type is worse case of 8DPSK modulation type		
Instruments Used:	Refer to section 4.10 for details		
Test Results:	Pass		

Measurement Data

Test shannel	20dB Occupy Bandwidth (kHz)		
Test channel	GFSK	π/4DQPSK	8DPSK
Lowest	792	1218	1212
Middle	786	1224	1212
Highest	792	1224	1206



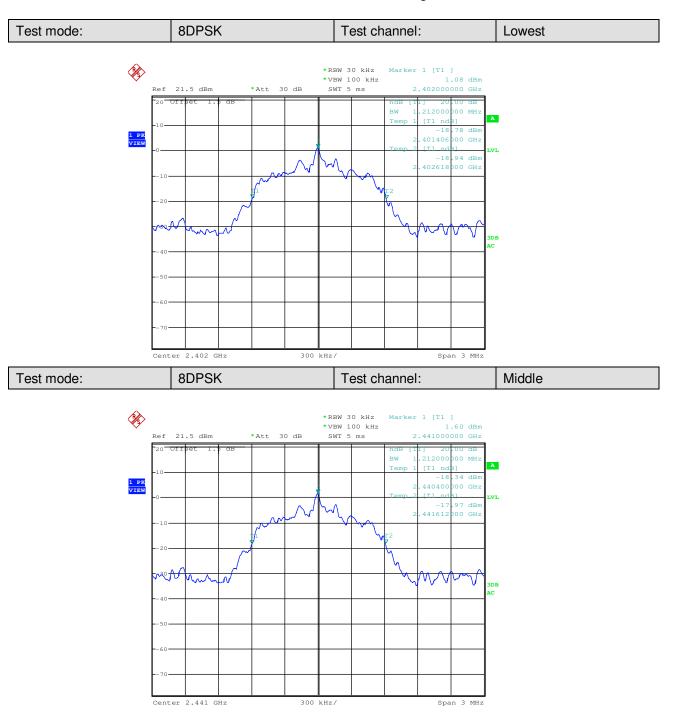
Report No.: SZEM121200667801 Page: 24 of 76



Report No.: SZEM121200667801 Page: 25 of 76

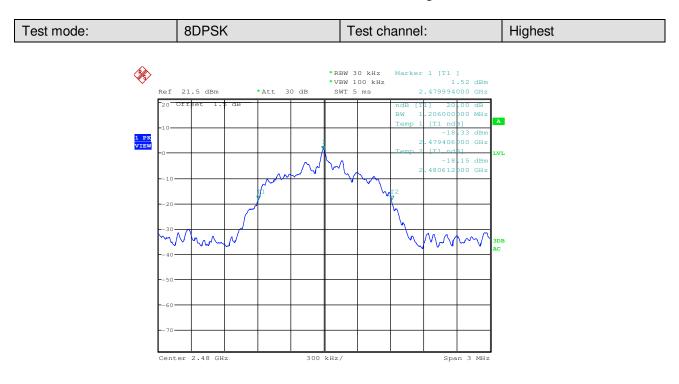
Report No.: SZEM121200667801 Page: 26 of 76

"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."


300 kHz/

Span 3 MHz

Center 2.48 GHz



Report No.: SZEM121200667801 Page: 27 of 76

Report No.: SZEM121200667801 Page: 28 of 76

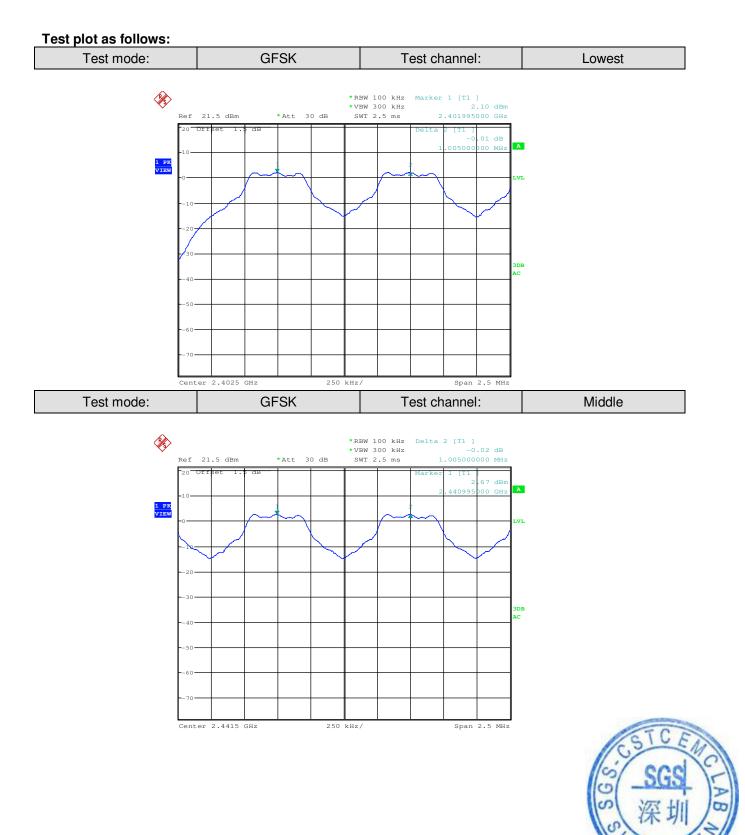
Report No.: SZEM121200667801 Page: 29 of 76

5.5 Carrier Frequencies Separation

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2009		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
1 : 14			
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type		
Final Test Mode:	Through Pre-scan, find the DH1 of date type is the worse case of GFSK modulation type, 2-DH1 of date type is worse case of π /4DQPSK modulation type, 3-DH1 of date type is worse case of 8DPSK modulation type.		
Instruments Used:	Refer to section 4.10 for details		
Test Results:	Pass		

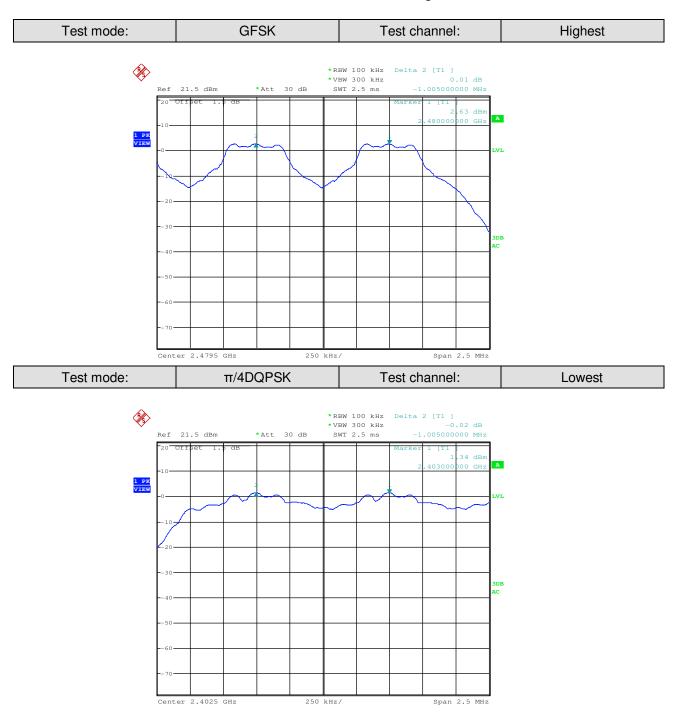
Report No.: SZEM121200667801 Page: 30 of 76

Measurement Data

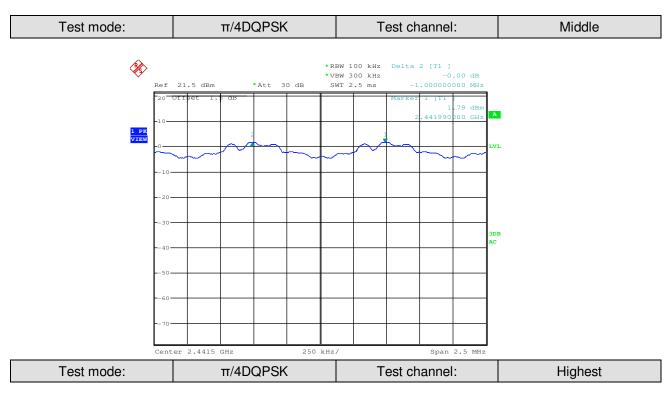

GFSK mode				
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1005	≥816	Pass	
Middle	1005	≥816	Pass	
Highest	1005	≥816	Pass	
	π/4DQPSK m	ode		
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1005	≥816	Pass	
Middle	1000	≥816	Pass	
Highest	1000	≥816	Pass	
	8DPSK mo	de		
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1005	≥816	Pass	
Middle	1015	≥816	Pass	
Highest	1000	≥816	Pass	

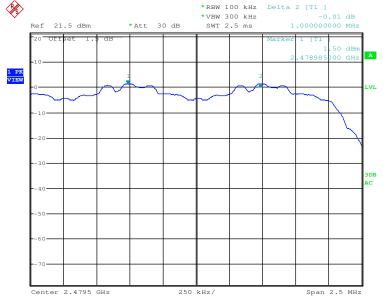
Note: According to section 5.4,

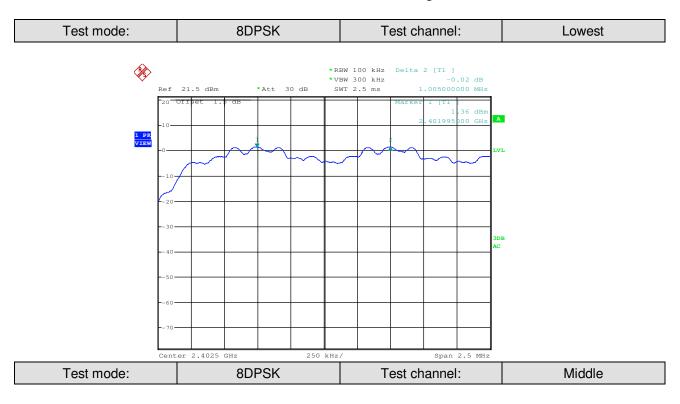
Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	792	528
π/4DQPSK	1224	816
8DPSK	1212	808

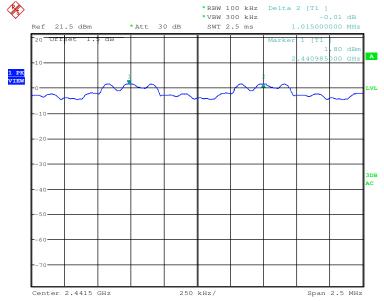


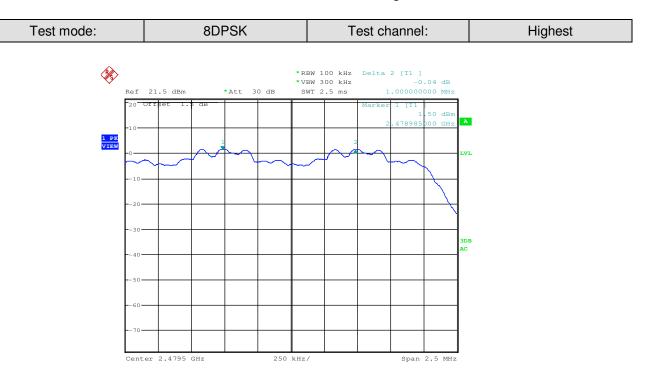
Report No.: SZEM121200667801 Page: 31 of 76




Report No.: SZEM121200667801 Page: 32 of 76


Report No.: SZEM121200667801 Page: 33 of 76



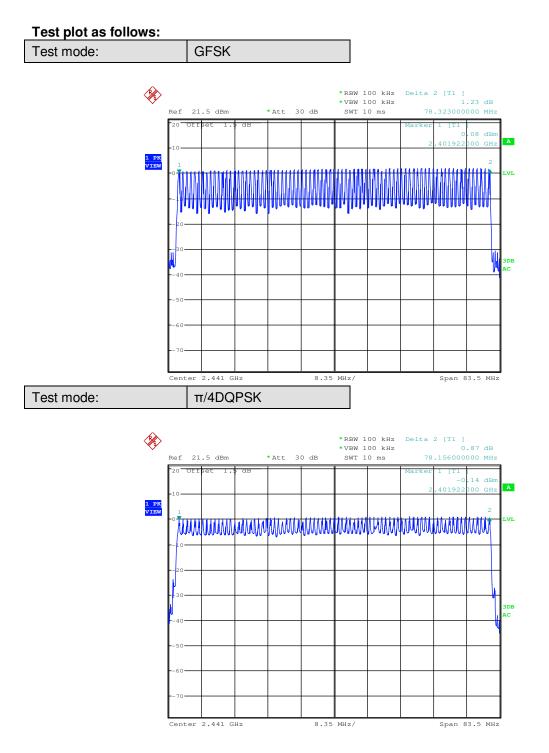

Report No.: SZEM121200667801 Page: 34 of 76

Report No.: SZEM121200667801 Page: 35 of 76

Report No.: SZEM121200667801 Page: 36 of 76

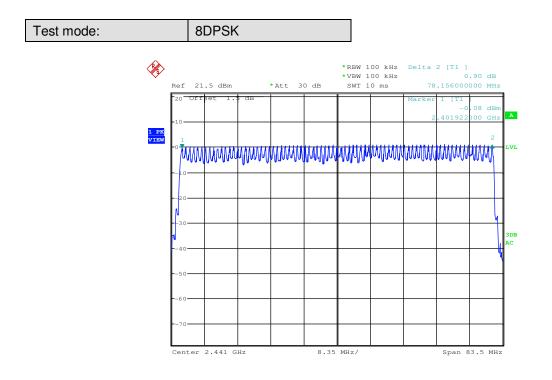
5.6 Hopping Channel Number

Test Requirement:	47 CFR Part 15C Section 15.247 (b)	
Test Method:	ANSI C63.10:2009	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Limit:	At least 15 channels	
Test Mode:	Hopping transmitting with all kind of modulation	
Instruments Used:	Refer to section 4.10 for details	
Test Results:	Pass	


Measurement Data

Mode	Hopping channel numbers	Limit
GFSK	79	≥75
π/4DQPSK	79	≥75
8DPSK	79	≥75

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."



Report No.: SZEM121200667801 Page: 37 of 76

Report No.: SZEM121200667801 Page: 38 of 76

Report No.: SZEM121200667801 Page: 39 of 76

5.7 Dwell Time

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10:2009				
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table				
	Ground Reference Plane				
Instruments Used:	Refer to section 4.10 for details				
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.				
Limit:	0.4 Second				
Test Results:	Pass				

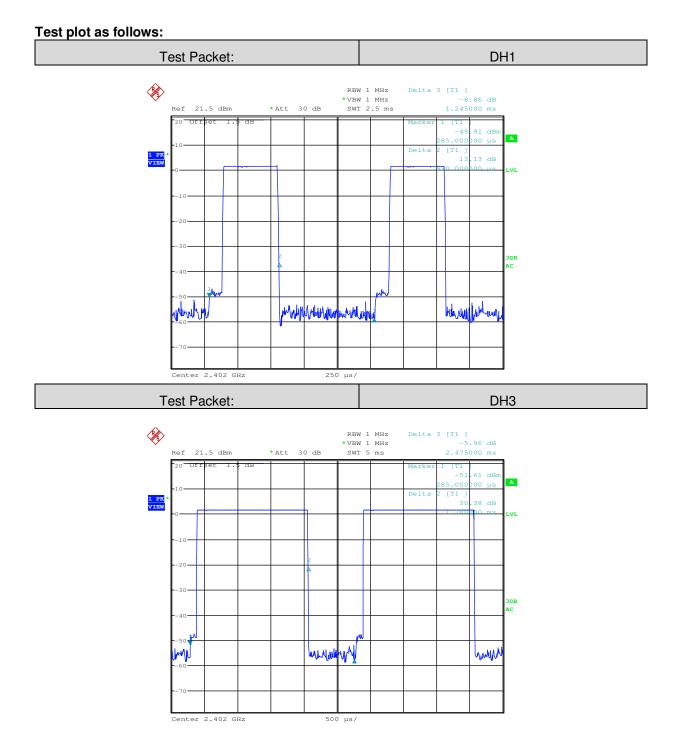
Measurement Data

Mode	Packet	Dwell time (second)	Limit (second)
	DH1	0.1696	0.4
GFSK	DH3	0.2848	0.4
	DH5	0.3200	0.4
	2-DH1	0.1728	0.4
π/4DQPSK	2-DH3	0.2832	0.4
	2-DH5	0.1931	0.4
	3-DH1	0.1680	0.4
8DPSK	3-DH3	0.2872	0.4
	3-DH5	0.3237	0.4

Test Result:

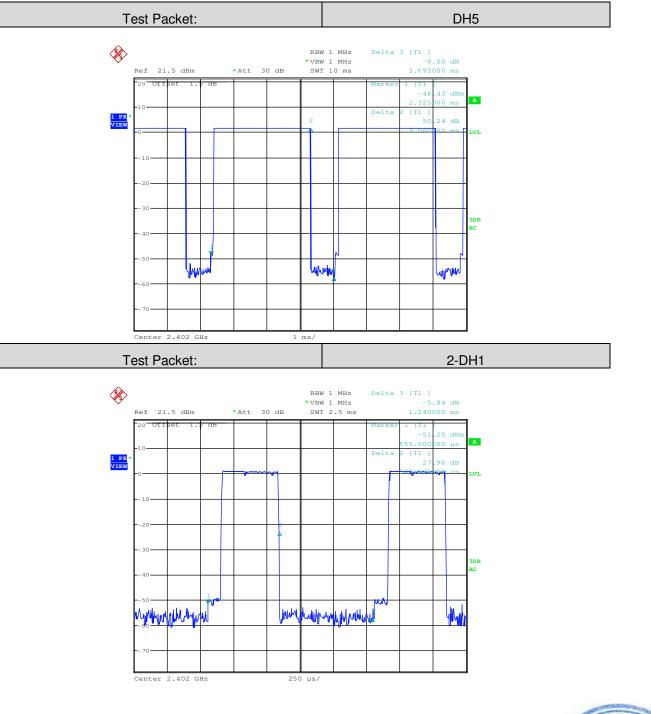
The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

The lowest channel (2402MHz), middle channel (2441MHz), highest channel (2480MHz) as below

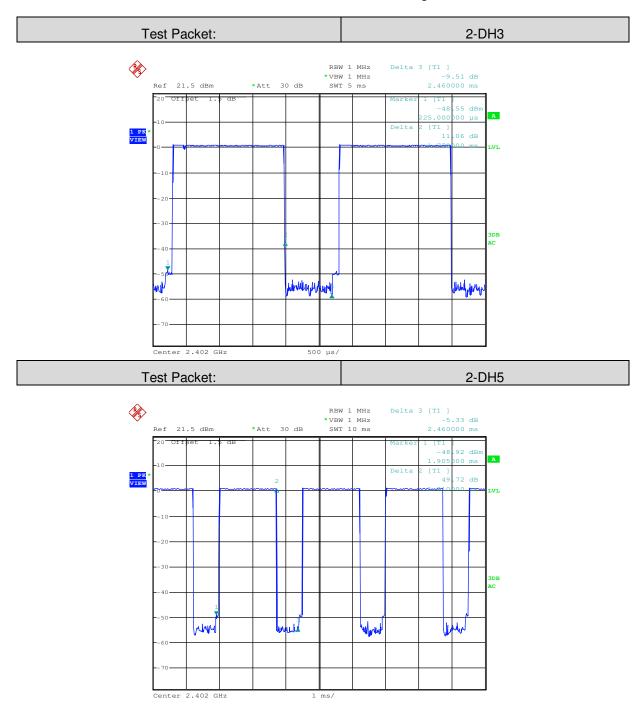

DH1 time slot=0.53(ms)*(1600/ (2*79))*31.6=169.6 ms

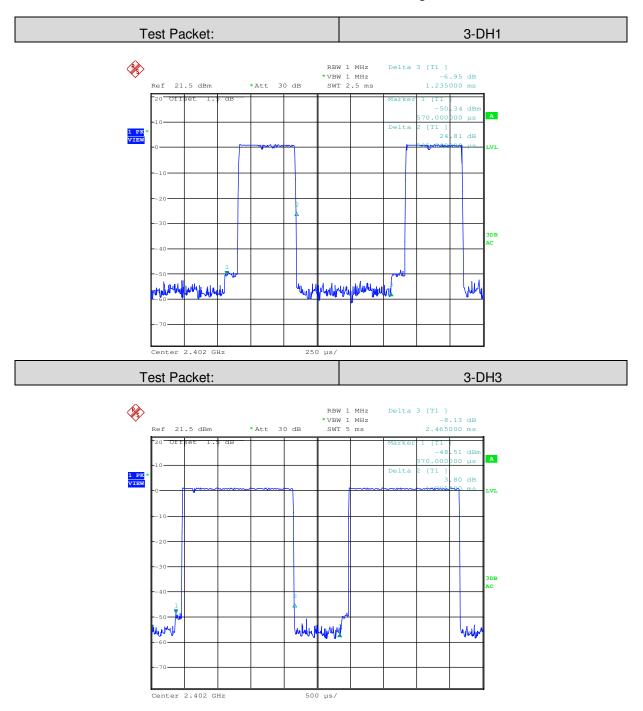
DH3 time slot=1.78(ms)*(1600/ (4*79))*31.6=284.8ms

DH5 time slot=3.00(ms)*(1600/ (6*79))*31.6=320.0ms

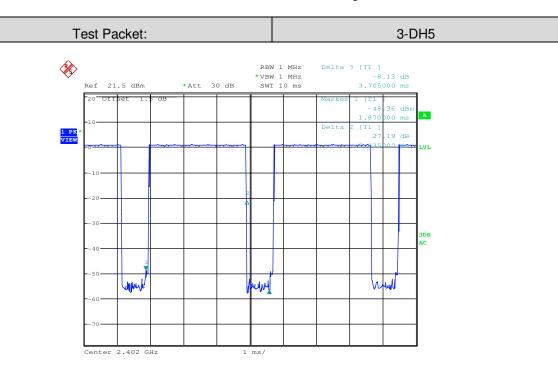

Report No.: SZEM121200667801 Page: 40 of 76

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."


Report No.: SZEM121200667801 Page: 41 of 76



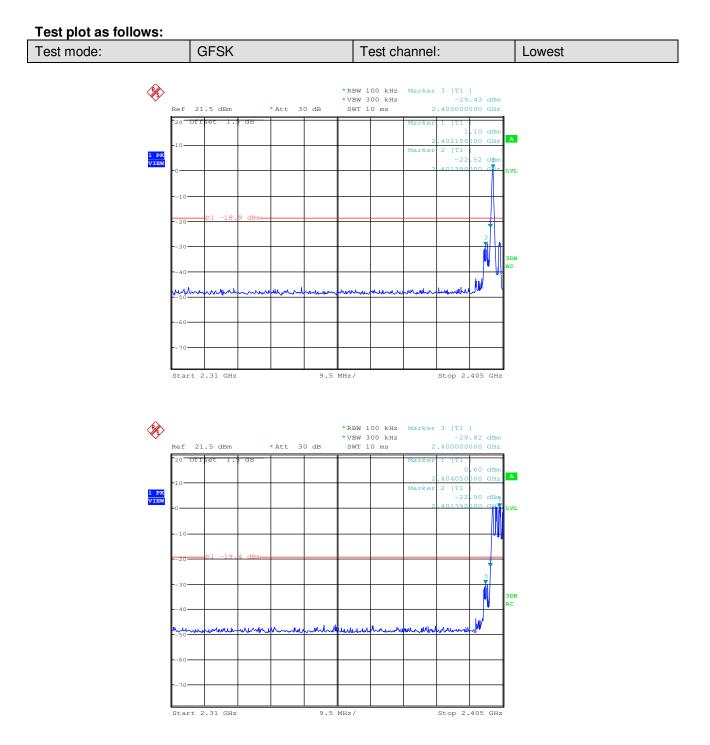
Report No.: SZEM121200667801 Page: 42 of 76



Report No.: SZEM121200667801 Page: 43 of 76

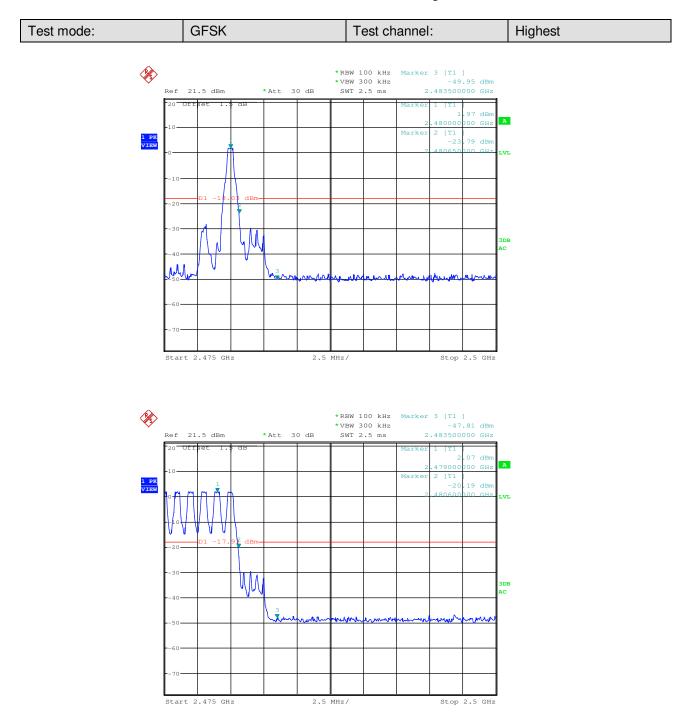
Report No.: SZEM121200667801 Page: 44 of 76

Report No.: SZEM121200667801 Page: 45 of 76

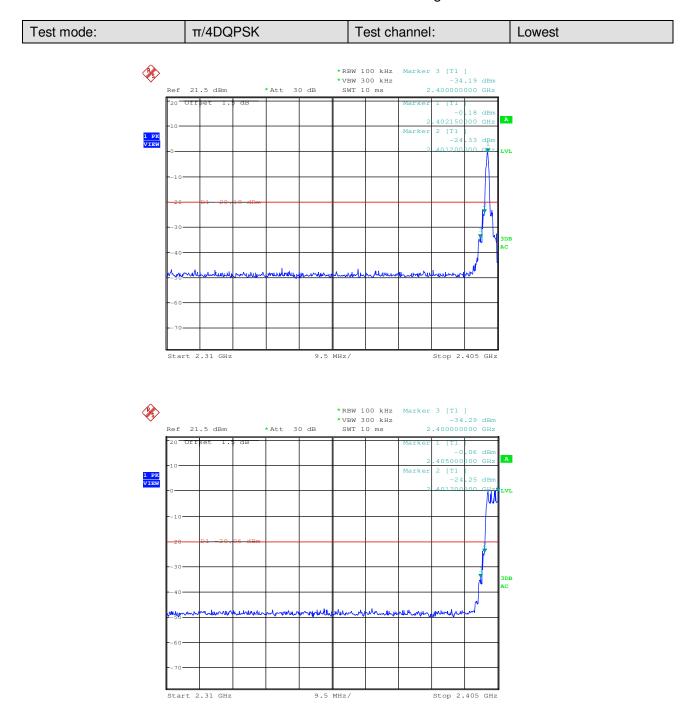

5.8 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009					
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type					
Final Test Mode:	Through Pre-scan, find the DH5 of date type is the worse case of GFSK modulation type, 2-DH5 of date type is worse case of $\pi/4DQPSK$ modulation type, 3-DH5 of date type is worse case of 8DPSK modulation type.					
Instruments Used:	Refer to section 4.10 for details					
Test Results:	Pass					

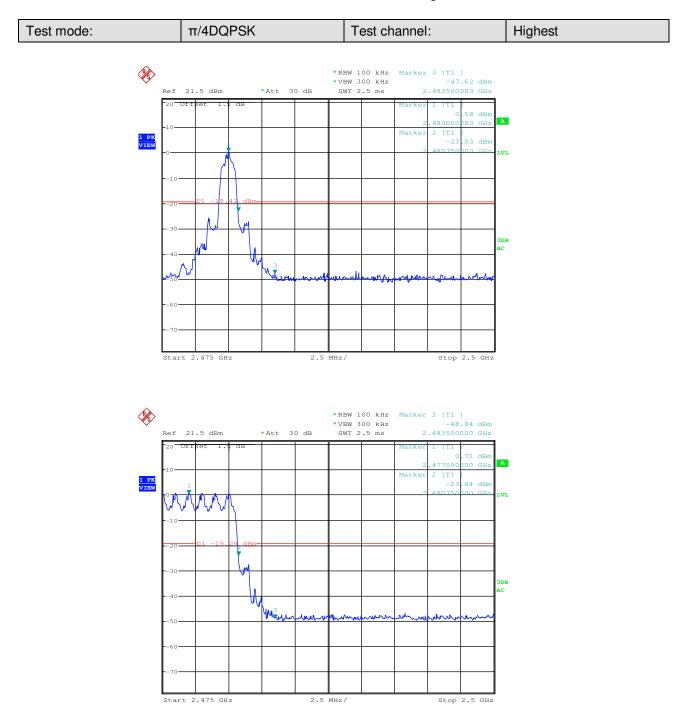
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."



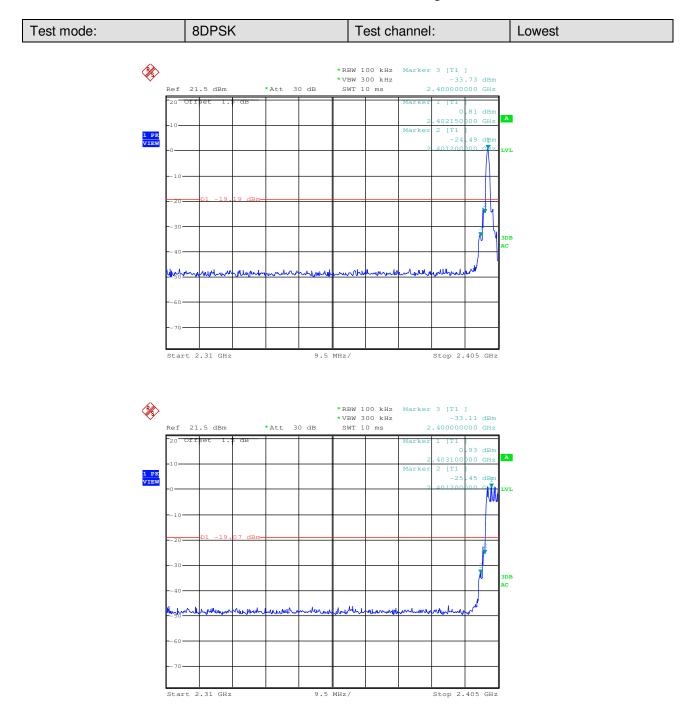
Report No.: SZEM121200667801 Page: 46 of 76



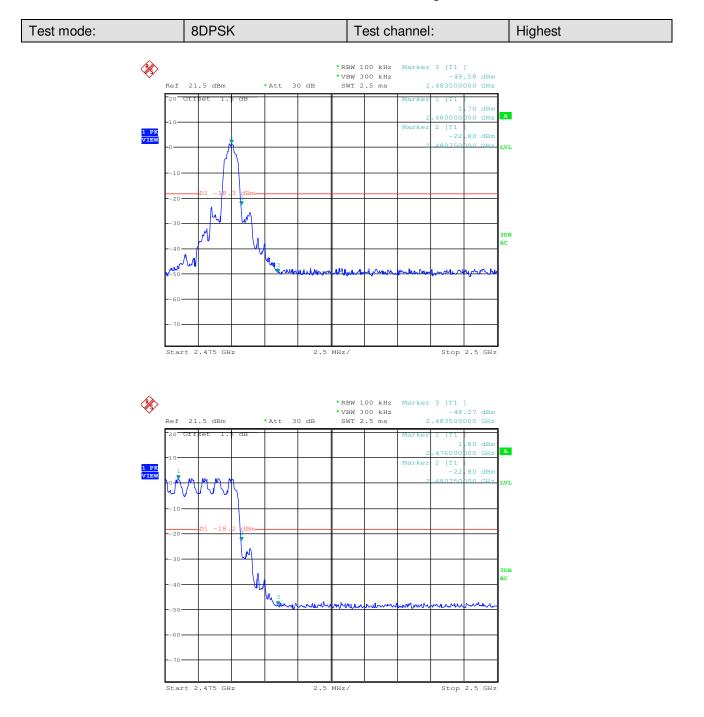
Report No.: SZEM121200667801 Page: 47 of 76



Report No.: SZEM121200667801 Page: 48 of 76



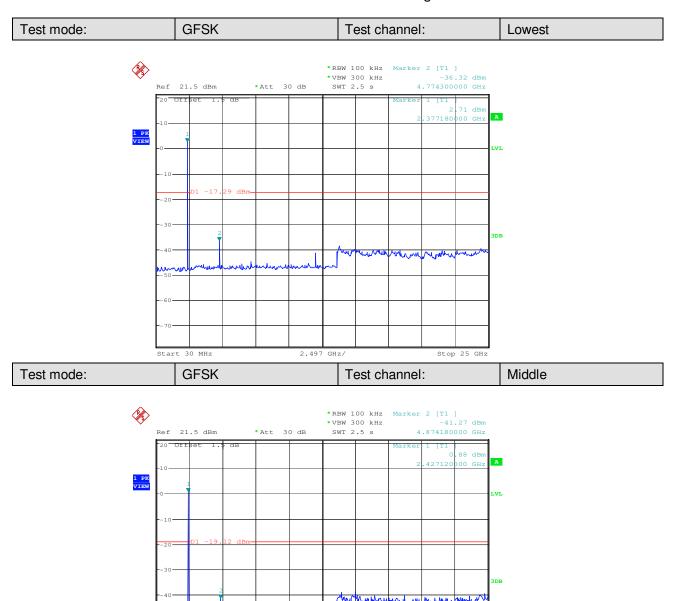
Report No.: SZEM121200667801 Page: 49 of 76



Report No.: SZEM121200667801 Page: 50 of 76

Report No.: SZEM121200667801 Page: 51 of 76

Report No.: SZEM121200667801 Page: 52 of 76


5.9 Spurious RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)			
Test Method:	ANSI C63.10:2009			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark:			
	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type			
Final Test Mode:	Through Pre-scan, find the DH5 of date type is the worse case of GFSK modulation type, 2-DH5 of date type is worse case of π /4DQPSK modulation type, 3-DH5 of date type is worse case of 8DPSK modulation type.			
Instruments Used:	Refer to section 4.10 for details			
Test Results:	Pass			

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

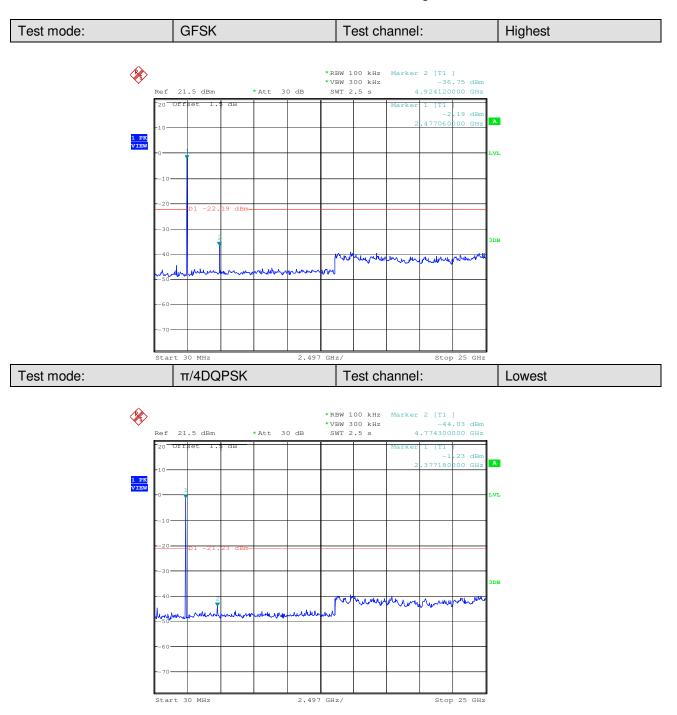
Report No.: SZEM121200667801 Page: 53 of 76

wyhlo

هار م

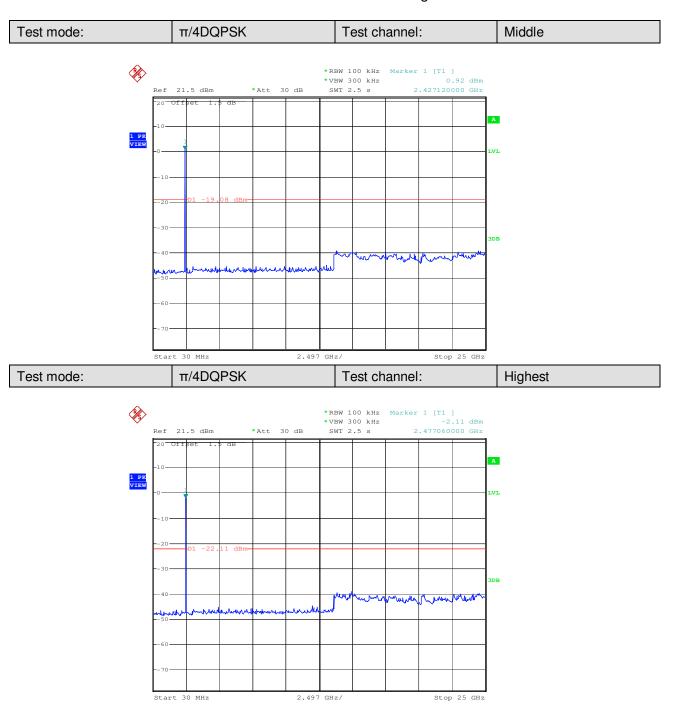
2.497 GHz/

Start 30 MHz

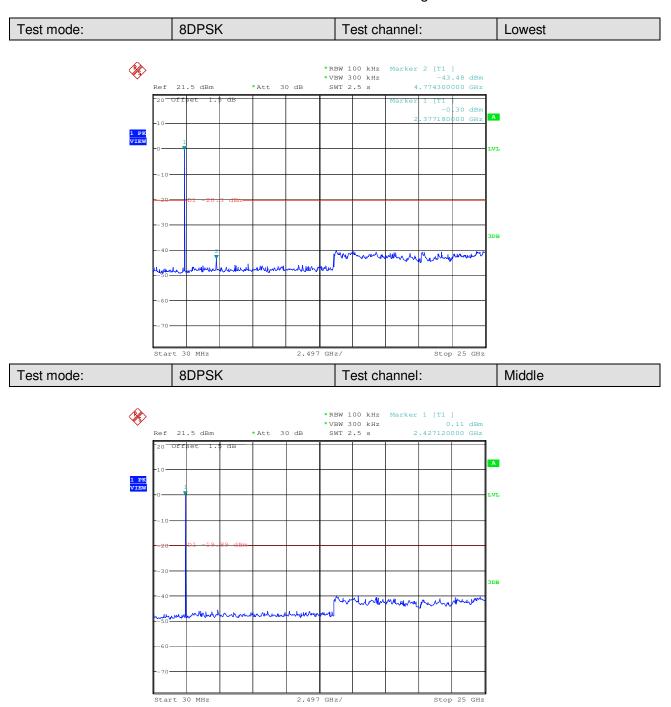

mil m mariana

Stop 25 GHz

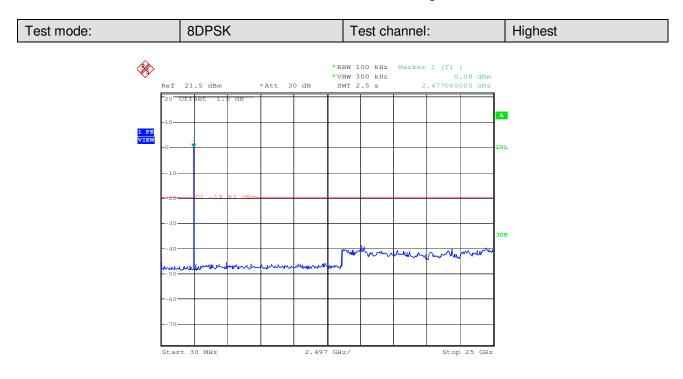
[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sg.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.



Report No.: SZEM121200667801 Page: 54 of 76



Report No.: SZEM121200667801 Page: 55 of 76


Report No.: SZEM121200667801 Page: 56 of 76

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

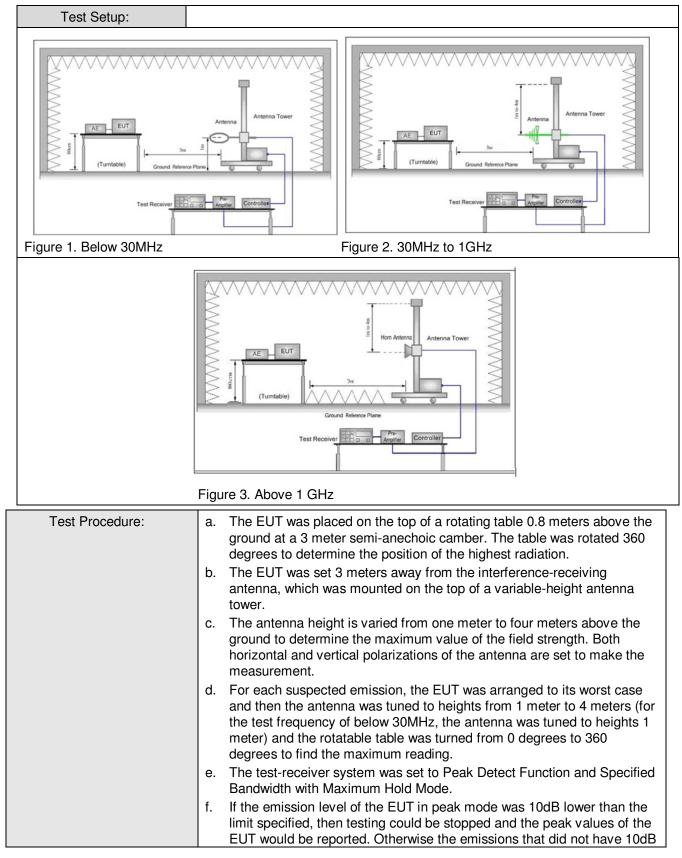
Report No.: SZEM121200667801 Page: 57 of 76

Report No.: SZEM121200667801 Page: 58 of 76

5.10Pseudorandom Frequency Hopping Sequence

Test Requirement:	
	47 CFR Part 15C Section 15.247 (a)(1) requirement:
Frequency hopping system	ns shall have hopping channel carrier frequencies separated by a minimum
of 25 kHz or the 20 dB bar	ndwidth of the hopping channel, whichever is greater.
Alternatively. Frequency h	nopping systems operating in the 2400-2483.5 MHz band may have hopping
channel carrier frequencie	es that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the
nopping channel, whichev	ver is greater, provided the systems operate with an output power no greater
	n shall hop to channel frequencies that are selected at the system hopping
	n ordered list of hopping frequencies. Each frequency must be used equally
	ansmitter. The system receivers shall have input bandwidths that match the
	ths of their corresponding transmitters and shall shift frequencies in
synchronization with the tr	ansmitted signals.
EUT Pseudorandom Free	quency Hopping Sequence
The pseudorandom seque	ence may be generated in a nine-stage shift register whose 5th and 9th stage
outputs are added in a mo	odulo-two addition stage. And the result is fed back to the input of the first
stage. The sequence begi	ins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialize
with nine ones.	
Number of shift register a	stages: 9
· Length of pseudo-randor	m sequence: 29 -1 = 511 bits
 Longest sequence of zer 	ros: 8 (non-inverted signal)
_	
	_ <u>}</u> -{_}-{_}-{_}-{_}-{_}-{_}-{_}-{_}-{_}-{_}
·	
Linear Feedback	Shift Register for Generation of the PRBS sequence
	Shift Register for Generation of the PRBS sequence ndom Frequency Hopping Sequence as follow:
	с ,
An example of Pseudoran	dom Frequency Hopping Sequence as follow:
An example of Pseudorane	dom Frequency Hopping Sequence as follow:
An example of Pseudoran	dom Frequency Hopping Sequence as follow:
An example of Pseudoran	Idom Frequency Hopping Sequence as follow: 62 64 78 1 73 75 77
An example of Pseudorand	ally on the average by each transmitter.
An example of Pseudorand 0 2 4 6 Each frequency used equations The system receivers have	Idom Frequency Hopping Sequence as follow: 62 64 78 1 73 75 77

Report No.: SZEM121200667801 Page: 59 of 76


5.11 Radiated Spurious Emission

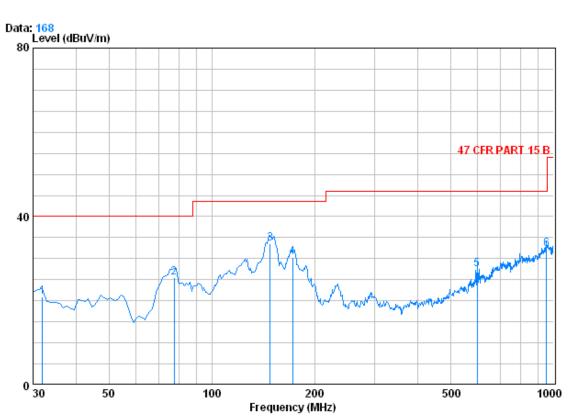
Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2009							
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark		
	0.009MHz-0.090MH	z	Peak	10kHz	z 30kHz	Peak		
	0.009MHz-0.090MH	z	Average	10kHz	z 30kHz	Average		
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	z 30kHz	Quasi-peak		
	0.110MHz-0.490MH	z	Peak	10kHz	z 30kHz	Peak		
	0.110MHz-0.490MH	z	Average	10kHz	z 30kHz	Average		
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak		
	30MHz-1GHz		Quasi-peak	100 kH	lz 300kHz	Quasi-peak		
	Above 1GHz		Peak	1MHz	z 3MHz	Peak		
			Peak	1MHz	z 10Hz	Average		
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (m		
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300		
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30		
	1.705MHz-30MHz		30	-	-	30		
	30MHz-88MHz		100	40.0	Quasi-peak	3		
	88MHz-216MHz		150	43.5	Quasi-peak	3		
	216MHz-960MHz		200	46.0	Quasi-peak	3		
	960MHz-1GHz	960MHz-1GHz		54.0	Quasi-peak	3		
	Above 1GHz	500	54.0	Average	3			
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.							

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM121200667801 Page: 60 of 76

Report No.: SZEM121200667801 Page: 61 of 76

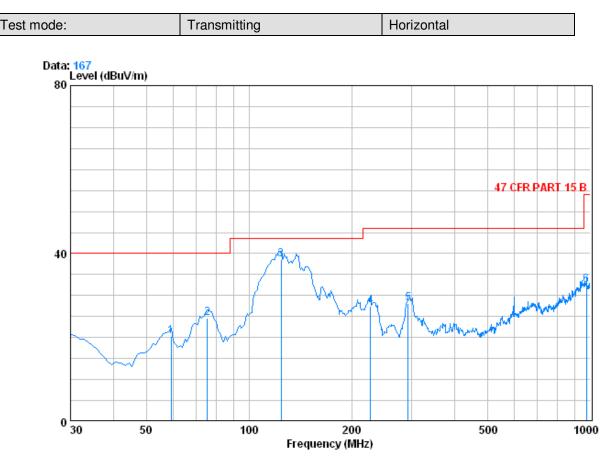
	margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.			
	 g. Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz) 			
	h. Repeat above procedures until all frequencies measured was complete.			
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of			
	data type			
Final Test Mode:	Through Pre-scan, find the DH5 of date type is the worse case of GFSK			
	modulation type			
Instruments Used:	Refer to section 4.10 for details			
Test Results:	Pass			



Report No.: SZEM121200667801 Page: 62 of 76

5.11.1 Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting	Vertical



Condition : 47 CFR PART 15 B 3m 3142C NEW VERTICAL Job No. : 6678RF Mode : Transmitting

	Ŭ	Cable	Intenna	Preamp	Read		Limit	Over
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	31.940	0.60	16.48	27.35	31.12	20.85	40.00	-19.15
2	77.530	1.03	4.87	27.23	46.93	25.60	40.00	-14.40
3	148.340	1.31	9.20	26.91	50.01	33.61	43.50	-9.89
4	172.590	1.36	8.45	26.81	47.29	30.29	43.50	-13.21
5	598.420	2.70	15.26	27.55	36.98	27.39	46.00	-18.61
6	952.470	3.65	21.30	26.54	33.75	32.17	46.00	-13.83

Report No.: SZEM121200667801 Page: 63 of 76

Condition	: 47 CFR PART 15 B 3m 3142C NEW HORIZONTAL
Job No.	: 6678RF

Mode : Transmitting

				Preamp	Read		Limit	Over
	Freq	LOSS	ractor	Factor	Level	rever	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	59.100	0.80	5.46	27.27	41.34	20.32	40.00	-19.68
2	75.590	0.97	4.58	27.24	46.29	24.61	40.00	-15.39
3	124.090	1.26	7.86	27.05	56.41	38.49	43.50	-5.01
4	226.910	1.56	7.77	26.61	44.68	27.40	46.00	-18.60
5	292.870	1.87	9.42	26.42	43.29	28.16	46.00	-17.84
6	974.780	3.68	21.03	26.44	34.22	32.49	54.00	-21.51

Report No.: SZEM121200667801 Page: 64 of 76

Worse case r	mode:	GFSK(DH5)	Test	Test channel:		Lowest Remark:		Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3080.601	3.38	33.37	40.37	50.13	46.51	74	-27.49	Vertical
4785.075	4.68	34.73	41.61	60.24	58.04	74	-15.96	Vertical
5806.408	5.06	35.40	41.09	50.81	50.18	74	-23.82	Vertical
6956.627	5.48	35.85	40.08	50.56	51.81	74	-22.19	Vertical
8042.903	6.20	36.01	39.15	49.39	52.45	74	-21.55	Vertical
9441.913	6.03	37.14	37.94	47.21	52.44	74	-21.56	Vertical
3709.691	3.91	33.45	40.83	50.23	46.76	74	-27.24	Horizontal
4785.075	4.68	34.73	41.61	54.94	52.74	74	-21.26	Horizontal
5850.919	5.07	35.45	41.06	51.12	50.58	74	-23.42	Horizontal
6611.326	5.28	36.20	40.40	50.88	51.96	74	-22.04	Horizontal
7470.558	6.08	35.99	39.64	50.64	53.07	74	-20.93	Horizontal
8441.459	6.18	36.18	38.80	49.59	53.15	74	-20.85	Horizontal

5.11.2 Transmitter Emission above 1GHz

Worse case	mode:	GFSK(DH5) Tes	st channel:	Lowest	Rer	nark:	Average	
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization	
3080.601	3.38	33.37	40.37	35.70	32.08	54	-21.92	Vertical	
4785.075	4.68	34.73	41.61	44.00	41.80	54	-12.20	Vertical	
5806.408	5.06	35.40	41.09	36.40	35.77	54	-18.23	Vertical	
6956.627	5.48	35.85	40.08	35.60	36.85	54	-17.15	Vertical	
8042.903	6.20	36.01	39.15	33.91	36.97	54	-17.03	Vertical	
9441.913	6.03	37.14	37.94	32.99	38.22	54	-15.78	Vertical	
3709.691	3.91	33.45	40.83	37.00	33.53	54	-20.47	Horizontal	
4785.075	4.68	34.73	41.61	41.80	39.60	54	-14.40	Horizontal	
5850.919	5.07	35.45	41.06	38.01	37.47	54	-16.53	Horizontal	
6611.326	5.28	36.20	40.40	37.10	38.18	54	-15.82	Horizontal	
7470.558	6.08	35.99	39.64	36.81	39.24	54	-14.76	Horizontal	
8441.459	6.18	36.18	38.80	36.20	39.76	54	-14.24	Horizontal	

Report No.: SZEM121200667801 Page: 65 of 76

Worse case	mode:	GFSK(DH5) Te	st channel:	Middle	Rem	nark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3088.453	3.39	33.37	40.37	50.66	47.05	74	-26.95	Vertical
4883.519	4.72	34.59	41.68	59.98	57.61	74	-16.39	Vertical
6235.364	5.19	35.98	40.71	50.84	51.30	74	-22.70	Vertical
7394.878	6.00	35.96	39.71	51.29	53.54	74	-20.46	Vertical
8637.084	6.17	36.31	38.64	48.57	52.41	74	-21.59	Vertical
9636.161	5.99	37.34	37.76	47.63	53.20	74	-20.80	Vertical
3709.691	3.91	33.45	40.83	48.41	44.94	74	-29.06	Horizontal
4883.519	4.72	34.59	41.68	54.08	51.71	74	-22.29	Horizontal
6235.364	5.19	35.98	40.71	48.59	49.05	74	-24.95	Horizontal
7624.250	6.23	36.00	39.51	48.36	51.08	74	-22.92	Horizontal
8637.084	6.17	36.31	38.64	47.30	51.14	74	-22.86	Horizontal
10453.950	6.09	38.24	37.64	45.52	52.21	74	-21.79	Horizontal

Worse case	mode:	GFSK(DH5) Te	est channel:	Middle	Re	mark:	Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	ReadingLevel(dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3088.453	3.39	33.37	40.37	36.00	32.39	54	-21.61	Vertical
4883.519	4.72	34.59	41.68	45.00	42.63	54	-11.37	Vertical
6235.364	5.19	35.98	40.71	36.80	37.26	54	-16.74	Vertical
7394.878	6.00	35.96	39.71	34.40	36.65	54	-17.35	Vertical
8637.084	6.17	36.31	38.64	33.00	36.84	54	-17.16	Vertical
9636.161	5.99	37.34	37.76	32.99	38.56	54	-15.44	Vertical
3709.691	3.91	33.45	40.83	32.00	28.53	54	-25.47	Horizontal
4883.519	4.72	34.59	41.68	42.00	39.63	54	-14.37	Horizontal
6235.364	5.19	35.98	40.71	33.00	33.46	54	-20.54	Horizontal
7624.250	6.23	36.00	39.51	31.00	33.72	54	-20.28	Horizontal
8637.084	6.17	36.31	38.64	31.00	34.84	54	-19.16	Horizontal
10453.950	6.09	38.24	37.64	29.00	35.69	54	-18.31	Horizontal

Report No.: SZEM121200667801 Page: 66 of 76

Worse case	mode:	GFSK(DH5) Test	t channel:	Highest	Rem	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3738.129	3.95	33.49	40.84	47.95	44.55	74	-29.45	Vertical
4971.316	4.76	34.43	41.75	54.86	52.30	74	-21.70	Vertical
6235.364	5.19	35.98	40.71	48.63	49.09	74	-24.91	Vertical
7624.250	6.23	36.00	39.51	47.87	50.59	74	-23.41	Vertical
8441.459	6.18	36.18	38.80	47.23	50.79	74	-23.21	Vertical
10453.950	6.09	38.24	37.64	45.87	52.56	74	-21.44	Vertical
3588.939	3.81	33.30	40.73	48.50	44.88	74	-29.12	Horizontal
4971.316	4.76	34.43	41.75	54.06	51.50	74	-22.50	Horizontal
6544.350	5.27	36.27	40.45	48.56	49.65	74	-24.35	Horizontal
7413.726	6.02	35.97	39.69	48.81	51.11	74	-22.89	Horizontal
9370.083	6.05	37.03	37.99	47.26	52.35	74	-21.65	Horizontal
10480.590	6.09	38.28	37.65	46.44	53.16	74	-20.84	Horizontal
Worse case	mode:	GFSK(DH5) Test	t channel:	Highest	Rem	ark:	Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
3738.129	3.95	33.49	40.84	32.99	29.59	54	-24.41	Vertical
4971.316	4.76	34.43	41.75	40.00	37.44	54	-16.56	Vertical
6235.364	5.19	35.98	40.71	34.10	34.56	54	-19.44	Vertical
7624.250								
1024.200	6.23	36.00	39.51	34.00	36.72	54	-17.28	Vertical
8441.459	6.23 6.18	36.00 36.18	39.51 38.80	34.00 33.40	36.72 36.96	54 54	-17.28 -17.04	Vertical Vertical
8441.459	6.18	36.18	38.80	33.40	36.96	54	-17.04	Vertical
8441.459 10453.950	6.18 6.09	36.18 38.24	38.80 37.64	33.40 31.00	36.96 37.69	54 54	-17.04 -16.31	Vertical Vertical
8441.459 10453.950 3588.939	6.18 6.09 3.81	36.18 38.24 33.30	38.80 37.64 40.73	33.40 31.00 34.00	36.96 37.69 30.38	54 54 54	-17.04 -16.31 -23.62	Vertical Vertical Horizontal
8441.459 10453.950 3588.939 4971.316	6.18 6.09 3.81 4.76	36.18 38.24 33.30 34.43	38.80 37.64 40.73 41.75	33.40 31.00 34.00 42.00	36.96 37.69 30.38 39.44	54 54 54 54	-17.04 -16.31 -23.62 -14.56	Vertical Vertical Horizontal Horizontal
8441.459 10453.950 3588.939 4971.316 6544.350	6.18 6.09 3.81 4.76 5.27	36.18 38.24 33.30 34.43 36.27	38.80 37.64 40.73 41.75 40.45	33.40 31.00 34.00 42.00 34.00	36.96 37.69 30.38 39.44 35.09	54 54 54 54 54 54	-17.04 -16.31 -23.62 -14.56 -18.91	Vertical Vertical Horizontal Horizontal Horizontal

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

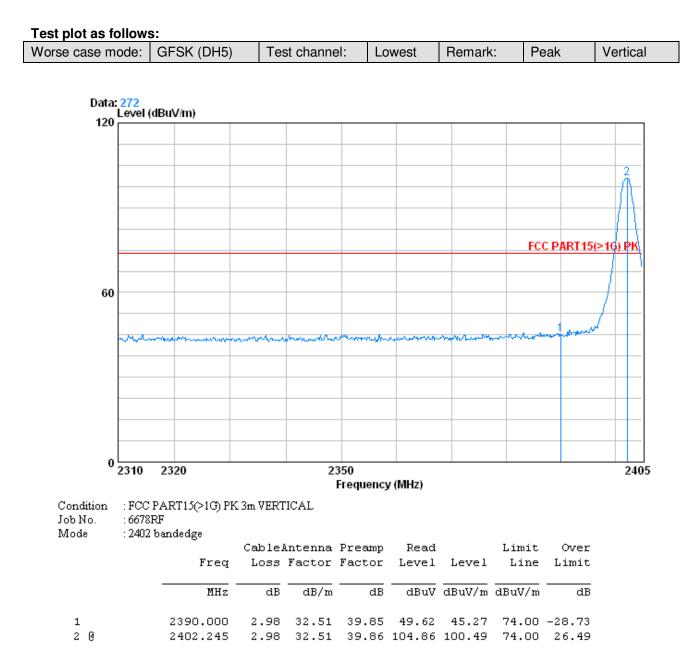
2) The disturbance above 11GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>www.sgs.com/terms and conditions.htm</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>www.sgs.com/terms e-document.htm</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM121200667801 Page: 67 of 76

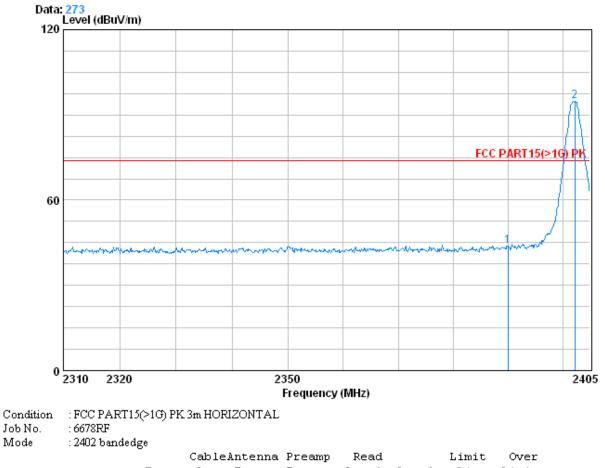
5.12Band edge (Radiated Emission)

Test Requirement:	47 CFR Part 15C Section	15.209 and 15.205			
Test Method:	ANSI C63.10: 2009				
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)				
Limit:	Frequency	Limit (dBuV/m @3m)	Remark		
	30MHz-88MHz	40.0	Quasi-peak Value		
	88MHz-216MHz	43.5	Quasi-peak Value		
	216MHz-960MHz	46.0	Quasi-peak Value		
	960MHz-1GHz	54.0	Quasi-peak Value		
	Above 1GHz	54.0	Average Value		
	Above TGHZ	74.0	Peak Value		
Test Setup:					
AE EUT (Turntable) Ground Referetoe Pic Test Receiver		AE EUT	Hom Antenna Tower		
Figure 1. 30MHz to 1GHz Figure 2. Above 1 GHz					



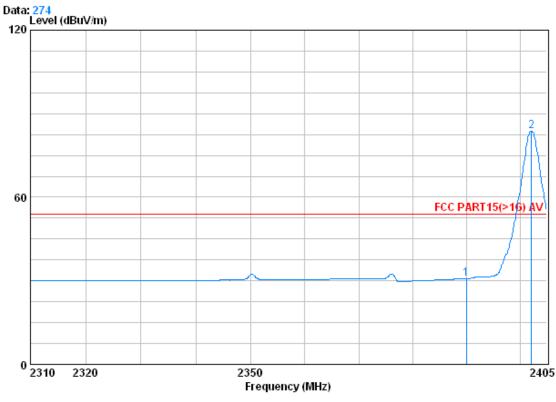
Report No.: SZEM121200667801 Page: 68 of 76

Test Procedure:	 a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel g. Test the EUT in the lowest channel , the Highest channel h. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of
	data type
Final Test Mode:	Through Pre-scan, find the DH5 of date type is the worse case of GFSK modulation type
Instruments Used:	Refer to section 4.10 for details
Test Results:	Pass


Report No.: SZEM121200667801 Page: 69 of 76

Report No.: SZEM121200667801 Page: 70 of 76

Worse case mode:	GFSK (DH5)	Test channel:	Lowest	Remark:	Peak	Horizontal
------------------	------------	---------------	--------	---------	------	------------

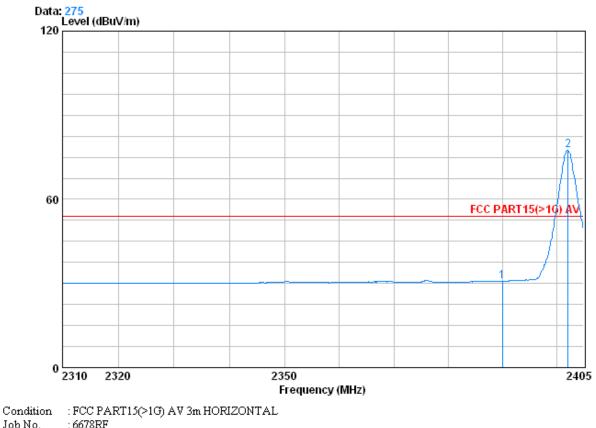


		0000101		rrcomp	1.0.000		1111110	0.01
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 X	2390.000 2402.245							

Report No.: SZEM121200667801 Page: 71 of 76

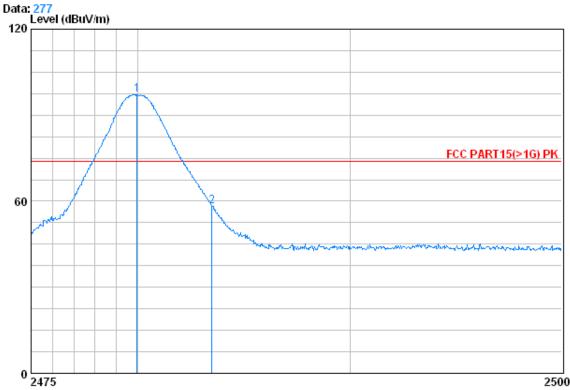
Worse case mode:	GFSK (DH5)	Test channel:	Lowest	Remark:	Average	Vertical
------------------	------------	---------------	--------	---------	---------	----------

Condition :FCC PART15(>1G) AV 3m VERTICAL Job No. :6678RF Mode :2402 bandedge


	_	Cablei	lntenna	Preamp	Read		Limit	Over
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	2390.000	2.98	32.51	39.85	35.12	30.77	54.00	-23.23
20	2402.150	2.98	32.51	39.86	88.20	83.84	54.00	29.84

Report No.: SZEM121200667801 Page: 72 of 76

Worse case mode: GFSK (OH5) Test channel:	Lowest	Remark:	Average	Horizontal	
-------------------------	--------------------	--------	---------	---------	------------	--


200140.	. 00) 014
Mode	: 2402 bandedge

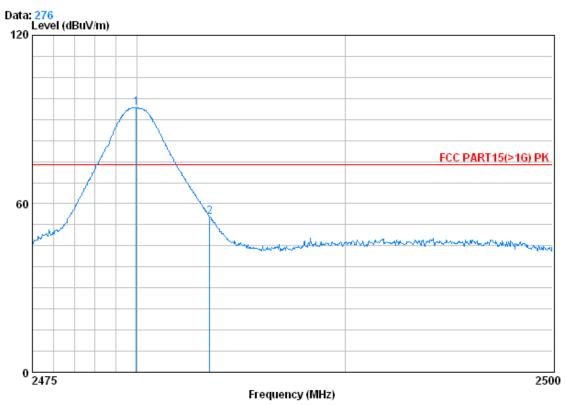
	Freq			Preamp Factor			Limit Line	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 X	2390.000 2402.150			39.85 39.86				

Report No.: SZEM121200667801 Page: 73 of 76

Worse case mode: GFSK (DH5)	Test channel:	Highest	Remark:	Peak	Vertical
-----------------------------	---------------	---------	---------	------	----------

Frequency (MHz)

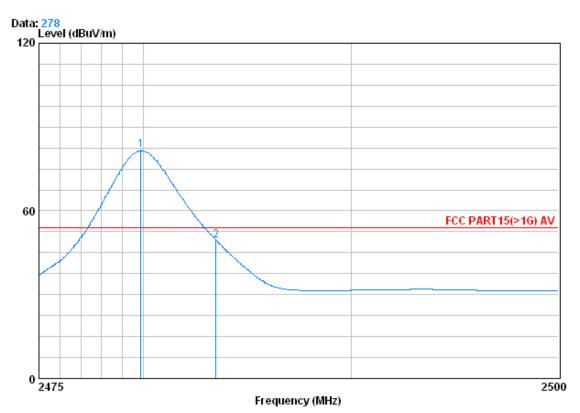
Condition : FCC PART15(>1G) PK 3m VERTICAL Job No. :6678RF


Mode : 2480 bandedge

	Freq			-	Read Level			
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 X 2	2479.975 2483.500				101.18 62.51			

Report No.: SZEM121200667801 Page: 74 of 76

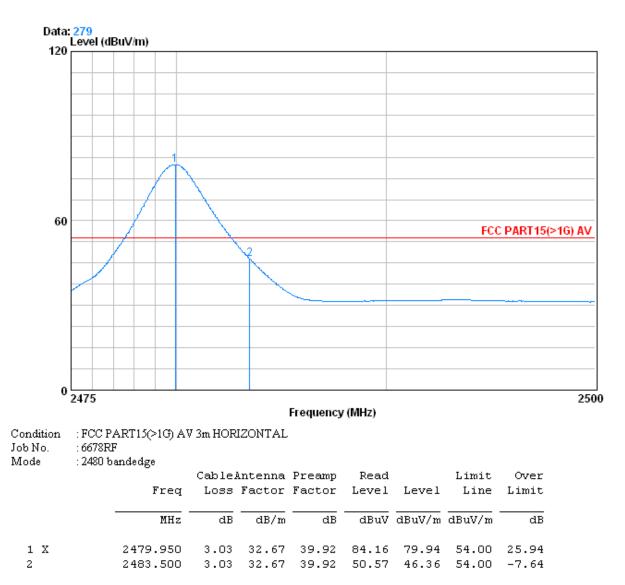
Worse case mode: GFSK (DH5)	Test channel:	Highest	Remark:	Peak	Horizontal	
-----------------------------	---------------	---------	---------	------	------------	--


Condition : FCC PART15(>1G) PK 3m HORIZONTAL Job No. : 6678RF Mode : 2480 bandedge

	Freq			Preamp Factor				
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 X 2	2479.975 2483.500			39.92 39.92				

Report No.: SZEM121200667801 Page: 75 of 76

Worse case mode: 0	GFSK (DH5)	Test channel:	Highest	Remark:	Average	Vertical
--------------------	------------	---------------	---------	---------	---------	----------


Condition : FCC PART15(>1G) AV 3m VERTICAL Job No. : 6678RF Mode : 2480 bandedge

	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
10 2	2479.875 2483.500			39.92 39.92				

Report No.: SZEM121200667801 Page: 76 of 76

Worse case mode: GFSK (DH5)	Test channel:	Highest	Remark:	Average	Horizontal	
-----------------------------	---------------	---------	---------	---------	------------	--

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor