Prediction of MPE Limit 47 CFR § 2.1091

$$S_{20} = \frac{P_A G_N}{4\pi R_{20}^2}$$

$$S_C = \frac{P_A G_N}{4\pi R_C^2}$$

$$R_{c} = \sqrt{\frac{P_{A}G_{N}}{4\pi S_{L}}}$$

$$S_L = \frac{f}{1500} (mW/cm^2)$$

 S_{20} = Power Density of the Device at 20cm

 S_L = Power Density Limit

 $\mathbf{S}_{\mathbf{C}}$ = Power Density of the Device at the Compliance Distance $\mathbf{R}_{\mathbf{C}}$

 $R_{20} = 20 cm$

R_c = Minimum Distance to the Radiating Element to Meet Compliance

 P_T = Power Input to Antenna

P_A = Adjust Power

 G_N = Numeric Gain of the Antenna

f = Transmit Frequency

Transmit Duty Cycle = 100%

Use Group = General Popuation

		_
Transmit Duty Cycle:	100.00	(%)
Tx Frequency (f):	928.00	(MHz)
RF Power at Antenna Input Port (P_T):	79.00	(mW)
Antenna Gain:	11.00	(dBi)
Numeric Antenna Gain (G _N):	12.59	(numeric)
Cable or Other Loss:	0.00	(dB)
Duty Cycle/Loss Adjusted Power (P_A) :	79.00	(mW)
S _L =	0.619	(mW/cm ²)
S ₂₀ at 20cm =	0.198	(mW/cm ²)
R _c =	11.3	(cm)
S _c =	0.62	(mW/cm ²)

^{*} Power based on rated 1W EIRP and max antenna gain of 11dBi. 79mW = 19dBm, +11dBi = 30dBm (1W).

FCC ID: ZI8EA206	RESULT:	PASS
------------------	---------	------