

Certification Test Report

BossPac Engineering & Technology WASP

FCC ID: ZI8EA160 IC: 9648A-EA160

Project Code C-0101732

(Report C-0101732-RA-1-1)

Revision: 1

May 2, 2011

Prepared for: BossPac Engineering & Technology

Author: Deniz Demirci

Senior Wireless / EMC Technologist

Approved by: Nick Kobrosly

Director of Canadian Operations

Confidentiality Statement: This report and the information contained herein represent the results of testing articles/products identified and selected by the client. The tests were performed to specifications and/or procedures approved by the client. National Technical Systems ("NTS") makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article or similar products for a particular purpose. This document shall not be reproduced except in full without written approval from National Technical Systems ("NTS") and the customer.

Report Summary

Test Facility:	National Technical Systems, Canada Product Integrity Laboratory 5151-47 th Street, N.E. Calgary Alberta T3J 3R2			
Accreditation Numbers:	FCC 101386 IC 3978A-1 Accredited by A2LA, The American Association for Laboratory Accreditation Conforms with requirements of ISO/IEC 17025 0214.22 Electrical 0214.23 Mechanical CLIENTS SERVED: All interested parties FIELDS OF TESTING: Electrical/Electronic, Mechanical/Physical ACCREDITATION DATE: May 14, 2009 VALID TO: December 31, 2011			
Applicant:	BossPac Engineering & Technology Bay 8, 1450 - 28 Ave NE Calgary, AB T2A 7W6 Canada			
Customer Representative:	Name: Anthony Bastiaansen Phone #: 403) 216-1226 Email Address: tony@bosspac.com			

Test Summary

ndix	Test/Requirement	Deviations from:		Pass /	Applicable	Applicable		
Appendix	Description	Base Standard	Test Basis	NTS Procedure	Fail	FCC Rule Parts	Industry Canada Rule Parts	
А	20 dB Bandwidth	No	No	No	Pass	FCC Subpart C 15.215	NA	
В	Occupied Bandwidth (99% emission bandwidth)	No	No	No	N/A	N/A	RSS-Gen Issue 3 4.6.1	
С	Field Strength of Fundamental	No	No	No	Pass	FCC Subpart C 15.249 (a)	RSS 210 Issue 8 A2.9 (a)	
D	Radiated Spurious Emissions Band Edge	No	No	No	Pass	FCC Subpart C 15.249, 15.205	RSS 210 Issue 8 A2.9	
Е	Radiated Spurious Emissions (Tx)	No	No	No	Pass FCC Subpart C 15.249, 15.205		RSS 210 Issue 8 2.5, A2.9	
F	Radiated Spurious Emissions (Un-intentional radiators)	No	No	No	Pass FCC Subpart B 15.109		ICES-003 Issue 4	

Test Result:	The product presented for testi	ng complied with	test requirements as shown above.
Prepared By:	Deniz Demirci Senior Wireless/EMC Techno	ologist	
Reviewed By:	Glen Moore Wireless/EMC Manager	Approved By:	Alex Mathews Quality Management Representative

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

C-0101732-RA-1-1 WASP

BossPac FCC ID: ZI8EA160 IC: 9648A-EA160

Tabl	le of Contents	
REP	PORT SUMMARY	2
TES	ST SUMMARY	3
REG	SISTER OF REVISIONS	5
1.0	INTRODUCTION	6
1.1	Purpose	6
2.0	EUT DESCRIPTION	6
2.1	Configuration	6
2.2	EUT CABLES	6
2.3	EUT MODIFICATIONS	7
2.4	OPERATING MODE DURING TEST	7
3.0	SUPPORT EQUIPMENT	7
3.1	Configuration	7
3.2	TEST BED/PERIPHERAL CABLES	7
4.0	TEST ENVIRONMENT	7
APP	PENDICES	8
APP	PENDIX A: 20 DB BANDWIDTH	9
APP	PENDIX B: OCCUPIED BANDWIDTH	12
APP	PENDIX C: FIELD STRENGTH OF FUNDAMENTAL	15
APP	PENDIX D: RADIATED SPURIOUS EMISSIONS BAND EDGE	19
APP	PENDIX E: RADIATED SPURIOUS EMISSIONS (TX)	23
APP	PENDIX F: RADIATED SPURIOUS EMISSIONS (UN-INTENTIONAL RADIATORS)	26
APP	PENDIX G: TEST EQUIPMENT LIST	28
END	OF DOCUMENT	29

C-0101732-RA-1-1 WASP

BossPac FCC ID: ZI8EA160 IC: 9648A-EA160

Register of revisions

Revision	Date	Description of Revisions
1	May 2, 2011	Initial release

1.0 INTRODUCTION

1.1 PURPOSE

The purpose of this document is to describe the tests applied by NTS Canada to demonstrate compliance of the WASP from BossPac Engineering & Technology to FCC Part 15 Subpart C section 15.249 and the equivalent sections of Industry Canada's RSS 210, Issue 8 and FCC Subpart B (unintentional) and ICES-003 compliance.

2.0 EUT DESCRIPTION

2.1 CONFIGURATION

	Name	Model	Revision	Serial Number	
EUT	WASP	EA000160	А	N/A	
Device Classification	Mobile				
Antenna	F-type integrated onto	o FR4 PCB, 0dBi pe	eak gain		
Modulation	O-QPSK				
EUT Size (H x W x L) (in mm)	55 x 50 x 50				
Frequency Range	2405 MHz to 2480 MHz				
Functional Description	The WASP TM (Wireless acceleration sensor puck) is a self contained battery powered wireless vibration and temperature sensor. It reports temperature, acceleration and velocity so that an operator can make decisions pertaining to the condition of the equipment on which it is mounted. It can take measurements as often as once every 3 seconds. The unit is not a transceiver. It transmits the signal only				

2.2 EUT CABLES

Quantity	Routi	ng	Shielded /	Cable Length (m)	
Quantity	From	То	Unshielded		
		N/A			

C-0101732-RA-1-1 WASP

BossPac FCC ID: ZI8EA160 IC: 9648A-EA160

2.3 EUT MODIFICATIONS

N/A

2.4 OPERATING MODE DURING TEST

The EUT was tuned to a low, middle and high channel in continuous transmit mode at maximum rated RF output power with 100% duty cycle.

The EUT was tested in 3 orthogonal planes. Worst case emissions presented.

See appendices for detailed mode of operation during tests.

3.0 SUPPORT EQUIPMENT

3.1 CONFIGURATION

N/A

3.2 Test Bed/Peripheral Cables

N/A

4.0 TEST ENVIRONMENT

Temperature: 20 – 23 °C Relative Humidity: 28 – 35 % Atmospheric pressure: 883 – 891 mbar

Nominal test voltage: Battery Operated 3.6 V Li-Ion

APPENDICES

APPENDIX A: 20 DB BANDWIDTH

A.1. Base Standard & Test Basis

Base Standard	FCC PART 15.215
Test Basis	FCC PART 15.215
Test Method	FCC PART 15.215

A.2. Specifications

15.215 © Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

A.3. Deviations

Deviation Time 8		Description and	De			
Deviation Number	Date	Justification of Deviation	Base Standard	Test Basis	NTS Procedure	Approval
			None			

A.4. Test Procedure

ANSI C63.10: 2009, Radiated emission at 3 m distance

A.5. Test Results

The 20 dB bandwidth lies within the 2402 – 2483.5 MHz band. The EUT is in compliance with requirement as specified above.

Frequency (MHz)	20 dB Bandwidth (MHz)		
2405.00	3.077		
2443.00	3.125		
2480.00	3.141		

All final reported values are corrected values.

A.6. Operating Mode During Test

The EUT was tuned to a low, middle and high channel in continuous transmit mode at maximum rated RF output power with 100% duty cycle.

A.7. Tested By

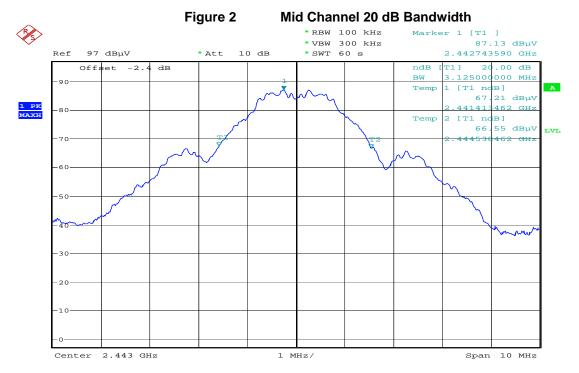
This testing was conducted in accordance with the ISO 17025:2005 scope of accreditation, table 1; Quality Manual.

Name: Deniz Demirci

Function: Senior Wireless / EMC Technologist

A.8. Test date May 2, 2011

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not


NTS Product Integrity Laboratory, 5151-47th Street N.E. Tel: 403-568-6605, Fax: 403-568-6970

referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

Figure 1 Low Channel 20 dB Bandwidth *RBW 100 kHz Marker 1 [T1] * VBW 300 kHz 91.40 dBµV Ref 97 dBµV *Att 10 dB *SWT 60 s 2.404743590 GHz T1] 20.00 dB Offs et -2.3 dв ndB 3.076923077 MHz BW Temp 1 [T1 ndB] 71 62 dBµV 403445513 GHz 2 [T1 ndB] 71.14 dBµV Temp 2.405 GHz 1 MHz/ Span 10 MHz

Date: 2.MAY.2011 11:48:26

Date: 2.MAY.2011 13:49:18

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

Figure 3 High Channel 20 dB Bandwidth *RBW 100 kHz Marker 1 [T1] 85.74 dBμV 2.479743590 GHz * VBW 300 kHz Ref 97 dBµV * Att 10 dB *SWT 60 s 20.00 dB Offset -2.4 ndB 141025 641 MHz l [Tl ndB] 65.75 dBμV 1 PK .478413462 GHz 2 [T1 ndB] 65.70 dBµV 2.48 GHz 1 MHz/ Span 10 MHz Center

Date: 2.MAY.2011 06:26:05

APPENDIX B: OCCUPIED BANDWIDTH

B.1. Base Standard & Test Basis

Base Standard	RSS-Gen Issue 3 4.6.1
Test Basis	RSS-Gen Issue 3 4.6.1
Test Method	RSS-Gen Issue 3 4.6.1

B.2. Specifications

4.6.1 When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

B.3. Deviations

Deviation	Time &	Description and	De	viation Referen	ice	
Number	Date	Justification of Deviation	Base Standard	Test Basis	NTS Procedure	Approval
			None			

B.4. Test Procedure

RSS-Gen Issue 3

B.5. Test Results

Frequency (MHz)	Occupied Bandwidth (MHz)
2405.00	3.077
2443.00	3.157
2480.00	3.253

All final reported values are corrected values

B.6. Operating Mode During Test

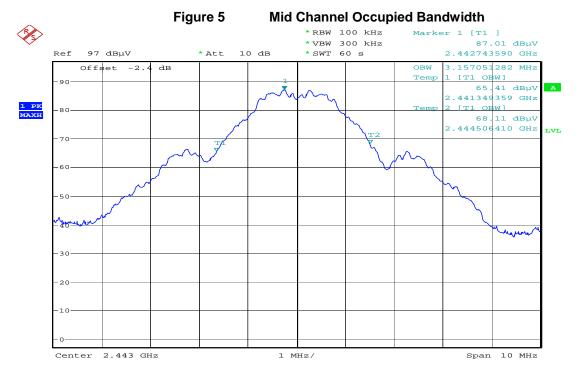
The EUT was tuned to a low, middle and high channel in continuous transmit mode at maximum rated RF output power with 100% duty cycle.

B.7. Tested By

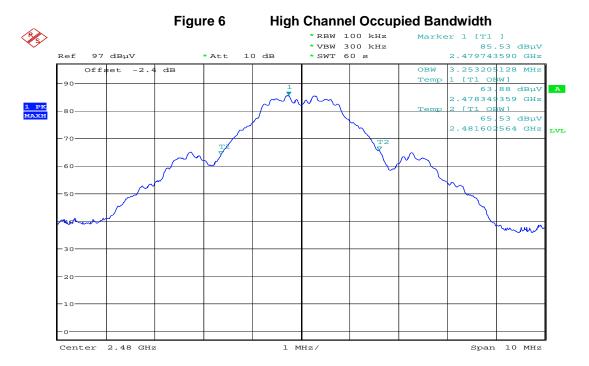
This testing was conducted in accordance with the ISO 17025:2005 scope of accreditation, table 1; Quality Manual.

Name: Deniz Demirci

Function: Senior Wireless / EMC Technologist


B.8. Test date

May 2, 2011


Figure 4 Low Channel Occupied Bandwidth *RBW 100 kHz Marker 1 [T1] * VBW 300 kHz 91.30 dBµV Ref 97 dBµV * Att 10 dB *SWT 60 s 2.404743590 GHz 3.076923077 MHz Offset -2. dв OBW Temp [T1 OBW] 90 70.15 dBµV 2.403397436 GHz [T1 OBW] 72.99 dBµV 2.406474359 GHz 70 60 2.405 GHz 1 MHz/ Span 10 MHz

Date: 2.MAY.2011 11:51:28

Date: 2.MAY.2011 13:51:47

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

Date: 2.MAY.2011 06:30:35

APPENDIX C: FIELD STRENGTH OF FUNDAMENTAL

C.1. Base Standard & Test Basis

Base Standard	FCC 15.249 (a) RSS 210 Issue 8 A2.9 (a)	
Test Basis	FCC 15.249 RSS-Gen Issue 3 4.8	
Test Method	NTS Calgary SOP CAG EMC 02 Emission Test Methods	

C.2. Specifications

The maximum field strength shall not exceed 50 millivolts/meter at 3 m distance in the 2400 MHz –2483.5 MHz band

For frequencies above 1000 MHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

C.3. Operating Mode During Test

The EUT was tuned to a low, middle and high channel in continuous transmit mode at maximum rated RF output power with 100% duty cycle.

The EUT was tested in 3 orthogonal planes. EUT on edge with vertical polarity receive antenna results were the worst case.

C.4. Test Results

Compliant

Channel	Frequency (MHz)	Polarity	Detector	Measured Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Low	2404.52	Vertical	Peak	93.78	113.98	20.20
Low	2404.98	Vertical	Average	91.04	93.98	2.94
Mid	2442.55	Vertical	Peak	90.66	113.98	23.32
IVIIU	2442.98	Vertical	Average	88.01	93.98	5.97
High	2479.52	Vertical	Peak	88.78	113.98	25.20
riigii	2479.98	Vertical	Average	85.43	93.98	8.55

The maximum (Average detector) field strength of fundamental was $91.04 \text{ dB}\mu\text{V/m}$ at 3 meter distance. It has 2.94 dB margin to the limit

Note: All final reported values are corrected values

C.5. Sample Calculations

N/A

C.6. Tested By

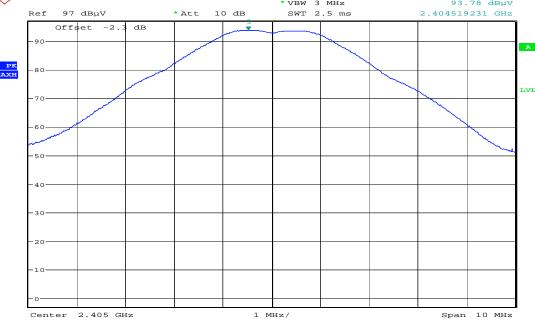
This testing was conducted in accordance with the ISO 17025:2005 scope of accreditation, table 1; Quality Manual.

Name: Deniz Demirci

Function: Senior Wireless / EMC Technologist

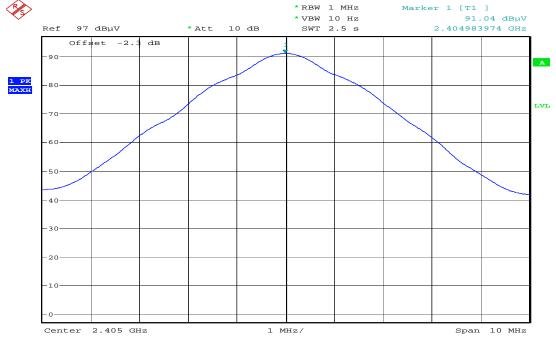
C.7. Test date

May 2, 2011


Figure 7

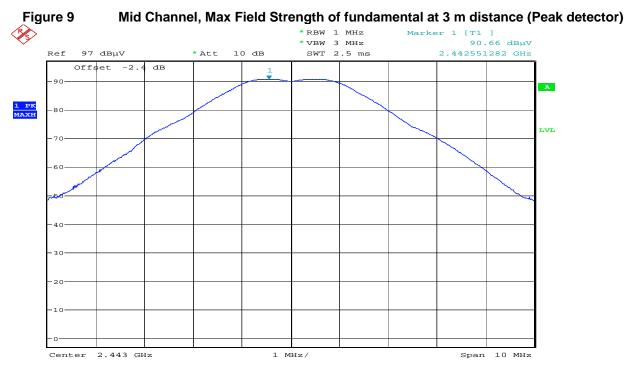
Low Channel, Max Field Strength of fundamental at 3 m distance (Peak detector)

* RBW 1 MHz Marker 1 [T1]

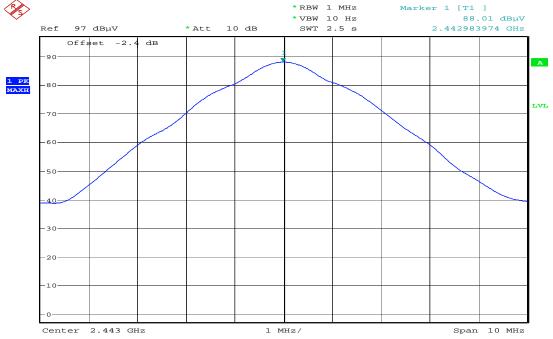

* VBW 3 MHz 93.78 dBµV

Ref 97 dBµV * Att 10 dB SWT 2.5 ms 2.404519231 GHz

Date: 2.MAY.2011 09:38:05

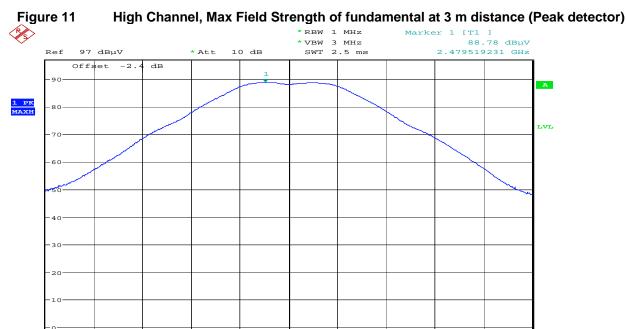

Figure 8 Low Channel, Max Field Strength of fundamental at 3 m distance (Av. Detector)

Date: 2.MAY.2011 09:39:01


The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

Date: 2.MAY.2011 13:29:39

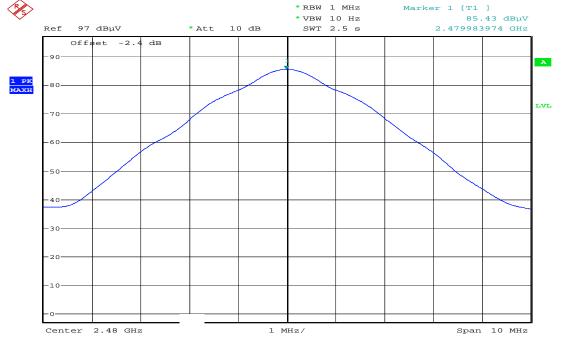
Figure 10 Mid Channel, Max Field Strength of fundamental at 3 m distance (Av. Detector)



Date: 2.MAY.2011 13:30:57

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

Span 10 MHz


1 MHz/

Date: 2.MAY.2011 05:58:20

2.48 GHz

Center

Figure 12 High Channel, Max Field Strength of fundamental at 3 m distance (Av. Detector)

Date: 2.MAY.2011 12:48:57

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

APPENDIX D: RADIATED SPURIOUS EMISSIONS BAND EDGE

D.1. Base Standard & Test Basis

Base Standard	FCC 15.249 Part 15.209 – Radio Frequency Devices, Part 15.205 – Restricted bands of operation RSS 210 Issue 8 A2.9
Test Basis	ANSI C63.4-2003 Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz,
Test Method	NTS Calgary SOP CAG EMC 02 Emission Test Methods

D.2. Specifications: FCC 15.205 and RSS 210 Issue 8 2.2 Restricted bands of operation.

MHz	MHz MHz MHz		GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
¹ 0.495–0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425–16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025–8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2690–2900	22.01–23.12
8.41425–8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43–36.5
12.57675–12.57725	322–335.4 3600–4400		N/A
13.36–13.41	N/A	N/A	N/A

(b) The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

D.3. Test Procedure

Radiated emission measurement at 3 meters distance.

D.4. Operating Mode During Test

The EUT was tuned to a low, middle and high channel in continuous transmit mode at maximum rated RF output power with 100% duty cycle.

The EUT was tested in 3 orthogonal planes (On Edge, Upright, Flat) EUT on edge with vertical polarity receive antenna results were the worst case. Worst case emissions presented.

D.5. Test Results

Compliant

Channel	Frequency (MHz)	Polarity	Detector	Measured Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Low	2389.62	V	Peak	42.53	73.98	31.45
(2405 MHz)	2390.00	V	Average	28.76	53.98	25.22
High	2483.50	V	Peak	63.28	73.98	10.70
(2480 MHz)	2483.50	V	Average	49.81	53.98	4.17

The maximum peak emission was $49.81~dB\mu V/m$ at 2483.5~MHz at 3~meter distance. It has 4.17~dB margin to the average limit

All final reported values are corrected values

D.6. Sample Calculations

None

D.7. Tested By

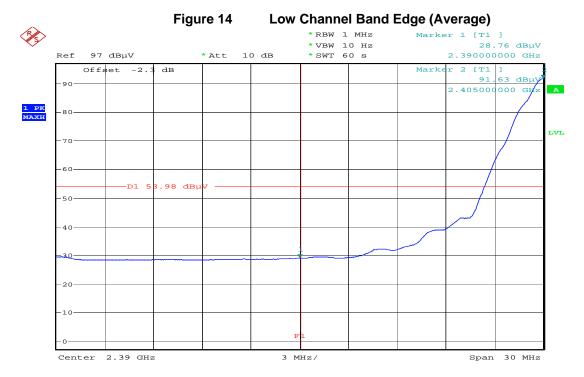
This testing was conducted in accordance with the ISO 17025:2005 scope of accreditation, table 1; Quality Manual.

Name: Deniz Demirci

Function: Senior Wireless / EMC Technologist

D.8. Test date

May 2, 2011



Span 30 MHz

Low Channel Band Edge (Peak) Figure 13 *RBW 1 MHz Marker 1 [T1] *VBW 3 MHz 42.53 dBµV Ref 97 dBµV *Att 10 dB *SWT 60 s 2.389615385 GHz Marker 2 [T1] Offset -2. dв 94.38 90 80 D2 73.98 dBµV 70 60

Date: 2.MAY.2011 12:08:15

2.39 GHz

Date: 2.MAY.2011 12:24:20

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

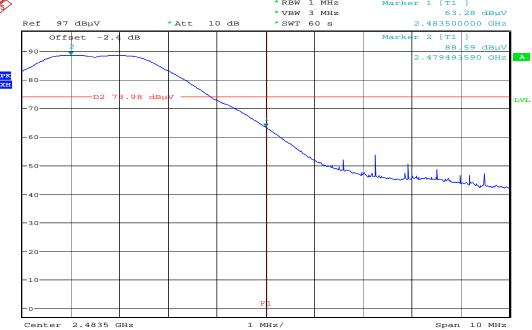
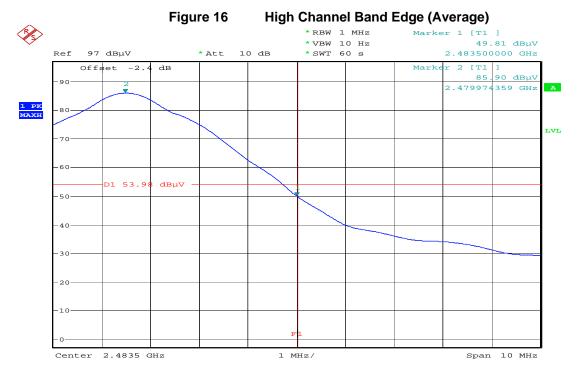


Figure 15 High Channel Band Edge (Peak)


* RBW 1 MHz Marker 1 [T1]

* VBW 3 MHz 63.28 dBµV

* ALL 10 dB * SWT 60 S 2.483500000 GHz

Date: 2.MAY.2011 06:09:32

Date: 2.MAY.2011 06:13:22

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

APPENDIX E: RADIATED SPURIOUS EMISSIONS (TX)

E.1. Base Standard & Test Basis

Base Standard	FCC 15.249 Part 15.209 – Radio Frequency Devices, RSS 210 Issue 8 A2.9, 2.5
Test Basis	ANSI C63.4: 2009 Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
Test Method	NTS Calgary SOP CAG EMC 02 Emission Test Methods

E.2. Specifications:

E.2.1. FCC 15.205 and RSS 210 Issue 8 2.2 Restricted bands of operation.

MHz	Iz MHz MHz		GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
¹ 0.495–0.505	16.69475–16.69525	608–614	5.35-5.46
2.1735–2.1905	16.80425–16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025–8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2690–2900	22.01–23.12
8.41425–8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43–36.5
12.57675–12.57725	322–335.4	3600–4400	N/A
13.36–13.41	N/A	N/A	N/A

(b) The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

E.2.2. FCC 15.249 and RSS 210 Issue 8 (A2.9)

Fundamental frequency (MHz)	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902–928	50	500
2400-2483.5	50	500
5725–5875	50	500

The field strength of harmonic emissions from intentional radiators operated in this frequency band shall comply with 500 microvolts / meter at 3 meter distance.

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209 and RSS GEN Issue 3 7.2.5, whichever is the lesser attenuation

E.3. Deviations

Deviation	Time &	Description and	De			
Number	Date	Justification of Deviation	Base Standard	Test Basis	NTS Procedure	Approval
			None			

E.4. Test Procedure

30 MHz to 26 GHz Radiated Emission per SOP CAG EMC 02.

FCC 15.35©: Unless otherwise specified, e.g. §15.255(b), when the radiated emission limits are expressed in terms of the average value of the emission

E.5. Operating Mode During Test

The EUT was tuned to a low, middle and high channel in continuous transmit mode at maximum rated RF output power with 100% duty cycle.

The EUT was tested in 3 orthogonal planes (On Edge, Upright, Flat) EUT on edge results were the worst case. Worst case emissions presented.

E.6. Test Results

Channel	Frequency (MHz)	Polarity	Detector	Measured Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	4810.17	Horizontal	Peak	45.73	73.98	28.25
Low	4810.05	Horizontal	Average	36.56	53.98	17.42
(2405 MHz)	4810.15	Vertical	Peak	46.28	73.98	27.70
	4810.05	Vertical	Average	37.11	53.98	16.87
	4886.26	Horizontal	Peak	45.70	73.98	28.28
Mid	4886.00	Horizontal	Average	35.54	53.98	18.44
(2443 MHz)	4886.55	Vertical	Peak	46.88	73.98	27.10
	4885.98	Vertical	Average	40.55	53.98	13.43
	4960.00	Horizontal	Peak	45.19	73.98	28.79
High	4959.95	Horizontal	Average	35.69	53.98	18.29
(2480 MHz)	4959.52	Vertical	Peak	48.37	73.98	25.61
	4959.85	Vertical	Average	40.70	53.98	13.28

The maximum average emission was $40.70~dB\mu V/m$ at 4959.85~MHz at 3 meter distance. It has 13.28~dB margin to the limit

Notes:

- There were no transmitter related emissions observed between 30 MHz and 1 GHz. Digital emissions are covered in Appendix F (Un-intentional radiators)
- All final reported values are corrected values
- Plots were not provided in order to reduce file size

E.7. Sample Calculations

Average Limit for above 960 MHz at 3m distance = $20*Log (500) = 53.98 dB\mu V/m$ Peak Limit for above 960 MHz at 3m distance = Average Limit + 20 (dB) = $73.98 dB\mu V/m$

E.8. Tested By

This testing was conducted in accordance with the ISO 17025:2005 scope of accreditation, table 1; Quality Manual.

Name: Deniz Demirci

Function: Senior EMC / Wireless Technologist

E.9. Test date

May 2, 2011

APPENDIX F: RADIATED SPURIOUS EMISSIONS (UN-INTENTIONAL RADIATORS)

F.1. Base Standard & Test Basis

Base Standard	FCC Part 15.109 – Radiated Emission Limits for Un-intentional Radiators ICES-003 Issue 4 Emission test method and limits for digital apparatus
Test Basis	ANSI C63.4-2003: Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz, CAN/CSA-CEI/IEC CISPR 22-02
Test Method	NTS Calgary SOP CAG EMC 02 Emission Test Methods

F.2. Specifications:

FCC Part 15.109 and ICES-003

Frequency (MHz)	FCC Part 15¹ /ICES003 Class B at 10 m distance (dBμV/m)				
30 – 230	30.00 QP @ 10m				
230 – 1000	37.00 QP @ 10m				

Note: FCC Part 15.109(g): As an alternative to the radiated emission limits shown in paragraphs (a) and (b) of this section, digital devices may be shown to comply with the standards contained in the Third Edition of International Electrotechnical Commission ("IEC"), International Special Committee on Radio Interference (CISPR) Pub. 22 (1997), "Information Technology Equipment – Radio Disturbance Characteristics – Limits and Methods of Measurement."

F.3. Deviations

Deviation Number	Time & Date	Description and Justification of Deviation	De			
			Base Standard	Test Basis	NTS Procedure	Approval
			None			

F.4. Test Procedure

Radiated Emission per SOP CAG EMC 02.

F.5. Operating Modes During Test

The EUT was tuned to a low, middle and high channel in continuous transmit mode at maximum rated RF output power with 100% duty cycle.

The EUT was tested in 3 orthogonal planes (On Edge, Upright, Flat) Worst case emissions presented.

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

F.6. Test Results

Product Integrity Laboratory V2.5

Project Number: C-0101732-1

Model: Boss Pac Engineering WASP

Tester: James MacKay Test ID: RE02-10m-0101732

(Mid channel)

Comments: **Conf02: EUT standing on base, transmitting at 2.443 GHz (Mid channel) Conf03: EUT standing on base, transmitting at 2.480 GHz (High channel)

Standard:	CISPR22_B	Measureme	ent Distance:	<1GHz >1GHz	10 3	meters meters				
Antenna Polarization	Frequency (MHz)	Measured Level (dBμV)	Measurement Detector	Correction Factors (dB/m)	Emission Level (dBµV/m)	Line	Limit (dBµV/m)	Margin (dB)	Mast Height (cm)	Turntable Angle (degrees)
**Horizontal	106.250	20.12	Quasi Peak	-14.42	5.70	Quasi Peak	30.00	24.30	101	360
Horizontal	124.842	20.46	Quasi Peak	-13.33	7.13	Quasi Peak	30.00	22.87	100	0
Horizontal	174.797	20.66	Quasi Peak	-15.29	5.37	Quasi Peak	30.00	24.63	100	334
Horizontal	550.052	22.31	Quasi Peak	-5.25	17.06	Quasi Peak	37.00	19.94	100	0
Vertical	631.658	28.20	Quasi Peak	-4.61	23.59	Quasi Peak	37.00	13.41	273	147
Vertical	900.524	24.59	Quasi Peak	-1.51	23.08	Quasi Peak	37.00	13.92	100	41

^{1.} Positive Margin indicates a Pass

- 2. EUT faces normal to antenna at 10.6° turntable position.
- 3. Correction Factors include all factors between the receiving antenna and the receiver, including the antenna.

Worst case spurious emission was 23.59 dB μ V/m at 631.658 MHz with vertical polarization. It has 13.41 dB margin to the FCC 15.109 and ICES-003 limits.

Notes:

- 1. Above 1 GHz measurements are covered in Appendix F
- All final reported values are corrected values
- 3. Plots were not provided in order to reduce file size

F.7. Sample Calculations

Emission Level (dB μ V/m) = Measured Level (dB μ V) + Correction Factors (dB/m) Margin (dB) = Limit (dB μ V/m) - Emission Level (dB μ V/m)

F.8. Tested By

This testing was conducted in accordance with the ISO 17025:2005 scope of accreditation, table 1; Quality Manual.

Name: James MacKay Function: EMC Technologist

F.9. Test date

May 2, 2011

APPENDIX G: TEST EQUIPMENT LIST

Descriptions	Manufacturer	Type/Model	Asset #	Cal Due	Cal Date
Bilog Antenna	Teseq	CBL 6112D	CG1177	14SEP12	14SEP10
Horn Antenna (Rx) 1 GHz – 18 GHz	EMCO	3115	CG0368	08SEP11	08SEP09
Standard Gain Horn (Rx) 18 GHz – 26.5 GHz	EMCO	3160-09	CG0075	N/A (1)	27NOV01
High pass filter f >1000 MHz	MicroTronics	HPM14576	CG0963	13NOV11	13NOV09
High pass filter f > 2800 MHz	MicroTronics	HPM50111	CG0964	N/A	N/A
LNA 1 GHz < f < 18 GHz	Miteq	JSD00121	CG0761	13NOV11	13NOV09
LNA 18GHz < f < 26.5GHz	Miteq	JSD00119	CG0482	02OCT11	02OCT09
EMI Test Receiver	Rohde & Schwarz	ESMI	CG0433	04JUN11	04MAY10
20 Hz – 26.5 GHz	Ronde & Schwarz	ESIVII	CG0434	04JUN11	04MAY10
Signal Analyzer 20 Hz – 26.5 GHz	Rohde & Schwarz	FSQ	CG1462	20DEC11	20DEC10
Spectrum Analyzer 30 Hz – 40 GHz	HP	8564E	CG0352	01DEC11	01DEC10

^{(1):} As per manufacturer recommend, this item does not require periodic calibration. Its electromagnetic performance is almost exclusively depended on the physical dimension of the horn. A thorough mechanical check is all that is needed to guarantee the antenna performance

END OF DOCUMENT