

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen,

Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594

Email: sgs_internet_operations@sgs.com

Report No.: SZEM110700257001

Page: 1 of 69

FCC REPORT

Application No: SZEM1107002570RF

Applicant: Shenzhen SKY DRAGON Audio-video Technology Co. LTD

Product Name: Music Speaker

Operation Frequency: 2.402GHz to 2.480GHz

FCC ID: ZJPBC06ISB311B

Standards: FCC CFR Title 47 Part 15 Subpart C

Date of Receipt: 2011-07-29

Date of Test: 2011-08-01 to 2011-08-10

Date of Issue: 2011-08-26

Test Result : PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang

EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEM110700257001

Page: 2 of 69

2 Contents

			Page
1	CC	OVER PAGE	1
2	CC	ONTENTS	2
3		ST SUMMARY	
4		ENERAL INFORMATION	
	4.1	CLIENT INFORMATION	4
	4.2	GENERAL DESCRIPTION OF E.U.T.	
	4.3	E.U.T OPERATION MODE	
	4.4	DESCRIPTION OF SUPPORT UNITS	
	4.5	TEST FACILITY	
	4.6	TEST LOCATION	6
	4.7	OTHER INFORMATION REQUESTED BY THE CUSTOMER	6
	4.8	TEST INSTRUMENTS LIST	7
5	TE	ST RESULTS AND MEASUREMENT DATA	9
	5.1	ANTENNA REQUIREMENT:	9
	5.2	CONDUCTED EMISSIONS	10
	5.3	CONDUCTED PEAK OUTPUT POWER	13
	5.4	20DB OCCUPY BANDWIDTH	19
	5.5	CARRIER FREQUENCIES SEPARATION	
	5.6	HOPPING CHANNEL NUMBER	
	5.7	DWELL TIME	
	5.8	BAND EDGE	
	5.9	RF ANTENNA CONDUCTED SPURIOUS EMISSIONS	
	5.10	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	5.11	RADIATED EMISSION	
		11.1 Radiated emission below 1GHz	
	<i>5.</i> 7		50
	_	11.2 Transmitter emission above 1GHz11.3 Band edge (Radiated Emission)	

Report No.: SZEM110700257001

Page: 3 of 69

3 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (b)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List (7 July 2002)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remark: Pass: The EUT complies with the essential requirements in the standard.

Fail: The EUT does not comply with the essential requirements in the standard.

Report No.: SZEM110700257001

Page: 4 of 69

4 General Information

4.1 Client Information

Applicant:	Shenzhen SKY DRAGON Audio-video Technology Co. LTD
Address of Applicant:	B16, Laneway 3, Liuxian 2RD, District 71, Baoan, shenzhen
Manufacturer:	Shenzhen SKY DRAGON Audio-video Technology Co. LTD
Address of Manufacturer:	B16, Laneway 3, Liuxian 2RD, District 71, Baoan, shenzhen
Factory:	Shenzhen SKY DRAGON Audio-video Technology Co. LTD
Address of Factory:	B16, Laneway 3, Liuxian 2RD, District 71, Baoan, shenzhen

4.2 General Description of E.U.T.

4.2 General Description	01 E.U.1.
Product Name:	Music Speaker
Model No.:	BC06, ISB311B
	Only the model BC06 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being the model No. and color.
Trade mark:	SAMESAY
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4DQPSK, 8DPSK
Antenna Type:	PCB Antenna
Antenna gain:	2.12dBi
Power supply:	DYS SWITCHING MODE POWER SUPPLY
	P/N: DYS182-050300-11407D
	MODEL: DYS182-050300W-1
	INPUT: 100-240V~50/60Hz 0.45A MAX
	OUTPUT: 50V === 3.0A

Report No.: SZEM110700257001

Page: 5 of 69

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The highest channel	2480MHz

SGS

SGS-CSTC Standards Technical Services Ltd.

Report No.: SZEM110700257001

Page: 6 of 69

4.3 E.U.T Operation mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	52 % RH
Atmospheric Pressure:	1004mbar
Test mode:	
Music + Charge mode:	Keep the EUT playing wireless music and charging to two mobile phone.
Transmitting mode:	Keep the EUT in continuously transmitting mode.

4.4 Description of Support Units

The EUT was tested with associated equipment as below.

Description	Manufacturer	Model No.
iPod	Apple	MC027CH/A
Mobile	Nokia	E71
Mobile	SAMSUNG	S5660

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 3m Semi-anechoic chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2197 and C-2383 respectively.

Date of Registration: September 29, 2008. Valid until September 28, 2011.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 556682, March 16, 2011

Industry Canada (IC)

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1.

4.6 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch E&E Lab No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594

No tests were sub-contracted.

4.7 Other Information Requested by the Customer

None.

Report No.: SZEM110700257001

Page: 7 of 69

4.8 Test Instruments list

RE i	RE in Chamber							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)		
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2011-06-10	2012-06-10		
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEL0023	2011-05-26	2012-05-26		
3	EMI Test software	AUDIX	E3	SEL0050	N/A	N/A		
4	Coaxial cable	SGS	N/A	SEL0028	2011-05-29	2012-05-29		
5	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2010-11-09	2011-11-09		
6	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2010-11-09	2011-11-09		
7	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2010-11-09	2011-11-09		
8	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2011-05-26	2012-05-26		
9	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2010-10-27	2011-10-27		
11	Band filter	Amindeon	82346	SEL0094	2011-05-26	2012-05-26		

Con	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)		
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2011-06-10	2012-06-10		
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2010-10-27	2011-10-26		
3	Two-Line V-Network	Rohde & Schwarz	ENV216	SEL0152	2010-10-27	2011-10-27		
4	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2011-05-26	2012-05-26		
5	Coaxial Cable	SGS	N/A	SEL0024	2011-05-29	2012-05-29		

Report No.: SZEM110700257001

Page: 8 of 69

RF conducted							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)	
1	Spectrum Analyzer	Rohde & Schwarz	FSP 30	SEL0154	2010-10-27	2011-10-27	
2	Coaxial cable	SGS	N/A	SEL0028	2011-05-29	2012-05-29	

	General used equipment								
Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date			
				No.	(yyyy-mm-dd)	(yyyy-mm-dd)			
1	Humidity/ Temperature Indicator	Shanghai	ZJ1-2B	SEL0102 to SEL0103	2010-11-04	2011-11-04			
2	Humidity/ Temperature Indicator	Shanghai	ZJ1-2B	SEL0101	2011-03-10	2012-03-10			
3	Barometer	ChangChun	DYM3	SEL0088	2011-05-18	2012-05-18			
4	Oscillogragh	Tektronix	TDS2022B	SZE007-4	2010-12-04	2011-12-04			

Report No.: SZEM110700257001

Page: 9 of 69

5 Test results and Measurement Data

5.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.12dBi.

Report No.: SZEM110700257001

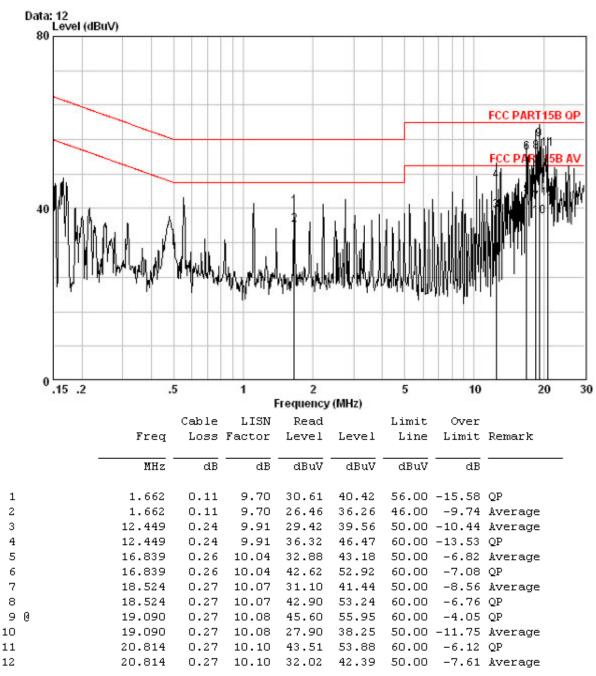
Page: 10 of 69

5.2 Conducted Emissions

are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 of conducted measurement. Test setup: Reference Plane Compared to the main power through a LISN that provides a 500hm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 of conducted measurement. Test setup:	<u> </u>	Conducted Linissions				
Test Frequency Range: Class / Severity: Class B Limit: Frequency range (MHz) Ouasi-peak 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 *Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power through a lin impedance stabilization network (L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral device are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 of conducted measurement. Test setup: Reference Plane LISN AC power EUT Equipment Under Test LISN Line impedence Stabilization Network Test table regint-0 bits Test Instruments: Refer to section 4.8 for details. Test mode: Music + Charge mode		Test Requirement:	FCC Part15 C Section 15.207			
Class / Severity: Class B Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power through a lin impedance stabilization network (L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral device are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum meission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 of conducted measurement. Test setup: Reference Plane Regulpment LISN AUX EU.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table Ineight-0 Bm Test Instruments: Refer to section 4.8 for details. Test mode: Music + Charge mode		Test Method:	ANSI C63.10: 2009			
Limit: Frequency range (MHz)		Test Frequency Range:	150kHz to 30MHz			
Test procedure Prequency range (MH2) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power through a lin impedance stabilization network (L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral device are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 of conducted measurement. Test setup: Reference Plane Reference Plane Reference Plane LISN AUX Equipment Under Test LISN Line impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 4.8 for details. Test mode: Music + Charge mode		Class / Severity:	Class B			
Test procedure 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56		Limit:	Fraguency range (MHz)	Limit (d	lBuV)	
Test procedure Test procedure Test procedure The E.U.T and simulators are connected to the main power through a lin impedance stabilization network (L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral device are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 of conducted measurement. Test setup: Reference Plane Regulpment Under Test LISN Line impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 4.8 for details. Test mode: Music + Charge mode			, , ,	Quasi-peak Average		
Test procedure Test procedure The E.U.T and simulators are connected to the main power through a lin impedance stabilization network (L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral device are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 of conducted measurement. Test setup: Reference Plane Reference Plane Remark E.U.T LISN Line impedence Stabilization Network Test table height-0.8m Test Instruments: Refer to section 4.8 for details. Test mode: Music + Charge mode			-			
* Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power through a lin impedance stabilization network (L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral device are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 of conducted measurement. Test setup: Reference Plane Reference Plane Reference Plane Remark E.U.T. Equipment Under Test LISN Line impedence Stabilization Network Test table height-0.8m Test Instruments: Refer to section 4.8 for details. Test mode: Music + Charge mode			-			
Test procedure The E.U.T and simulators are connected to the main power through a lin impedance stabilization network (L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral device are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all on the interface cables must be changed according to ANSI C63.10: 2009 of conducted measurement. Test setup: Reference Plane Reference Plane					50	
impedance stabilization network (L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral device are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 of conducted measurement. Test setup: Reference Plane Regulpment Regulpment Regulpment LISN LISN Lisn Line impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 4.8 for details. Test mode: Music + Charge mode			_			
LISN 40cm 80cm Filter AC power Equipment E.U.T Remark EUT Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 4.8 for details. Test mode: Music + Charge mode			impedance stabilization network (L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 on			
Remark E.U.T Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m Test Instruments: Refer to section 4.8 for details. Test mode: Music + Charge mode		Test setup:	Reference Plane			
Test Instruments: Refer to section 4.8 for details. Test mode: Music + Charge mode			AUX Equipment Test table/Insulation pla Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilizatio	J.T Filte	er — AC power	
Test mode: Music + Charge mode		Test Instruments:				
rest results: Pass		Test results:	Pass			

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

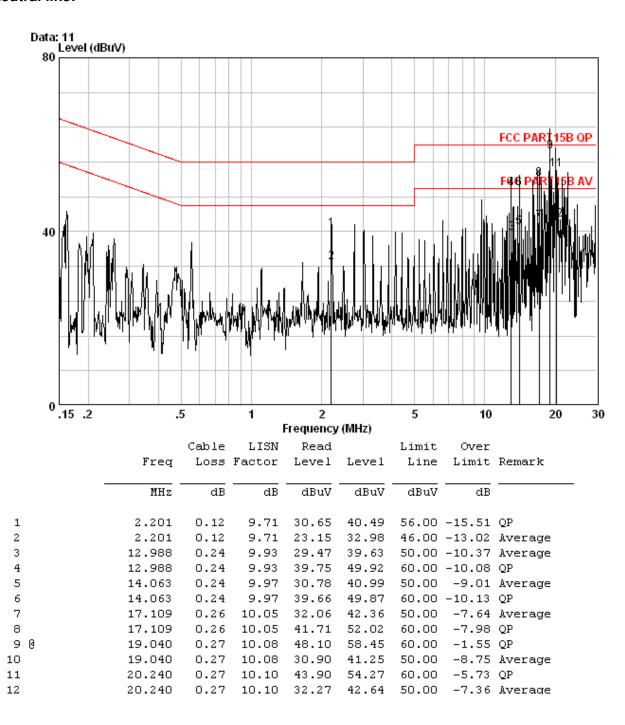

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Report No.: SZEM110700257001

Page: 11 of 69

Live line:

Notes:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM110700257001

Page: 12 of 69

Neutral line:

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM110700257001

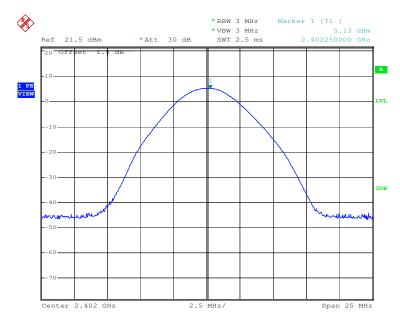
Page: 13 of 69

5.3 Conducted Peak Output Power

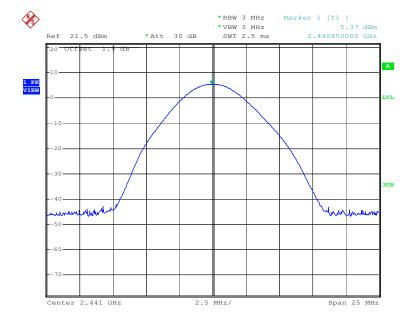
Test Requirement:	FCC Part15 C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2009		
Limit:	30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane Remark:		
-	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.		
Test Instruments:	Refer to section 4.8 for details.		
Test state:	Non-hopping transmitting with all kinds of modulation.		
Test results:	Pass		

Measurement Data

GFSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	5.13	30.00	Pass	
Middle	5.37	30.00	Pass	
Highest	6.40	30.00	Pass	
	π/4DQPSK m	ode		
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	4.59	30.00	Pass	
Middle	4.80	30.00	Pass	
Highest	5.56	30.00	Pass	
8DPSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	4.71	30.00	Pass	
Middle	4.91	30.00	Pass	
Highest	5.69	30.00	Pass	



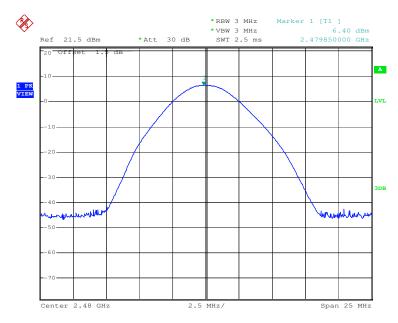
Report No.: SZEM110700257001

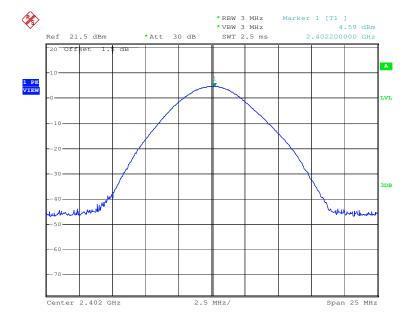

Page: 14 of 69

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Test mode: GFSK Test channel: Middle

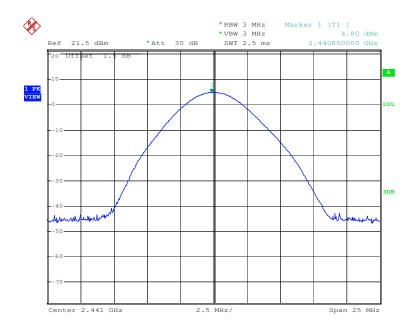


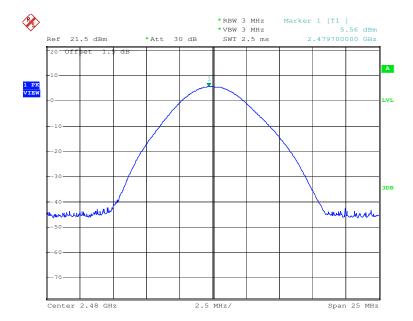

Report No.: SZEM110700257001

Page: 15 of 69

Test mode: GFSK Test channel: Highest

Test mode: π/4DQPSK Test channel: Lowest

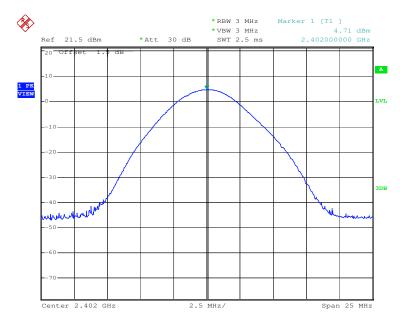


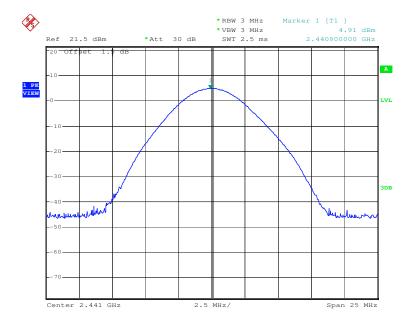

Report No.: SZEM110700257001

Page: 16 of 69

Test mode: π/4DQPSK Test channel: Middle

Test mode: π/4DQPSK Test channel: Highest

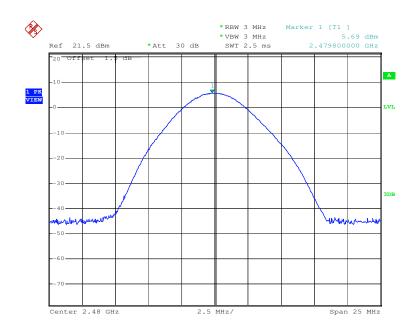



Report No.: SZEM110700257001

Page: 17 of 69

Test mode: 8DPSK Test channel: Lowest

Test mode: 8DPSK Test channel: Middle



Report No.: SZEM110700257001

Page: 18 of 69

Test mode: 8DPSK Test channel: Highest

Report No.: SZEM110700257001

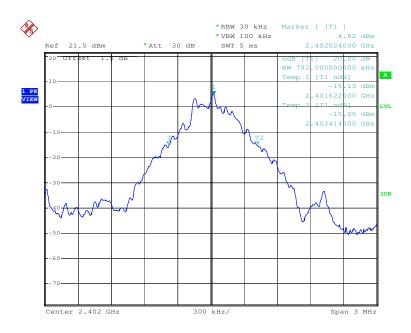
Page: 19 of 69

5.4 20dB Occupy Bandwidth

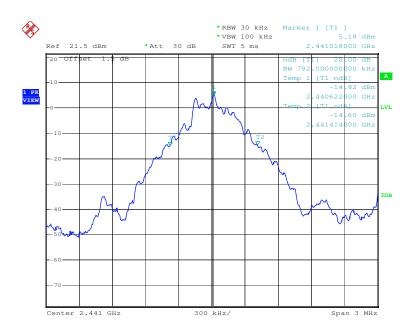
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2009		
Limit:	NA		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
Test Instruments:	Refer to section 4.8 for details		
Test state:	Non-hopping transmitting with all kind of modulation.		
Test results:	Pass		

Measurement Data

Test channel	20dB Occupy Bandwidth (kHz)		
	GFSK	π/4DQPSK	8DPSK
Lowest	792	1212	1212
Middle	792	1224	1212
Highest	798	1218	1212

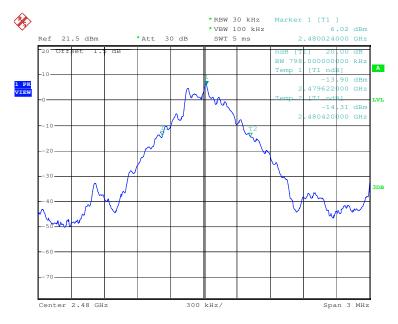


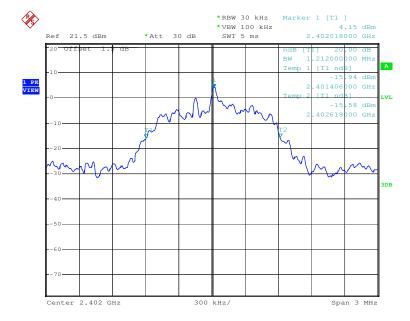
Report No.: SZEM110700257001


Page: 20 of 69

Test plot as follows:

Test mode: GFSK Test channel: Lowest

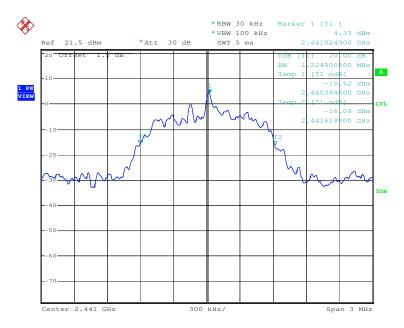


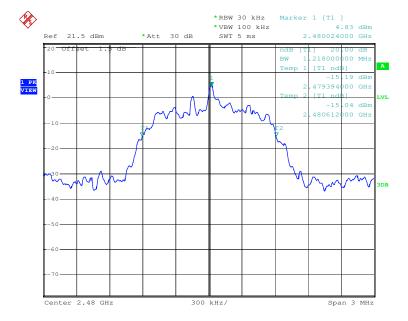

Report No.: SZEM110700257001

Page: 21 of 69

Test mode: GFSK Test channel: Highest

Test mode: π/4DQPSK Test channel: Lowest

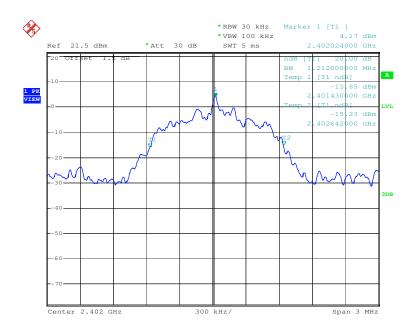


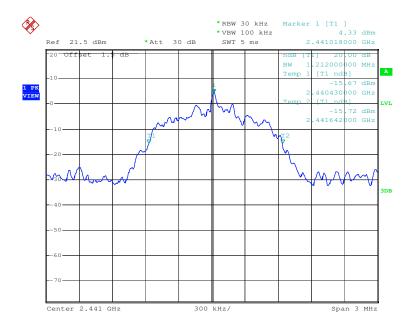

Report No.: SZEM110700257001

Page: 22 of 69

Test mode: π/4DQPSK Test channel: Middle

Test mode: π/4DQPSK Test channel: Highest

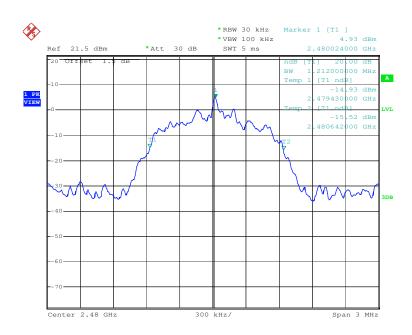



Report No.: SZEM110700257001

Page: 23 of 69

Test mode: 8DPSK Test channel: Lowest

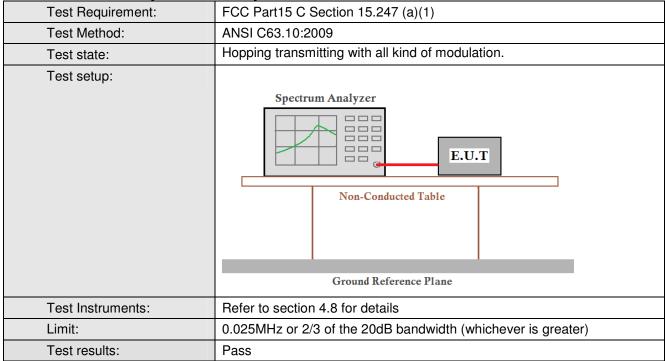
Test mode: 8DPSK Test channel: Middle



Report No.: SZEM110700257001

Page: 24 of 69

Test mode: 8DPSK Test channel: Highest



Report No.: SZEM110700257001

Page: 25 of 69

5.5 Carrier Frequencies Separation

Report No.: SZEM110700257001

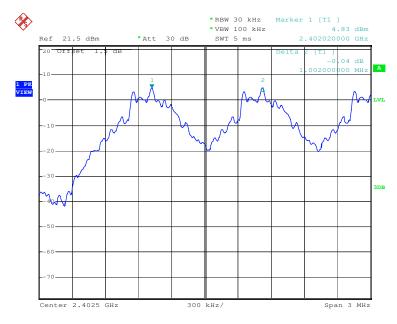
Page: 26 of 69

Measurement Data

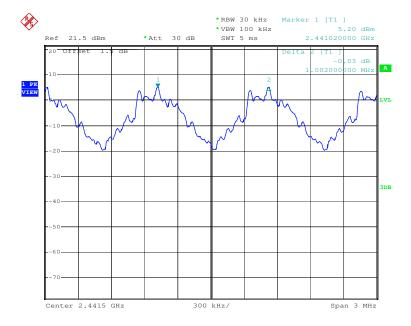
GFSK mode				
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1002	≥816	Pass	
Middle	1002	≥816	Pass	
Highest	1002	≥816	Pass	
	π/4DQPSK m	ode		
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1002	≥816	Pass	
Middle	1002	≥816	Pass	
Highest	1002	≥816	Pass	
8DPSK mode				
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1008	≥816	Pass	
Middle	1002	≥816	Pass	
Highest	1002	≥816	Pass	

Note: According to section 5.4,

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
	(worse case)	(Carrier i requencies deparation)
GFSK	798	532
π/4DQPSK	1224	816
8DPSK	1212	808



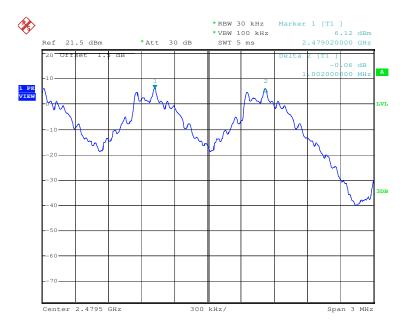
Report No.: SZEM110700257001

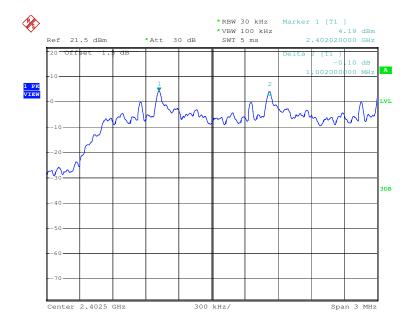

Page: 27 of 69

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Test mode: GFSK Test channel: Middle

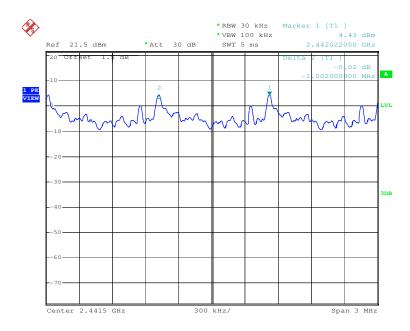


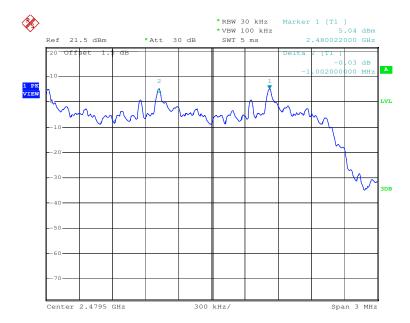

Report No.: SZEM110700257001

Page: 28 of 69

Test mode: GFSK Test channel: Highest

Test mode: π/4DQPSK Test channel: Lowest

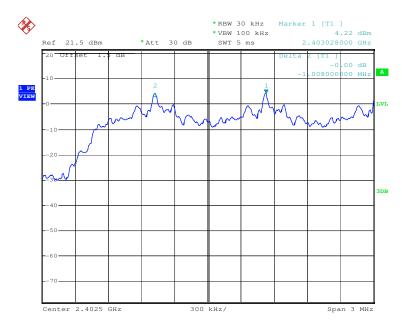


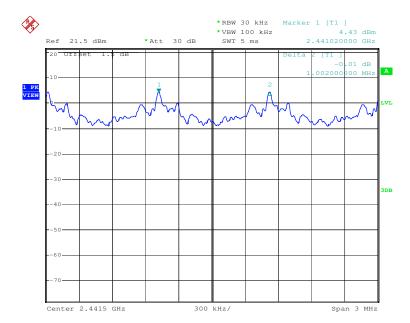

Report No.: SZEM110700257001

Page: 29 of 69

Test mode: π/4DQPSK Test channel: Middle

Test mode: π/4DQPSK Test channel: Highest

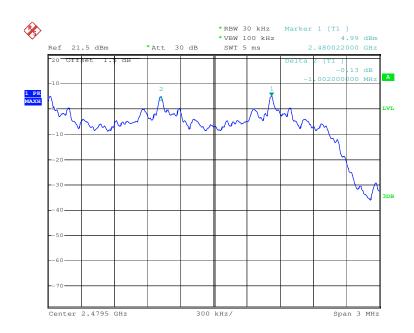



Report No.: SZEM110700257001

Page: 30 of 69

Test mode: 8DPSK Test channel: Lowest

Test mode: 8DPSK Test channel: Middle



Report No.: SZEM110700257001

Page: 31 of 69

Test mode: 8DPSK Test channel: Highest

Report No.: SZEM110700257001

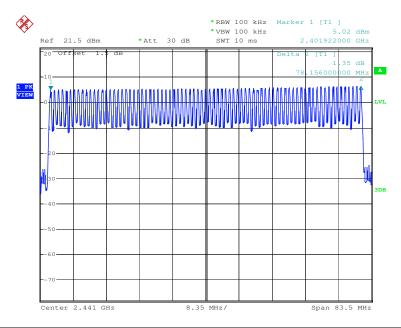
Page: 32 of 69

5.6 Hopping Channel Number

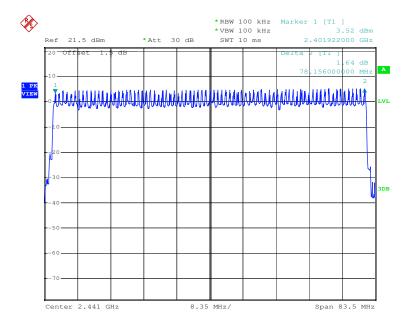
Test Requirement:	FCC Part15 C Section 15.247 (b)		
Test Method:	ANSI C63.10:2009		
Limit:	75channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 4.8 for details		
Test state:	Hopping transmitting with all kind of modulation.		
Test results:	Pass		

Measurement Data

Mode	Hopping channel numbers	Limit
GFSK	79	≥75
π/4DQPSK	79	≥75
8DPSK	79	≥75



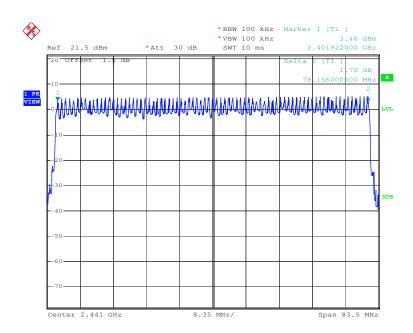
Report No.: SZEM110700257001


Page: 33 of 69

Test plot as follows

Test mode: GFSK

Test mode: π/4DQPSK



Report No.: SZEM110700257001

Page: 34 of 69

Test mode: 8DPSK

Report No.: SZEM110700257001

Page: 35 of 69

5.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2009 and KDB DA00-705		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 4.8 for details.		
Test state:	Hopping transmitting with all kind of modulation.		
Test results:	Pass		

Measurement Data

Mode	Packet	Dwell time (second)	Limit (second)
	DH1	0.1696	0.4
GFSK	DH3	0.2848	0.4
	DH5	0.3243	0.4
	2-DH1	0.1728	0.4
π/4DQPSK	2-DH3	0.2880	0.4
	2-DH5	0.1968	0.4
	3-DH1	0.1728	0.4
8DPSK	3-DH3	0.2896	0.4
	3-DH5	0.3211	0.4

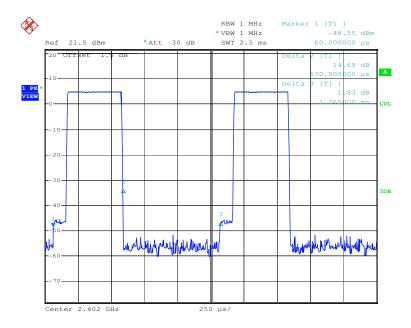
The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

The lowest channel (2402MHz), middle channel (2441MHz), highest channel (2480MHz) as blow

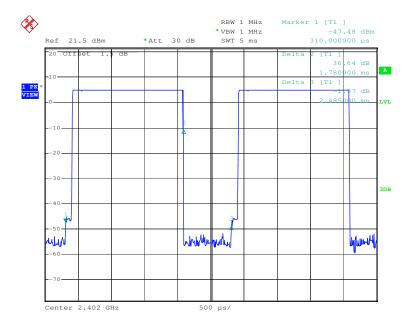
DH1 time slot=0.530(ms)*(1600/ (2*79))*31.6=0.1696ms

DH3 time slot=1.780(ms)*(1600/ (4*79))*31.6=0.2848 ms

DH5 time slot=3.040(ms)*(1600/ (6*79))*31.6=0.3243ms

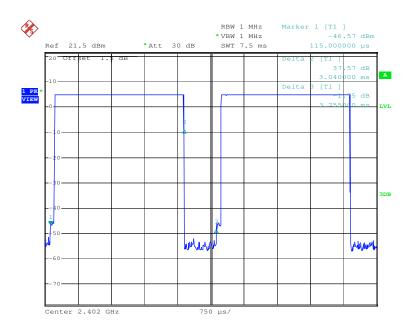


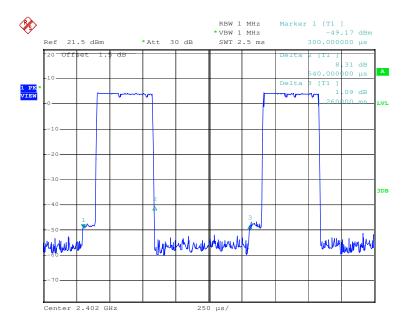
Report No.: SZEM110700257001


Page: 36 of 69

Test plot as follows

Toot mode:	GFSK	Toot Booket:	DH1
Lest mode:	Gran	Test Packet:	וחטו

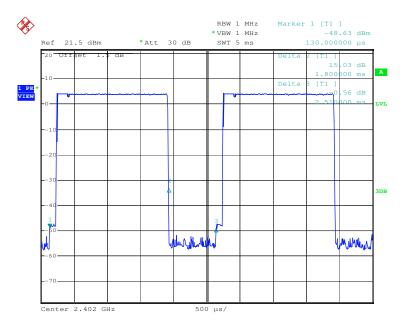


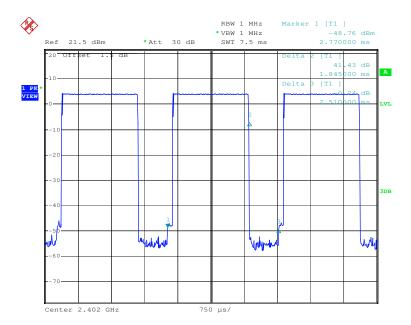

Report No.: SZEM110700257001

Page: 37 of 69

Test mode: GFSK Test Packet: DH5

Test mode: π/4DQPSK Test Packet: 2-DH1

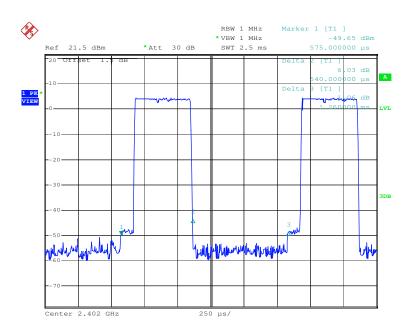


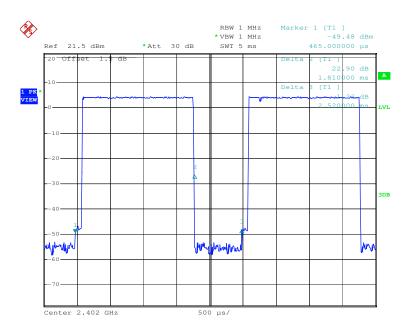

Report No.: SZEM110700257001

Page: 38 of 69

Test mode: π/4DQPSK Test Packet: 2-DH3

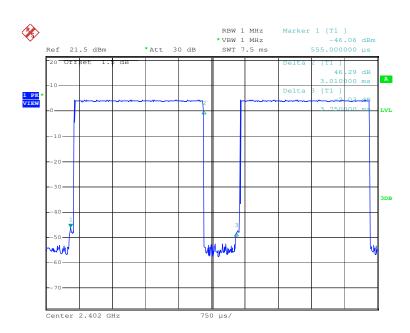
Test mode: π/4DQPSK Test Packet: 2-DH5




Report No.: SZEM110700257001

Page: 39 of 69

Test mode: 8DPSK Test Packet: 3-DH1



Report No.: SZEM110700257001

Page: 40 of 69

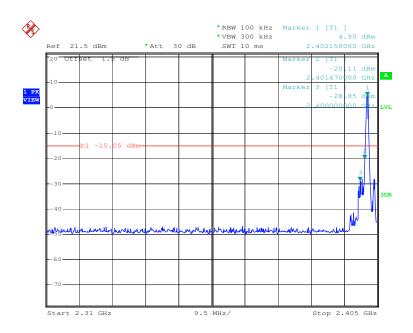
Test mode: 8DPSK Test Packet: 3-DH5

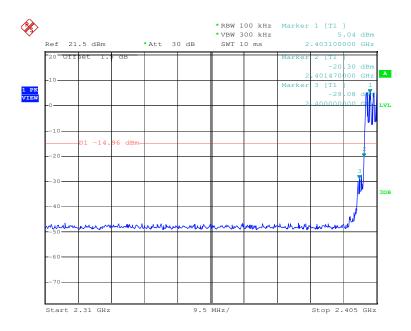
Report No.: SZEM110700257001

Page: 41 of 69

5.8 Band Edge

olo Dalla Lago						
Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.					
Test Instruments:	Refer to section 4.8 for details.					
Test state:	Non hopping transmitting and Hopping transmitting with all kinds of modulation.					
Test results:	Pass					

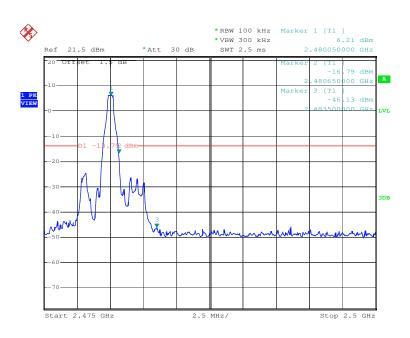


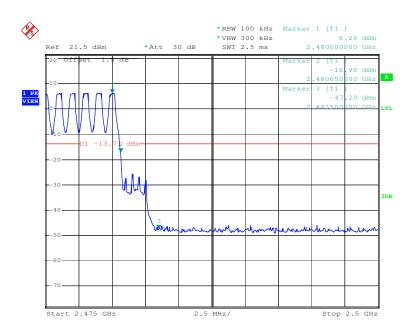

Report No.: SZEM110700257001

Page: 42 of 69

Test plot as follows:

Toot modo:	GFSK	Toot oboppel:	Lowoot
l lest mode:	IGEON	l lest channel:	Lowest



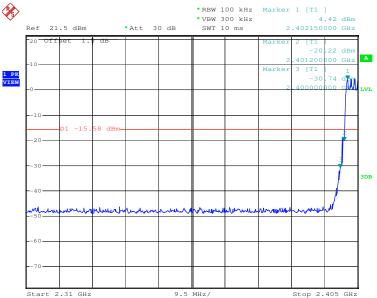


Report No.: SZEM110700257001

Page: 43 of 69

Test mode: GFSK Test channel: Highest

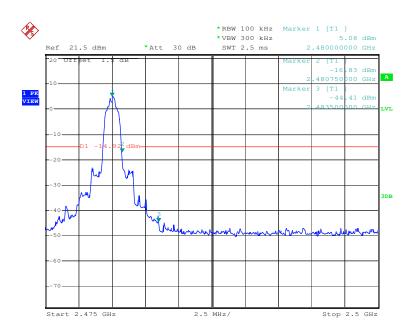


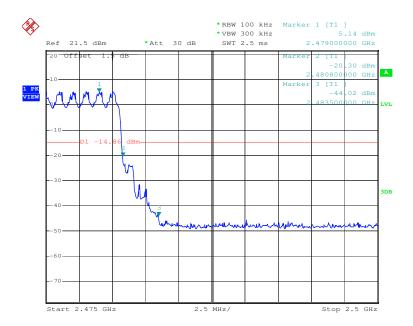


Report No.: SZEM110700257001

Page: 44 of 69

Test mode: π/4DQPSK Test channel: Lowest

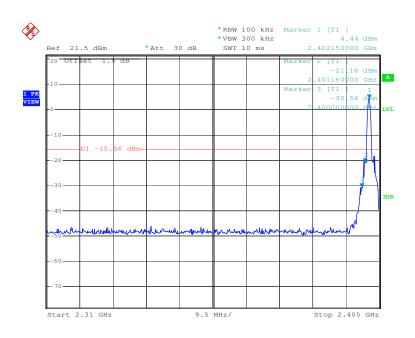


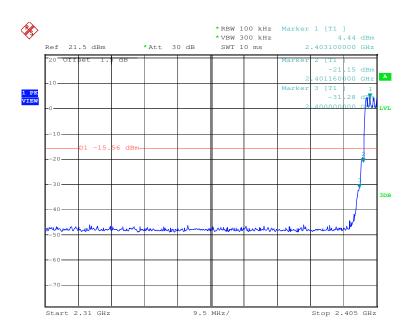


Report No.: SZEM110700257001

Page: 45 of 69

Test mode: π/4DQPSK Test channel: Highest

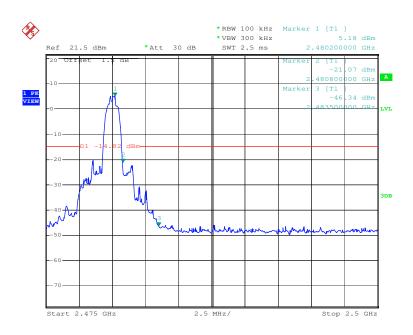




Report No.: SZEM110700257001

Page: 46 of 69

Test mode: 8DPSK Test channel: Lowest



Report No.: SZEM110700257001

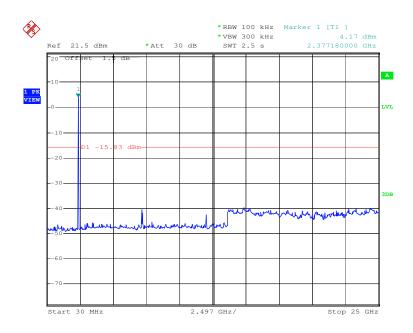
Page: 47 of 69

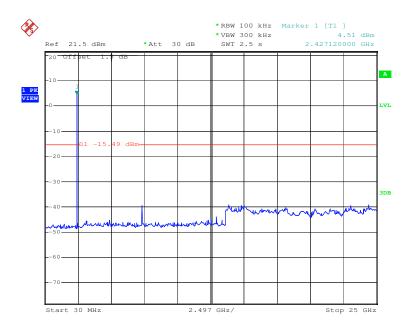
Test mode: 8DPSK Test channel: Highest

Report No.: SZEM110700257001

Page: 48 of 69

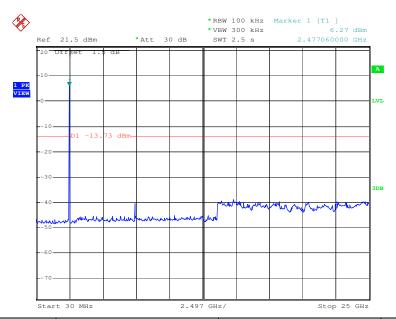
5.9 RF Antenna Conducted spurious emissions

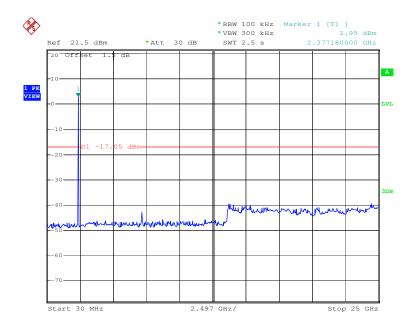

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.						
Test Instruments:	Refer to section 4.8 for details.						
Test results:	Pass						


Report No.: SZEM110700257001

Page: 49 of 69

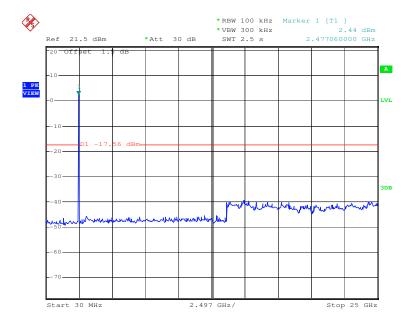
Test mode: GFSK Test channel: Lowest




Report No.: SZEM110700257001

Page: 50 of 69

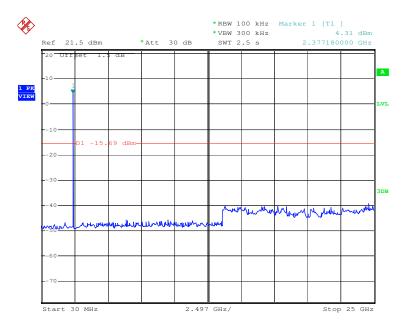
Test mode: GFSK Test channel: Highest

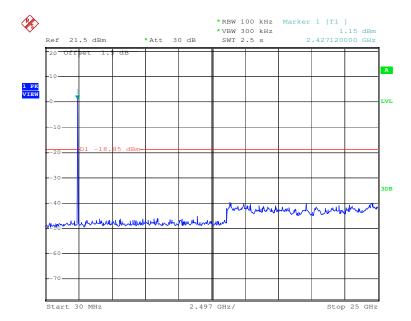

Report No.: SZEM110700257001

Page: 51 of 69

Test mode: π/4DQPSK Test channel: Middle

Test mode: π/4DQPSK Test channel: Highest

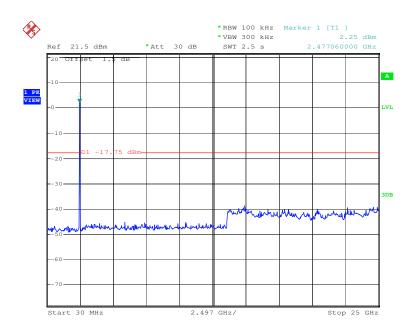



Report No.: SZEM110700257001

Page: 52 of 69

Test mode: 8DPSK Test channel: Lowest

Test mode: 8DPSK Test channel: Middle



Report No.: SZEM110700257001

Page: 53 of 69

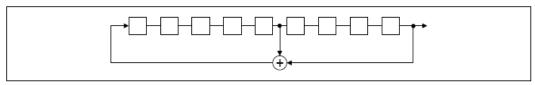
Test mode: 8DPSK Test channel: Highest

Report No.: SZEM110700257001

Page: 54 of 69

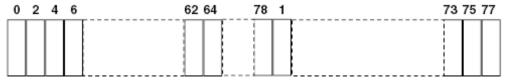
5.10Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: $2^9 1 = 511$ bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

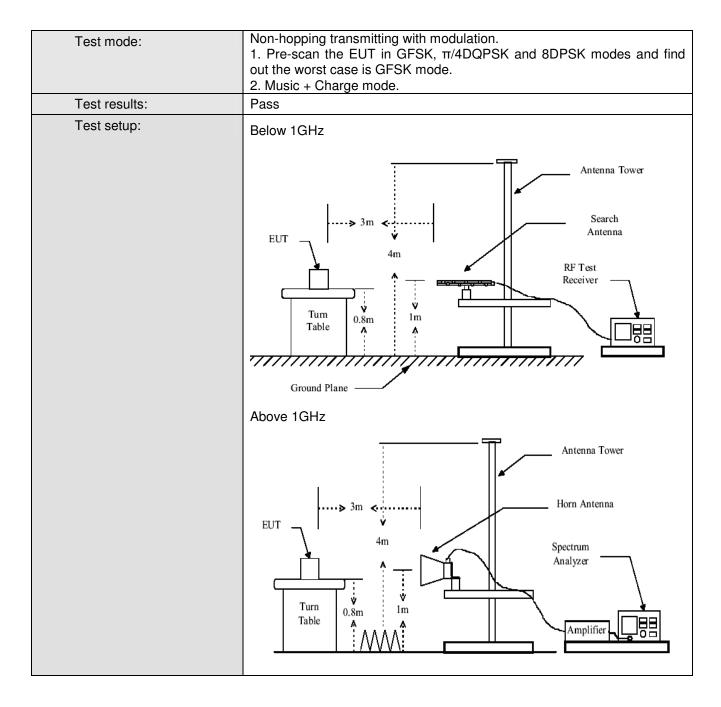
An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Report No.: SZEM110700257001

Page: 55 of 69


5.11 Radiated Emission

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205					
Test Method:	ANSI C63.10: 2	009						
Test Frequency Range:	30MHz to 25GHz							
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
Receiver setup:								
•	Frequency	Detector	RBW	VBW	Remark			
	30MHz-1GHz	Quasi-peak	100kHz	300kHz	Quasi-peak Value			
	Above 1GHz Peak 1MHz 3MHz Peak Value							
	Peak 1MHz 10Hz Average Value							
Limit:					T			
	Freque		Limit (dBuV/	•	Remark			
	30MHz-8		40.0		Quasi-peak Value			
	88MHz-21		43.5		Quasi-peak Value			
	216MHz-9		46.0		Quasi-peak Value			
	960MHz-1GHz 54.0 Quasi-p							
	Above 1	GHz	54.0		Average Value			
Test Procedure:	a. The EUT was placed on the top of a rotating table 0.8 meters above							
	rotated 360 radiation. b. The EUT was antenna, who tower. c. The antenna ground to de horizontal as the measured. For each sucase and the meters and degrees to fee. The test-recesspecified Base of the EUT whave 10dB in the sure of the EUT whave 10dB in the EUT was antended to the EUT whave 10dB in the EUT was antended to the EUT was anten	a height is var etermine the r nd vertical pol- ement. spected emis en the antenn the rotatable find the maxim ceiver system andwidth with ion level of the ecified, then te would be repo- margin would	s away from the don't the don't the to the t	the interference of a varial meter to foue of the fiethe antennation heights fined from 0 ceak Detect Fold Mode. It is mode was a stopped a se the emissione by one	he highest ence-receiving able-height antenna ur meters above the ld strength. Both a are set to make ged to its worst rom 1 meter to 4 degrees to 360			
Test Instruments:	Refer to section	4.8 for details).					

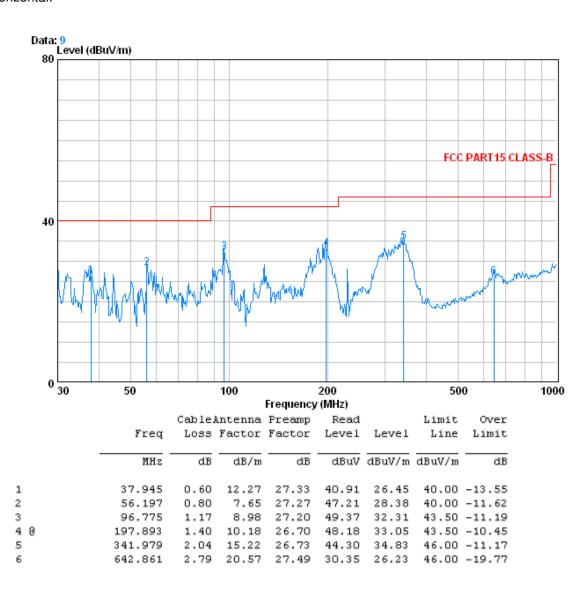
Report No.: SZEM110700257001

Page: 56 of 69

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

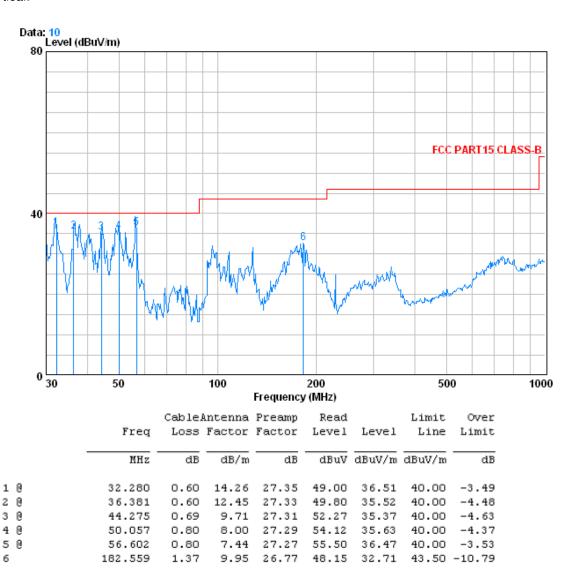


Report No.: SZEM110700257001

Page: 57 of 69

5.11.1 Radiated emission below 1GHz

Horizontal:


[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sqs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM110700257001

Page: 58 of 69

Vertical:

Worse case mode:

SGS-CSTC Standards Technical Services Ltd.

Report No.: SZEM110700257001

Remark:

Average

Page: 59 of 69

5.11.2 Transmitter emission above 1GHz

GFSK

Worse case r	node:	GFSK	Test	channel:	Lowest	Rema	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2915.250	5.00	33.28	40.24	48.43	46.47	74.00	-27.53	Vertical
4137.250	6.63	34.22	41.14	50.64	50.35	74.00	-23.65	Vertical
4783.500	7.42	34.73	41.61	57.89	58.43	74.00	-15.57	Vertical
5829.250	7.90	35.42	41.07	51.84	54.09	74.00	-19.91	Vertical
7368.500	8.92	35.95	39.74	49.49	54.62	74.00	-19.38	Vertical
9389.500	9.66	37.08	37.98	46.96	55.72	74.00	-18.28	Vertical
2527.500	4.68	32.75	39.95	49.73	47.21	74.00	-26.79	Horizontal
3761.250	6.13	33.51	40.86	50.80	49.58	74.00	-24.42	Horizontal
4804.330	7.44	34.70	41.63	59.31	59.82	74.00	-14.18	Horizontal
6522.500	8.15	36.28	40.46	51.87	55.84	74.00	-18.16	Horizontal
7556.500	9.17	36.00	39.57	50.56	56.16	74.00	-17.84	Horizontal
9765.500	9.75	37.48	37.66	46.46	56.03	74.00	-17.97	Horizontal

Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit	polarization
2915.250	5.00	33.28	40.24	39.91	37.95	54.00	-16.05	Vertical
4137.250	6.63	34.22	41.14	41.28	40.99	54.00	-13.01	Vertical
4804.330	7.44	34.70	41.63	52.40	52.91	54.00	-1.09	Vertical
5829.250	7.90	35.42	41.07	42.39	44.64	54.00	-9.36	Vertical
7368.500	8.92	35.95	39.74	38.73	43.86	54.00	-10.14	Vertical
9389.500	9.66	37.08	37.98	37.84	46.60	54.00	-7.40	Vertical
2527.500	4.68	32.75	39.95	39.22	36.70	54.00	-17.30	Horizontal
3761.250	6.13	33.51	40.86	40.56	39.34	54.00	-14.66	Horizontal
4804.330	7.44	34.70	41.63	51.01	51.52	54.00	-2.48	Horizontal
6522.500	8.15	36.28	40.46	41.12	45.09	54.00	-8.91	Horizontal
7556.500	9.17	36.00	39.57	40.97	46.57	54.00	-7.43	Horizontal
9765.500	9.75	37.48	37.66	37.67	47.24	54.00	-6.76	Horizontal

Lowest

Test channel:

Report No.: SZEM110700257001

Page: 60 of 69

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
3056.250	5.14	33.38	40.34	49.31	47.49	74.00	-26.51	Vertical
3843.500	6.26	33.61	40.93	49.41	48.35	74.00	-25.65	Vertical
4881.680	7.48	34.59	41.68	61.30	61.69	74.00	-12.31	Vertical
6099.500	8.01	35.82	40.84	50.47	53.46	74.00	-20.54	Vertical
7368.500	8.92	35.95	39.74	50.34	55.47	74.00	-18.53	Vertical
9072.250	9.63	36.68	38.26	47.93	55.98	74.00	-18.02	Vertical
2962.250	5.04	33.33	40.27	50.11	48.21	74.00	-25.79	Horizontal
4184.250	6.68	34.31	41.18	49.94	49.75	74.00	-24.25	Horizontal
4877.500	7.48	34.59	41.68	56.33	56.72	74.00	-17.28	Horizontal
6957.250	8.43	35.85	40.08	51.14	55.34	74.00	-18.66	Horizontal
7603.500	9.21	36.00	39.52	50.92	56.61	74.00	-17.39	Horizontal
9683.250	9.71	37.39	37.73	46.82	56.19	74.00	-17.81	Horizontal

worse case mode. GFSK Test channel. Whole Hemark. Average	Worse case mode:	GFSK	Test channel:	Middle	Remark:	Average
---	------------------	------	---------------	--------	---------	---------

		1				1	1	ı
Frequency	Cable	Antenna	Preamp	Reading	Emission	Limit	Over	
(MHz)	loss	factors	factor	Level	Level	(dBµV/m)	limit	polarization
(1711 12)	(dB)	(dB/m)	(dB)	(dBµV)	(dBµV/m)	(αΒμν/π)	IIIIIL	
3056.250	5.14	33.38	40.34	39.57	37.75	54.00	-16.25	Vertical
3843.500	6.26	33.61	40.93	39.15	38.09	54.00	-15.91	Vertical
4881.680	7.48	34.59	41.68	52.50	52.89	54.00	-1.11	Vertical
6099.500	8.01	35.82	40.84	40.18	43.17	54.00	-10.83	Vertical
7368.500	8.92	35.95	39.74	40.58	45.71	54.00	-8.29	Vertical
9072.250	9.63	36.68	38.26	38.77	46.82	54.00	-7.18	Vertical
2962.250	5.04	33.33	40.27	38.65	36.75	54.00	-17.25	Horizontal
4184.250	6.68	34.31	41.18	38.99	38.80	54.00	-15.20	Horizontal
4877.500	7.48	34.59	41.68	48.55	48.94	54.00	-5.06	Horizontal
6957.250	8.43	35.85	40.08	42.95	47.15	54.00	-6.85	Horizontal
7603.500	9.21	36.00	39.52	41.98	47.67	54.00	-6.33	Horizontal
9683.250	9.71	37.39	37.73	38.65	48.02	54.00	-5.98	Horizontal

Report No.: SZEM110700257001

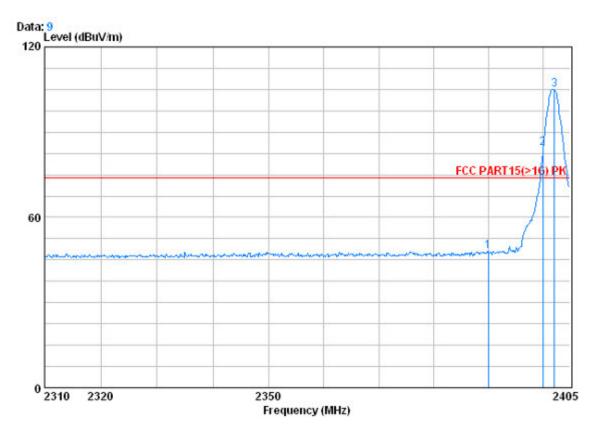
Page: 61 of 69

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
3056.250	5.14	33.38	40.34	49.99	48.17	74.00	-25.83	Vertical
3984.500	6.43	33.80	41.02	49.66	48.87	74.00	-25.13	Vertical
4936.250	7.51	34.48	41.72	51.84	52.11	74.00	-21.89	Vertical
5911.500	7.93	35.56	41.01	51.37	53.85	74.00	-20.15	Vertical
7556.500	9.17	36.00	39.57	49.78	55.38	74.00	-18.62	Vertical
8684.500	9.53	36.35	38.60	49.46	56.74	74.00	-17.26	Vertical
3056.250	5.14	33.38	40.34	50.11	48.29	74.00	-25.71	Horizontal
4454.500	7.01	35.06	41.37	51.01	51.71	74.00	-22.29	Horizontal
4936.250	7.51	34.48	41.72	52.62	52.89	74.00	-21.11	Horizontal
6299.250	8.08	36.06	40.66	51.02	54.50	74.00	-19.50	Horizontal
7791.500	9.27	36.00	39.38	49.94	55.83	74.00	-18.17	Horizontal
8684.500	9.53	36.35	38.60	49.09	56.37	74.00	-17.63	Horizontal

Worse case mode: GFSK	Worse case mode:	GFSK	Test channel:	Highest	Remark:	Average
-------------------------	------------------	------	---------------	---------	---------	---------

Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBμV/m)	Over limit	polarization
3056.250	5.14	33.38	40.34	40.19	38.37	54.00	-15.63	Vertical
3984.500	6.43	33.80	41.02	40.45	39.66	54.00	-14.34	Vertical
4936.250	7.51	34.48	41.72	42.59	42.86	54.00	-11.14	Vertical
5911.500	7.93	35.56	41.01	42.57	45.05	54.00	-8.95	Vertical
7556.500	9.17	36.00	39.57	39.99	45.59	54.00	-8.41	Vertical
8684.500	9.53	36.35	38.60	39.19	46.47	54.00	-7.53	Vertical
3056.250	5.14	33.38	40.34	41.36	39.54	54.00	-14.46	Horizontal
4454.500	7.01	35.06	41.37	41.98	42.68	54.00	-11.32	Horizontal
4936.250	7.51	34.48	41.72	42.66	42.93	54.00	-11.07	Horizontal
6299.250	8.08	36.06	40.66	42.66	46.14	54.00	-7.86	Horizontal
7791.500	9.27	36.00	39.38	40.65	46.54	54.00	-7.46	Horizontal
8684.500	9.53	36.35	38.60	39.88	47.16	54.00	-6.84	Horizontal

Remark: The disturbance above 10GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

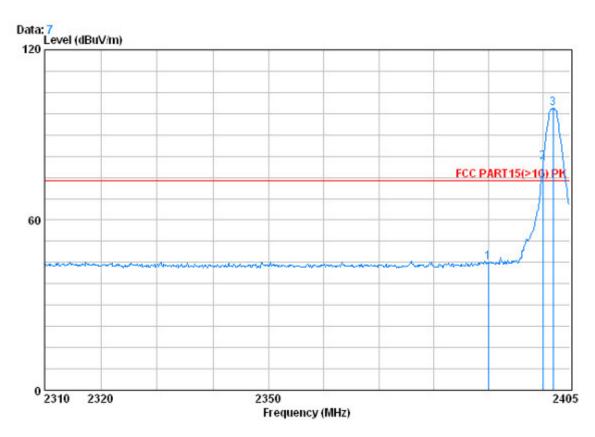


Report No.: SZEM110700257001

Page: 62 of 69

5.11.3 Band edge (Radiated Emission)

Vertical:

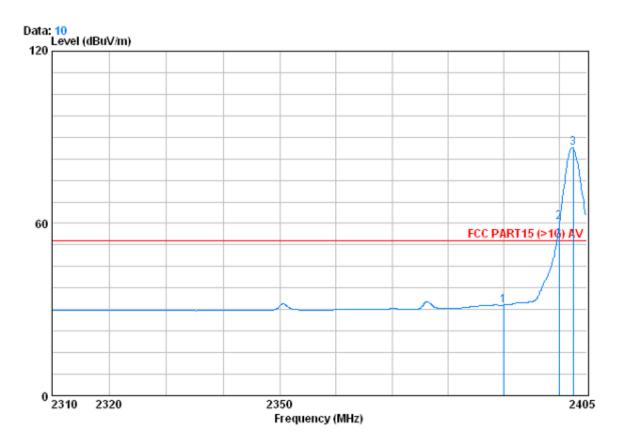

	Freq		Antenna Factor	•		Level	Limit Line		Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2390.000	2.98	32.51	39.85	52.51	48.15	74.00	-25.85	Peak
2 X	2400.000	2.98	32.51	39.86	88.82	84.45	74.00	10.45	Peak
3 X	2402.150	2.98	32.51	39.86	109.36	104.99	74.00	30.99	Peak

Report No.: SZEM110700257001

Page: 63 of 69

Horizontal:

		Cable	Antenna	Preamp	Read		Limit	Over	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2390.000	2.98	32.51	39.85	49.43	45.07	74.00	-28.93	Peak
2 X	2400.000	2.98	32.51	39.86	84.65	80.28	74.00	6.28	Peak
3 X	2401.865	2.98	32.51	39.86	103.70	99.33	74.00	25.33	Peak

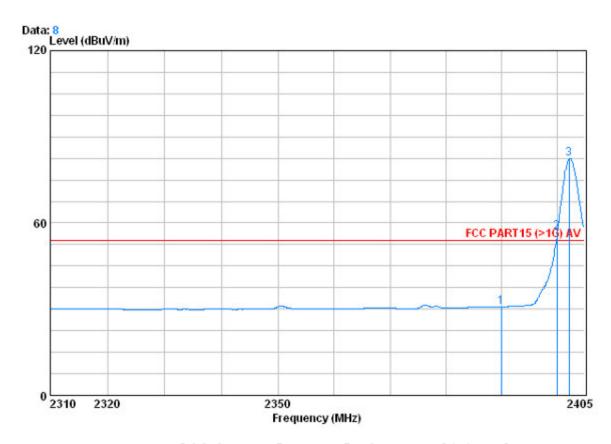


Report No.: SZEM110700257001

Page: 64 of 69

Test mode: Transmitting Test channel: Lowest	Remark:	Average
--	---------	---------

Vertical:

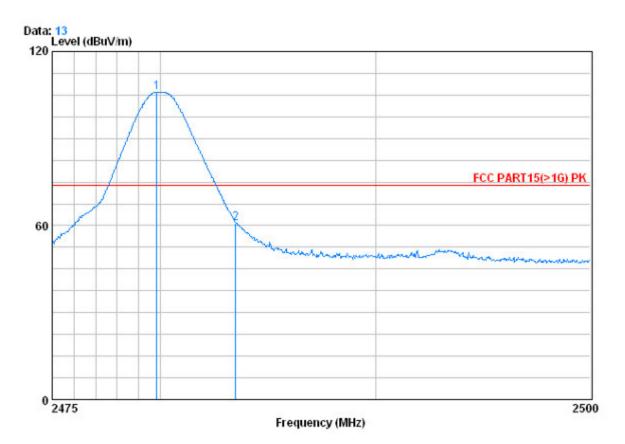

			Cable	lntenna	Preamp	Read		Limit	Over	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
		MHz	dB	dB/m	——dB	-dBuV	dBuV/m	dBuV/m	——dB	
		Mnz	шь	GD/III	uв	abav	abav/m	ubuv/m	аь	
1		2390.000	2.98	32.51	39.85	35.90	31.55	54.00	-22.45	Average
2	X	2400.000	2.98	32.51	39.86	64.79	60.42	54.00	6.42	Average
3	X	2402.530	2.98	32.54	39.86	90.77	86.44	54.00	32.44	Average

Report No.: SZEM110700257001

Page: 65 of 69

Horizontal:

	Freq			Preamp Factor	Read Level		Limit Line	Over Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2390.000								Average
2 X 3 X	2400.000 2402.245								Average Average

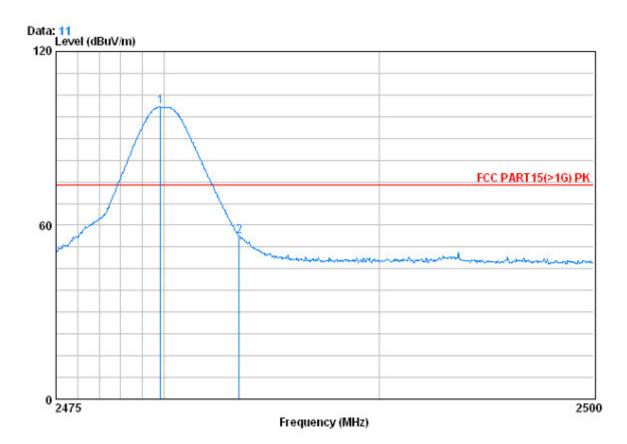


Report No.: SZEM110700257001

Page: 66 of 69

Test mode:	Transmitting	Test channel:	Highest	Remark:	Peak

Vertical:

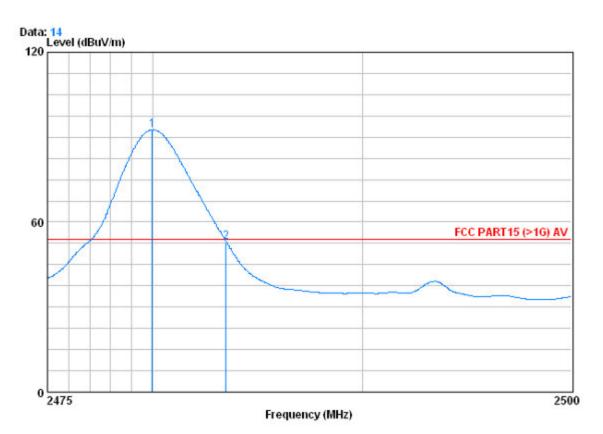

		Freq		kntenna Factor	_			Limit Line		Remark
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	X	2479.850	3.03	32.67	39.92	110.16	105.94	74.00	31.94	Peak
2		2483.500	3.03	32.67	39.92	65.11	60.89	74.00	-13.11	Peak

Report No.: SZEM110700257001

Page: 67 of 69

Horizontal:

	Freq		intenna Factor		Read Level	Level	Limit Line		Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 X 2	2479.850 2483.500					100.88 56.09			

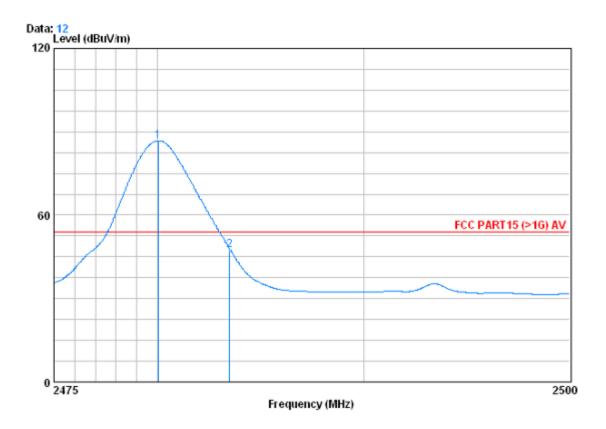


Report No.: SZEM110700257001

Page: 68 of 69

Test mode:	Transmitting	Test channel:	Highest	Remark:	Average
------------	--------------	---------------	---------	---------	---------

Vertical:


	Freq			Preamp Factor			Limit Line		Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 @ 2	2479.975 2483.500								Average Average

Report No.: SZEM110700257001

Page: 69 of 69

Horizontal:

rk
age
age