

Test Report Serial Number:
Test Report Date:
Project Number:

45461752 R2.0 22 August 2022

1598

EMC Test Report - Class II Permissive Change

Applicant:

BossPac Engineering and Technology Inc

Bay 8 1450 28th Street NE Calgary, AB, T2A7W6 Canada

FCC ID:

ZI8EA206

Product Model Number / HVIN

EA000206

Bay 8, 1450 28th Steet NE Calgary, AB, T2A 7W6 Canada

IC Registration Number

9648A-EA206

Product Name / PMN

WASPMESH

In Accordance With:

CFR Title 47, Part 15 Subpart C (§15.247), Part 15 Subpart B

Digital Transmission System (DTS)

RSS-Gen, RSS-247

Digital Transmission Systems (DTSs)

Approved By:

Ben Hewson, President

Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Canada

Test Lab Certificate: 2470.01

Industry Canada

IC Registration 3874A-1

FCC Registration: CA3874

This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc.

45461752 R2.0 22 August 2022

Table of Contents

1.0 REVISION HISTORY	4
2.0 CLIENT AND DUT INFORMATION	5
3.0 SCOPE	
4.0 TEST SUMMARY	
5.0 NORMATIVE REFERENCES	
6.0 FACILITIES AND ACCREDITATIONS	
7.0 OCCUPIED BANDWIDTH	
8.0 CONDUCTED POWER	
9.0 RADIATED TX EMISSIONS – RESTRICTED BAND	
10.0 RADIATED RX EMISSIONS	
11.0 LINE CONDUCTED EMISSIONS	53
APPENDIX A – TEST SETUP DRAWINGS AND CONDITIONS	60
APPENDIX B – EQUIPMENT LIST AND CALIBRATION	65
APPENDIX C – MEASUREMENT INSTRUMENT UNCERTAINTY	66
END OF REPORT	
Table of Figures	
Figure A.1 – Test Setup – Conducted Measurements	
Figure A.2 – Test Setup Radiated Measurements 9kHzMHz – 30MHz	
Figure A.3 – Test Setup Radiated Measurements 30MHz – 1GHzFigure A.4 – Test Setup Radiated Measurements 30MHz – 1GHz, Signal Substitution	
Figure A.5 – Test Setup Radiated Measurements 1 – 18GHz	
Figure A.6 – Test Setup Conducted Emissions Measurements	
rigaro 71.0 Tool Octup Conducted Enhancing Medicineme	

45461752 R2.0 22 August 2022

Table of Plots

Plot 7.1 – Occupied Bandwidth, 906MHz	12
Plot 7.2 – Occupied Bandwidth, 916MHz	13
Plot 7.3 – Occupied Bandwidth, 924MHz	14
Plot 8.1 – Conducted Power, 906 MHz	17
Plot 8.2 – Conducted Power, 916 MHz	18
Plot 8.3 – Conducted Power, 924 MHz	
Plot 9.1 – Radiated Tx Emissions, 30 – 1000MHz, EA000344, Horizontal	22
Plot 9.2 – Radiated Tx Emissions, 30 – 1000MHz, EA000344, Vertical	
Plot 9.3 – Radiated Tx Emissions, 30 – 1000MHz, EA000406, Horizontal	24
Plot 9.4 – Radiated Tx Emissions, 30 – 1000MHz, EA000406, Vertical	25
Plot 9.5 – Radiated Tx Emissions, 1 – 3GHz, EA000344, Horizontal	26
Plot 9.6 – Radiated Tx Emissions, 1 – 3GHz, EA000344, Vertical	27
Plot 9.7 – Radiated Tx Emissions, 3 - 10GHz, EA000344, Horizontal	28
Plot 9.8 – Radiated Tx Emissions, 3 - 10GHz, EA000344, Vertical	29
Plot 9.9 – Radiated Tx Emissions, 2 nd Harmonic, EA000344, Horizontal	
Plot 9.10 – Radiated Tx Emissions, 2 nd Harmonic, EA000344, Vertical	31
Plot 9.11 – Radiated Tx Emissions, 1 – 3GHz, EA000406, Horizontal	32
Plot 9.12 – Radiated Tx Emissions, 1 – 3GHz, EA000406, Vertical	33
Plot 9.13 – Radiated Tx Emissions, 3 - 10GHz, EA000406, Horizontal	34
Plot 9.14 – Radiated Tx Emissions, 3 - 10GHz, EA000406, Vertical	
Plot 9.15 – Radiated Tx Emissions, 2 nd Harmonic, EA000406, Horizontal	
Plot 9.16 – Radiated Tx Emissions, 2 nd Harmonic, EA000406, Vertical	
Plot 10.1 – Radiated Rx Emissions, 30 - 1000MHz, EA000344, Horizontal	
Plot 10.2 – Radiated Rx Emissions, 30 - 1000MHz, EA000344, Vertical	
Plot 10.3 – Radiated Rx Emissions, 30 - 1000MHz, EA000406, Horizontal	
Plot 10.4 – Radiated Rx Emissions, 30 - 1000MHz, EA000406, Vertical	
Plot 10.5 – Radiated Rx Emissions, 1 – 3GHz, EA000344, Horizontal	
Plot 10.6 – Radiated Rx Emissions, 1 – 3GHz, EA000344, Vertical	
Plot 10.7 – Radiated Rx Emissions, 3 - 5GHz, EA000344, Horizontal	
Plot 10.8 – Radiated Rx Emissions, 3 - 5GHz, EA000344, Vertical	
Plot 10.9 – Radiated Rx Emissions, 1 - 3GHz, EA000406, Horizontal	
Plot 10.10 – Radiated Rx Emissions, 1 - 3GHz, EA000406, Vertical	
Plot 10.11 – Radiated Rx Emissions, 3 - 5GHz, EA000406, Horizontal	
Plot 10.12 – Radiated Rx Emissions, 3 - 5GHz, EA000406, Vertical	
Plot 11.1 – Line Conducted Emissions, EA000344, L1	
Plot 11.2 – Line Conducted Emissions, EA000344, L2	
Plot 11.3 – Line Conducted Emissions, EA000406, L1	
Plot 11.4 – Line Conducted Emissions, EA000406, L2	57

Table of Tables

Table 7.4. Owners and 6.0 coming the Dan design to Management of	1-
Table 7.1 – Summary of Occupied Bandwidth Measurements	
Table 10.1 – Summary of Conducted Power Measurements	20
Table 9.1 – Summary of Radiated Tx Measurements	38
Table 15.1 – Summary of Radiated Rx Measurements	52
Table 11.1 – Summary of Line Conducted Measurements, L1	58
Table 11.2 – Summary of Line Conducted Measurements, L2	59
Table A.1 – Conducted Measurement Setup and Environmental	
Table A.2 – Radiated Emissions Measurement Equipment	
Table A.3 – Setup – Conducted Emissions Equipment List	

45461752 R2.0 22 August 2022

1.0 REVISION HISTORY

	Revision History							
Samples Tested By: Art Voss, P.Eng. Date(s) of Evaluation:				9 - 12 July, 2022				
Report Prepared By:		Art Voss, P.Eng.	Report Reviewed By:		Ben Hewson			
Report	Dosc	Description of Revision		Revised	Revision Date			
Revision	ion Section By		Ву	Nevision Date				
1.0	Initial Release		n/a	Art Voss	21 July 2022			
2.0	Corre	cted Release Date	1.0	Art Voss	22 August 2022			

45461752 R2.0 22 August 2022

2.0 CLIENT AND DUT INFORMATION

Client Information					
Applicant Name	BossPac Engineering and Technology Inc				
	Bay 8 1450 28th Street NE				
Applicant Address (FCC)	Calgary, Alberta, T2A7W6				
	Canada				
	Bay 8, 1450 28th Street NE				
Applicant Address (ISED)	Calgary, AB, T2A 7W6				
	Canada				
	DUT Information				
Device Identifier(s):	FCC ID: ZI8EA206				
Device identifier(s).	ISED ID: 9648A-EA206				
Device Type:	Digital Transceiver Module				
Type of Equipment:	Digital QPSK Transceiver Module, IEEE 802.15.4				
Device Model(s) / HVIN:	EA000206				
Device Marketing Name / PMN:	WASPMESH				
Firmware Version ID Number / FVIN:	-				
Host 4 Marketing Name / HMN:	NEST4				
Host 4 Model Number / HVIN:	EA000344				
Host 5 Marketing Name / HMN:	EA000406				
Host 5 Model Number / HVIN:	EA000406				

45461752 R2.0 22 August 2022

Client Information				
Applicant Name	BossPac Engineering and Technology Inc			
	Bay 8 1450 28th Street NE			
Applicant Address (FCC)	Calgary, Alberta, T2A7W6			
	Canada			
	Bay 8, 1450 28th Street NE			
Applicant Address (ISED)	Calgary, AB, T2A 7W6			
	Canada			
	DUT Information (Cont.)			
Test Sample Serial No.:	T/A Sample - Identical Prototype			
Transmit Frequency Range:	906-924MHz			
Test Channels:	Programmable			
Manuf. Max. Rated Output Power:	30dBm, 1W, EIRP			
Manuf. Max. Rated BW/Data Rate:	250kbps			
Antenna Make and Model:	Laird Connnectivity, TRAB9023NP			
Antenna Type and Gain:	Omni-Directional, 3dBi			
Antenna Make and Model:	Laird Connnectivity, OD9-11D1			
Antenna Type and Gain:	Omni-Directional Whip, 11dBi			
Antenna Make and Model:	Linx Technologies, ANT-916-CW-HWR-SMA			
Antenna Type and Gain:	Omni Directional Whip, 1.2dBi			
Antenna Make and Model:	Taoglas Limited, OMB.915.B08F21			
Antenna Type and Gain:	Omni Directional Whip, 8dBi			
Modulation:	O-QPSK			
DUT Power Source:	5VDC, Provided by Host			
DUT Dimensions [HxWxL] (mm)	H xWxL: 3mm x18mm x27mm			
Deviation(s) from standard/procedure:	None			
Modification of DUT:	None			

Note: Information on antenna gain provided by applicant

45461752 R2.0 22 August 2022

3.0 SCOPE

This Certification Report was prepared on behalf of:

BossPac Engineering and Technology Inc.

,(the 'Applicant"), in accordance with the applicable Federal Communications Commission (FCC) CFR 47 and Innovation, Scientific and Economic Development (ISED) Canada rules parts and regulations (the 'Rules'). The scope of this investigation was limited to only the equipment, devices and accessories (the 'Equipment') supplied by the Applicant. The tests and measurements performed on this Equipment were only those set forth in the applicable Rules and/or the Test and Measurement Standards they reference. The Rules applied and the Test and Measurement Standards used during this evaluation appear in the Normative References section of this report. The limits set forth in the technical requirements of the applicable Rules were applied to the measurement results obtained during this evaluation and ,unless otherwise noted, these limits were used as the Pass/Fail criteria. The Pass/Fail statements made in this report apply to only the tests and measurements performed on only the Equipment tested during this evaluation. Where applicable and permissible, information including test and measurement data and/or results from previous evaluations of same or similar equipment, devices and/or accessories may be cited in this report.

As per FCC CFR 47 Part §2.1091 and §2.1093 and Health Canada Safety Code 6, an RF Exposure evaluation report is required for this *Equipment* and the results of the RF Exposure evaluation appear in a separate exhibit from this report.

This *Equipment* is subject to FCC Declaration of Conformity (DoC). DoC evaluations were performed on this *Equipment* and the results of the DoC evaluation appear in a separate exhibit from this report.

Application:

This application is for an FCC Class II Permissive Change, ISED Class IV Permissive Change to add two additional hosts to the existing list of approved hosts.

The hosts are identical to those previously examined with the exception of number of inputs. The host additions were evaluated for Radiated Tx and Rx emissions. The parameters of the EA000206 module were evaluated for conducted power and occupied bandwidth and compared to those of the original filing.

Host 4, Model/HVIN: EA000344, "NEST4", is a smart receiver and gateway identical to EA000244 [Added]

Host 5, Model/HVIN: EA000406, "EA000406", is a router device identical to EA000406 [Added]

These hosts are Class A digital devices. They are not sold to the general public and require professional installation.

45461752 R2.0

22 August 2022

4.0 TEST SUMMARY

	TEST SUMMARY							
Section	Description of Test	Procedure	Applicable Rule	Applicable Rule	Test	Result		
Section	Description of Test	Reference	Part(s) FCC	Part(s) ISED	Date	Nesult		
7.0	Occupied Bandwidth	ANSI C63.10-2013	§2.1049	RSS-Gen	11 July 2022	Pass		
7.0	Occupied Baridwidth	KDB 558074 D01v05	n/a	RSS-247 (5.2)(a)		1 035		
8.0	Conducted Pow er (Fundamental)	ANSI C63.10-2013	§2.1046	RSS-Gen	11 July 2022	Pass		
0.0	Conducted Fow er (Fundamental)	KDB 558074 D01v05	§15.247(b)(3)	RSS-247 (5.4)(d)				
9.0	Radiated TX Spurious Emissions	ANSI C63.10-2013	§15.205, 15.209	RSS-Gen	12 July 2022	Pass		
9.0	Natiated IX Spurious Effissions	KDB 558074 D01v05	§15.247(d)	100-0611				
10.0	Radiated RX Spurious Emissions	ANSI C63.4-2014	§15.109	ICES-003(6.2)	12 July 2022	Pass		
10.0	Tradiated for Opullous Efficiency	KDB 558074 D01v05	§15.247(d)	IOLO-003(0.2)		1 455		
44.0	Power Line Conducted Emissions	ANSI C63.4-2014	§15.107	ICES-003(6.1)	10 July 2022	Pass		
11.0	Fow er Line Conducted Enlissions	KDB 558074 D01v05	313.107	IOLO-003(0.1)	10 July 2022	rass		

I attest that the data reported herein is true and accurate w ithin the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.

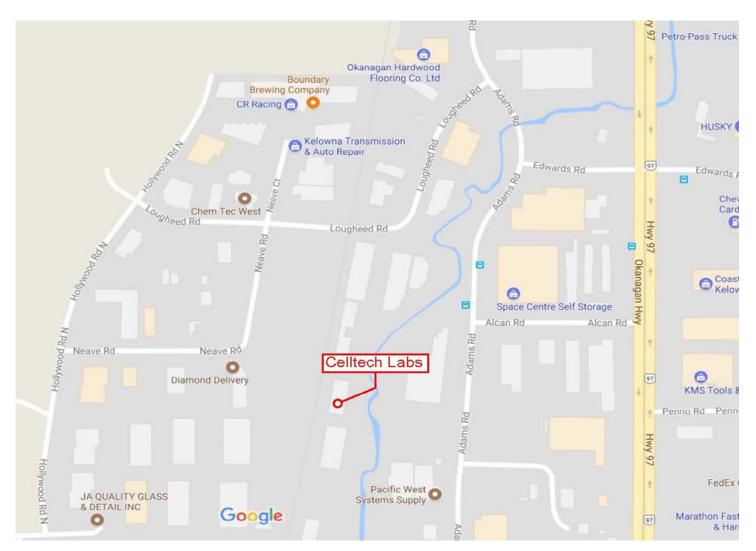
Sulle Yours

Art Voss, P.Eng. Technical Manager Celltech Labs Inc.

45461752 R2.0 22 August 2022

5.0 NORMATIVE REFERENCES

	Normative References
ISO/IEC 17025:2017	General requirements for the competence of testing and calibration laboratories
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of
	Unlicensed Wireless Devices
CFR	Code of Federal Regulations
	Telecommunication
Part 2:	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
CFR	Code of Federal Regulations
Title 47:	Telecommunication
Part 15:	Radio Frequency Devices
Sub Part C (15.247)	Intentional Radiators
CFR	Code of Federal Regulations
Title 47:	Telecommunication
Part 15:	Radio Frequency Devices
Subpart B:	Unintentional Radiators
ISED	Innovation, Science and Economic Development Canada
RSS-Gen Issue 5:	Spectrum Management and Telecommunications Radio Standards Specification
Amendment 1 - Mar 2019	General Requirements and Information for the Certification of Radiocommunication Equipment
ISED	Innovation, Science and Economic Development Canada
	Spectrum Management and Telecommunications Radio Standards Specification
RSS-247 Issue 2:	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs)
Feb 2017	and Licensed-Exempt Local Area Network (LE_LAN) Devices
FCC KDB	OET Major Guidance Publications, Knowledge Data Base
558074 D01v05r02	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under Section 15.247



45461752 R2.0 22 August 2022

6.0 FACILITIES AND ACCREDITATIONS

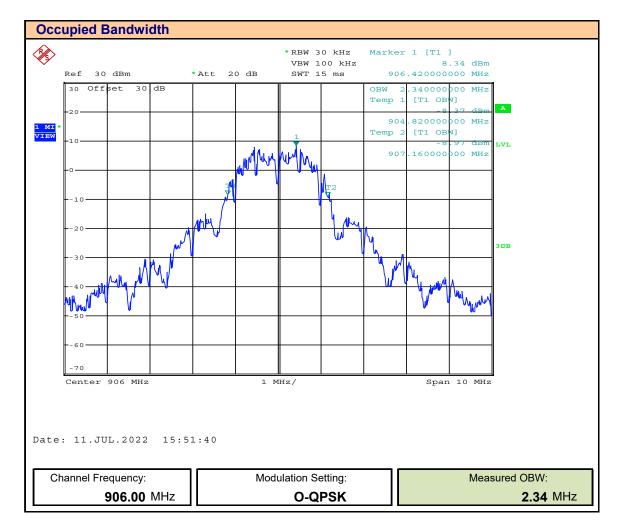
Facility and Accreditation:

The facilities used to evaluate this device outlined in this report are located at 21-364 Lougheed Road, Kelowna, British Columbia, Canada V1X7R8. The radiated emissions site (OATS) conforms to the requirements set forth in ANSI C63.4 and is filed and listed with the FCC under Test Firm Registration Number CA3874 and Innovation, Science and Economic Development Canada under Test Site File Number ISED 3874A. Celltech is accredited to ISO 17025, through accrediting body A2LA and with certificate 2470.01.

45461752 R2.0 22 August 2022

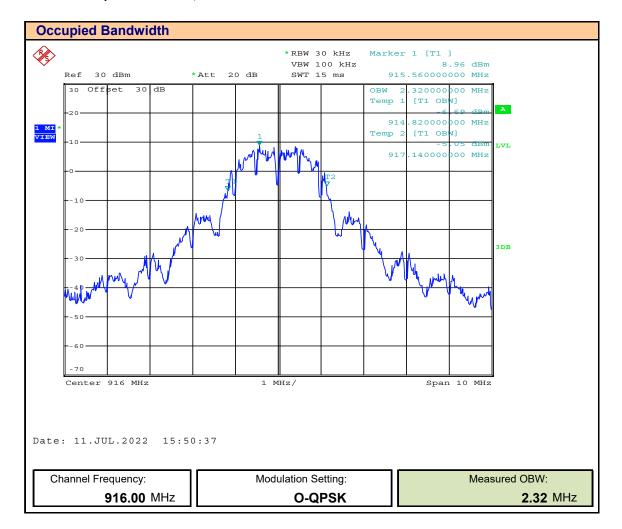
7.0 OCCUPIED BANDWIDTH

Test Procedure	
Normative	FCC 47 CFR §2.1046, §15.247(b)(3), RSS-Gen (6.1.2), RSS-247 (5.4)(d),
Reference	KDB 558074 (8.3.2.1), ANSI C63.10 (6.9.3)
General Procedure	
KDB 558074 (8.3.2.1)	8.3.2.1 General Section 15.247 permits the maximum conducted (average) output power to be measured as an alternative to the maximum peak conducted output power for demonstrating compliance to the limit. When this option is exercised, the measured power is to be referenced to the OBW
	rather than the DTS bandwidth.
C63.10 (6.9.3)	6.9.3 Occupied bandwidth—power bandwidth (99%) measurement procedure The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The
	frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
Test Setup	Appendix A - Figure A.1

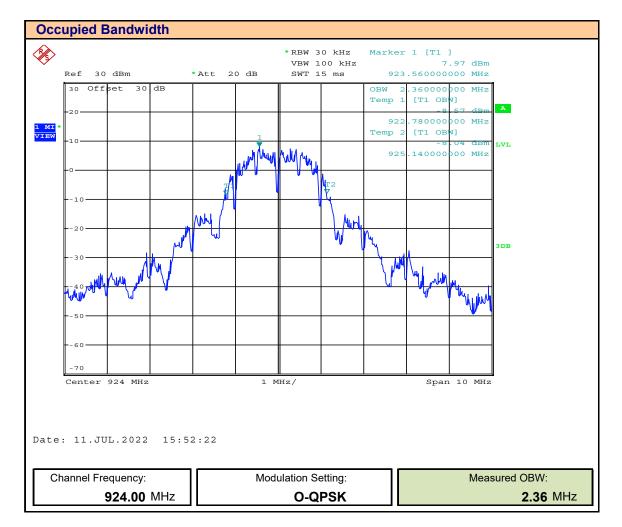

Measurement Procedure

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as described above using the 99% Occupied Bandwidth function. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device. The DUT was set to transmit at its maximum Duty Cycle. The 99% Occupied Bandwidth was measured and recorded and used for the basis for measuring the Conducted Output Power (See Section 10.0) and Power Spectral Density (See Section 11.0).

45461752 R2.0 22 August 2022


Plot 7.1 - Occupied Bandwidth, 906MHz

45461752 R2.0 22 August 2022


Plot 7.2 - Occupied Bandwidth, 916MHz

45461752 R2.0 22 August 2022

Plot 7.3 - Occupied Bandwidth, 924MHz

45461752 R2.0 22 August 2022

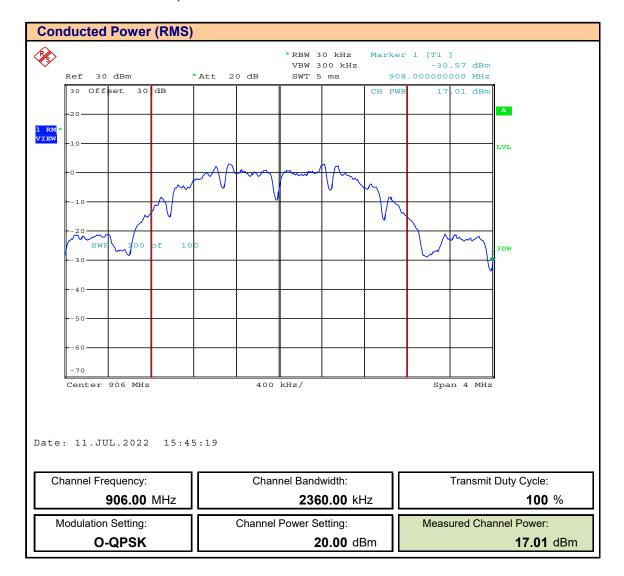
Table 7.1 – Summary of Occupied Bandwidth Measurements

Occupied Bandwidth Measurements					
Frequency Modulation		Measured OBW	Emission Designator		
(MHz)		(MHz)			
906.00		2.34	2M34G1D		
916.00	O-QPSK	2.32	2M32G1D		
924.00		2.36	2M36G1D		

45461752 R2.0 22 August 2022

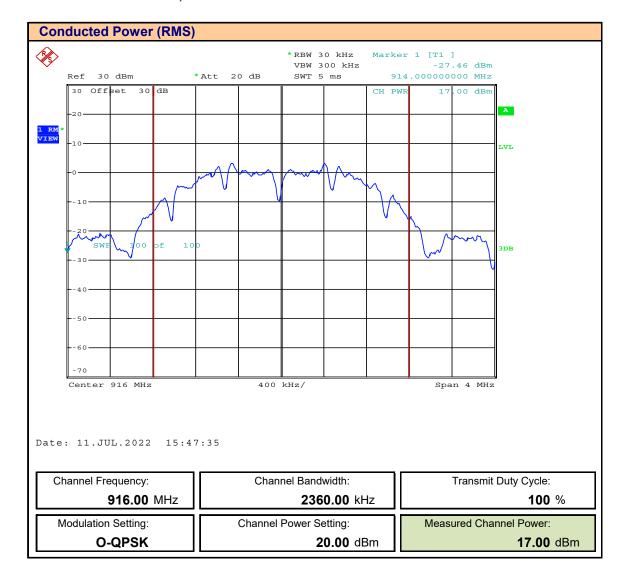
8.0 CONDUCTED POWER

Test Procedure	
Normative	FCC 47 CFR §2.1046, §15.247(b)(3), RSS-Gen (6.1.2), RSS-247 (5.4)(d),
Reference	KDB 558074 (8.3.2), ANSI C63.10 (11.9.2.2.2)
Limits	
47 CFR §15.247(b)(3)	(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
	(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power.
RSS-247 (5.4)(d)	5.4 Transmitter output power and equivalent isotropically radiated power (e.i.r.p.)
	Devices shall comply with the following requirements, where applicable:
	d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).
	As an alternative to a peak power measurement, compliance can be based on a measurement
	of the maximum conducted output power.
General Procedure	
KDB 558074 (8.3.2.1)	8.3.2.1 General
	Section 15.247 permits the maximum conducted (average) output power to be measured as an alternative to the maximum peak conducted output power for demonstrating compliance to the limit. When this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth.
C63.10 (11.9.2.2.2)	Method AVGSA-1 (trace averaging with the EUT transmitting at full power throughout each a) Set span to at least 1.5 X OBW.
	b) Set RBW = 1 % to 5 % of the OBW, not to exceed 1 MHz.
	c) Set VBW ≥ 3 X RBW.
	d) Number of points in sweep ≥ 2 X span / RBW.
	e) Sweep time = auto.
	f) Detector = RMS
	g) If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle ≥ 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
	h) Trace average at least 100 traces in power averaging
	i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges.
Test Setup	Appendix A - Figure A.1


Measurement Procedure

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as described above. Number of Sweep Points \geq 2 X Span / RBW = 2 X (4MHz / 30kHz) = 267, the SA was configured for 501 Points. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device. The DUT was set to transmit at 100% Duty Cycle. The Channel Bandwidth was set to the measured 99% Occupied Bandwidth (See Section 9.0). The Band Channel Power was measured and recorded.

45461752 R2.0 22 August 2022


Plot 8.1 - Conducted Power, 906 MHz

45461752 R2.0 22 August 2022


Plot 8.2 - Conducted Power, 916 MHz

45461752 R2.0 22 August 2022

Plot 8.3 - Conducted Power, 924 MHz

45461752 R2.0 22 August 2022

Table 10.1 - Summary of Conducted Power Measurements

§15.247(b	§15.247(b)(3), RSS-247 (5.4)(d) Channel Output Power (RMS)							
Frequency	BW	Modulation	Power Setting ⁽¹⁾	Measured Power [E _{Meas}]	Measured Power [E _{Meas}]	Limit	Margin	
(MHz)	(kHz)		(dBm)	(dBm)	(W)	(W)	(dB)	
906.0				17.01	0.050		13.0	
916.0	2360	O-QPSK	20	17.00	0.050	1.0	13.0	
924.0				17.15	0.052		12.9	
Results: Complies								

(1) The output power is factory set to maximum Margin = $10*Log(Limit / E_{meas})$

RSS-247 (5.4)(d) Channel EIRP (RMS)										
Frequency	BW	Modulation	Power Setting ⁽¹⁾	Measured Power [E _{Meas}]	Antenna Gain ⁽²⁾ [G _T]	Cable Loss [L _c]	EIRP	EIRP	Limit	Margin
(MHz)	(kHz)		(dBm)	(dBm)	(dBi)	(dB)	(dBm)	(W)	(W)	(dB)
906.0				17.01			28.51	0.71		7.5
916.0	2360	O-QPSK	20	17.00	11	0.5	28.50	0.71	4.0	7.5
924.0				17.15			28.65	0.73		7.4
Results:								Com	plies	

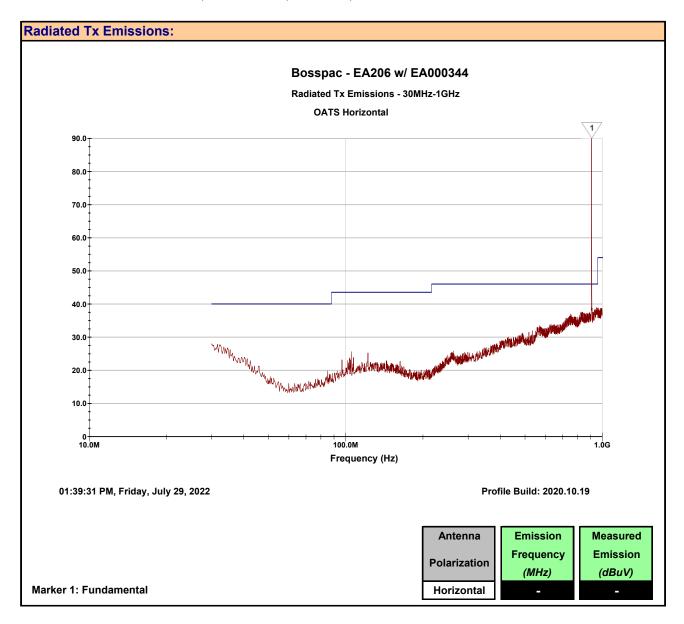
EIRP (dBm) = $E_{Meas} + G_T + L_C$ Margin = Limit - EIRP in dB

(1) The output power is factory set to maximum

(2) Maximum permissible gain

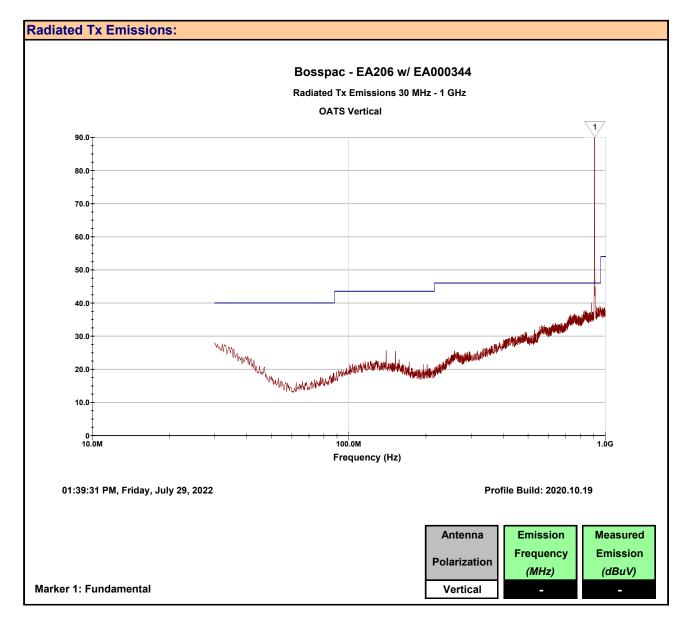
Note: Information on antenna gain provided by applicant

45461752 R2.0 22 August 2022

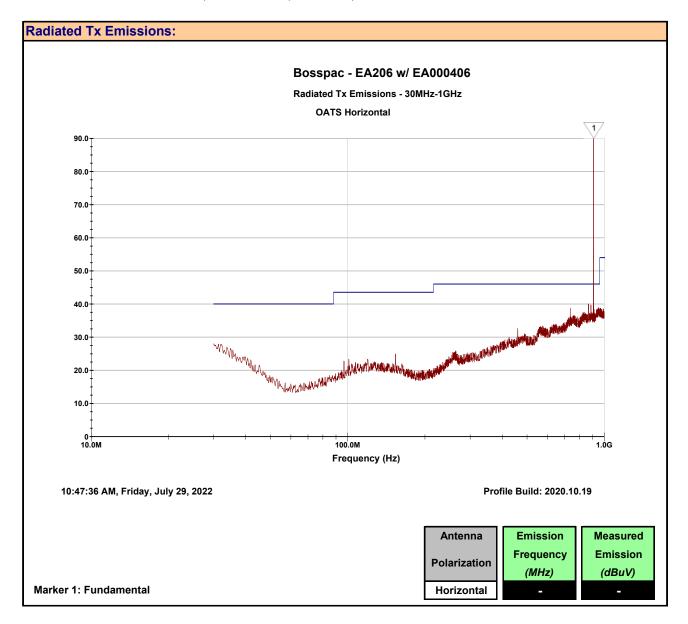

9.0 RADIATED TX EMISSIONS - RESTRICTED BAND

Test Procedure							
Normative Reference	FCC 47 CFR §2.1051, §15.247(d), §15.205(a), §15.205(c), §15.209(a)						
Normative Reference	KDB 558074 (8.6), ANSI C63.10 (11.12)						
Limits							
47 CFR §15.247(d) 47 CFR §15.209(a)	(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). §15.209 Radiated emission limits; general requirements.						
	(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:						
	Frequency (MHz)	Field Strength (microvolts/meter)					
	0.009 - 0.490	2400/F (kHz) @300m					
	0.490 - 1.705	24000/F (kHz) @30m					
	1.705 - 30	30 @ 30m					
	30 - 88	100 @3m					
	88 - 216 150 @3m						
	216 - 960	200 @3m					
	Above 960	500 @3m					

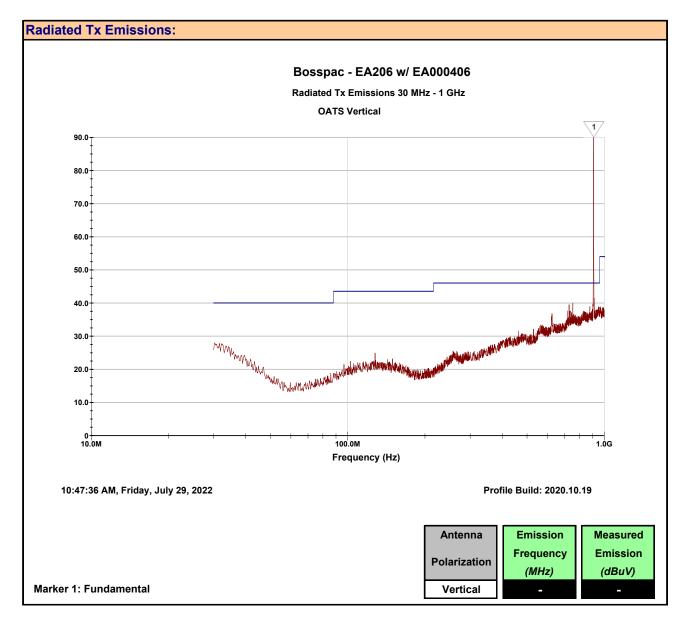
45461752 R2.0 22 August 2022


Plot 9.1 - Radiated Tx Emissions, 30 - 1000MHz, EA000344, Horizontal

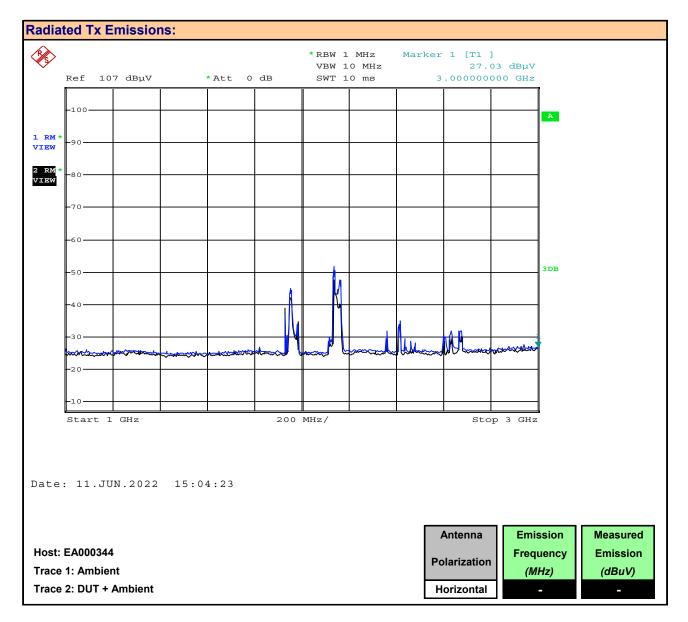
45461752 R2.0 22 August 2022


Plot 9.2 - Radiated Tx Emissions, 30 - 1000MHz, EA000344, Vertical

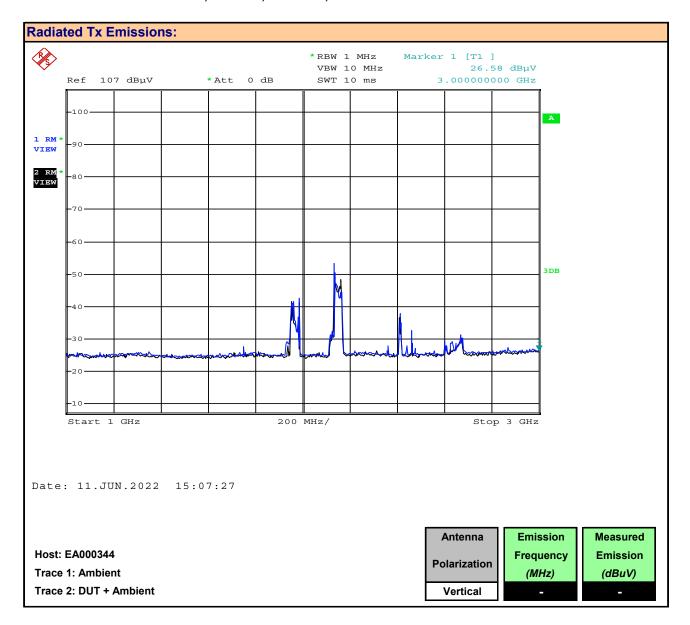
45461752 R2.0 22 August 2022


Plot 9.3 - Radiated Tx Emissions, 30 - 1000MHz, EA000406, Horizontal

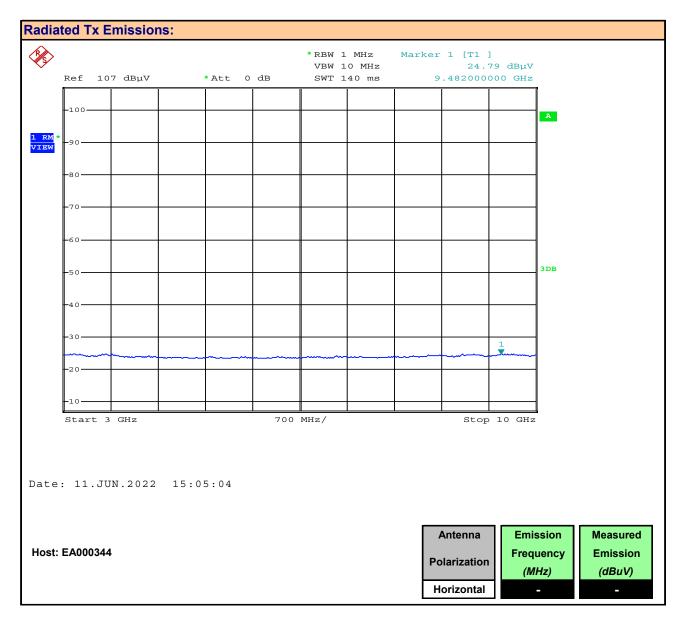
45461752 R2.0 22 August 2022


Plot 9.4 - Radiated Tx Emissions, 30 - 1000MHz, EA000406, Vertical

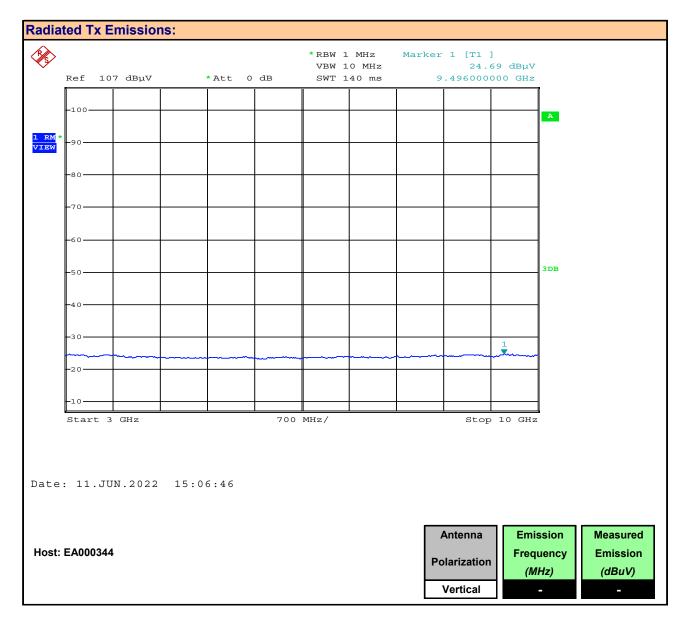
45461752 R2.0 22 August 2022


Plot 9.5 - Radiated Tx Emissions, 1 - 3GHz, EA000344, Horizontal

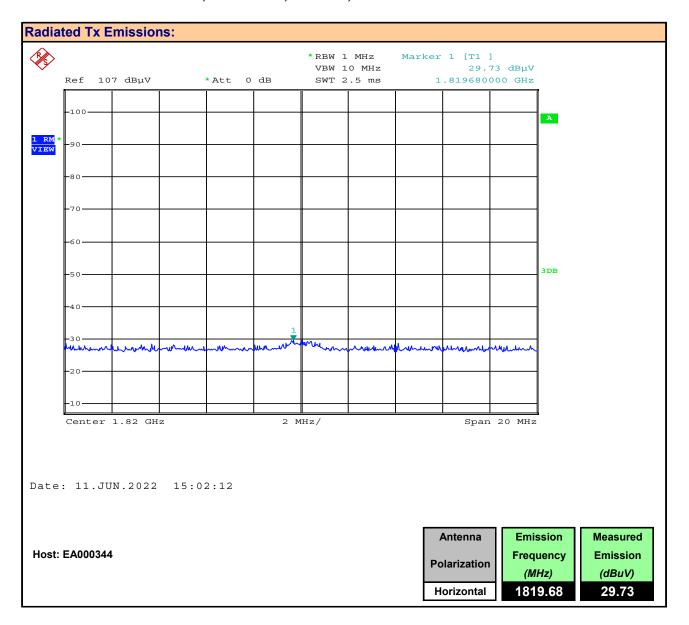
45461752 R2.0 22 August 2022


Plot 9.6 - Radiated Tx Emissions, 1 - 3GHz, EA000344, Vertical

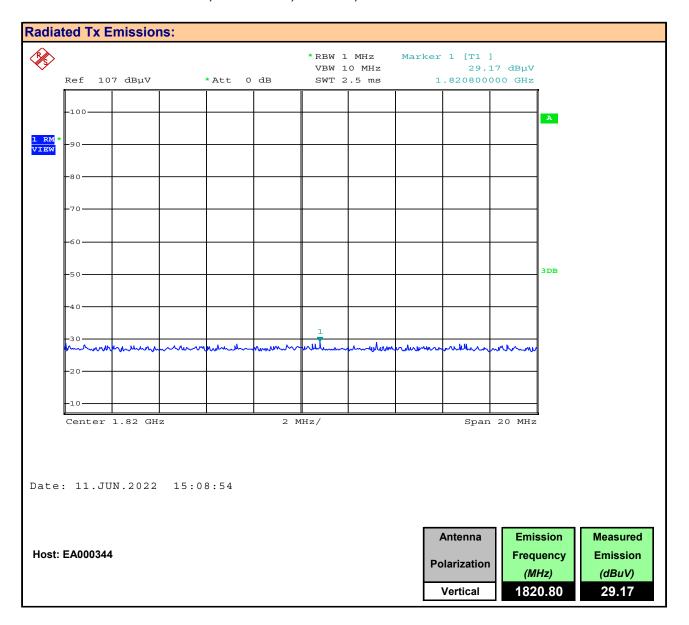
45461752 R2.0 22 August 2022


Plot 9.7 - Radiated Tx Emissions, 3 - 10GHz, EA000344, Horizontal

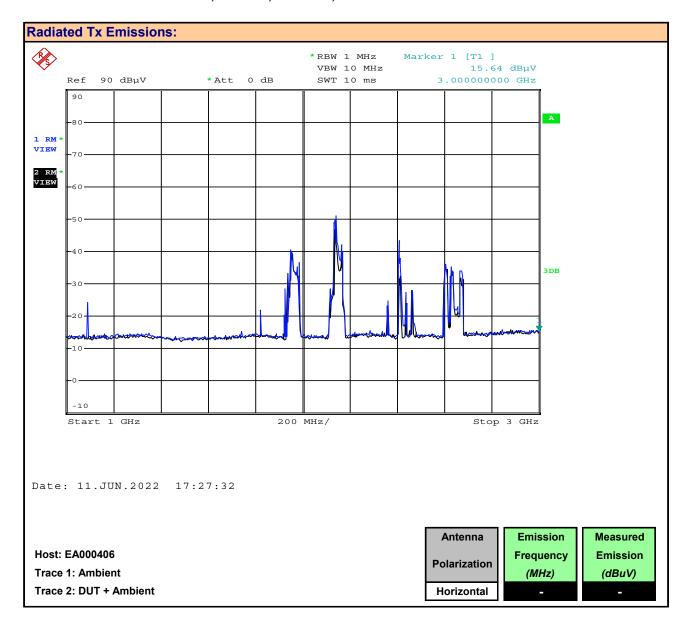
45461752 R2.0 22 August 2022


Plot 9.8 - Radiated Tx Emissions, 3 - 10GHz, EA000344, Vertical

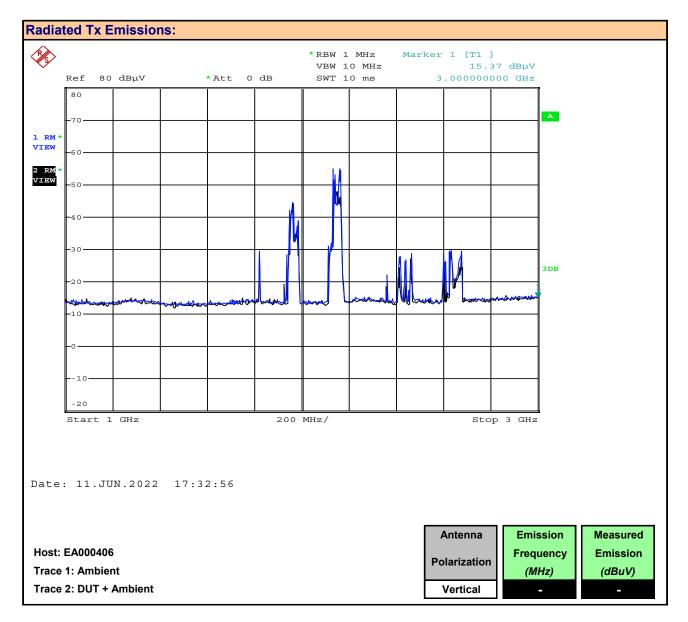
45461752 R2.0 22 August 2022


Plot 9.9 - Radiated Tx Emissions, 2nd Harmonic, EA000344, Horizontal

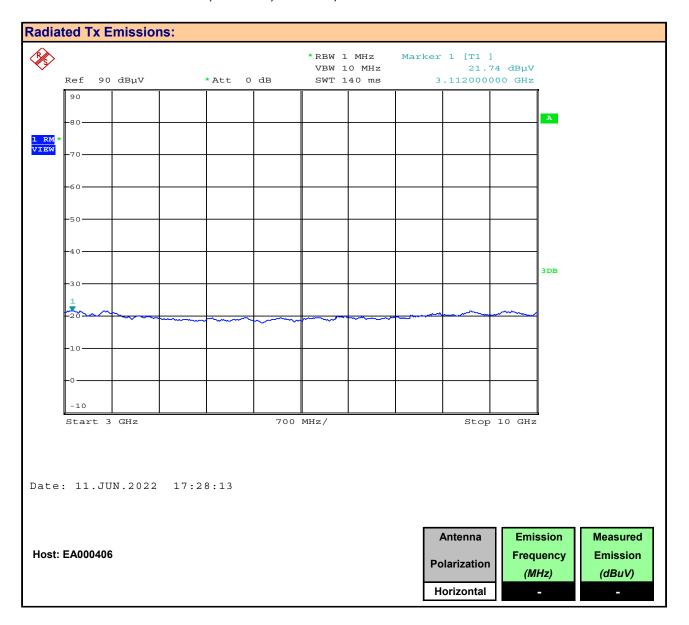
45461752 R2.0 22 August 2022


Plot 9.10 - Radiated Tx Emissions, 2nd Harmonic, EA000344, Vertical

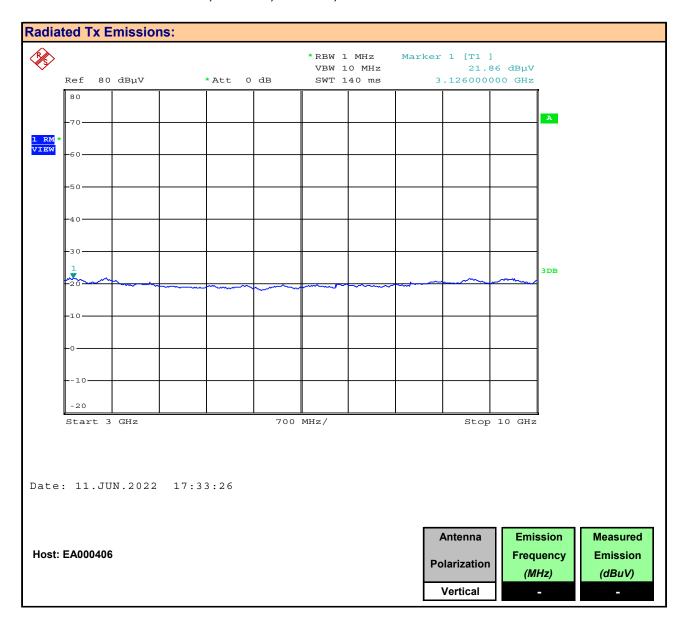
45461752 R2.0 22 August 2022


Plot 9.11 - Radiated Tx Emissions, 1 - 3GHz, EA000406, Horizontal

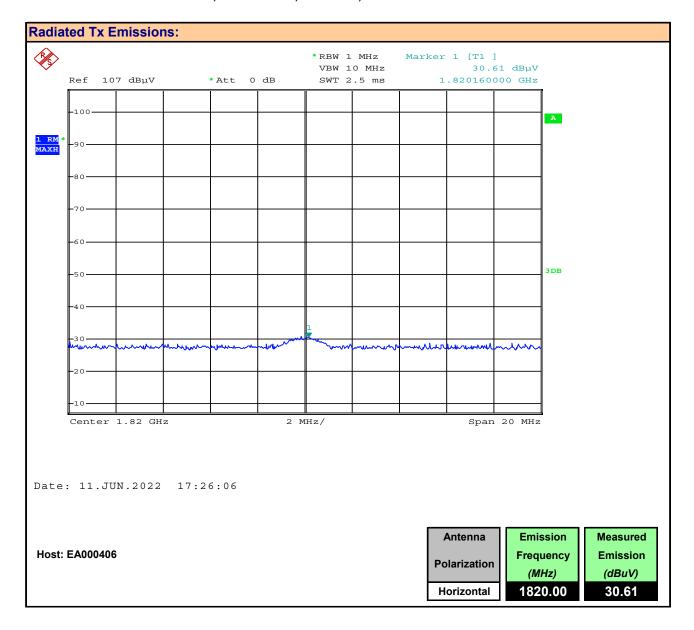
45461752 R2.0 22 August 2022


Plot 9.12 - Radiated Tx Emissions, 1 - 3GHz, EA000406, Vertical

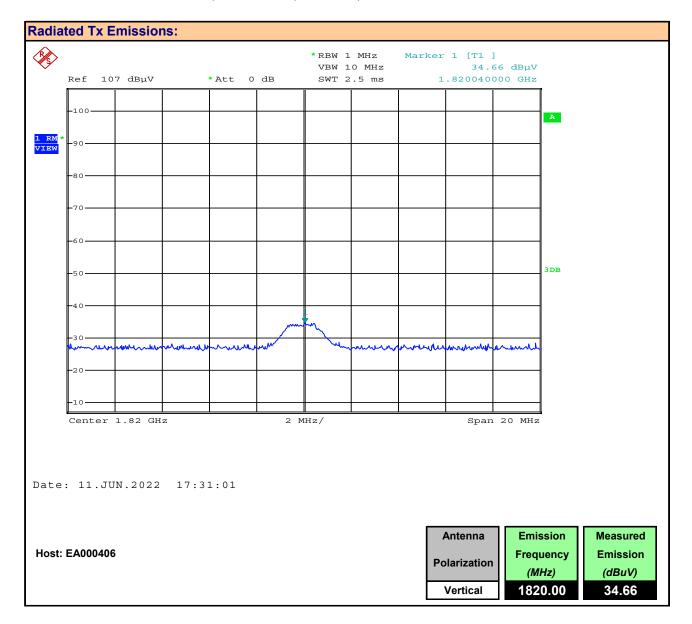
45461752 R2.0 22 August 2022


Plot 9.13 - Radiated Tx Emissions, 3 - 10GHz, EA000406, Horizontal

45461752 R2.0 22 August 2022


Plot 9.14 - Radiated Tx Emissions, 3 - 10GHz, EA000406, Vertical

45461752 R2.0 22 August 2022


Plot 9.15 - Radiated Tx Emissions, 2nd Harmonic, EA000406, Horizontal

45461752 R2.0 22 August 2022

Plot 9.16 – Radiated Tx Emissions, 2nd Harmonic, EA000406, Vertical

Test Report S/N: Test Report Issue Date: 22 August 2022

45461752 R2.0

Table 9.1 – Summary of Radiated Tx Measurements

Summary	of Radiate	d Tx Emis	sions										
Host	Measured	Channal	Antenna	Emissis	on	Measured	Antenna	Cable	Amplifie	Corre	cted		
поѕі	Frequency	Channel	Antenna	Emissio	OH	Emission	ACF	Loss	Gain	Emis	sion	Limit	Margin
HVIN	Range	Frequency	Polarization	Frequer	псу	[E _{Meas}]	[ACF]	[L _c]	$[G_A]$	[E _c	orr]		
HVIIN	(MHz)	(MHz)				(dBuV)	(dB)	(dB)	(dB)	(dBu	(dBuV/m)		(dB)
	30-1000MHz	910.000	Horizontal	ND	MHz	ND	n/a	n/a	0.00 (3) ND	(2)	94.0	n/a
	30-1000MHz	910.000	Vertical	ND	MHz	ND	n/a	n/a	0.00 (3) ND	(2)	94.0	n/a
EA000344	1 - 10GHz	910.000	Horizontal	1819.68	MHz	29.7	26.64	3.14	0.00 (3) 59.5	(2)	94.0	34.5
LA000344	1 - 10GHz	910.000	Vertical	1820.80	MHz	29.2	26.64	3.14	0.00 (3) 58.9	(2)	94.0	35.1
	1 - 10GHz	910.000	Horizontal	ND	MHz	ND	n/a	n/a	0.00 (3) ND	(2)	94.0	n/a
	1 - 10GHz	910.000	Vertical	ND	MHz	ND	n/a	n/a	0.00 (3) ND	(2)	94.0	n/a
	30-1000MHz	910.000	Horizontal	ND	MHz	ND	n/a	n/a	0.00 (3) ND	(2)	94.0	n/a
	30-1000MHz	910.000	Vertical	ND	MHz	ND	n/a	n/a	0.00 (3) ND	(2)	94.0	n/a
EA000406	1 - 10GHz	910.000	Horizontal	1820.00	MHz	30.6	26.64	3.14	0.00 (3) 60.4	(2)	94.0	33.6
EA000400	1 - 10GHz	910.000	Vertical	1820.00	MHz	34.7	26.64	3.14	0.00 (3) 64.4	(2)	94.0	29.6
	1 - 10GHz	910.000	Horizontal	ND		ND	n/a	n/a	0.00 (3) ND		94.0	n/a
	1 - 10GHz	910.000	Vertical	ND	MHz	ND	n/a	n/a	0.00 (3) ND	(2)	94.0	n/a
										Res	ults:	Com	plies

(1) No Emissions Detected (ND) above ambient or within 20dB of the limit

(2) Antenna ACF, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

(3) External Amplier not used

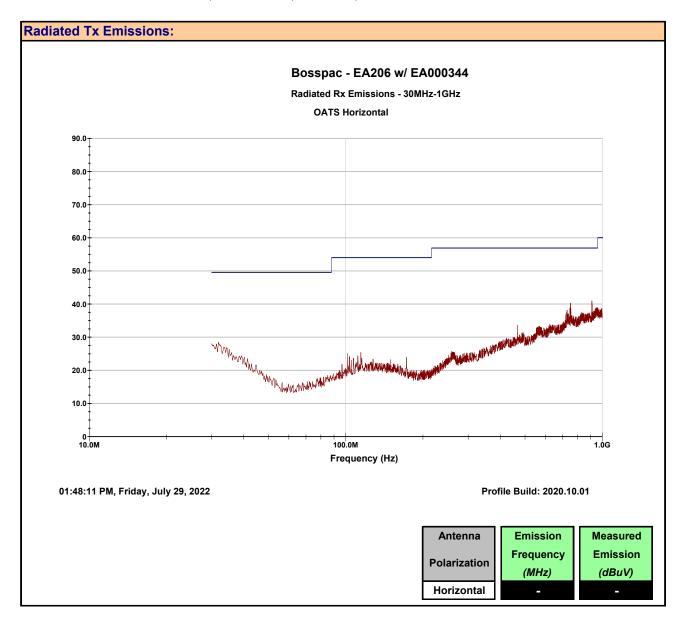
$$E_{Corr} = E_{Meas} + ACF^{E} + L_{C} - G_{A}$$

Where ACF^E is the Electric Antenna Correction Factor

45461752 R1.0 21 July 2022

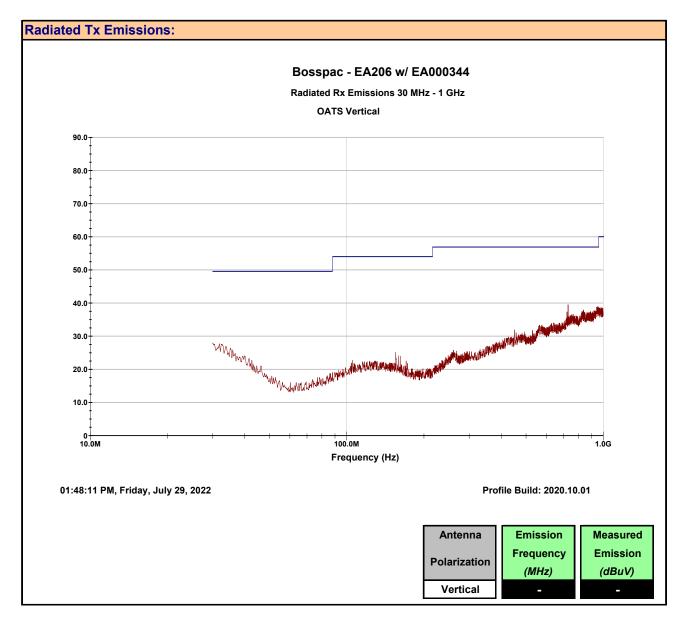
10.0 RADIATED RX EMISSIONS

Test Procedure							
Normative Reference	FCC 47 CFR §15.109, ICES-003	(6.2)					
Normative Reference	ANSI C63.4-2014						
Limits							
47 CFR §15.109	(b) The field strength of radiated distance of 10 meters, shall not	emissions from a Class A digital device, as determined at a exceed the following:					
	30-88MHz: 39.1dBuV/m	30-88MHz: 49.6dBuV/m @ 3m					
	88-216MHz: 43.5dBuV/m	88-216MHz: 54.0dBuV/m @ 3m					
	216-960MHz: 46.4dBuV/m	216-960MHz: 56.9dBuV/m @ 3m					
	> 960MHz: 49.5dBuV/m	> 960MHz: 60.0dBuV/m @ 3m					
ICES-003(6.2.1)	6.2.1 - Radiated Emissions Limit	s Below 1 GHz					
		ditions for Class A operation defined in Section 2.2 shall dimits set out in Table 4 determined at a distance of 10					
	30-88MHz: 39.1dBuV/m	30-88MHz: 49.6dBuV/m @ 3m					
	88-216MHz: 43.5dBuV/m	88-216MHz: 54.0dBuV/m @ 3m					
	216-960MHz: 46.4dBuV/m	216-960MHz: 56.9dBuV/m @ 3m					
	> 960MHz: 49.5dBuV/m	> 960MHz: 60.0dBuV/m @ 3m					
Test Setup	Appendix A	Figure A.1					

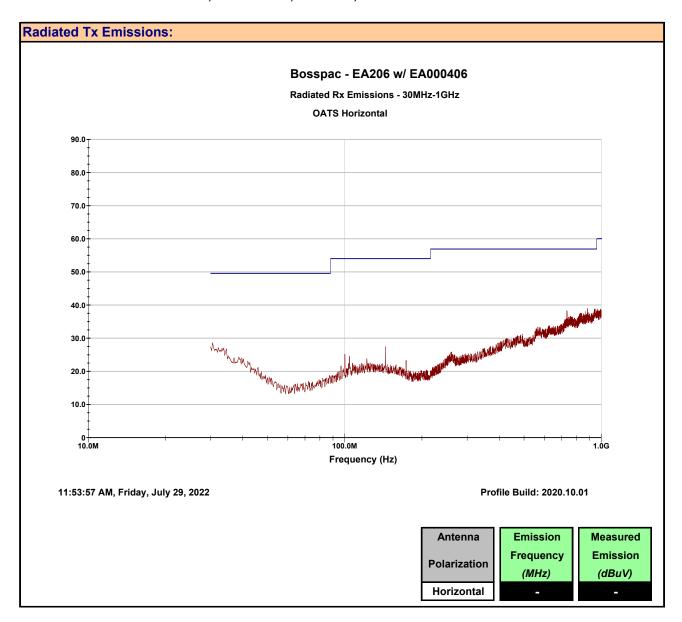

Measurement Procedure

The DUT was set up as per ANSI C63.4:2014. Emissions were scanned between 30MHz and 1000MHz. The turntable was rotated 360 degrees and the antenna was elevated to 4m to optimize the measured emissions.

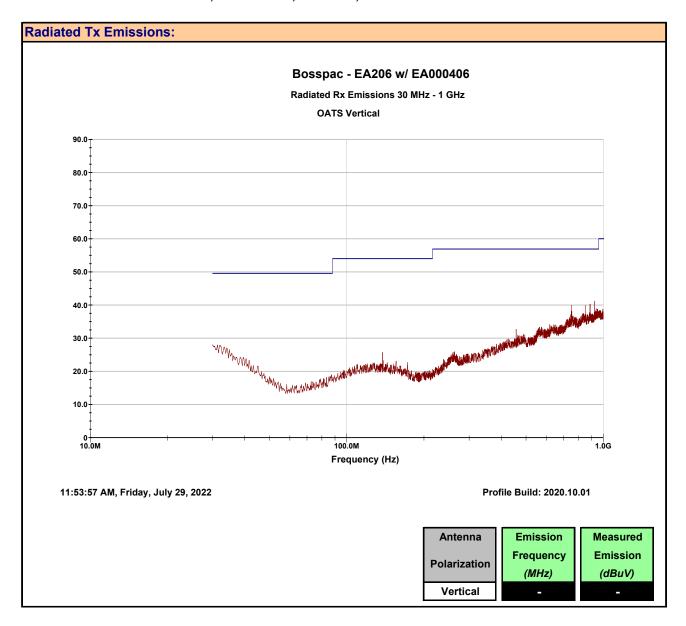
45461752 R1.0 21 July 2022


Plot 10.1 - Radiated Rx Emissions, 30 - 1000MHz, EA000344, Horizontal

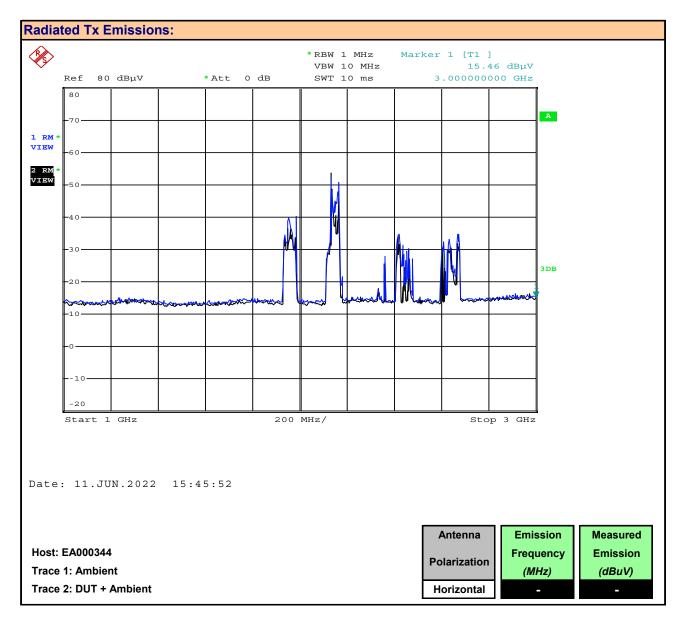
45461752 R1.0 21 July 2022


Plot 10.2 - Radiated Rx Emissions, 30 - 1000MHz, EA000344, Vertical

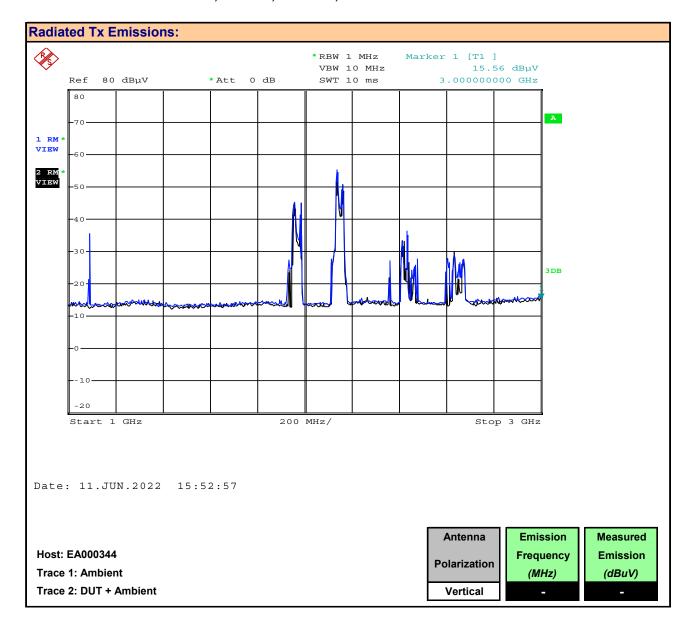
45461752 R1.0 21 July 2022


Plot 10.3 - Radiated Rx Emissions, 30 - 1000MHz, EA000406, Horizontal

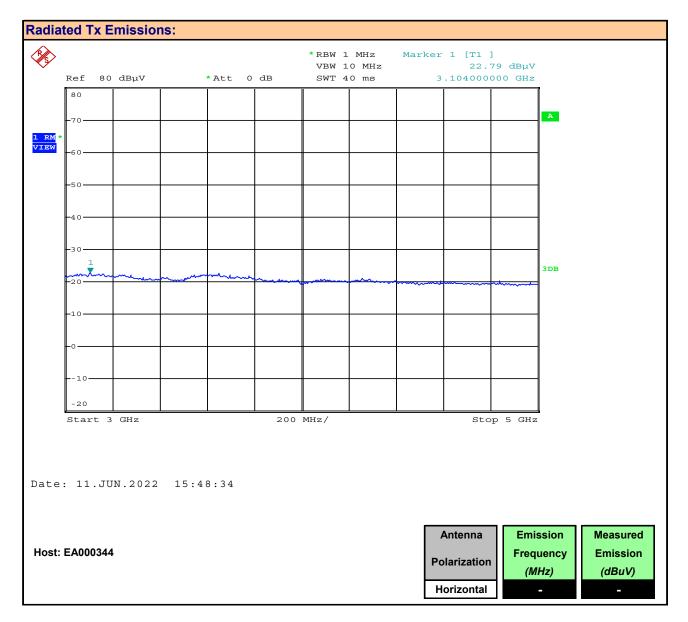
45461752 R1.0 21 July 2022


Plot 10.4 - Radiated Rx Emissions, 30 - 1000MHz, EA000406, Vertical

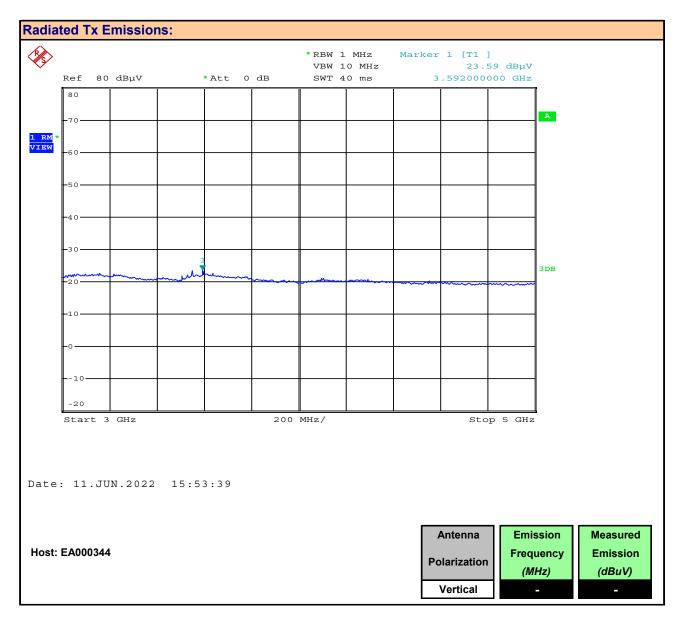
45461752 R1.0 21 July 2022


Plot 10.5 - Radiated Rx Emissions, 1 - 3GHz, EA000344, Horizontal

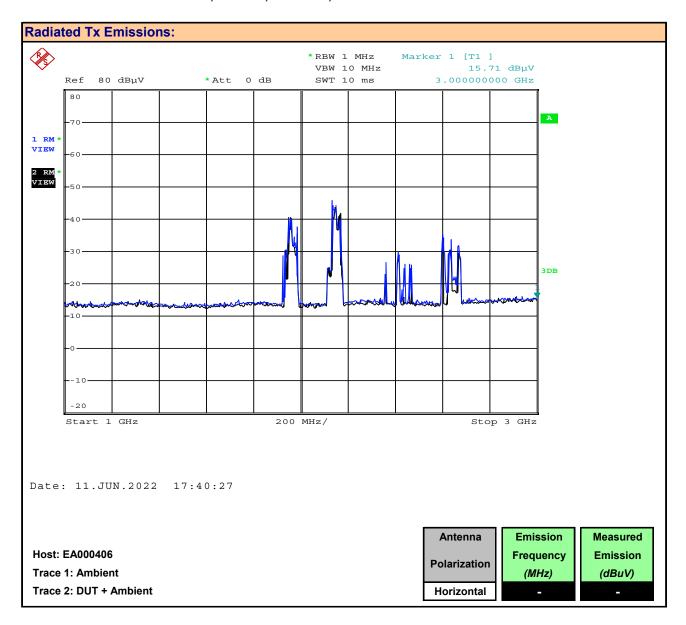
45461752 R1.0 21 July 2022


Plot 10.6 - Radiated Rx Emissions, 1 - 3GHz, EA000344, Vertical

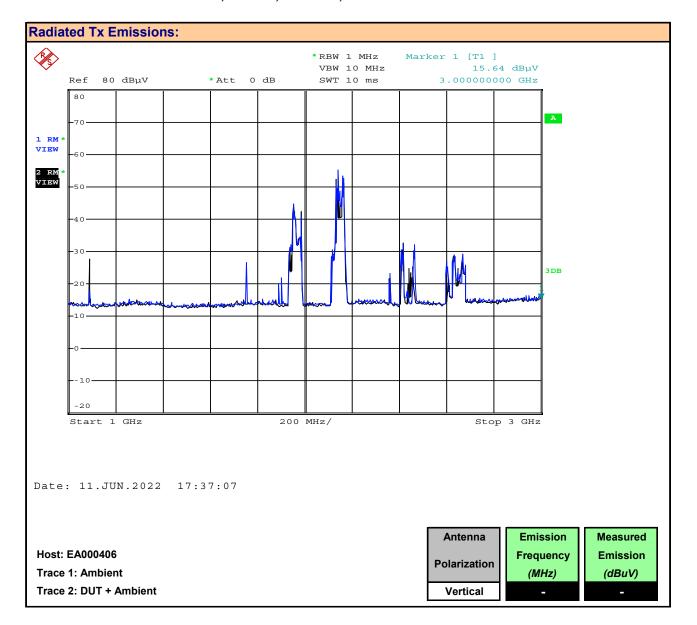
45461752 R1.0 21 July 2022


Plot 10.7 - Radiated Rx Emissions, 3 - 5GHz, EA000344, Horizontal

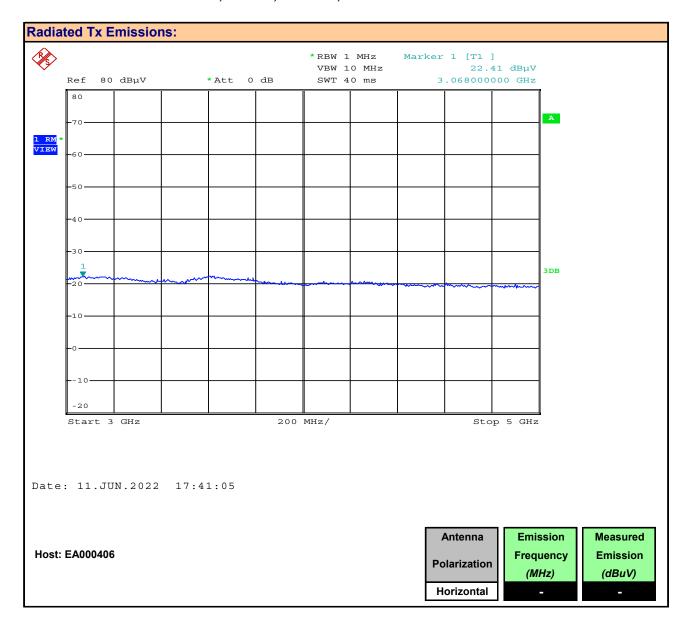
45461752 R1.0 21 July 2022


Plot 10.8 - Radiated Rx Emissions, 3 - 5GHz, EA000344, Vertical

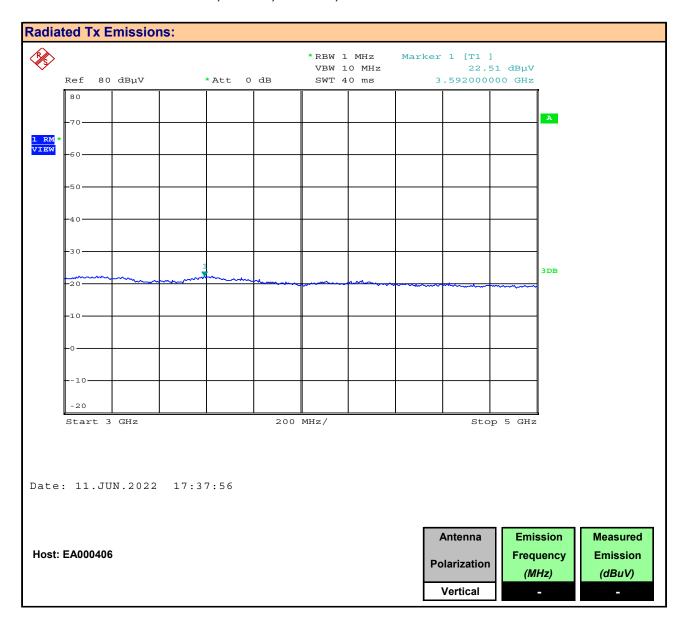
45461752 R1.0 21 July 2022


Plot 10.9 - Radiated Rx Emissions, 1 - 3GHz, EA000406, Horizontal

45461752 R1.0 21 July 2022


Plot 10.10 - Radiated Rx Emissions, 1 - 3GHz, EA000406, Vertical

45461752 R1.0 21 July 2022


Plot 10.11 - Radiated Rx Emissions, 3 - 5GHz, EA000406, Horizontal

45461752 R1.0 21 July 2022

Plot 10.12 - Radiated Rx Emissions, 3 - 5GHz, EA000406, Vertical

Test Report S/N:

45461752 R1.0

Test Report Issue Date: 21 July 2022

Table 15.1 - Summary of Radiated Rx Measurements

Summary	of Radiated	d Rx Emis	sions											
Host	Measured	Channal	Antenna	Emiss	ion	Measured	Antenna	Cable	Amplific	er	Correc	ted		
Host	Frequency	Channel	Antenna	EIIIISS	IOII	Emission	ACF	Loss	Gain		Emissi	on	Limit	Margin
HVIN	Range	Frequency	Polarization	Freque	Frequency		[ACF]	[L _c]	[G _A]		[E _{Corr}]		
TI VIIN	(MHz)	(MHz)				(dBuV)	(dB)	(dB)	(dB)		(dBuV/	m)	(dBuV)	(dB)
	30-1000MHz	-	Horizontal	ND	MHz	ND	n/a	n/a	0.00 ((3)	ND	(2)	-	n/a
EA000344	30-1000MHz	-	Vertical	ND	MHz	ND	n/a	n/a	0.00 ((3)	ND	(2)	-	n/a
EAUUUJ44	1 - 5GHz	-	Horizontal	ND	MHz	ND	n/a	n/a	0.00 ((3)	ND	(2)	-	n/a
	1 - 5GHz	-	Vertical	ND	MHz	ND	n/a	n/a	0.00 ((3)	ND	(2)	-	n/a
	30-1000MHz	-	Horizontal	ND	MHz	ND	n/a	n/a	0.00 ((3)	ND	(2)	-	n/a
EA000406	30-1000MHz	-	Vertical	ND	MHz	ND	n/a	n/a	0.00 ((3)	ND	(2)	-	n/a
EA000400	1 - 5GHz	-	Horizontal	ND	MHz	ND	n/a	n/a	0.00 ((3)	ND	(2)	-	n/a
	1 - 5GHz	-	Vertical	ND	MHz	ND	n/a	n/a	0.00 ((3)	ND	(2)	-	n/a
											Resu	lts:	Com	plies

(1) No Emissions Detected (ND) above ambient or within 20dB of the limit

(2) Antenna ACF, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

(3) External Amplier not used

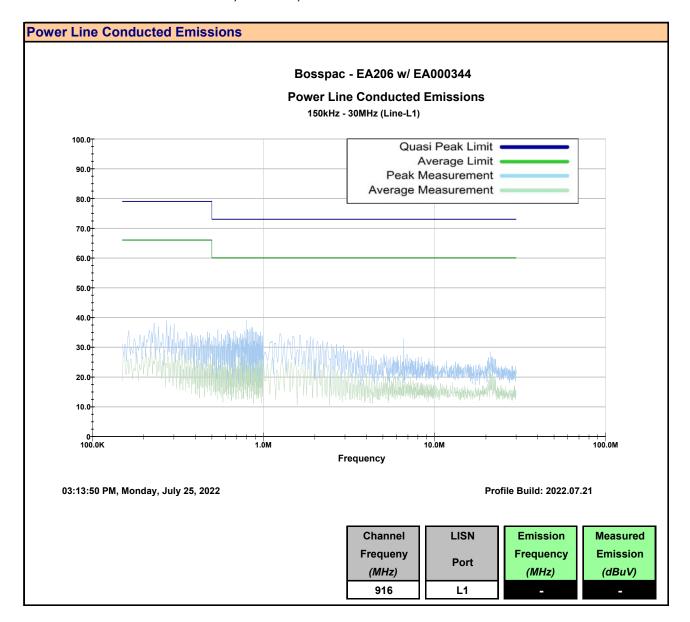
$$E_{Corr} = E_{Meas} + ACF^{E} + L_{C} - G_{A}$$

Where ACF^E is the Electric Antenna Correction Factor

45461752 R1.0 21 July 2022

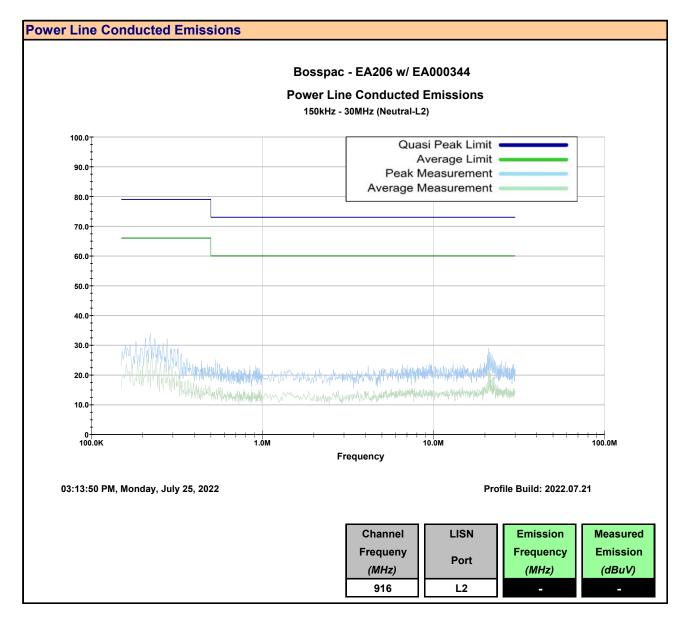
11.0 LINE CONDUCTED EMISSIONS

Test Procedure	
Normative Reference	FCC 47 CFR §15.107, ICES-003(6.1)
Normative Reference	ANSI C63.4-2014
Limits	
47 CFR §15.107	(b) For a Class A digital device that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms LISN. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.
	0.15 - 0.5 MHz: 79 dBuV Quasi Peak, 66 dBuV Average
	0.5 - 30.0 MHz: 73 dBuV Quasi Peak, 60 dBuV Average
ICES-003(6.1)	6.1 - AC Power Line Conducted Emissions Limits
	Class A: ITE that meets the conditions for Class A operation defined in Section 2.2 shall comply with the Class A conducted limits set out below in Table 1.
	0.15 - 0.5 MHz: 79 dBuV Quasi Peak, 66 dBuV Average
	0.5 - 30.0 MHz: 73 dBuV Quasi Peak, 60 dBuV Average
Test Setup	Appendix A Figure A.1

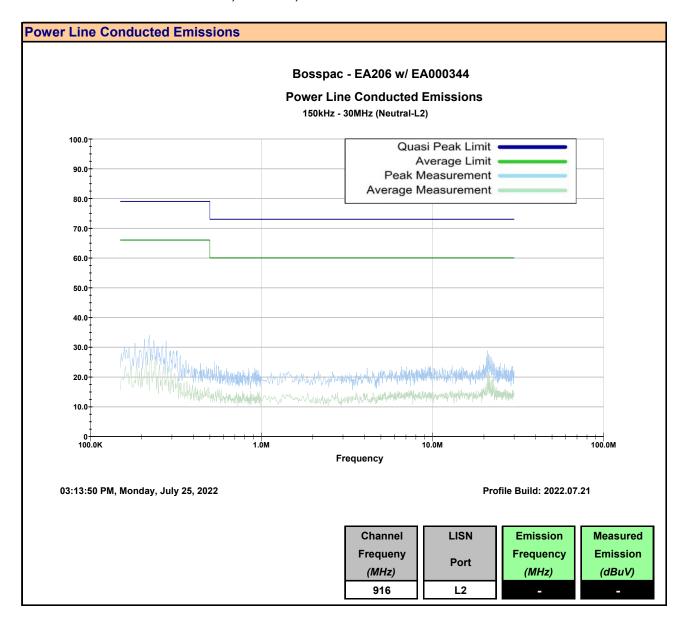

Measurement Procedure

The device was connected to the LISN as shown in Appendix A. The input power supply was connected to a 208VAC, 1PH power source. The AC Line Conducted emissions were measured from 150kHz to 30MHz on both Lines L1 and L2 while the DUT was set to maximum output power.

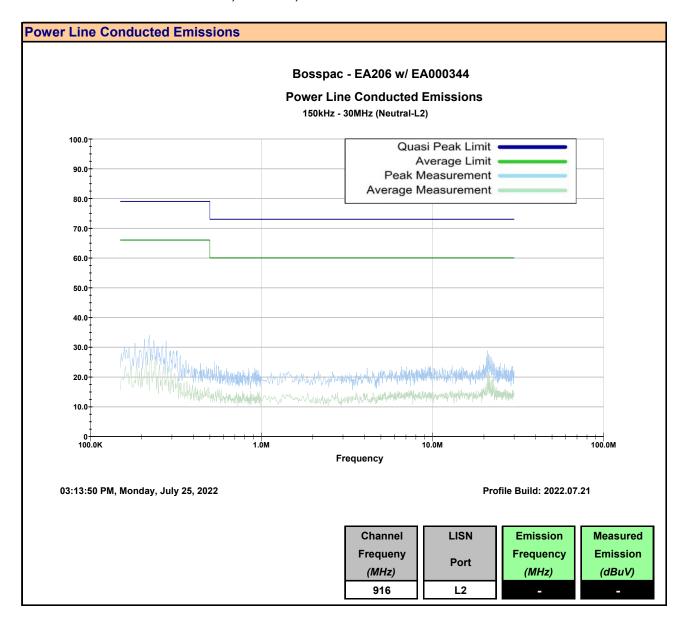
45461752 R1.0 21 July 2022


Plot 11.1 - Line Conducted Emissions, EA000344, L1

45461752 R1.0 21 July 2022


Plot 11.2 - Line Conducted Emissions, EA000344, L2

45461752 R1.0 21 July 2022


Plot 11.3 - Line Conducted Emissions, EA000406, L1

45461752 R1.0 21 July 2022

Plot 11.4 - Line Conducted Emissions, EA000406, L2

Test Report S/N:

45461752 R1.0

Test Report Issue Date: 21 July 2022

Table 11.1 – Summary of Line Conducted Measurements, L1

Summary of F	ummary of Power Line Conducted Tx Emissions											
Measured	Host	Channel	LISN	Emission	Measured		Insertion	Cable	Amplifier	Corrected		
Frequency	пові	Chamilei	LISIT	Frequency	Emission	Detector*	Loss	Loss	Gain	Emission	Limit	Margin
Range	HVIN	Frequency	Port	[f _{Emm}]	[E _{Meas}]		[L _{LISN}]	[L _c]	[G _A]	[E _{Corr}]		
(MHz)	HVIN	(MHz)			(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
	EA000344			ND	ND	Peak	0.40	0.25	0.00 (3)	ND (2	n/a	-
150kHz - 30MHz		916.0	L1	ND	ND	Average	0.40	0.25	0.00 (3)	ND (2	n/a	-
130KI 12 - 30WII 12	EA000406	916.0	LI	ND	ND	Peak	0.40	0.25	0.00 (3)	ND (2	n/a	-
	LA000400			ND	ND	Average	0.40	0.25	0.00 (3)	ND (2	n/a	-
	Results:										Com	olies

^{*} In accordance with FCC §15.35 and ANSI C63.4, a Peak detector may be used to demonstrate compliance to Quasi-Peak limits provided the Resolution Bandwidth (RBW) is equal to or greater than Quasi-Peak bandwidth. The Detector RBW employed was ≥ 9kHz.

(2) LISN Insertion Loss, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

(3) External Amplier not used

 $E_{Corr} = E_{Meas} + L_{LISN} + L_{C} - G_{A}$

Class B QP Limit = 56 - 20Log ($f_{Emm}/500$) for $f_{Emm} = 150$ kHz to 500kHz

Class B Avg Limit = 46 - 20Log ($f_{Emm}/500$) for f_{Emm} = 150kHz to 500kHz

Class A QP Limit = 79dBuV for f_{Emm} = 150kHz to 500kHz

Class A Avg Limit = 66dBuV for f_{Emm} = 150kHz to 500kHz

Margin = Limit - E_{corr}

ND: No emissions Detected within 20dB of the Limit

Test Report S/N:

45461752 R1.0

Test Report Issue Date: 21 July 2022

Table 11.2 – Summary of Line Conducted Measurements, L2

Summary of F	ummary of Power Line Conducted Tx Emissions											
Measured	Host	Channel	LISN	Emission	Measured		Insertion	Cable	Amplifier	Corrected		
Frequency	пові	Onamiei	LISIN	Frequency	Emission	Detector*	Loss	Loss	Gain	Emission	Limit	Margin
Range	HVIN	Frequency	Port	[f _{Emm}]	[E _{Meas}]		[L _{LISN}]	[L _c]	[G _A]	[E _{Corr}]		
(MHz)	HVIN	(MHz)			(dBuV)		(dB)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)
	EA000344			ND	ND	Peak	0.40	0.25	0.00 (3)	ND (2) n/a	-
150kHz - 30MHz		916.0	L2	ND	ND	Average	0.40	0.25	0.00 (3)	ND (2) n/a	-
130KI 12 - 30WII 12	EA000406	916.0	LZ	ND	ND	Peak	0.40	0.25	0.00 (3)	ND (2) n/a	-
	LA000400			ND	ND	Average	0.40	0.25	0.00 (3)	ND (2) n/a	-
Results:										: Com	plies	

^{*} In accordance with FCC §15.35 and ANSI C63.4, a Peak detector may be used to demonstrate compliance to Quasi-Peak limits provided the Resolution Bandwidth (RBW) is equal to or greater than Quasi-Peak bandwidth. The Detector RBW employed was ≥ 9kHz.

(2) LISN Insertion Loss, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

(3) External Amplier not used

 $E_{Corr} = E_{Meas} + L_{LISN} + L_{C} - G_{A}$

Class B QP Limit = 56 - 20Log ($f_{Emm}/500$) for $f_{Emm} = 150$ kHz to 500kHz

Class B Avg Limit = 46 - 20Log ($f_{Emm}/500$) for f_{Emm} = 150kHz to 500kHz

Class A QP Limit = 79dBuV for f_{Emm} = 150kHz to 500kHz

Class A Avg Limit = 66dBuV for f_{Emm} = 150kHz to 500kHz

Margin = Limit - E_{corr}

ND: No emissions Detected within 20dB of the Limit

45461752 R1.0 21 July 2022

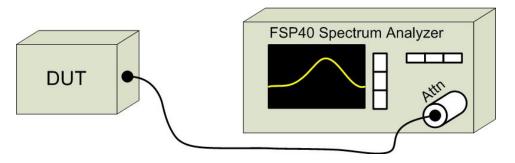

APPENDIX A - TEST SETUP DRAWINGS AND CONDITIONS

Table A.1 – Conducted Measurement Setup and Environmental

Environmental Conditions (Typical)							
Temperature	25°C						
Humidity	<60%						
Barometric Pressure	101 +/- 3kPa						

	Equipment List								
Asset Number	Manufacturer	Model Number	Description						
00241	R&S	FSU40	Spectrum Analyzer						

Figure A.1 – Test Setup – Conducted Measurements

45461752 R1.0 21 July 2022

Table A.2 – Radiated Emissions Measurement Equipment

Environmental Condit	Environmental Conditions (Typical)						
Temperature	25°C						
Humidity	<60%						
Barometric Pressure	101 +/- 3kPa						

Equipm	ent List				
Asset Number	Manufacturer	Model Number	Description		
00051	HP	8566B	Spectrum Analyzer		
00049	HP	85650A	Quasi-peak Adapter		
00047	HP	85685A RF Preselector			
00072	72 EMCO 2075		Mini-mast		
00073	EMCO	2080	Turn Table		
00071	EMCO	2090	Multi-Device Controller		
00265	Miteq	JS32-00104000-58-5P	Microwave L/N Amplifier		
00241	R&S	FSU40	Spectrum Analyzer		
00050	Chase	CBL-6111A	Bilog Antenna		
00275	Coaxis	LMR400	25m Cable		
00276	Coaxis	LMR400	4m Cable		
00278	TILE	34G3	TILE Test Software		
00034	ETS	3115	Double Ridged Guide Horn		
00085	EMCO	6502	Loop Antenna		

45461752 R1.0 21 July 2022

Figure A.2 - Test Setup Radiated Measurements 9kHzMHz - 30MHz

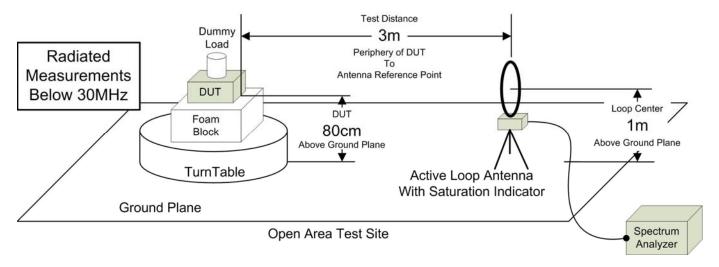
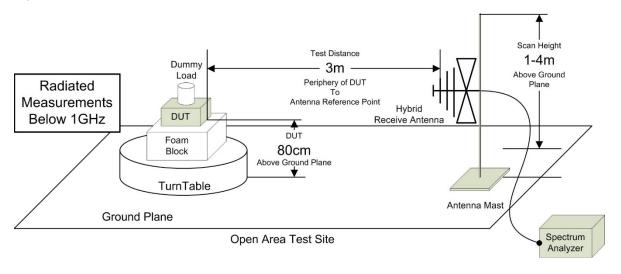
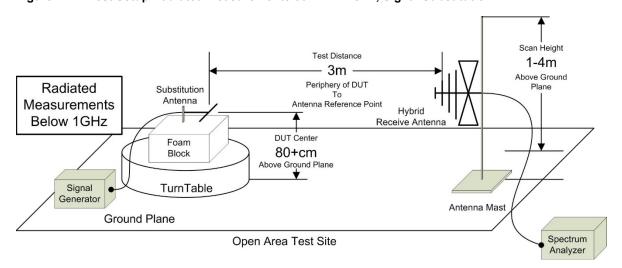
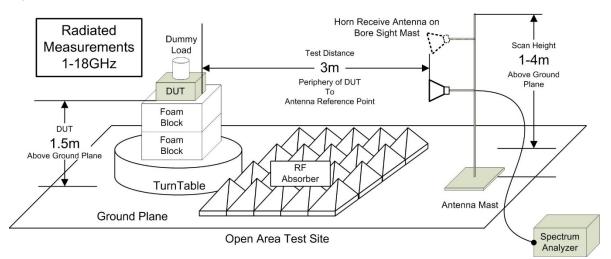


Figure A.3 - Test Setup Radiated Measurements 30MHz - 1GHz


Figure A.4 - Test Setup Radiated Measurements 30MHz - 1GHz, Signal Substitution

45461752 R1.0 21 July 2022

Figure A.5 – Test Setup Radiated Measurements 1 – 18GHz

45461752 R1.0 21 July 2022

Table A.3 - Setup - Conducted Emissions Equipment List

Equipm	Equipment List									
Asset Number	Manufacturer	Model Number	Serial Number	Description						
00333	HP	85685A	3010A01095	RF Preselector						
00049	HP	85650A	2043A00162	Quasi-peak Adapter						
00051	HP	8566B	2747A05510	Spectrum Analyzer						
00223	HP	8901A	3749A07154	Modulation Analyzer						
00257	Com-Power	LI-215A	191934	LISN						
00276	TMS	LMR400	n/a	4m Cable						

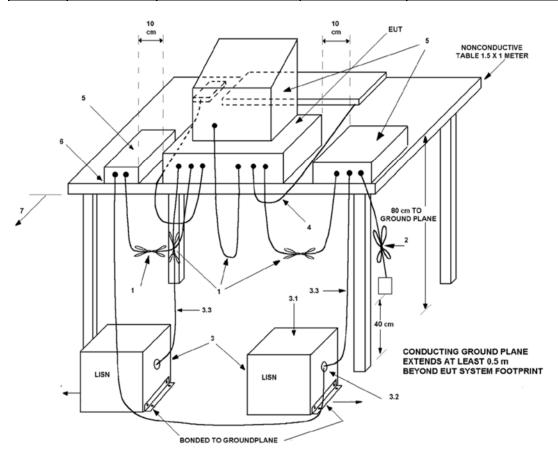


Figure A.6 – Test Setup Conducted Emissions Measurements

45461752 R1.0 21 July 2022

APPENDIX B - EQUIPMENT LIST AND CALIBRATION

Equipm	ent List						
Asset Number	Manufacturer	Model Number	Serial Number	Description	Last Calibrated	Calibration Interval	Calibration Due
00050	Chase	CBL-6111A	1607	Bilog Antenna	16 Nov 2020	Triennial	16 Nov 2023
00035	ETS	3115	6276	Double Ridged Guide Horn	4 Mar 2022	Triennial	4 Mar 2025
00333	HP	85685A	3010A01095	RF Preselector	23 Jun 2020	Triennial	30 Jun 2023
00049	HP	85650A	2043A00162	Quasi-peak Adapter	23 Jun 2020	Triennial	23 Jun 2023
00051	HP	8566B	2747A05510	Spectrum Analyzer	23 Jun 2020 Triennial		23 Jun 2023
00241	R&S	FSU40	100500	Spectrum Analyzer	10 Aug 2021	Triennial	10 Aug 2024
00257	Com-Power	LI-215A	191934	LISN	27 Dec 2021	Triennial	27 Dec 2024
00071	EMCO	2090	9912-1484	Multi-Device Controller	n/a	n/a	n/a
00072	EMCO	2075	0001-2277	Mini-mast	n/a	n/a	n/a
00073	EMCO	2080	0002-1002	Turn Table	n/a	n/a	n/a
00081	ESPEC	ECT-2	0510154-B	Environmental Chamber	NCR	n/a	CNR
00263	Koaxis	KP10-1.00M-TD	263	1m Armoured Cable	ed Cable COU n/a		COU
00275	TMS	LMR400	n/a	25m Cable	5m Cable COU n/a		COU
00278	TILE	34G3	n/a	TILE Test Software	NCR	n/a	NCR

NCR: No Calibration Required COU: Calibrate On Use

45461752 R1.0 21 July 2022

APPENDIX C - MEASUREMENT INSTRUMENT UNCERTAINTY

CISPR 16-4 Measurement Uncertainty (U _{LAB})	
This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence interval using a coverage factor of k=2	
Radiated Emissions 30MHz - 200MHz	
U _{LAB} = 5.14dB	U _{CISPR} = 6.3dB
Radiated Emissions 200MHz - 1000MHz	
U _{LAB} = 5.90dB	U _{CISPR} = 6.3dB
Radiated Emissions 1GHz - 6GHz	
$U_{LAB} = 4.80 dB$	U _{CISPR} = 5.2dB
Radiated Emissions 6GHz - 18GHz	
U _{LAB} = 5.1dB	U _{CISPR} = 5.5dB
Power Line Conducted Emissions 9kHz to 150kHz	
U _{LAB} = 2.96dB	U _{CISPR} = 3.8dB
Power Line Conducted Emissions 150kHz to 30MHz	
U _{LAB} = 3.12dB	U _{CISPR} = 3.4dB
If the calculated uncertainty U_{lab} i s less than U_{CISPR} then:	
1 Compliance is deemed to occur if NO measured disturbance exceeds the disturbance limit	
2 Non-Compliance is deemed to occur if ANY measured disturbance EXCEEDS the disturbance limit	
If the calculated uncertainty U _{lab} is greater than U _{CISPR} then:	
3 Compliance is deemed to occur if NO measured disturbance, increased by (U _{lab} - U _{CISPR}), exceeds the disturbance limit	
4 Non-Compliance is deemed to occur if ANY measured disturbance, increased by (U _{lab} - U _{CISPR}), EXCEEDS the disturbance limit	

Other Measurement Uncertainties (U _{LAB})	
RF Conducted Emissions 9kHz - 40GHz	
$U_{LAB} = 1.0 dB$ $U_{CISPR} = n/a$	
Frequency/Bandwidth 9kHz - 40GHz	
$U_{LAB} = 0.1ppm$ $U_{CISPR} = n/a$	
Temperature	
$U_{LAB} = 1^{O}C$ $U_{CISPR} = n/a$	

END OF REPORT