

Test Report Serial Number: Test Report Date: Project Number: 45461619 R2.0 21 July 2021 1516

EMC Test Report - New Certification Applicant: NOLOGY **BossPac Engineering and Technology Inc** Bay 8 1450 28th Street NE Bay 8, 1450 28th Steet NE Calgary, AB, T2A7W6 Calgary, AB, T2A 7W6 Canada Canada FCC ID: IC Registration Number **ZI8EA206** 9648A-EA206 Product Model Number / HVIN Product Name / PMN WASPMESH EA000206

In Accordance With:

CFR Title 47, Part 15 Subpart C (§15.247), Part 15 Subpart B

Digital Transmission System (DTS)

RSS-Gen, RSS-247

Digital Transmission Systems (DTSs)

Approved By:

Ben Hewson, President Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Canada

Test Lab Certificate: 2470.01

IC Registration 3874A-1

FCC Registration: CA3874

This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc.

© 2021 Celltech Labs Inc,

Table of Contents

1.0 DOCUMENT CONTROL	5
2.0 CLIENT AND DUT INFORMATION	6
3.0 SCOPE	7
4.0 TEST SUMMARY	
5.0 NORMATIVE REFERENCES	9
6.0 FACILITIES AND ACCREDITATIONS	
7.0 DUTY CYCLE	
8.0 OCCUPIED BANDWIDTH	
9.0 DTS BANDWIDTH	
10.0 CONDUCTED POWER	
11.0 POWER SPECTRAL DENSITY	
12.0 CONDUCTED SPURIOUS EMISSIONS	
13.0 BAND EDGE	
14.0 RADIATED TX EMISSIONS – RESTRICTED BAND	
15.0 RADIATED RX EMISSIONS	
15.0 RADIATED RX EMISSIONS	
APPENDIX A – TEST SETUP DRAWINGS AND CONDITIONS	
APPENDIX B – EQUIPMENT LIST AND CALIBRATION	
APPENDIX C – MEASUREMENT INSTRUMENT UNCERTAINTY	
END OF REPORT	

Table of Figures

Figure A.1 – Test Setup – Conducted Measurements	71
Figure A.2 – Test Setup Radiated Measurements 9kHzMHz – 30MHz	
Figure A.3 – Test Setup Radiated Measurements 30MHz – 1GHz	73
Figure A.4 – Test Setup Radiated Measurements 30MHz – 1GHz, Signal Substitution	73
Figure A.5 – Test Setup Radiated Measurements 1 – 18GHz	74
Figure A.6 – Test Setup Conducted Emissions Measurements	75

45461619 R2.0 21 July 2021

Table of Plots

Plot 7.1 – Duty Cycle, 914 MHz	12
Plot 8.1 – Occupied Bandwidth, 906MHz	
Plot 8.2 – Occupied Bandwidth, 916MHz	
Plot 8.3 – Occupied Bandwidth, 924MHz	
Plot 9.1 – DTS Bandwidth, 906MHz	
Plot 9.2 – DTS Bandwidth, 916MHz	
Plot 9.3 – DTS Bandwidth, 924MHz	
Plot 10.1 – Conducted Power, 906 MHz	
Plot 10.2 – Conducted Power, 916 MHz	
Plot 10.3 – Conducted Power, 924 MHz	
Plot 11.1 – Power Spectral Density, 906MHz	
Plot 11.2 – Power Spectral Density, 916MHz	
Plot 11.3 – Power Spectral Density, 924MHz	
Plot 12.1 – Reference Level Measurement, 906MHz	
Plot 12.2 – Reference Level Measurement, 916MHz	
Plot 12.3 – Reference Level Measurement, 924MHz	
Plot 12.4 – Spurious Emission Measurement, 928 to1000MHz	
Plot 12.5 – Spurious Emission Measurement, 1 to 3GHz	
Plot 12.6 – Spurious Emission Measurement, 3 to 10GHz	
Plot 13.1 – Lower Band Edge	
Plot 13.2 – Upper Band Edge	
Plot 14.1 – Radiated Tx Emissions, 9kHz to 30MHz, Front	
Plot 14.2 – Radiated Tx Emissions, 9kHz to 30MHz, Side	
Plot 14.3 – Radiated Tx Emissions, 30 to 1000MHz, Horizontal	
Plot 14.4 – Radiated Tx Emissions, 30 to 1000MHz, Vertical	
Plot 14.5 – Radiated Tx Emissions, 1 to 3GHz, Horizontal	
Plot 14.6 – Radiated Tx Emissions, 1 to 3GHz, Vertical	
Plot 14.7 – Radiated Tx Emissions, 3 to 10GHz, Horizontal	
Plot 14.8 – Radiated Tx Emissions, 3 to 10GHz, Vertical	
Plot 15.1 – Radiated Rx Emissions, 9kHz to 30MHz, Front	
Plot 15.2 – Radiated Rx Emissions, 9kHz to 30MHz, Side	
Plot 15.3 – Radiated Rx Emissions, 30 to 1000MHz, Horizontal	
Plot 15.4 – Radiated Rx Emissions, 30 to 1000MHz, Vertical	
Plot 15.5 – Radiated Rx Emissions, 1 to 3GHz, Horizontal	
Plot 15.6 – Radiated Rx Emissions, 1 to 3GHz, Vertical Plot 15.7 – Radiated Rx Emissions, 3 to 10GHz, Horizontal	
Plot 15.7 – Radiated Rx Emissions, 3 to 10GHz, Horizontal Plot 15.8 – Radiated Rx Emissions, 3 to 10GHz, Vertical	
Plot 16.1 – Power Line Conducted Emissions, L1	
Plot 16.2 – Power Line Conducted Emissions, L2	

Table of Tables

Table 7.1 – Summary Duty Cycle Measurements Table 8.1 – Summary of 6dB DTS Bandwidth Measurements	18
Table 9.1 – Summary of Occupied Bandwidth Measurements	
Table 10.1 – Summary of Conducted Power Measurements	28
Table 11.1 – Summary of Power Spectral Density Measurements	33
Table 11.2 – Summary of Reference Level Measurements	38
Table 12.2 – Summary of Conducted Spurious Emissions Measurements	42
Table 13.1 – Summary of Band Edge Measurements	46
Table 14.1 – Summary of Radiated Tx Measurements	56
Table 15.1 – Summary of Radiated Rx Measurements	66
Table 16.1 – Summary of Power Line Conducted Measurements	70
Table A.1 – Conducted Measurement Setup and Environmental	71
Table A.2 – Radiated Emissions Measurement Equipment and Environmental	
Table A.3 – Setup – Conducted Emissions Equipment List	

1.0 DOCUMENT CONTROL

	Revision History								
Samples Tested By: Art Voss, P.Eng.			Dat	e(s) of Evaluation:	15 Oct - 20 Nov, 2020				
Report Prepared By: Art Voss, P.Eng.			Re	port Reviewed By:	Ben Hewson				
Report	Deed	wintion of Povision	Revised	Revised Basisian Data					
Revision	Desc	Description of Revision		Ву	Revision Date				
0.1	Draft Release			Art Voss	9 July 2021				
1.0	Initial Release			Art Voss	14 July 2021				
2.0	Added Powe	r Line Conducted Emissions	16	Art Voss	21 July 2021				

2.0 CLIENT AND DUT INFORMATION

Client Information							
Applicant Name	BossPac Engineering and Technology Inc						
	Bay 8 1450 28th Street NE						
Applicant Address (FCC)	Calgary, Alberta, T2A7W6						
	Canada						
	Bay 8, 1450 28th Street NE						
Applicant Address (ISED)	Calgary, AB, T2A 7W6						
	Canada						
	DUT Information						
	FCC ID: ZI8EA206						
Device Identifier(s):	ISED ID: 9648A-EA206						
Device Type:	Digital Transceiver Module						
Type of Equipment:	Digital QPSK Transceiver Module, IEEE 802.15.4						
Device Model(s) / HVIN:	EA000206						
Device Marketing Name / PMN:	WASPMESH						
Firmware Version ID Number / FVIN:							
Host 1 Marketing Name / HMN:	NEST2						
Host 1 Model Number / HVIN:	EA000144						
Host 2 Marketing Name / HMN:	NEST3						
Host 2 Model Number / HVIN:	EA000244						
Host 3 Marketing Name / HMN:	DRC-Gateway						
Host 3 Model Number / HVIN:	EA000405						
Test Sample Serial No.:	T/A Sample - Identical Prototype						
Transmit Frequency Range:	906-924MHz						
Test Channels:	Programmable						
Manuf. Max. Rated Output Power:	30dBm, 1W, EIRP						
Manuf. Max. Rated BW/Data Rate:	250kbps						
Antenna Make and Model:	Laird Connnectivity, TRAB9023NP						
Antenna Type and Gain:	Omni-Directional, 3dBi						
Antenna Make and Model:	Laird Connnectivity, OD9-11D1						
Antenna Type and Gain:	Omni-Directional Whip, 11dBi						
Antenna Make and Model:	Linx Technologies, ANT-916-CW-HWR-SMA						
Antenna Type and Gain:	Omni Directional Whip, 1.2dBi						
Antenna Make and Model:	Taoglas Limited, OMB.915.B08F21						
Antenna Type and Gain:	Omni Directional Whip, 8dBi						
Modulation:	O-QPSK						
DUT Power Source:	5VDC, Provided by Host						
DUT Dimensions [HxWxL] (mm)	H x W x L: 3mm x 18mm x 27mm						
Deviation(s) from standard/procedure:	None						
Modification of DUT:	None						

3.0 SCOPE

This Certification Report was prepared on behalf of:

BossPac Engineering and Technology Inc.

,(the '*Applicant*"), in accordance with the applicable Federal Communications Commission (FCC) CFR 47 and Innovation, Scientific and Economic Development (ISED) Canada rules parts and regulations (the '*Rules*'). The scope of this investigation was limited to only the equipment, devices and accessories (the '*Equipment*') supplied by the *Applicant*. The tests and measurements performed on this *Equipment* were only those set forth in the applicable *Rules* and/or the Test and Measurement Standards they reference. The *Rules* applied and the Test and Measurement Standards used during this evaluation appear in the Normative References section of this report. The limits set forth in the technical requirements of the applicable *Rules* were applied to the measurement results obtained during this evaluation and ,unless otherwise noted, these limits were used as the Pass/Fail criteria. The Pass/Fail statements made in this report apply to only the tests and measurements performed on only the *Equipment* tested during this evaluation. Where applicable and permissible, information including test and measurement data and/or results from previous evaluations of same or similar equipment, devices and/or accessories may be cited in this report.

As per FCC CFR 47 Part §2.1091 and §2.1093 and Health Canada Safety Code 6, an RF Exposure evaluation report is required for this *Equipment* and the results of the RF Exposure evaluation appear in a separate exhibit from this report.

This *Equipment* is subject to FCC Declaration of Conformity (DoC). DoC evaluations were performed on this *Equipment* and the results of the DoC evaluation appear in a separate exhibit from this report.

Application:

This application is for a new certification of a modular transmitter, as per FCC 47 CFR §15.212(b) and ISED RSP-100 (5.3.2), as a **Limited Single Modular Approval**. The associated modular transmitter checklists accompany this report as a separate exhibit. The transmitter module does not have a regulated power source and must receive regulated power from the host device and cannot be tested in a stand-alone configuration.

The module, Model/HVIN: EA000206, was evaluated in two different host configurations and the hosts are identified as Host 1 and Host 2 throughout this report. A third host, Host 3, is identical Host 1 in all aspects with the exception of the type of sensor input.

Host 1, Model/HVIN: EA000144, "NEST2", is a network controller device.

Host 1, Model/HVIN: EA000244, "NEST3", is a smart receiver and gateway.

Host 3, Model/HVIN: EA000405, "DRC-Gateway", is a router device.

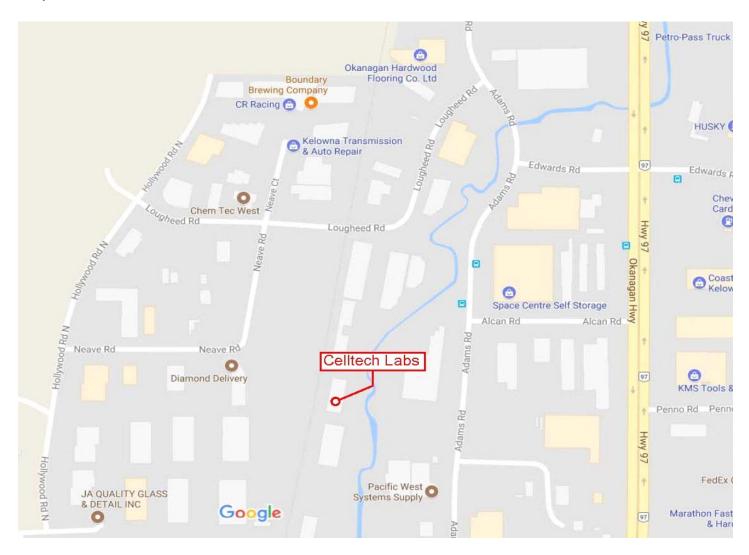
This module is a **Class A** digital device.

4.0 TEST SUMMARY

	TEST SUMMARY									
Section	Description of Test	Description of Test Procedure Applicable Rule Reference Part(s) FCC		Applicable Rule Part(s) ISED	Test Date	Result				
7.0	Duty Cycle and Transmission Duration	ANSI C63.10-2013 KDB 558074 D01v05	n/a	n/a	18 Nov 2020	n/a				
8.0	Occupied Bandwidth	ANSI C63.10-2013 KDB 558074 D01v05	§2.1049 n/a	RSS-Gen RSS-247 (5.2)(a)	18 Nov 2020	Pass				
9.0	6dB Bandwidth	ANSI C63.10-2013 KDB 558074 D01v05	n/a §15.247(a)(2)	RSS-Gen RSS-247 (5.2)(a)	18 Nov 2020	Pass				
10.0	Conducted Power (Fundamental)	ANSI C63.10-2013 KDB 558074 D01v05	§2.1046 §15.247(b)(3)	RSS-Gen RSS-247 (5.4)(d)	18 Nov 2020	Pass				
11.0	Power Spectral Density	ANSI C63.10-2013 KDB 558074 D01v05	§15.247(e)	RSS-247 (5.2)(b)	18 Nov 2020	Pass				
12.0	Conducted TX Spurious Emissions	ANSI C63.10-2013 KDB 558074 D01v05	§2.1051 §15.247(d)	RSS-Gen RSS-247 (5.5)	18 Nov 2020	Pass				
13.0	Conducted TX Spurious Emissions Band Edge	ANSI C63.10-2013 KDB 558074 D01v05	§2.1051 §15.247(d)	RSS-Gen RSS-247 (5.5)	18 Nov 2020	Pass				
14.0	Radiated TX Spurious Emissions Restricted Bands	ANSI C63.10-2013 KDB 558074 D01v05	§15.205, 15.209 §15.247(d)	n/a	15 Oct 2020 20 Nov 2020	Pass				
15.0	Radiated RX Spurious Emissions	ANSI C63.4-2014 KDB 558074 D01v05	§15.109 §15.247(d)	ICES-003(6.2)	15 Oct 2020 20 Nov 2020	Pass				
16.0	Power Line Conducted Emissions	ANSI C63.4-2014 KDB 558074 D01v05	§15.107	ICES-003(6.1)	21 July 2021	Pass				

I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner w hatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025.	Art Voss, P.Eng. Technical Manager Celltech Labs Inc. 9 July 2012 Date	A.F.VOS # 31327 Contractor Contra
---	--	--

5.0 NORMATIVE REFERENCES


		Normative References
ISO/IEC 1	7025:2017	General requirements for the competence of testing and calibration laboratories
ANSI C63	3.10-2013	American National Standard of Procedures for Compliance Testing of
		Unlicensed Wireless Devices
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 2:	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 15:	Radio Frequency Devices
Su	b Part C (15.247)	Intentional Radiators
CFR		Code of Federal Regulations
	Title 47:	Telecommunication
	Part 15:	Radio Frequency Devices
	Subpart B:	Unintentional Radiators
ISED		Innovation, Science and Economic Development Canada
F	RSS-Gen Issue 5:	Spectrum Management and Telecommunications Radio Standards Specification
Amendn	nent 1 - Mar 2019	General Requirements and Information for the Certification of Radiocommunication Equipment
ISED		Innovation, Science and Economic Development Canada
		Spectrum Management and Telecommunications Radio Standards Specification
F	RSS-247 Issue 2:	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs)
	Feb 2017	and Licensed-Exempt Local Area Network (LE_LAN) Devices
FCC KDB		OET Major Guidance Publications, Knowledge Data Base
55	58074 D01v05r02	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS)
		Operating Under Section 15.247

6.0 FACILITIES AND ACCREDITATIONS

Facility and Accreditation:

The facilities used to evaluate this device outlined in this report are located at 21-364 Lougheed Road, Kelowna, British Columbia, Canada V1X 7R8. The radiated emissions site (OATS) conforms to the requirements set forth in ANSI C63.4 and is filed and listed with the FCC under Test Firm Registration Number CA3874 and Innovation, Science and Economic Development Canada under Test Site File Number ISED 3874A-1. Celltech is accredited to ISO 17025, through accrediting body A2LA and with certificate 2470.01.

7.0 DUTY CYCLE

Test Procedure							
Normative	KDB 558074 (6.0), ANSI C63.10 (11.6)						
Reference							
General Procedure							
KDB 558074 (6.0)	6.0 Duty cycle, transmission duration and maximum power control level						
C63.10 (11.6)	b) The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the and off-times of the transmitted signal.						
 Set the center frequency of the instrument to the center frequency of the tra Set RBW ≥ OBW if possible; otherwise, set RBW to the largest available values 							
							3) Set detector = peak or average.
	4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100.						
Test Setup	Appendix A - Figure A.1						
Measurement Proce	edure						
The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port.							
The SA was configured as above using the Zero Span and Positive Trigger. The output power of the DUT was set to							
the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the							
device. The DUT was	set to transmit at its maximum Duty Cycle.						

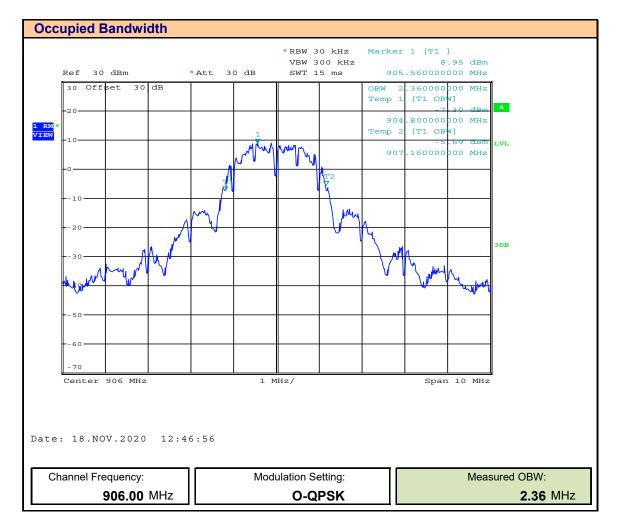
Plot 7.1 – Duty Cycle, 914 MHz

Ref	30 dBr	n		*Att	30	dB		30 kHz 300 kHz 2 s	Markeı] 3.59 dBm)000 ms	
30 O	ffset	30	dB								
-20								_			A
*											TRG
-10											LVL
10											
The miller	TRG	-6.	7 dBm-		~~~	www	aun ww		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 	-
-10-					_						-
20											
20											3DB
- 30											-
- 40											
- 50	_				_						-
-60											-
-70											
Cente	r 914	MHz				20	0 ms/				
e: 18.	NOV.2	020	12:2	26:33							
					Channel Frequency:					Measured	Duty Cycle:
					914.00 MHz				u-, 11		100 %

Table 7.1 – Summary Duty Cycle Measurements

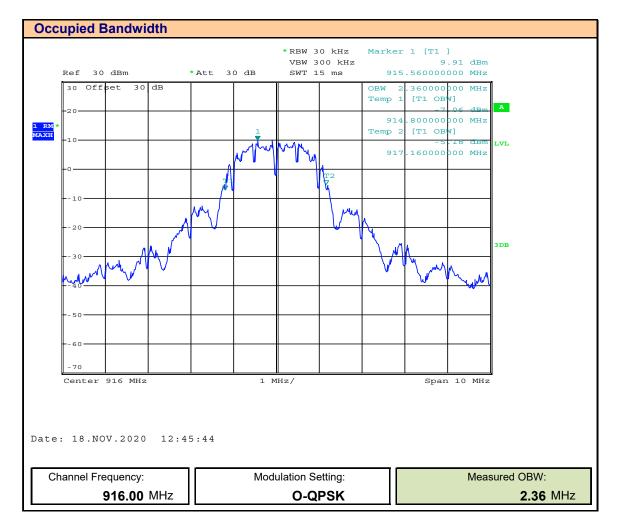
Transmit Duty Cycle Results					
	Measured				
Frequency	Duty Cycle				
	Cycle				
(MHz)	(%)				
914.00	100				

Duty Cycle Correction not Required

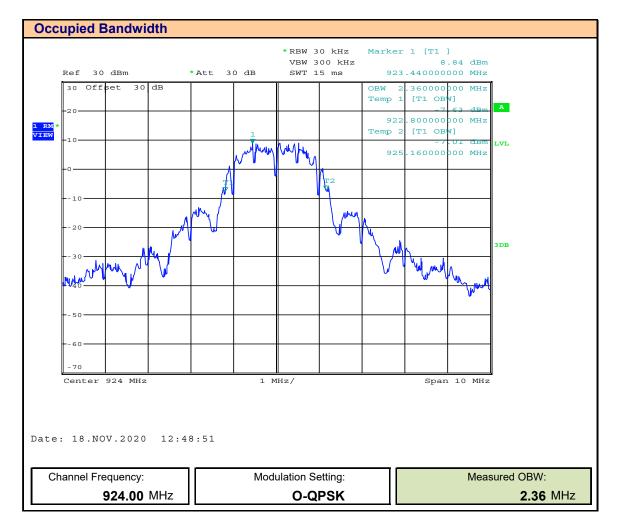

8.0 OCCUPIED BANDWIDTH

Normative	FCC 47 CFR §2.1046, §15.247(b)(3), RSS-Gen (6.1.2), RSS-247 (5.4)(d),
Reference	KDB 558074 (8.3.2.1), ANSI C63.10 (6.9.3)
General Procedure	
KDB 558074 (8.3.2. ²	1) 8.3.2.1 General
	Section 15.247 permits the maximum conducted (average) output power to be measured as an alternative to the maximum peak conducted output power for demonstrating compliance to the limit. When this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth.
C63.10 (6.9.3)	6.9.3 Occupied bandwidth—power bandwidth (99%) measurement procedure
	The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
	a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBV
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
	c) Set the reference level of the instrument as required, keeping the signal from exceeding th maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the specified range.
	e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes shall be used.
	f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
Test Setup	Appendix A - Figure A.1
Measurement Proc	edure
	ted to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. ed as described above using the 99% Occupied Bandwidth function. The output power of the DL

Power Spectral Density (See Section 11.0).



Plot 8.1 – Occupied Bandwidth, 906MHz

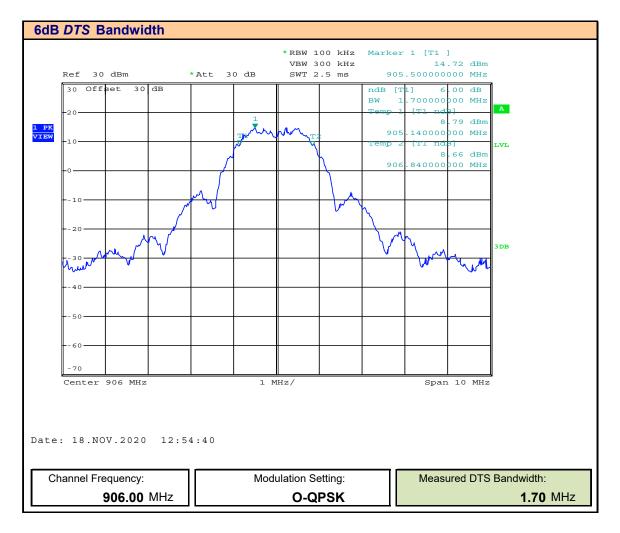


Plot 8.2 – Occupied Bandwidth, 916MHz

Plot 8.3 – Occupied Bandwidth, 924MHz

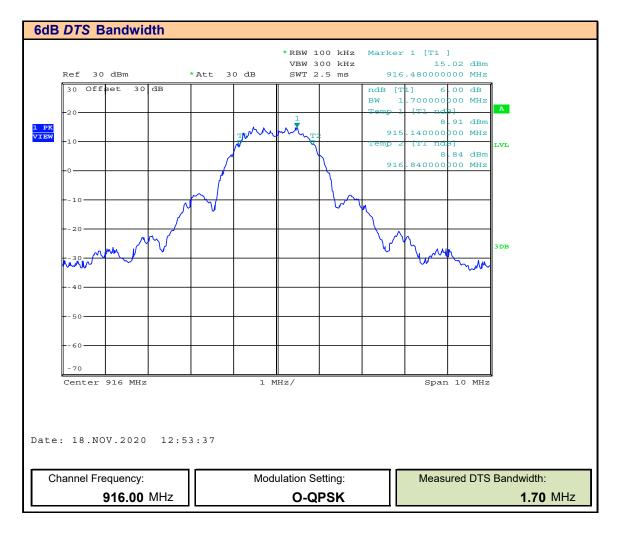
Table 8.1 – Summary of 6dB DTS Bandwidth Measurements

Occupied Bandwidth Measurements					
Frequency	Modulation	Measured OBW	Emission Designator		
(MHz)		(MHz)			
906.00		2.36	2M36G1D		
916.00	O-QPSK	2.36	2M36G1D		
924.00		2.36	2M36G1D		

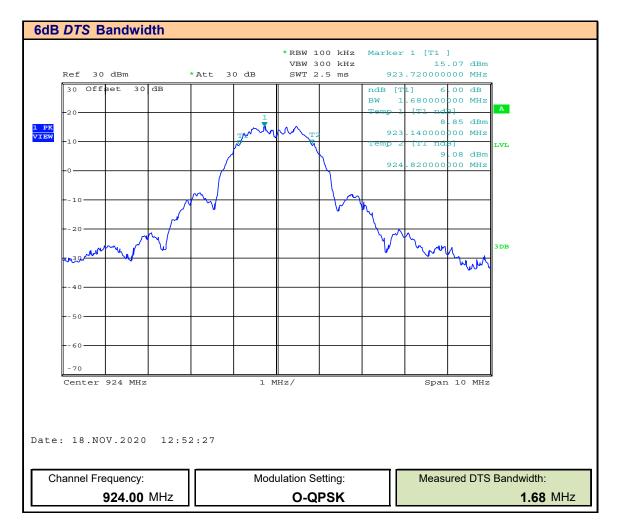

9.0 DTS BANDWIDTH

Normative	FCC 47 CFR §2.1049, §15.247(a)(2), RSS-Gen (6.7), RSS-247 (5.2)(a),
Reference	KDB 558074 (8.2), ANSI C63.10 (11.8.2)
Limits	
47 CFR §15.247(a)(2)	(a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:
	(2) Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
RSS-247 (5.2)(a)	5.2 Digital transmission systems
	DTSs include systems that employ digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to the bands 902-928 MHz and 2400 - 2483.5 MHz:
	a) The minimum 6 dB bandwidth shall be 500 kHz.
General Procedure	
KDB 558074 (8.2)	11.8.2 Option 2
C63.10 (11.8.2)	The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \ge 3 X RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamenta emission that might be \ge 6 dB.
Test Setup	Appendix A - Figure A.1

The DUT was connected to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. The SA was configured as above using the Automatic 6dB Cursor Bandwidth measurement. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device. The DUT was set to transmit at its maximum Duty Cycle.



Plot 9.1 – DTS Bandwidth, 906MHz



Plot 9.2 – DTS Bandwidth, 916MHz

Plot 9.3 – DTS Bandwidth, 924MHz

Table 9.1 – Summary of Occupied Bandwidth Measurements

6dB DTS Bandwidth Measurement Results				
Frequency	Modulation	Measured 6dB BW [BW]	Minimum 6dB BW [MBW]	Margin
(MHz)		(MHz)	(kHz)	(kHz)
906.00		1.70		1200.00
916.00	O-QPSK	1.70	500	1200.00
924.00		1.68		1180.00
			Result:	Complies

Margin = BW - MBW

10.0 CONDUCTED POWER

Normative	FCC 47 CFR §2.1046, §15.247(b)(3), RSS-Gen (6.1.2), RSS-247 (5.4)(d),
Reference	KDB 558074 (8.3.2), ANSI C63.10 (11.9.2.2.2)
Limits	
47 CFR §15.247(b)(3)	(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
	(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725- 5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power
RSS-247 (5.4)(d)	5.4 Transmitter output power and equivalent isotropically radiated power (e.i.r.p.) Devices shall comply with the following requirements, where applicable:
	d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz an 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).
	As an alternative to a peak power measurement, compliance can be based on a measuremer of the maximum conducted output power.
General Procedure	
KDB 558074 (8.3.2.1)	8.3.2.1 General
	Section 15.247 permits the maximum conducted (average) output power to be measured as an alternative to the maximum peak conducted output power for demonstrating compliance to the limit. When this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth.
C63.10 (11.9.2.2.2)	Method AVGSA-1 (trace averaging with the EUT transmitting at full power throughout each a) Set span to at least 1.5 X OBW.
	b) Set RBW = 1 % to 5 % of the OBW, not to exceed 1 MHz.
	c) Set VBW \geq 3 X RBW.
	 d) Number of points in sweep ≥ 2 X span / RBW. e) Sweep time = auto.
	f) Detector = RMS
	g) If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \ge 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be se to "free run".
	h) Trace average at least 100 traces in power averaging
	i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges.
Test Setup	Appendix A - Figure A.1
	dure

The DUT was connected to a Spectrum Analyzer (SA) wa a 30dB attenuator connected to the DUT's antenna port. The SA was configured as described above. Number of Sweep Points $\geq 2 \text{ X Span} / \text{RBW} = 2 \text{ X} (4\text{MHz} / 30\text{kHz}) = 267$, the SA was configured for 501 Points. The output power of the DUT was set to the manufacturer's highest output power setting at the Low, Mid and High frequency channels as permitted by the device. The DUT was set to transmit at 100% Duty Cycle. The Channel Bandwidth was set to the measured 99% Occupied Bandwidth (See Section 9.0). The Band Channel Power was measured and recorded.

Plot 10.1 – Conducted Power, 906 MHz



Plot 10.2 – Conducted Power, 916 MHz

Plot 10.3 – Conducted Power, 924 MHz

Table 10.1 – Summary of Conducted Power Measurements

§15.247(b	§15.247(b)(3), RSS-247 (5.4)(d) Channel Output Power (RMS)						
Frequency	вw	Modulation	Power	Measured Power	Measured Power	Limit	Margin
			Setting ⁽¹⁾	[E _{Meas}]	[E _{Meas}]		
(MHz)	(kHz)		(dBm)	(dBm)	(W)	(W)	(dB)
906.0				17.13	0.05		12.9
916.0	2360	O-QPSK	20	17.24	0.05	1.0	12.8
924.0				17.20	0.05		12.8
	Results: Complies						

(1) The output power is factory set to maximum

Margin = 10*Log(Limit / E_{meas})

RSS-247	RSS-247 (5.4)(d) Channel EIRP (RMS)									
				Measured	Antenna	Cable				
Frequency	BW	Modulation	Power	Power	Gain ⁽²⁾	Loss	EIRP	EIRP	Limit	Margin
			Setting ⁽¹⁾	[E _{Meas}]	[G _T]	[L _c]				
(MHz)	(kHz)		(dBm)	(dBm)	(dBi)	(dB)	(dBm)	(W)	(W)	(dB)
906.0				17.13			28.63	0.73		7.4
916.0	2360	O-QPSK	20	17.24	11	0.5	28.74	0.75	4.0	7.3
924.0				17.20			28.70	0.74		7.3
	Results:						Com	plies		

EIRP (dBm) = $E_{Meas} + G_T + L_C$

Margin = Limit - EIRP in dB

(1) The output power is factory set to maximum

(2) Maximum permissible gain

11.0 POWER SPECTRAL DENSITY

Normative	FCC 47 CFR §15.247(e), RSS-247 (5.2)(b),
Reference	KDB 558074 (8.4), ANSI C63.10 (11.10.3)
Limits	
47 CFR §15.247(e)	(e) For digitally modulated systems, the power spectral density conducted from the intention radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
RSS-247 (5.2)(b)	b) The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).
General Procedure	
C63.10 (11.10.3)	 Method AVGPSD-1 (trace averaging with EUT transmitting at full power throughout each This procedure may be used when the maximum (average) conducted output power was use to demonstrate compliance to the output power limit. This is the baseline method for determining the maximum (average) conducted PSD level. If the instrument has an RMS power averaging detector, it must be used; otherwise, use the sample detector. The EUT mu be configured to transmit continuously (duty cycle ≥ 98 %); otherwise sweep triggering/signa gating must be implemented to ensure that measurements are made only when the EUT is transmitting at its maximum power control level (no transmitter off time is to be considered). a) Set instrument center frequency to DTS channel center frequency. b) Set span to at least 1.5 X OBW. c) Set RBW to: 3 kHz ≤ RBW ≤ 100 kHz. d) Set VBW ≥ 3 X RBW. e) Detector = RMS f) Ensure that the number of measurement points in the sweep ≥ 2 X span/RBW. g) Sweep time = auto couple. h) Employ trace averaging (RMS) mode over a minimum of 100 traces. i) Use the peak marker function to determine the maximum amplitude level. j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span in order to
Test Setup	meet the minimum measurement point requirement as the RBW is reduced). Appendix A - Figure A.1
Measurement Proce	
The DUT was connect The SA was configured 267, the SA was config	ed to a Spectrum Analyzer (SA) via a 30dB attenuator connected to the DUT's antenna port. d as described above. Number of Sweep Points ≥ 2 X Span / RBW = 2 X (4MHz / 30kHz) = gured for 501 Points. The output power of the DUT was set to the manufacturer's highest output bw, Mid and High frequency channels as permitted by the device. The DUT was set to transmit

at 100% Duty Cycle. The Power Spectral Density was measured and recorded.

Plot 11.1 – Power Spectral Density, 906MHz

Plot 11.2 – Power Spectral Density, 916MHz

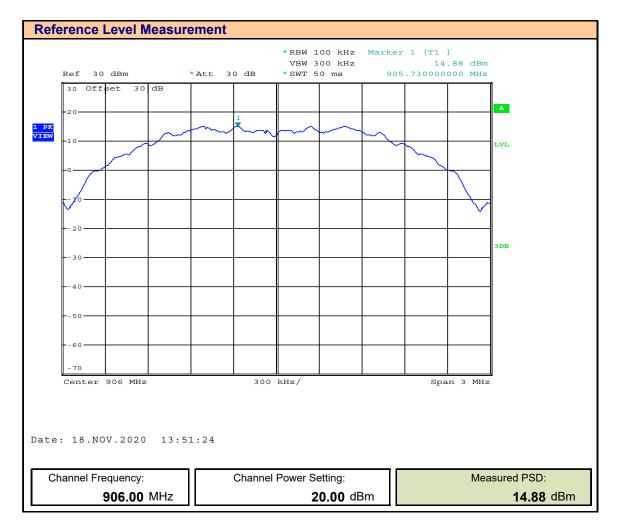
Plot 11.3 – Power Spectral Density, 924MHz

Table 11.1 – Summary of Power Spectral Density Measurements

Power S	Power Spectral Density Measurement Results						
Frequency	BW	Modulation	Power Setting ⁽¹⁾	Transmit Duty Cycle	Measured PSD [PSD _{Meas}]	Limit	Margin
(MHz)	(kHz)		(dBm)	(%)	(dBm)	(dBm)	(dB)
906.0					4.37		3.6
916.0	2360	O-QPSK	20	100	4.39	8.0	3.6
924.0					4.34		3.7
	Results: Complies						

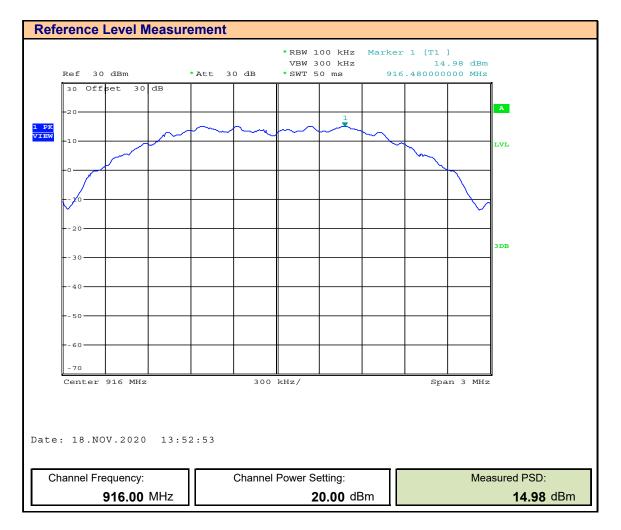
(1) The output power is factory set to maximum

Margin = Limit - PSD_{meas}

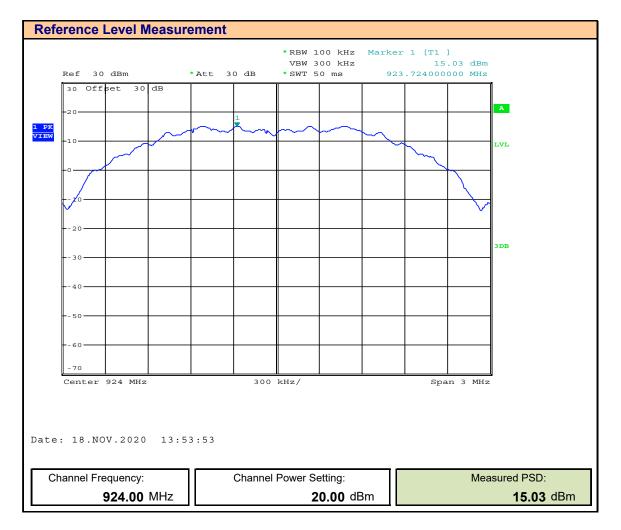


12.0 CONDUCTED SPURIOUS EMISSIONS

Test Procedure	
Normative	FCC 47 CFR §2.1051, §15.247(d), RSS-Gen (6.13), RSS-247 (5.5),
Reference	KDB 558074 (8.5), ANSI C63.10 (11.11.3)
Limits	
47 CFR §15.247(d)	(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.
RSS-247 (5.5)	 5.5 Unwanted emissions In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required. d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and
	2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e). As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power.



Plot 12.1 – Reference Level Measurement, 906MHz



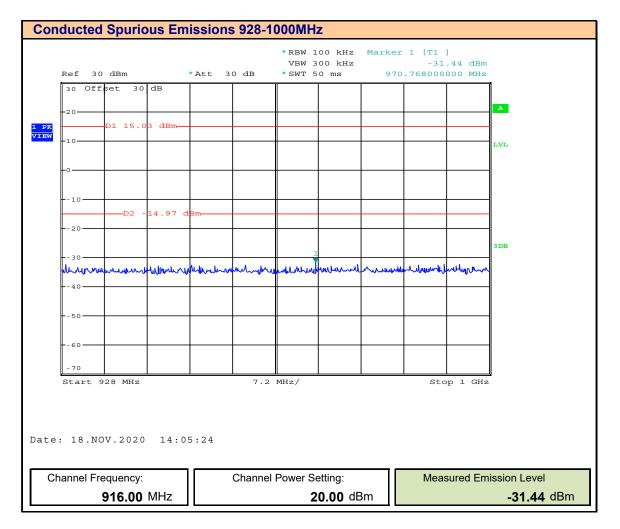
Plot 12.2 – Reference Level Measurement, 916MHz

Plot 12.3 – Reference Level Measurement, 924MHz

Table 11.2 – Summary of Reference Level Measurements

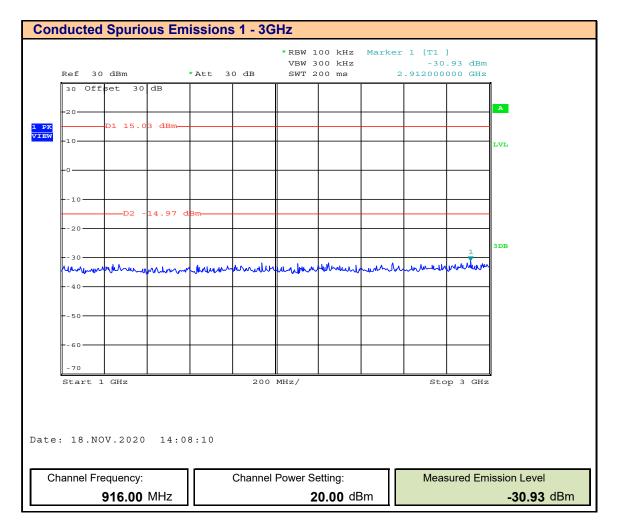
Refere	Reference Level Measurement									
		Measured	Required	Limit						
Frequency	Power	PSD	Attenuation ⁽²⁾	Line						
	Setting ⁽¹⁾	[PSD _{Meas}]	[A _A]	[A∟]						
(MHz)	(dBm)	(dBm)	(dBc)	(dBm)						
906.0		14.88								
916.0	20	14.98	30.00	-14.97						
		*15.03								
924.0		10.00								

(1) The output power is factory set to maximum

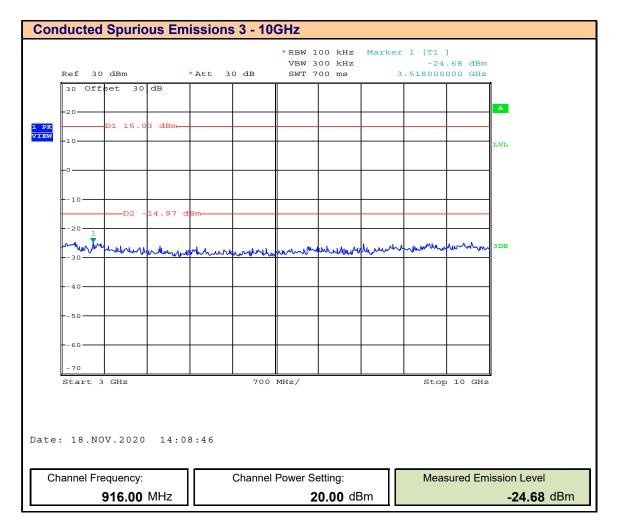

(2) The Maximum Conducted (average) output power was used for compliance therefore the required attenuation is 30dBc.

* The highest 100kHz PSD is used to demonstrate compliance.

Limit Line $(A_L) = A_A - PSD_{meas}$



Plot 12.4 – Spurious Emission Measurement, 928 to1000MHz



Plot 12.5 – Spurious Emission Measurement, 1 to 3GHz

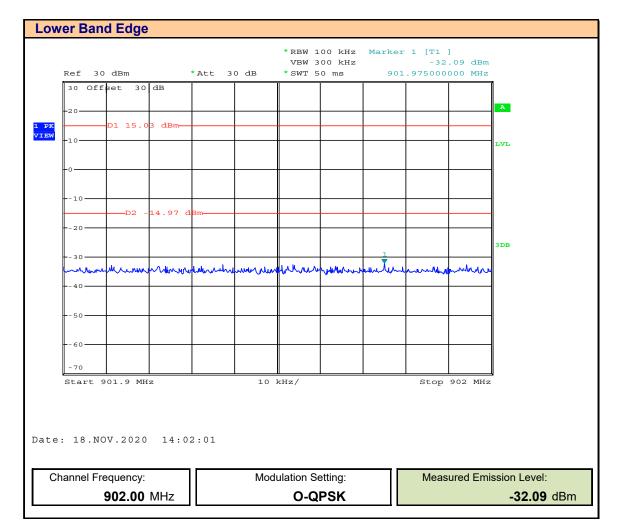
Plot 12.6 – Spurious Emission Measurement, 3 to 10GHz

Table 12.2 – Summary of Conducted Spurious Emissions Measurements

Emission Le	vel Meas	urement		
Frequency		Measured	Limit	
rrequency	Power	Emission	Line	Margin
Range	Setting ⁽¹⁾	[E _{Meas}]	[A∟]	
	(dBm)	(dBm)	(dBm)	(dB)
901.9 - 902MHz		-32.09		17.12
928 - 928.1MHz		-25.48		10.51
928 - 1000	20	-31.44	-14.97	16.47
1 - 3GHz		-30.93		15.96
3 - 10GHz		-24.68		9.71
		Results:	Com	plies

(1) The output power is factory set to maximum

Margin = $A_L - E_{MEAS}$



13.0 BAND EDGE

Test Procedure	
Normative	FCC 47 CFR §2.1051, §15.247(d), RSS-Gen (6.13), RSS-247 (5.5),
Reference	KDB 558074 (8.7), ANSI C63.10 (11.13.3.3)
Limits	
47 CFR §15.247(d)	(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.
RSS-247 (5.5)	 5.5 Unwanted emissions In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required. d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e). As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power.
General Procedure	
C63.10 (11.13.1)	11.13.1 General Emissions within a restricted band and within 2 MHz of an authorized band edge may be measured using either the marker-delta method or the integration method, which is described in 11.13.3, provided that the DTS bandwidth (or EBW) edge falls within 2 MHz of the band edge. Otherwise, all unwanted emissions measurements shall be performed using the standard methods.
C63.10 (11.13.3)	11.13.3 Integration method
C63.10 (11.13.3.1)	11.13.3.1 General The following procedures may be used to determine the peak or average field strength or power of an unwanted emission that is within 2 MHz of the authorized band edge. If a peak detector is used, then use the procedure described in 11.13.3.2. Use the procedure described in 11.13.3.3 when using an average detector and the EUT can be configured to transmit continuously (i.e., $D \ge 98\%$). Use the procedure described in 11.13.3.4 when using an average detector and the EUT cannot be configured to transmit continuously but the duty cycle is constant (i.e., duty cycle variations are less than $\pm 2\%$). Use the procedure described in 11.13.3.5 when using an average detector for those cases where the EUT cannot be configured to transmit continuously and the duty cycle is not constant (duty cycle variations equal or exceed 2%).

Plot 13.1 – Lower Band Edge

Plot 13.2 – Upper Band Edge

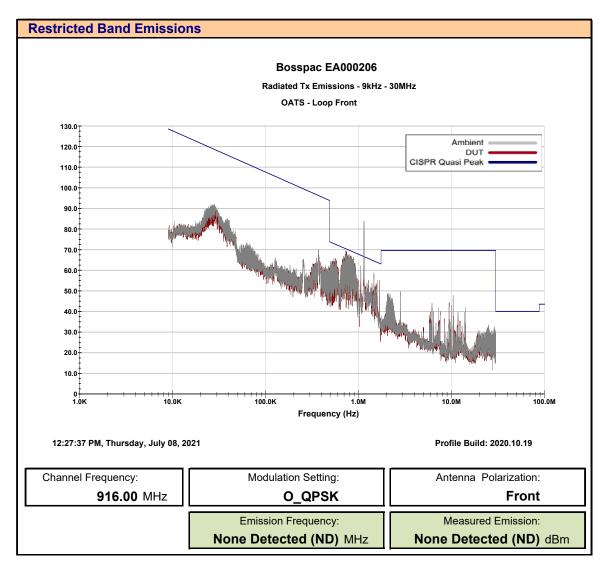
Upp	Jpper Band Edge													
	Ref	30	dBm			* Att	E 31	0 dB	VBW	30	00 kHz	1 [T1 -25 .051400	.48 dBm	
	30	Off	set	30	dB				T					1
														A
PK	-20-		י 1 רח	5 07	3 dBm—									
IEW	-10-													LVL
	-0								_	+				
	10		D		L4.97 (d D m								
	20		D.	2 -1	14.97	лош—								
									Lune				numen	3DB
	30	Mande	mh	mu	Nederland	h	unn	www.	numer	-	mon			
	40									+				
	50													
	50													
	60									_				
	-70													
	4	rt 9	28 MI	Iz				10	kHz/			Stop 92	28.1 MHz	L.
												_		
ate	: 18	.NO	V.20	20	14:0	0:24	4							
Ch	nanne	el Fre	quen	cv:				Мо	dulation	Se	tting:	Meas	ured Emi	ssion Level:
			924.(MH7						PSK			-25.48 dBm
			527.0		VII 12					S.	51			- 20.40 aDm

Table 13.1 – Summary of Band Edge Measurements

Band Edg	Band Edge Emission Measurement									
Channel		_	Supply	Measured	Limit Line	. .				
	Modulation			Emission		Margin				
Frequency		Setting ⁽¹⁾ Voltage		[E _{Meas}]	[A∟]					
(MHz)		(dBm)	(VDC)	(dBm)	(dBm)	(dB)				
902	O-QPSK	Max	5.0	-32.09	-14.97	17.12				
924	U-QFOR	IVIAX	5.0	-25.48	- 14.97	10.51				
Result: Complies										

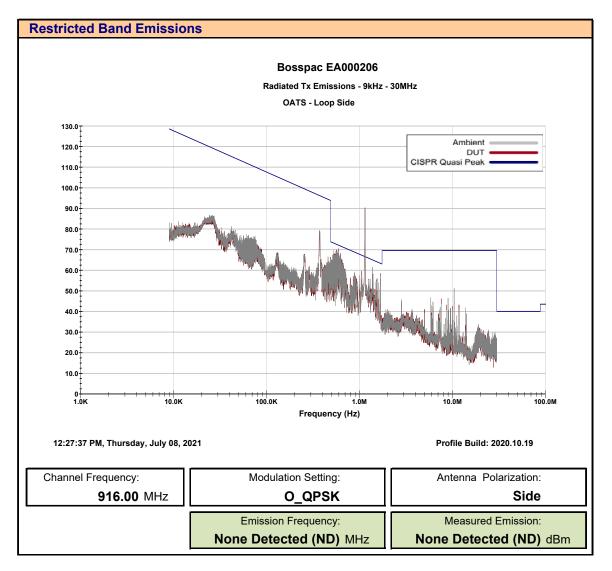
(1) The output power is factory set to maximum

Margin = $A_L - E_{MEAS}$

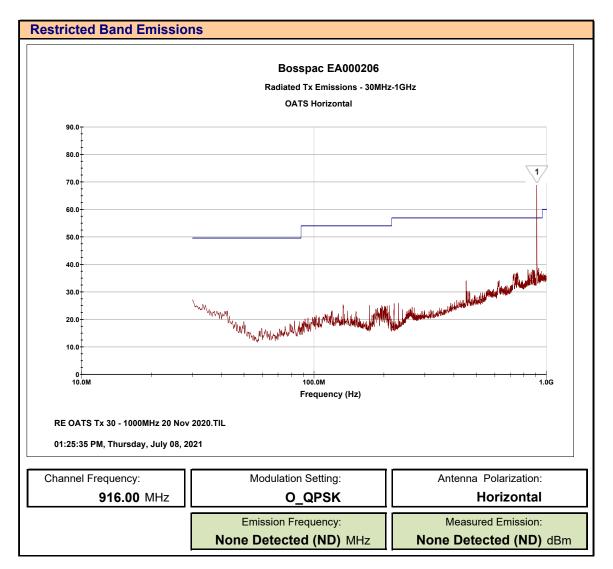


14.0 RADIATED TX EMISSIONS - RESTRICTED BAND

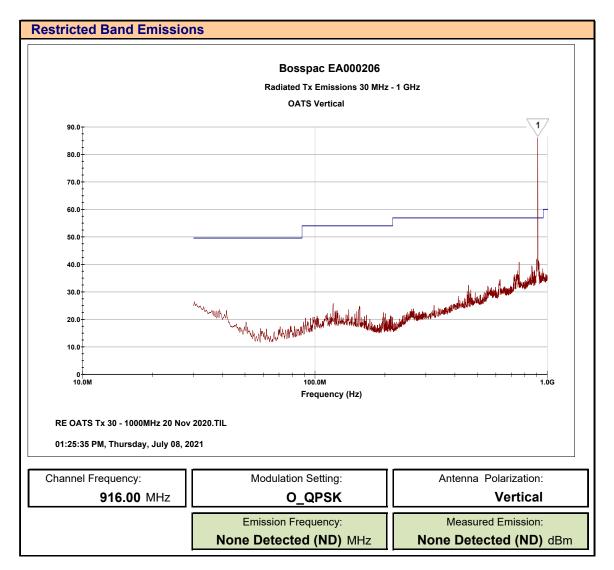
Test Procedure							
Normative Reference		15.247(d), §15.205(a), §15.205(c), §15.209(a)					
	KDB 558074 (8.6), ANS	C63.10 (11.12)					
Limits							
47 CFR §15.247(d)	(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).						
47 CFR §15.209(a)	(a) Except as provided e	sion limits; general requirements. Isewhere in this subpart, the emissions from an intentional radiator I strength levels specified in the following table:					
	Frequency (MHz)	Field Strength (microvolts/meter)					
	0.009 - 0.490	2400/F (kHz) @300m					
	0.490 - 1.705	24000/F (kHz) @30m					
	1.705 - 30	30 @ 30m					
	30 - 88	100 @3m					
	88 - 216	150 @3m					
	216 - 960	200 @3m					
	Above 960	500 @3m					



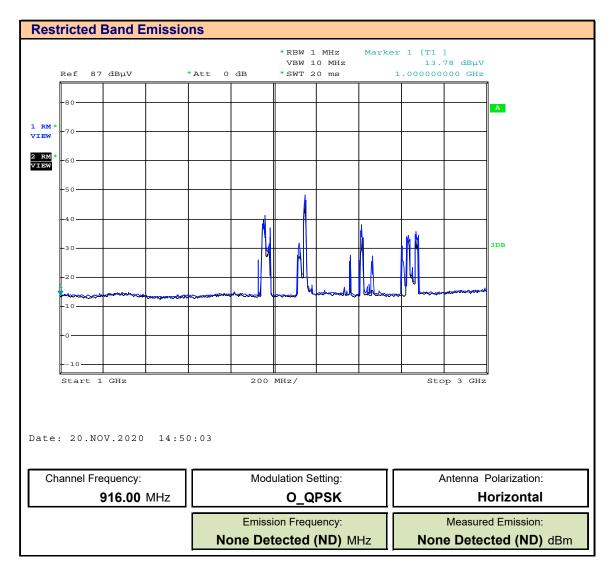
Plot 14.1 – Radiated Tx Emissions, 9kHz to 30MHz, Front



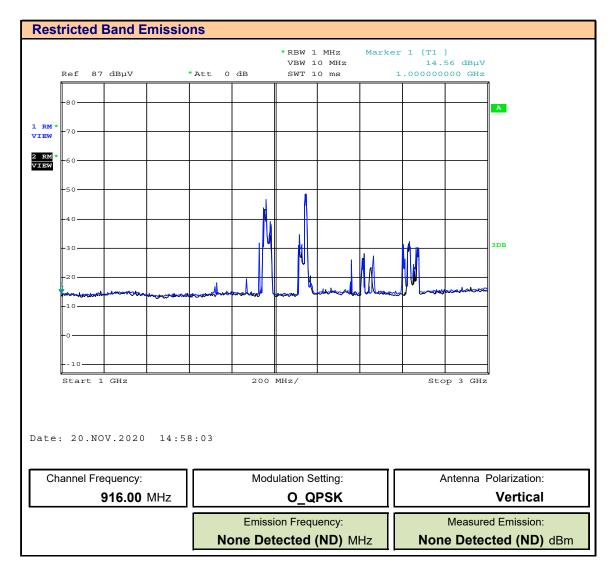
Plot 14.2 - Radiated Tx Emissions, 9kHz to 30MHz, Side



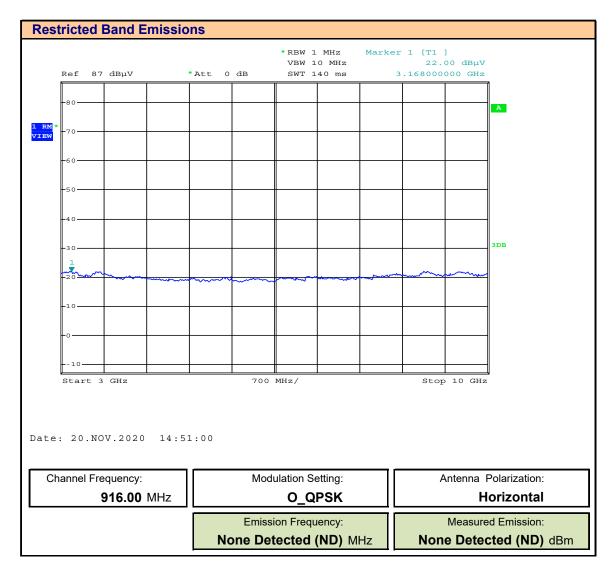
Plot 14.3 – Radiated Tx Emissions, 30 to 1000MHz, Horizontal



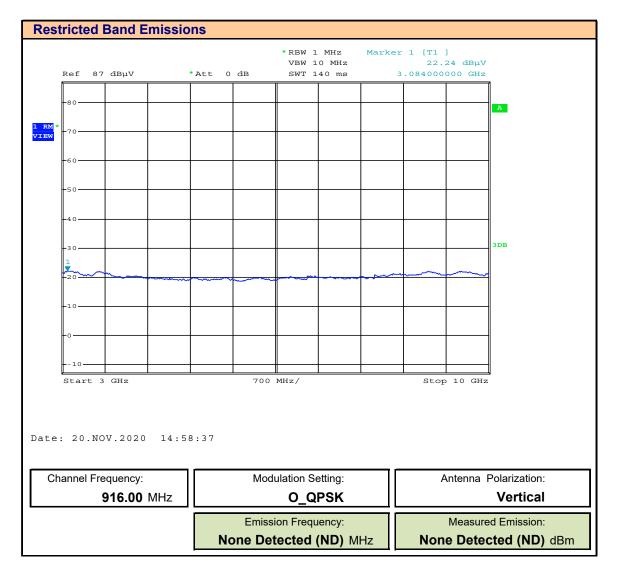
Plot 14.4 – Radiated Tx Emissions, 30 to 1000MHz, Vertical



Plot 14.5 - Radiated Tx Emissions, 1 to 3GHz, Horizontal



Plot 14.6 - Radiated Tx Emissions, 1 to 3GHz, Vertical



Plot 14.7 - Radiated Tx Emissions, 3 to 10GHz, Horizontal

Plot 14.8 - Radiated Tx Emissions, 3 to 10GHz, Vertical

Table 14.1 – Summary of Radiated Tx Measurements

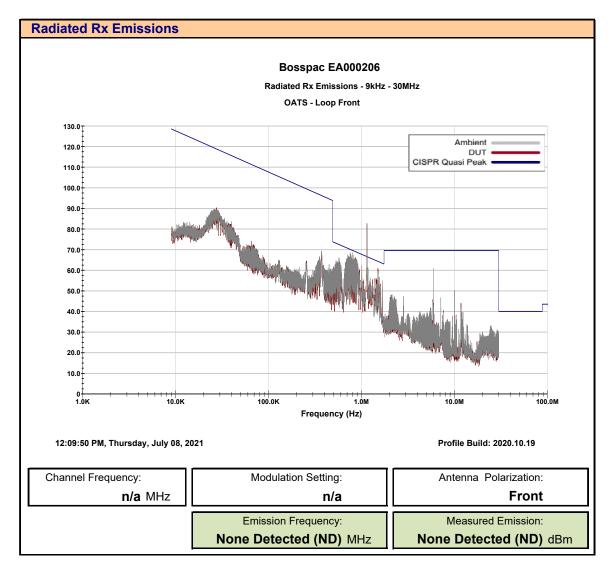
Summary o	of Radiated	d Tx Emiss	ions (Rest	ricted	Ba	and)							
Measured	Channel	Antenna	Emission	Measu	red	Antenna	Cable	Amplifier		Corre	cted		
Frequency	Channel	Antenna	LIIIISSIOII	Emission		ACF	Loss	Gai	n	Emission		Limit	Margin
Range	Frequency	Polarization	Frequency	[E _{Mea}	s]	[ACF]	[L _c]	[G _A]	[E _{Cc}	orr]		
(MHz)				(dBu	V)	(dB)	(dB)	(dB	5)	(dBu\	//m)	(dBuV)	(dB)
9kHz - 30MHz		Front	ND	ND	(1)	0.00	0.00	0.00	(3)	ND	(2)	n/a	n/a
9kHz - 30MHz		Side	ND	ND	(1)	0.00	0.00	0.00	(3)	ND	(2)	n/a	n/a
30-1000MHz		Horizontal	ND	ND	(1)	0.00	0.00	0.00	(3)	ND	(2)	n/a	n/a
30-1000MHz	916.0	Vertical	ND	ND	(1)	0.00	0.00	0.00	(3)	ND	(2)	n/a	n/a
1 - 3GHz	910.0	Horizontal	ND	ND	(1)	27.40	4.58	0.00	(3)	ND		54.0	n/a
1 - 3GHz		Vertical	ND	ND	(1)	27.40	4.58	0.00	(3)	ND		54.0	n/a
3-10GHz		Horizontal	ND	ND	(1)	36.76	9.86	0.00	(3)	ND		54.0	n/a
3-10GHz		Vertical	ND	ND	(1)	36.76	9.86	0.00	(3)	ND		54.0	n/a
										Resu	lts:	Com	plies

(1) No Emissions Detected (ND) above ambient or within 20dB of the limit

(2) Antenna ACF, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

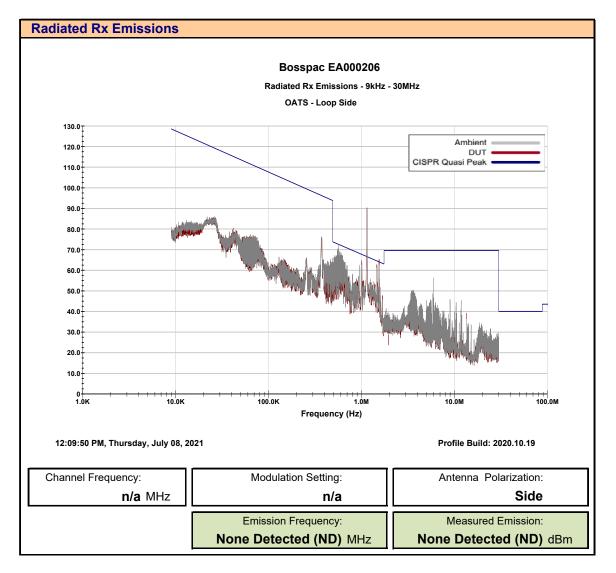
(3) External Amplier not used

 $E_{Corr} = E_{Meas} + ACF + L_C - G_A$

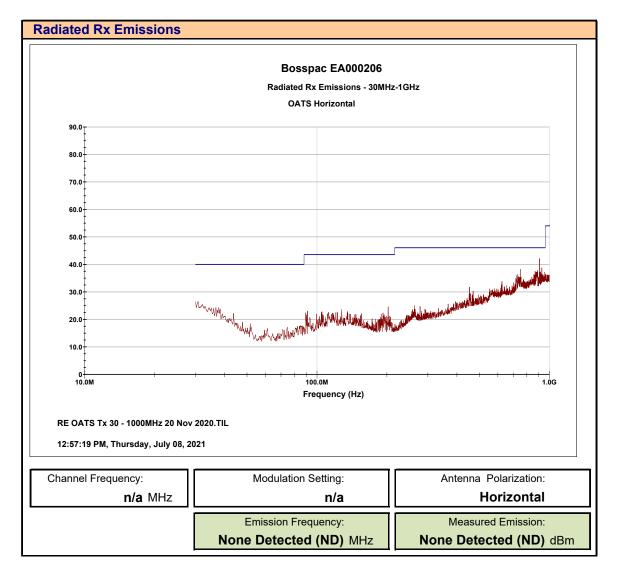


15.0 RADIATED RX EMISSIONS

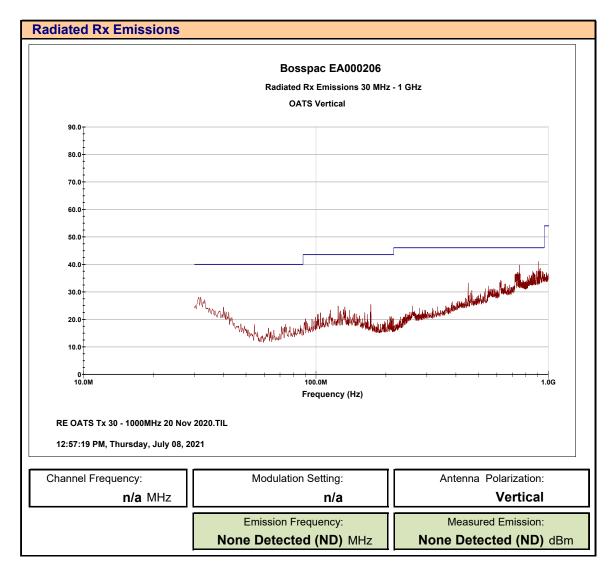
Normative Reference	FCC 47 CFR §15.109, ICES-00 ANSI C63.4-2014	03(6.2)						
Limits								
47 CFR §15.109	(b) The field strength of radiate distance of 10 meters, shall no	d emissions from a Class A digital device, as determined at a ot exceed the following:						
	30-88MHz: 39.1dBuV/m	30-88MHz: 49.6dBuV/m @ 3m						
	88-216MHz: 43.5dBuV/m	88-216MHz: 54.0dBuV/m @ 3m						
	216-960MHz: 46.4dBuV/m	216-960MHz: 56.9dBuV/m @ 3m						
	> 960MHz: 49.5dBuV/m	> 960MHz: 60.0dBuV/m @ 3m						
ICES-003(6.2.1) 6.2.1 - Radiated Emissions Limits Below 1 GHz								
	Class A: ITE that meets the conditions for Class A operation defined in Sect comply with the Class A radiated limits set out in Table 4 determined at a dismetres.							
	30-88MHz: 39.1dBuV/m	30-88MHz: 49.6dBuV/m @ 3m						
	88-216MHz: 43.5dBuV/m	88-216MHz: 54.0dBuV/m @ 3m						
	216-960MHz: 46.4dBuV/m	216-960MHz: 56.9dBuV/m @ 3m						
	> 960MHz: 49.5dBuV/m	> 960MHz: 60.0dBuV/m @ 3m						
Test Setup	Appendix A	Figure A.1						
Measurement Proced	lure							
The DUT was set up as per ANSI C63.4:2014. Emissions were scanned between 30MHz and 1000MHz. The turntable was rotated 360 degrees and the antenna was elevated to 4m to optimize the measured emissions.								



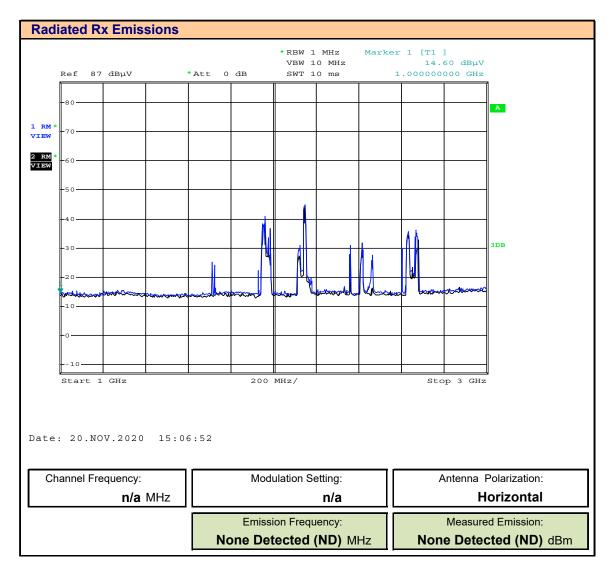
Plot 15.1 – Radiated Rx Emissions, 9kHz to 30MHz, Front



Plot 15.2 - Radiated Rx Emissions, 9kHz to 30MHz, Side

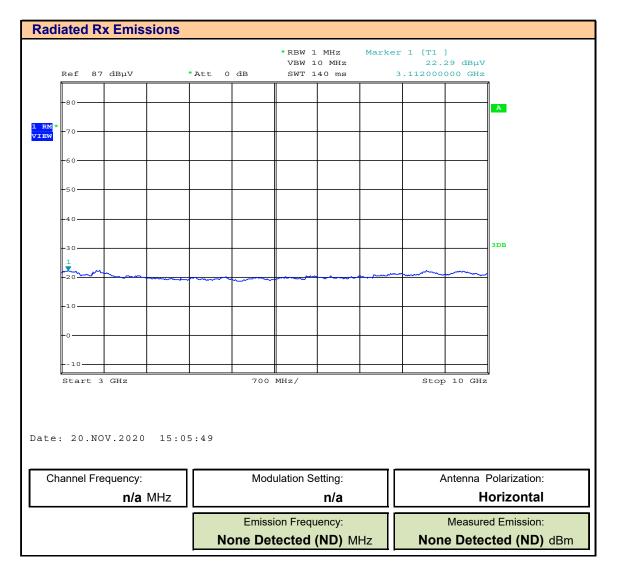


Plot 15.3 – Radiated Rx Emissions, 30 to 1000MHz, Horizontal

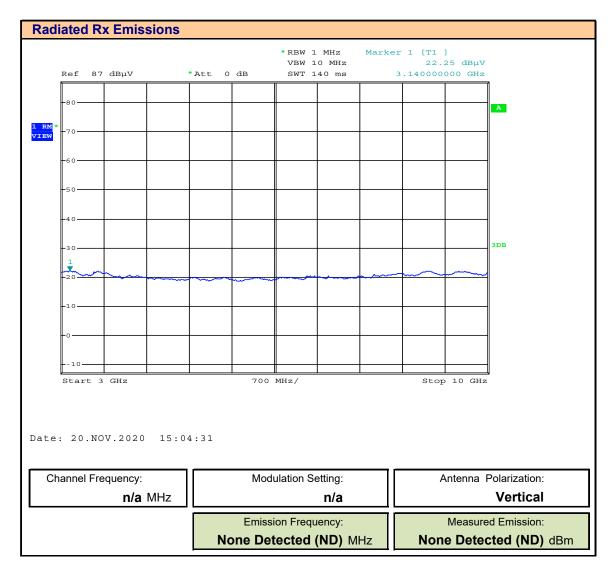


Plot 15.4 – Radiated Rx Emissions, 30 to 1000MHz, Vertical

Plot 15.5 - Radiated Rx Emissions, 1 to 3GHz, Horizontal



Plot 15.6 - Radiated Rx Emissions, 1 to 3GHz, Vertical



Plot 15.7 - Radiated Rx Emissions, 3 to 10GHz, Horizontal

Plot 15.8 - Radiated Rx Emissions, 3 to 10GHz, Vertical

Table 15.1 – Summary of Radiated Rx Measurements

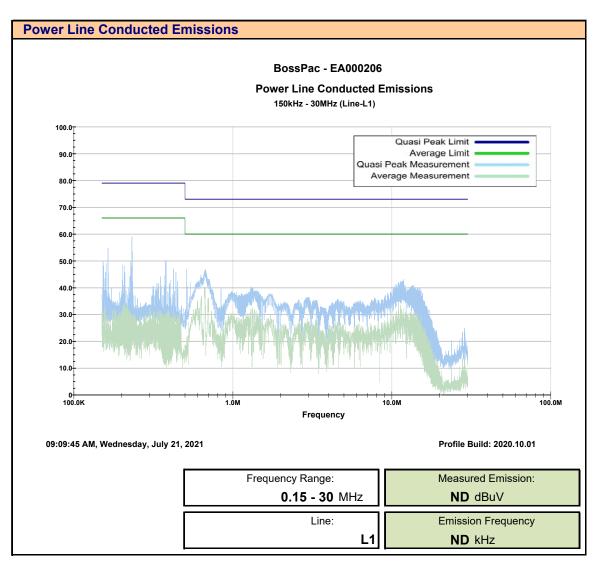
Summary o	of Radiated	d Rx Measu	irements										
Measured	Channel	Antenna	Emission	Measu	ired	Antenna	Cable	Ampli	fier	Corre	cted		
Frequency	Channel	Antenna	LIIIISSIOII	Emission		ACF	Loss	Gain		Emission		Limit	Margin
Range	Frequency	Polarization	Frequency	[E _{Mea}	as]	[ACF]	[L _c]	[G _A]	[E _{cc}	orr]		
(MHz)				(dBu	V)	(dB)	(dB)	(dB	5)	(dBu\	//m)	(dBuV)	(dB)
9kHz - 30MHz		Front	ND	ND	(1)	0.00	0.00	0.00	(3)	ND	(2)	n/a	n/a
9kHz - 30MHz		Side	ND	ND	(1)	0.00	0.00	0.00	(3)	ND	(2)	n/a	n/a
30-1000MHz		Horizontal	ND	ND	(1)	0.00	0.00	0.00	(3)	ND	(2)	n/a	n/a
30-1000MHz	916.0	Vertical	ND	ND	(1)	0.00	0.00	0.00	(3)	ND	(2)	n/a	n/a
1 - 3GHz	910.0	Horizontal	ND	ND	(1)	27.40	4.58	0.00	(3)	ND		54.0	n/a
1 - 3GHz		Vertical	ND	ND	(1)	27.40	4.58	0.00	(3)	ND		54.0	n/a
3-10GHz		Horizontal	ND	ND	(1)	36.76	9.86	0.00	(3)	ND		54.0	n/a
3-10GHz		Vertical	ND	ND	(1)	36.76	9.86	0.00	(3)	ND		54.0	n/a
										Resu	lts:	Com	plies

(1) No Emissions Detected (ND) above ambient or within 20dB of the limit

(2) Antenna ACF, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

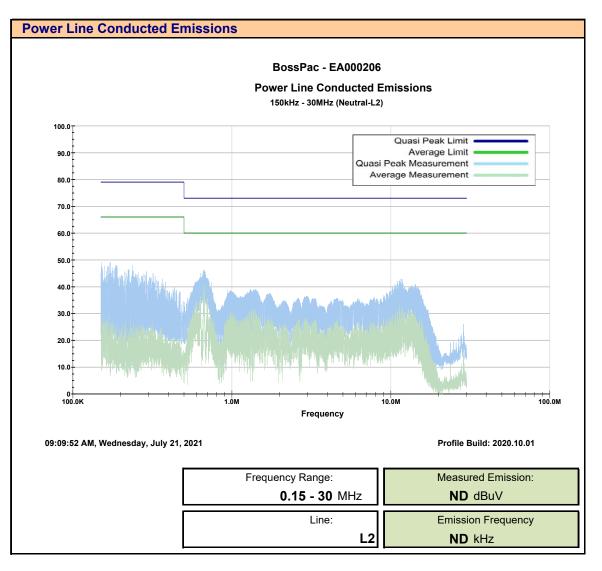
(3) External Amplier not used

 $E_{Corr} = E_{Meas} + ACF + L_C - G_A$


15.0 RADIATED RX EMISSIONS

	FCC 47 CFR §15.107, ICES-003(6.1)								
Normative Reference	ANSI C63.4-2014								
Limits									
47 CFR §15.107	(b) For a Class A digital device that is designed to be connected to the public utility (AC) power line, th radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencie within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms LISN. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.								
	0.15 - 0.5 MHz: 79 dBuV Quasi Peak, 66 dBuV Average								
	0.5 - 30.0 MHz: 73 dBuV Quasi Peak, 60 dBuV Average								
ICES-003(6.1)	6.1 - AC Power Line Conducted Emissions Limits								
	Class A: ITE that meets the conditions for Class A operation defined in Section 2.2 shall comply with the Class A conducted limits set out below in Table 1.								
	0.15 - 0.5 MHz: 79 dBuV Quasi Peak, 66 dBuV Average								
	0.5 - 30.0 MHz: 73 dBuV Quasi Peak, 60 dBuV Average								
Test Setup	Appendix A Figure A.1								
Measurement Procedure									

set to maximum output power.



Plot 16.1 – Power Line Conducted Emissions, L1

Plot 16.2 – Power Line Conducted Emissions, L2

Table 16.1 – Summary of Power Line Conducted Measurements

Management			Emiss		CEMISSIONS		Incontion	Cable	Amplifier		Corroct	ad		
Measured	Channel	LISN	Emiss	sion	Measured		Insertion	Cable	Amplifier		Correct	eu		
Frequency			Frequency		Emission	Detector*	Loss	Loss	Gain		Emission		Limit	Margin
Range	Frequency	Port	[f _{Emm}]		[E _{Meas}]		[L _{LISN}]	[L _c]	[G _A]		[E _{Corr}	1		
(MHz)	(MHz)				(dBuV)		(dB)	(dB)	(dB)		(dBu\)	(dBuV)	(dB)
		L1	ND	kHz	ND	Peak	0.40	0.25	0.00 (3)		-	(2)	-	-
150kHz - 30MHz	915.0	L2	ND	MHz	ND	геак	0.30	0.26		(2)	-	(2)	-	-
	915.0	L1	ND	MHz	ND	Average	0.30	0.26		(3)	-	(2)	-	-
		L2	ND	MHz	ND	Average	0.30	0.27		ľ	-	(2)	-	-
											Res	ults:	Com	plies

* In accordance with FCC 15.35 and ANSI C63.4, a Peak detector may be used to demonstrate compliance to Quasi-Peak limits provided the Resolution Bandwidth (RBW) is equal to or greater than Quasi-Peak bandwidth. The Detector RBW employed was \geq 9kHz.

(2) LISN Insertion Loss, Cable Loss and Amplifier Gain corrected in Spectrum Analyzer Transducer Factor

(3) External Amplier not used

 $E_{Corr} = E_{Meas} + L_{LISN} + L_{C} - G_{A}$

Class B QP Limit = 56 - 20Log (f_{Emm} /500) for f_{Emm} = 150kHz to 500kHz

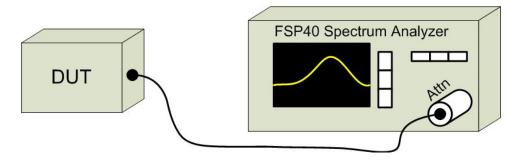
Class B Avg Limit = 46 - 20Log (f_{Emm} /500) for f_{Emm} = 150kHz to 500kHz

Class A QP Limit = 79dBuV for f_{Emm} = 150kHz to 500kHz

Class A Avg Limit = 66dBuV for f_{Emm} = 150kHz to 500kHz

Margin = Limit - E_{corr}

ND: No emissions detected within 20dB of the Limit.



APPENDIX A – TEST SETUP DRAWINGS AND CONDITIONS

Table A.1 – Conducted Measurement Setup and Environmental

		Environn	nental Conditions (Typical)						
Temperature 25°C									
Humidit	У	<60%							
Barome	ric Pressure 101 +/- 3kPa								
			Equipment List						
Asset	Manufacturer	Model	Description						
Number	manaraotaror	Number	Decemption						
00241	R&S	FSU40	Spectrum Analyzer						

Figure A.1 – Test Setup – Conducted Measurements

Table A.2 – Radiated Emissions Measurement Equipment and Environmental

Environmental Conditions (Typical)						
Temperature		25°C				
Humidity		<60%				
Barometric Pressure		101 +/- 3kPa				
Equipm	ent List					
Asset Number	Manufacturer	Model Number	Description			
00051	HP	8566B	Spectrum Analyzer			
00049	HP	85650A	Quasi-peak Adapter			
00047	HP	85685A	RF Preselector			
00072	EMCO	2075	Mini-mast			
00073	EMCO	2080	Turn Table			
00071	EMCO	2090	Multi-Device Controller			
00265	Miteq	JS32-00104000-58-5P	Microwave L/N Amplifier			
00241	R&S	FSU40	Spectrum Analyzer			
00050	Chase	CBL-6111A	Bilog Antenna			
00275	Coaxis	LMR400	25m Cable			
00276	Coaxis	LMR400	4m Cable			
00278	TILE	34G3	TILE Test Software			
00034	ETS	3115	Double Ridged Guide Horn			
00085	EMCO	6502	Loop Antenna			

Figure A.2 – Test Setup Radiated Measurements 9kHzMHz – 30MHz

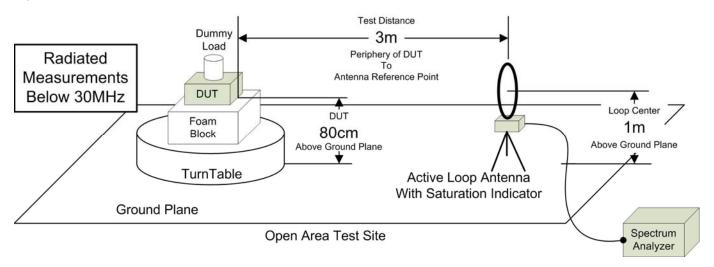
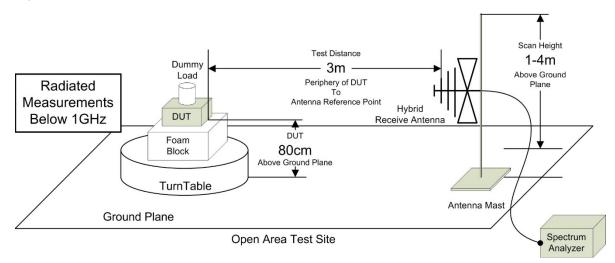
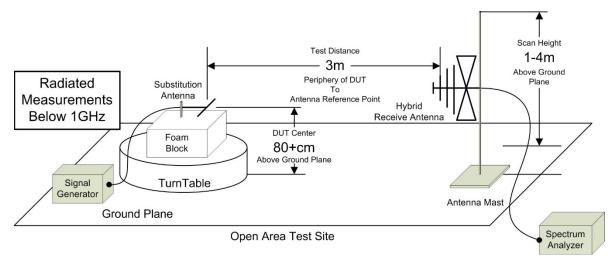




Figure A.3 – Test Setup Radiated Measurements 30MHz – 1GHz

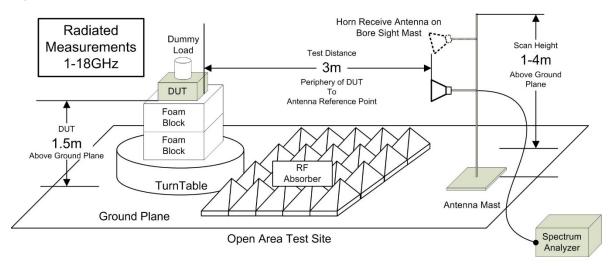


Figure A.5 – Test Setup Radiated Measurements 1 – 18GHz

Table A.3 – Setup – Conducted Emissions Equipment List

Equipm	Equipment List				
Asset Number	Manufacturer	Model Number	Serial Number	Description	
00333	HP	85685A	3010A01095	RF Preselector	
00049	HP	85650A	2043A00162	Quasi-peak Adapter	
00051	HP	8566B	2747A05510	Spectrum Analyzer	
00223	HP	8901A	3749A07154	Modulation Analyzer	
00257	Com-Power	LI-215A	191934	LISN	
00276	TMS	LMR400	n/a	4m Cable	

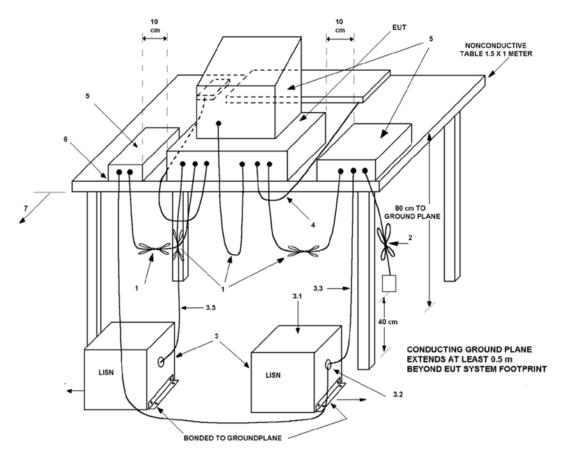


Figure A.6 – Test Setup Conducted Emissions Measurements

APPENDIX B – EQUIPMENT LIST AND CALIBRATION

Equipment List							
Asset Number	Manufacturer	Model Number	Serial Number	Description	Last Calibrated	Calibration Interval	Calibration Due
00050	Chase	CBL-6111A	1607	Bilog Antenna	3 Jan 2019	Triennial	3 Jan 2022
00034	ETS	3115	6267	Double Ridged Guide Horn	26 Nov 2018	Triennial	26 Nov 2021
00035	ETS	3115	6276	Double Ridged Guide Horn	22 Mar 2019	Triennial	21 Mar 2022
00085	EMCO	6502	9203-2724	Loop Antenna	11 Jun 2019	Triennial	11 Jun 2022
00333	HP	85685A	3010A01095	RF Preselector	23 Jun 2020	Triennial	30 Jun 2023
00049	HP	85650A	2043A00162	Quasi-peak Adapter	23 Jun 2020	Triennial	23 Jun 2023
00051	HP	8566B	2747A05510	Spectrum Analyzer	23 Jun 2020	Triennial	23 Jun 2023
00241	R&S	FSU40	100500	Spectrum Analyzer	15 May 2018	Triennial	15 May 2021
00005	HP	8648D	3847A00611	Signal Generator	23 Jun 2020	Triennial	23 Jun 2023
00257	Com-Power	LI-215A	191934	LISN	5 Jan 2018	Triennial	5 Aug 2021
00071	EMCO	2090	9912-1484	Multi-Device Controller	n/a	n/a	n/a
00072	EMCO	2075	0001-2277	Mini-mast	n/a	n/a	n/a
00073	EMCO	2080	0002-1002	Turn Table	n/a	n/a	n/a
00081	ESPEC	ECT-2	0510154-B	Environmental Chamber	NCR	n/a	CNR
00234	VWR	61161-378	140320430	Temp/Humidity Meter	New	Triennial	New
00263	Koaxis	KP10-1.00M-TD	263	1m Armoured Cable	COU	n/a	COU
00263B	Koaxis	KP10-1.00M-TD	263B	1m Armoured Cable	COU	n/a	COU
00264	Koaxis	KP10-7.00M-TD	264	7m Armoured Cable	COU	n/a	COU
00275	TMS	LMR400	n/a	25m Cable	COU	n/a	COU
00276	TMS	LMR400	n/a	4m Cable	COU	n/a	COU
00277	TMS	LMR400	n/a	4m Cable	COU	n/a	COU
00278	TILE	34G3	n/a	TILE Test Software	NCR	n/a	NCR

NCR: No Calibration Required COU: Calibrate On Use

APPENDIX C – MEASUREMENT INSTRUMENT UNCERTAINTY

	CISPR 16-4 Measurement Uncertainty (ULAB)	
Th	nis uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence interval using a coverage factor of k=2	
	Radiated Emissions 30MHz - 200MHz	
	$U_{LAB} = 5.14 dB$ $U_{CISPR} = 6.3 dB$	
	Radiated Emissions 200MHz - 1000MHz	
	$U_{LAB} = 5.90 dB$ $U_{CISPR} = 6.3 dB$	
	Radiated Emissions 1GHz - 6GHz	
	$U_{LAB} = 4.80 dB$ $U_{CISPR} = 5.2 dB$	
	Radiated Emissions 6GHz - 18GHz	
	$U_{LAB} = 5.1 dB$ $U_{CISPR} = 5.5 dB$	
	Power Line Conducted Emissions 9kHz to 150kHz	
	$U_{LAB} = 2.96 dB$ $U_{CISPR} = 3.8 dB$	
	Power Line Conducted Emissions 150kHz to 30MHz	
	$U_{LAB} = 3.12 dB$ $U_{CISPR} = 3.4 dB$	
	If the calculated uncertainty U_{lab} is less than U_{CISPR} then :	
1	Compliance is deemed to occur if NO measured disturbance exceeds the disturbance limit	
2	Non-Compliance is deemed to occur if ANY measured disturbance EXCEEDS the disturbance limit	
	If the calculated uncertainty U_{lab} is greater than U_{CISPR} then :	
3	Compliance is deemed to occur if NO measured disturbance, increased by (U _{lab} - U _{CISPR}), exceeds the disturbance limit	
4	Non-Compliance is deemed to occur if ANY measured disturbance, increased by (Ulab - UCISPR), EXCEEDS the disturbance limit	

Other Measurement Uncertainties (ULAB)
RF Conducted Emissions 9kHz - 40GHz
$U_{LAB} = 1.0 dB$ $U_{CISPR} = n/a$
Frequency/Bandwidth 9kHz - 40GHz
U _{LAB} = 0.1ppm U _{CISPR} = n/a
Temperature
$U_{LAB} = 1^{O}C U_{CISPR} = n/a$

END OF REPORT