

FCC TEST REPORT FCC ID:ZHZTRACD

Report Number.....: ZKT-240105L0224E-4

Date of Test.......Jan.02,2024 to Jan.08,2024

Date of issue...... Jan.10.2024

Total number of pages...... 40

Test Result: PASS

Testing Laboratory.....: Shenzhen ZKT Technology Co., Ltd.

Applicant's name Dragino Technology Co., Limited

Room 202, Block B, BCT Incubation Bases, No.8 CaiYunRoad

Address: LongCheng Street, LongGang District; Shenzhen 518116,China

Manufacturer's name Dragino Technology Co., Limited

Room 202. Block B. BCT Incubation Bases. No.8 CaiYunRoad

Address: LongCheng Street, LongGang District; Shenzhen 518116,China

Test specification:

Standard..... FCC CFR Title 47 Part 15 Subpart C Section 15.247 ANSI C63.10:2013

Test procedure.....: /

Non-standard test method: N/A

Test Report Form No....: TRF-EL-111_V0

Test Report Form(s) Originator....: ZKT Testing

Master TRF Dated: 2020-01-06

This device described above has been tested by ZKT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of ZKT, this document may be altered or revised by ZKT, personal only, and shall be noted in the revision of the document.

Product name....: LoRaWAN Tracker

Trademark DRAGINO

Model/Type reference...... TrackerD

Ratings..... : Battery:DC 3.7V 1000mA

Shenzhen ZKT Technology Co., Ltd.

Testing	procedure	and t	esting	location:
---------	-----------	-------	--------	-----------

Testing Laboratory.....: Shenzhen ZKT Technology Co., Ltd.

Address...... 1/F, No. 101, Building B, No. 6, Tangwei Community

Industrial Avenue, Fuhai Street, Bao'an District,

Shenzhen, China

Tested by (name + signature)...... Jim Liu

lim Liu Jackson Fang

Reviewer (name + signature)...... Jackson Fang

Approved Approved

Approved (name + signature)..... Lake Xie

Shenzhen ZKT Technology Co., Ltd.

Table of Contents Page 1.VERSION 5 2.SUMMARY OF TEST RESULTS 2.1 TEST FACILITY 2.2 MEASUREMENT UNCERTAINTY 3. GENERAL INFORMATION 3.1 GENERAL DESCRIPTION OF EUT 8 3.2 DESCRIPTION OF TEST MODES 9 3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 10 3.4 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE) 10 3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS 11 4. EMC EMISSION TEST 13 4.1 CONDUCTED EMISSION MEASUREMENT 13 4.1.1 1POWER LINE CONDUCTED EMISSION LIMITS 13 4.1.2 TEST PROCEDURE 13 4.1.3 DEVIATION FROM TEST STANDARD 13 4.1.4 TEST SETUP 14 4.1.5 EUT OPERATING CONDITIONS 14 4.1.6 TEST RESULTS 14 4.2 RADIATED EMISSION MEASUREMENT 15 4.2.1 RADIATED EMISSION LIMITS 17 4.2.2 TEST PROCEDURE 18 4.2.3 DEVIATION FROM TEST STANDARD 18 4.2.4 TEST SETUP 18 4.2.5 EUT OPERATING CONDITIONS 19 **5.RADIATED BAND EMISSION MEASUREMENT** 24 5.1 TEST REQUIREMENT: 24 5.2 TEST PROCEDURE 24 5.3 DEVIATION FROM TEST STANDARD 24 5.4 TEST SETUP 25 5.5 EUT OPERATING CONDITIONS 25 5.6 TEST RESULT 26 **6.POWER SPECTRAL DENSITY TEST** 27 6.1 APPLIED PROCEDURES / LIMIT 27 6.2 TEST PROCEDURE 27 6.3 DEVIATION FROM STANDARD 27 6.4 TEST SETUP 27

Shenzhen ZKT Technology Co., Ltd.

Table of Contents Page 6.5 EUT OPERATION CONDITIONS 27 6.6 TEST RESULTS 28 7. CHANNEL BANDWIDTH 30 7.1 APPLIED PROCEDURES / LIMIT 30 7.2 TEST PROCEDURE 30 7.3 DEVIATION FROM STANDARD 30 7.4 TEST SETUP 30 7.5 EUT OPERATION CONDITIONS 30 7.6 TEST RESULTS 31 **8.PEAK OUTPUT POWER TEST** 35 8.1 APPLIED PROCEDURES / LIMIT 35 8.2 TEST PROCEDURE 35 8.3 DEVIATION FROM STANDARD 35 8.4 TEST SETUP 35 8.5 EUT OPERATION CONDITIONS 35 8.6 TEST RESULTS 36 9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION **37** 9.1 APPLICABLE STANDARD 37 9.2 TEST PROCEDURE 37 9.3 DEVIATION FROM STANDARD 37 9.4 TEST SETUP 37 9.5 EUT OPERATION CONDITIONS 37 **10.ANTENNA REQUIREMENT** 42 11. TEST SETUP PHOTO 43 12. EUT CONSTRUCTIONAL DETAILS 43

Project No.: ZKT-240105L0224E-4 Page 5 of 43

1.VERSION

Report No. Version		Description	Approved
ZKT-240105L0224E-4	Rev.01	Initial issue of report	Jan.10,2024
		(a) a	-

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Project No.: ZKT-240105L0224E-4

Page 6 of 43

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C					
Standard Section	Judgment	Remark			
FCC part 15.203/15.247 (c)	Antenna requirement	PASS			
FCC part 15.207	AC Power Line Conducted Emission	PASS			
FCC part 15.247 (b)(3)	Conducted Peak Output Power	PASS			
FCC part 15.247 (a)(2)	-6 Bandwidth& 99% OCB	PASS			
FCC part 15.247 (e)	Power Spectral Density	PASS			
FCC part 15.247(d)	Band Edge	PASS	100		
FCC part 15.205/15.209	Spurious Emission	PASS			

NOTE:

(1)"N/A" denotes test is not applicable in this Test Report

2.1 TEST FACILITY

Shenzhen ZKT Technology Co., Ltd.

Add.: 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an

District, Shenzhen, China

FCC Test Firm Registration Number: 692225

Designation Number: CN1299 IC Registered No.: 27033

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U \cdot where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 · providing a level of confidence of approximately 95 % \circ

No.	Item	Uncertainty	
1	Conducted Emission Test	±1.38dB	
2	RF power conducted	±0.16dB	
3	Spurious emissions conducted	±0.21dB	N
4	All emissions radiated(<1G)	±4.68dB	
5	All emissions radiated(>1G)	±4.89dB	
6	Temperature	±0.5°C	
7	Humidity	±2%	

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	LoRaWAN Tracker	
Model No.:	TrackerD	
Model Different.:	-	
Serial No.:	N/A	
Hardware Version:	H1.0	
Software Version:	\$1.0	
Sample(s) Status:	Engineer sample	
Operation Frequency:	2402MHz~2480MHz	
Channel Numbers:	40	-0.0
Channel Separation:	2MHz	62153
Modulation Type:	GFSK	100
Antenna Type:	Integrating antenna	
Antenna gain:	1dBi	
Power supply:	Input:DC 5V or DC 3.7V Battery	
SWITCHING POWER	N/A	
ADAPTER:	IN/A	

Shenzhen ZKT Technology Co., Ltd.

Operation Frequency each of channel Channel Channel Frequency Channel Frequency Frequency Channel Frequency 2402 MHz 21 31 1 11 2422 MHz 2442 MHz 2462 MHz 2 2404 MHz 12 2424 MHz 22 2444 MHz 32 2464 MHz 23 2446 MHz 3 2406 MHz 13 2426 MHz 33 2466 MHz 4 2408 MHz 14 2428 MHz 24 2448 MHz 34 2468 MHz 5 2410 MHz 15 2430 MHz 25 2450 MHz 35 2470 MHz 16 6 2412 MHz 2432 MHz 26 2452 MHz 36 2472 MHz 7 2414 MHz 17 2434 MHz 27 2454 MHz 37 2474 MHz 8 2416 MHz 18 2436 MHz 28 2456 MHz 38 2476 MHz 2438 MHz 29 9 2418 MHz 19 2458 MHz 39 2478 MHz 2440 MHz 10 20 30 40 2420 MHz 2460 MHz 2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

3.2 DESCRIPTION OF TEST MODES

Transmitting mode	Keep the EUT in continuously transmitting mode
Charging mode	Keep the EUT in Charging mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

Test Software	BLE Test Tool
Power level setup	<0dBm

Shenzhen ZKT Technology Co., Ltd.

Project No.: ZKT-240105L0224E-4

Page 10 of 43

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Conducted Emission					
DC Line	EUT				
Radiated E	mission				
EUT					

Conducted Spurious

EUT

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note	
E-1	LoRaWAN Tracker N/A		BS01002	N/A	EUT	
A-1	A-1 AC Adapter HUAWEI		CP415B	N/A	AE	

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>FLength</code> <code>_</code> column.

Shenzhen ZKT Technology Co., Ltd.

Project No.: ZKT-240105L0224E-4

Page 11 of 43

3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

	Radiation Test equipment						
Item	Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGH T	9020A	MY553708 35	A.17.05	Nov. 02, 2023	Nov. 01, 2024
2	Spectrum Analyzer (10kHz-39.9GHz)	R&S	FSV40-N	100363	1.71 SP2	Nov. 02, 2023	Nov. 01, 2024
3	EMI Test Receiver (9kHz-7GHz)	R&S	ESCI7	100969	4.32	Nov. 02, 2023	Nov. 01, 2024
4	Bilog Antenna (30MHz-1500MHz)	Schwarzbe ck	VULB916 8	N/A	N/A	Nov. 13, 2023	Nov. 12, 2024
5	Horn Antenna (1GHz-18GHz)	Agilent	AH-118	071145	N/A	Nov. 13, 2023	Nov. 12, 2024
6	Horn Antenna (15GHz-40GHz)	A.H.Syste m	SAS-574	588	N/A	Nov. 13, 2023	Nov. 12, 2024
7	Loop Antenna	TESEQ	HLA6121	58357	N/A	Nov. 16, 2023	Nov. 15, 2024
8	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	60747	N/A	Nov. 02, 2023	Nov. 01, 2024
9	Amplifier (1GHz-26.5GHz)	HuiPu	8449B	3008A0031 5	N/A	Nov. 02, 2023	Nov. 01, 2024
10	Amplifier (500MHz-40GHz)	QuanJuDa	DLE-161	097	N/A	Nov. 02, 2023	Nov. 01, 2024
11	Test Cable	N/A	R-01	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
12	Test Cable	N/A	R-02	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
13	Test Cable	N/A	R-03	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
14	Test Cable	N/A	RF-01	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
15	Test Cable	N/A	RF-02	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
16	Test Cable	N/A	RF-03	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
17	ESG Signal Generator	Agilent	E4421B	N/A	B.03.84	Nov. 02, 2023	Nov. 01, 2024
18	Signal Generator	Agilent	N5182A	N/A	A.01.87	Nov. 02, 2023	Nov. 01, 2024
19	Magnetic Field Probe Tester	Narda	ELT-400	0-0344	N/A	Nov. 16, 2023	Nov. 15, 2024
20	Wideband Radio Communication Test	R&S	CMW500	106504	V 3.7.22	Nov. 02, 2023	Nov. 01, 2024
21	MWRF Power Meter Test system	MW	MW100-RF CB	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
22	D.C. Power Supply	LongWei	TPR-6405D	N/A	N/A	\	1
23	EMC Software	Frad	EZ-EMC	Ver.EMC-C ON 3A1.1	N/A	1	1
24	RF Software	MW	MTS8310	V2.0.0.0	N/A	1	1
25	Turntable	MF	MF-7802BS	N/A	N/A		\
26	Antenna tower	MF	MF-7802BS	N/A	N/A	\	\
						·	•

Shenzhen ZKT Technology Co., Ltd.

Project No.: ZKT-240105L0224E-4 Page 12 of 43

Conduction Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	N/A	Nov. 14, 2023	Nov. 13, 2024
2	LISN	CYBERTEK	EM5040A	E1850400149	N/A	Nov. 02, 2023	Nov. 01, 2024
3	Test Cable	N/A	C-01	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
4	Test Cable	N/A	C-02	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
5	Test Cable	N/A	C-03	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
6	EMI Test Receiver	R&S	ESCI3	101393	4.42 SP3	Nov. 02, 2023	Nov. 01, 2024
7	Triple-Loop Antenna	N/A	RF300	N/A	N/A	Nov. 02, 2023	Nov. 01, 2024
8	Absorbing Clamp	DZ	ZN23201	15034	N/A	Nov. 07, 2023	Nov. 06, 2024
9	EMC Software	Frad	EZ-EMC	Ver.EMC-CON 3A1.1	N/A	1	1

Shenzhen ZKT Technology Co., Ltd.

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

4.1.1 POWER LINE CONDUCTED EMISSION Limits

EDEOLIENCY (MHz)	Limit (d	Standard		
FREQUENCY (MHz)	Quas-peak	Average	Standard	
0.15 -0.5	66 - 56 *	56 - 46 *	FCC	
0.50 -5.0	56.00	46.00	FCC	
5.0 -30.0	60.00	50.00	FCC	

Note:

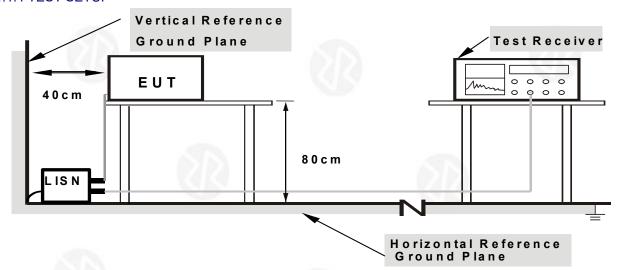
(1) *Decreases with the logarithm of the frequency.

4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation



4.1.4 TEST SETUP

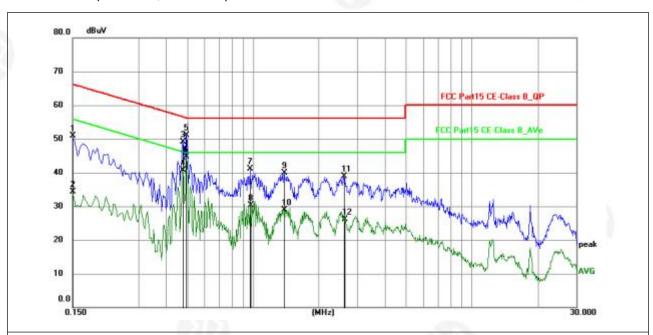
Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to Charging during test. This operating condition was tested and used to collect the included data.

4.1.6 TEST RESULTS:

Shenzhen ZKT Technology Co., Ltd.



Temperature :	26℃	Relative Humidity:	54%
Pressure :	101kPa	Phase :	
Test Voltage :	AC 120V/60Hz	Test Mode	GFSK Low Channel

All mode are pre-tested, and the report shows the worst model data.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1500	37.86	13.01	50.87	66.00	-15.13	QP	Р	1
2	0.1500	21.31	13.01	34.32	56.00	-21.68	AVG	Р	
3	0.4785	38.44	10.64	49.08	56.37	-7.29	QP	Р	
4	0.4785	30.03	10.64	40.67	46.37	-5.70	AVG	Р	
5	0.4965	40.64	10.56	51.20	56.06	-4.86	QP	Р	
6	0.4965	34.20	10.56	44.76	46.06	-1.30	AVG	Р	
7	0.9734	30.71	10.45	41.16	56.00	-14.84	QP	Р	
8	0.9779	19.92	10.44	30.36	46.00	-15.64	AVG	Р	
9	1.3919	29.57	10.34	39.91	56.00	-16.09	QP	Р	
10	1.3919	18.62	10.34	28.96	46.00	-17.04	AVG	Р	
11	2.5980	28.84	10.04	38.88	56.00	-17.12	QP	Р	
12	2.6204	16.08	10.03	26.11	46.00	-19.89	AVG	Р	
							-	_	

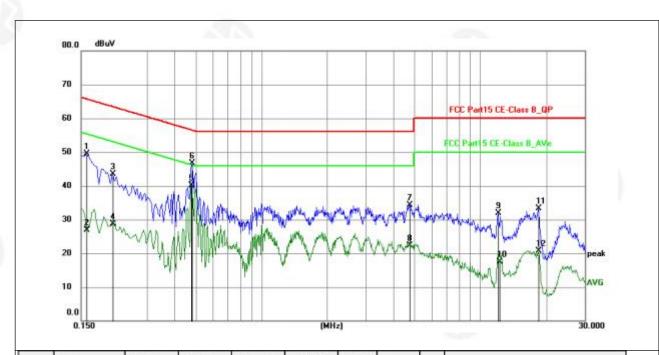
Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

+86-755-2233 6688

- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor

Shenzhen ZKT Technology Co., Ltd.



Temperature :	26 ℃	Relative Humidity:	54%	
Pressure :	101kPa	Phase :	N	
Test Voltage :	AC 120V/60Hz	Test Mode	GFSK Low Channel	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1590	36.63	12.81	49.44	65.52	-16.08	QP	Р	
2	0.1590	14.05	12.81	26.86	55.52	-28.66	AVG	Р	
3	0.2085	31.68	11.88	43.56	63.26	-19.70	QP	Р	
4	0.2085	16.86	11.88	28.74	53.26	-24.52	AVG	Р	
5	0.4785	29.52	10.64	40.16	46.37	-6.21	AVG	Р	
6	0.4830	36.06	10.62	46.68	56.29	-9.61	QP	Р	
7	4.7399	25.52	8.82	34.34	56.00	-21.66	QP	Р	
8	4.7490	13.47	8.81	22.28	46.00	-23.72	AVG	Р	
9	12.0795	23.21	8.75	31.96	60.00	-28.04	QP	Р	
10	12.2010	8.81	8.77	17.58	50.00	-32.42	AVG	Р	
11	18.3885	23.61	9.63	33.24	60.00	-26.76	QP	Р	
12	18.4650	11.07	9.65	20.72	50.00	-29.28	AVG	Р	

Notes:

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor

Shenzhen ZKT Technology Co., Ltd.

Project No.: ZKT-240105L0224E-4 Page 17 of 43

4.2 RADIATED EMISSION MEASUREMENT

Test Requirement:	Test Requirement: FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:2013	66						
Test Frequency Range:	Test Frequency Range: 9kHz to 25GHz							
Test site: Measurement Distance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak			
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak			
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak			
		Peak	1MHz	3MHz	Peak			
	Above 1GHz	Peak	1MHz	10Hz	Average			

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance		
(MHz)	(micorvolts/meter)	(meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

LIMITS OF RADIATED EMISSION MEASUREMENT

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)			
PREQUENCT (MINZ)	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Shenzhen ZKT Technology Co., Ltd.

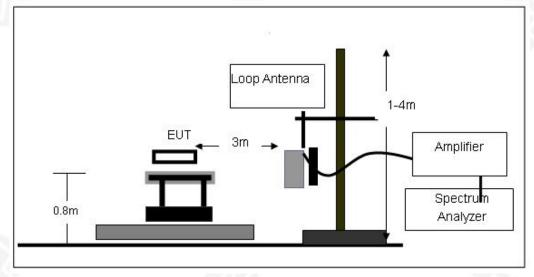
4.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.
- g. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

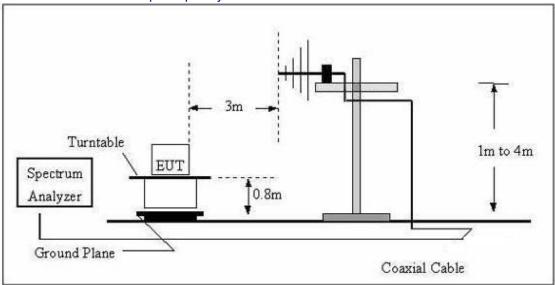
4.2.3 DEVIATION FROM TEST STANDARD

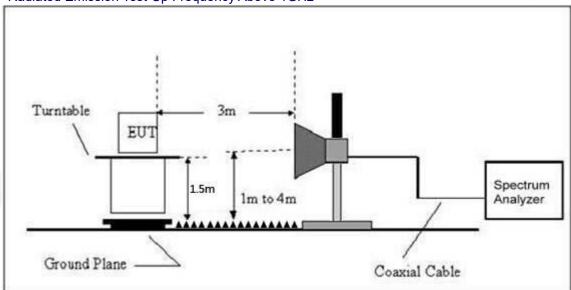
No deviation

4.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

Shenzhen ZKT Technology Co., Ltd.





(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.2.5 EUT OPERATING CONDITIONS

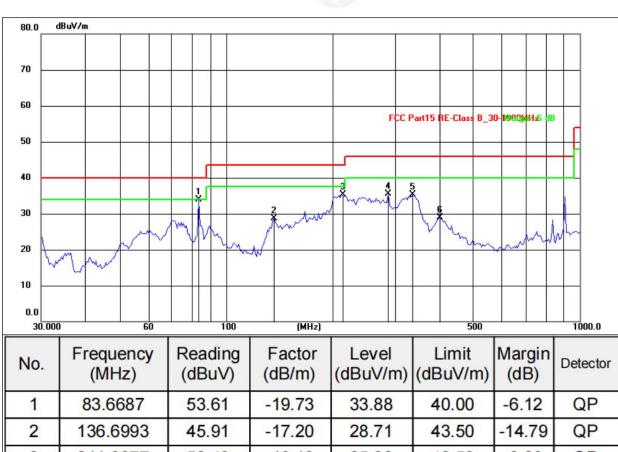
The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

4.2.6 TEST RESULTS (Between 9KHz – 30 MHz)

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

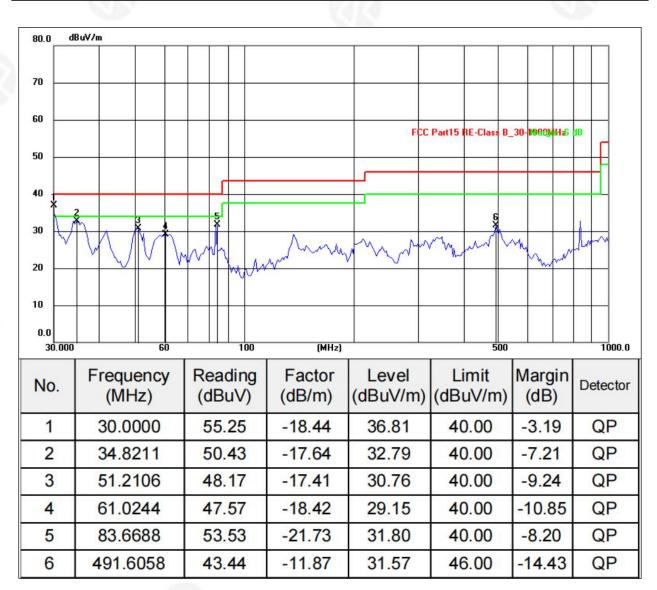
Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China



Between 30MHz - 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Test Mode	GFSK Low Channel



No.	Frequency (MHz)	(dBuV)	Factor (dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1	83.6687	53.61	-19.73	33.88	40.00	-6.12	QP
2	136.6993	45.91	-17.20	28.71	43.50	-14.79	QP
3	211.8977	53.49	-18.19	35.30	43.50	-8.20	QP
4	287.9904	50.92	-15.40	35.52	46.00	-10.48	QP
5	337.2155	52.12	-16.83	35.29	46.00	-10.71	QP
6	401.8384	45.38	-16.49	28.89	46.00	-17.11	QP

Temperature:	26℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Test Mode	GFSK Low Channel

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

+86-755-2233 6688

- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The test data shows only the worst case GFSK mode

1GHz~25GHz

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
				Low Cha	nnel:2402M	Hz			
V	4804.00	50.34	30.55	5.77	24.66	50.22	74.00	-23.78	Pk
V	4804.00	41.70	30.55	5.77	24.66	41.58	54.00	-12.42	AV
V	7206.00	49.50	30.33	6.32	24.55	50.04	74.00	-23.96	Pk
V	7206.00	41.74	30.33	6.32	24.55	42.28	54.00	-11.72	AV
V	9608.00	-	$V \in \mathcal{L} \otimes V$	-	-	-	74.00	1	Pk
V	9608.00	-	<u>-</u>	-	-	-	54.00	1	AV
V	12010.00	-	-	-	•	1	74.00	•	Pk
V	12010.00	-	-	-	•	1	54.00	•	AV
Н	4804.00	51.29	30.55	5.77	24.66	51.17	74.00	-22.83	Pk
Н	4804.00	41.84	30.55	5.77	24.66	41.72	54.00	-12.28	AV
Н	7206.00	49.23	30.33	6.32	24.55	49.77	74.00	-24.23	Pk
Н	7206.00	41.71	30.33	6.32	24.55	42.25	54.00	-11.75	AV
Н	9608.00	-	-	-		-	74.00		Pk
Н	9608.00	-	-	-	1	-	54.00		AV
Н	12010.00	-	-	-	-	-	74.00	-	Pk
H	12010.00	-	-	-	-	-	54.00	-	AV

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
			N	/liddle Ch	nannel:2440)MHz			
V	4880.00	50.53	30.55	5.77	24.66	50.41	74.00	-23.59	Pk
V	4880.00	41.98	30.55	5.77	24.66	41.86	54.00	-12.14	AV
V	7320.00	48.74	30.33	6.32	24.55	49.28	74.00	-24.72	Pk
V	7320.00	41.82	30.33	6.32	24.55	42.36	54.00	-11.64	AV
V	9760.00	-	-	-		-	74.00	-	Pk
V	9760.00	-	-			-	54.00	-	AV
V	12200.00	-	-	•	-	-	74.00	-	Pk
V	12200.00	-	-	-	-	-	54.00	-	AV
Н	4880.00	48.87	30.55	5.77	24.66	48.75	74.00	-25.25	Pk
Н	4880.00	41.75	30.55	5.77	24.66	41.63	54.00	-12.37	AV
Н	7320.00	49.56	30.33	6.32	24.55	50.10	74.00	-23.90	Pk
Н	7320.00	41.89	30.33	6.32	24.55	42.43	54.00	-11.57	AV
Н	9760.00	-	_	-	-	-7/ID	74.00	-	Pk
Н	9760.00	-	_	-	-	2000	54.00	-	AV
Н	12200.00	-	-	-	-	_	74.00	-	Pk
Н	12200.00	-	_	-	-		54.00	-	AV

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
	100		ı	ligh Cha	nnel:2480N	1Hz			
V	4960.00	50.82	30.55	5.77	24.66	50.7	74.00	-23.3	Pk
V	4960.00	42.19	30.55	5.77	24.66	42.07	54.00	-11.93	AV
V	7440.00	52.06	30.33	6.32	24.55	52.6	74.00	-21.4	Pk
V	7440.00	42.38	30.33	6.32	24.55	42.92	54.00	-11.08	AV
V	9920.00	-		-	-		74.00	-	Pk
V	9920.00	-	VAZA	-	-	- (0)	54.00	-	AV
V	12400.00	-	- ·	-	-	- 33	74.00	-	Pk
V	12400.00	-	-	-	-	-	54.00	-	AV
Н	4960.00	50.28	30.55	5.77	24.66	50.16	74.00	-23.84	Pk
Н	4960.00	42.47	30.55	5.77	24.66	42.35	54.00	-11.65	AV
Н	7440.00	52.72	30.33	6.32	24.55	53.26	74.00	-20.74	Pk
Н	7440.00	41.81	30.33	6.32	24.55	42.35	54.00	-11.65	AV
Н	9920.00	-	-	-		_	74.00	-	Pk
Н	9920.00	-	-	-	V -V	-	54.00	- //	AV
Н	12400.00	-	-	-	-	_	74.00		Pk
Н	12400.00	-	-	-	-	-	54.00	_	AV

Remark:

- Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level - Limit
- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Shenzhen ZKT Technology Co., Ltd.

Project No.: ZKT-240105L0224E-4

Page 24 of 43

5.RADIATED BAND EMISSION MEASUREMENT

5.1 TEST REQUIREMENT:

Test Requirement:	FCC Part15 C	FCC Part15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.10:	ANSI C63.10: 2013					
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
	Above	Peak	1MHz	3MHz	Peak		
	1GHz	Average	1MHz	3MHz	Average		

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)				
PREQUENCT (MHZ)	PEAK	AVERAGE			
Above 1000	74	54			

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

5.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel

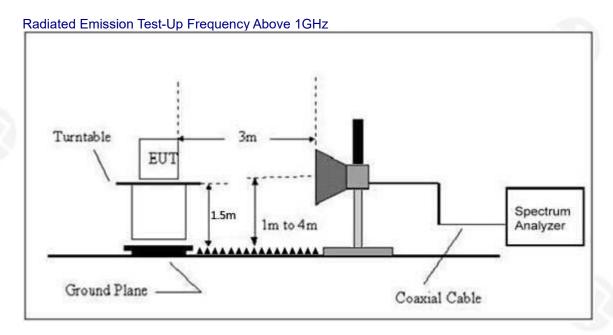
Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

5.3 DEVIATION FROM TEST STANDARD

No deviation

Shenzhen ZKT Technology Co., Ltd.



5.4 TEST SETUP

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen ZKT Technology Co., Ltd.

5.6 TEST RESULT

Project No.: ZKT-240105L0224E-4

Page 26 of 43

	Polar (H/V)	Frequenc y (MHz)	Meter Reading (dBuV)	Pre- amplifier (dB)	Cable Loss (dB)	Antenna Factor (dB/m)	Emission level (dBuV/m)	Limit (dBuV /m)	Detec tor Type	Result
				Low	Channe	l: 2402MHz	<u>.</u>			
	Н	2390.00	52.09	30.22	4.85	23.98	50.7	74.00	PK	PASS
The second	Н	2390.00	43.65	30.22	4.85	23.98	42.26	54.00	AV	PASS
163	Н	2400.00	52.38	30.22	4.85	23.98	50.99	74.00	PK	PASS
15.4	Н	2400.00	42.88	30.22	4.85	23.98	41.49	54.00	AV	PASS
	V	2390.00	53.14	30.22	4.85	23.98	51.75	74.00	PK	PASS
	V	2390.00	43.69	30.22	4.85	23.98	42.3	54.00	AV	PASS
	V	2400.00	52.13	30.22	4.85	23.98	50.74	74.00	PK	PASS
GFSK	V	2400.00	43.01	30.22	4.85	23.98	41.62	54.00	AV	PASS
GFSK				High	Channe	el: 2480MHz	<u>z</u>			
	H	2483.50	52.9	30.22	4.85	23.98	51.51	74.00	PK	PASS
	Н	2483.50	43.15	30.22	4.85	23.98	41.76	54.00	AV	PASS
	Н	2500.00	52.87	30.22	4.85	23.98	51.48	74.00	PK	PASS
	Н	2500.00	43.02	30.22	4.85	23.98	41.63	54.00	AV	PASS
	V	2483.50	51.97	30.22	4.85	23.98	50.58	74.00	PK	PASS
	V	2483.50	42.91	30.22	4.85	23.98	41.52	54.00	AV	PASS
	V	2500.00	52.38	30.22	4.85	23.98	50.99	74.00	PK	PASS
	V	2500.00	43.01	30.22	4.85	23.98	41.62	54.00	AV	PASS

Remark:

^{1.} Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit

Project No.: ZKT-240105L0224E-4

Page 27 of 43

6.POWER SPECTRAL DENSITY TEST

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247	Power Spectral Density	8dBm/3kHz	2400-2483.5	PASS		

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 DEVIATION FROM STANDARD

No deviation.

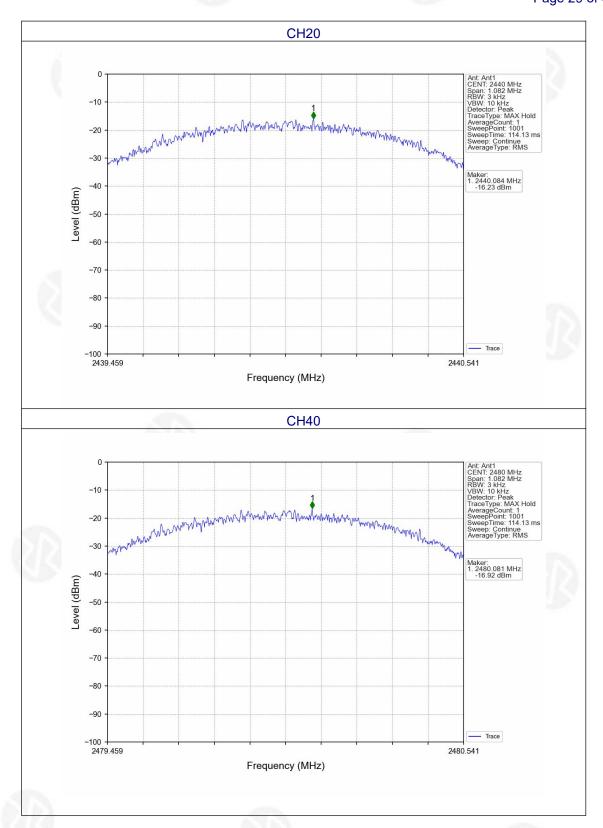
6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen ZKT Technology Co., Ltd.

6.6 TEST RESULT


Temperature :	26℃	Relative Humidity:	54%
Test Mode :	GFSK	Test Voltage :	DC 5V

Frequency	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
2402 MHz	-14.86	8	PASS
2440 MHz	-16.23	8	PASS
2480 MHz	-16.92	8	PASS

Project No.: ZKT-240105L0224E-4

Page 30 of 43

7. CHANNEL BANDWIDTH

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section Test Item Limit Frequency Range (MHz) Result				Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

7.2 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) ≥ 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3 DEVIATION FROM STANDARD

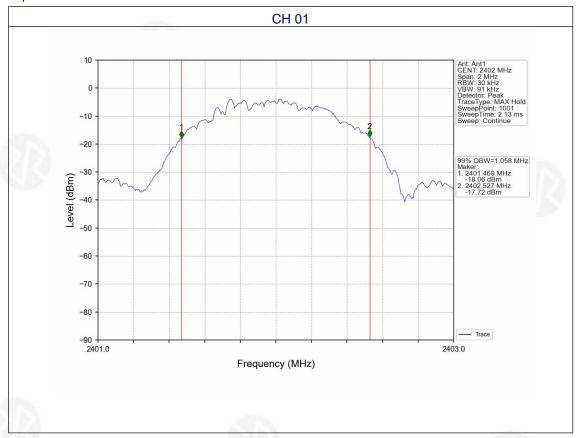
No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen ZKT Technology Co., Ltd.


7.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity:	54%
Test Mode :	GFSK	Test Voltage :	DC 5V

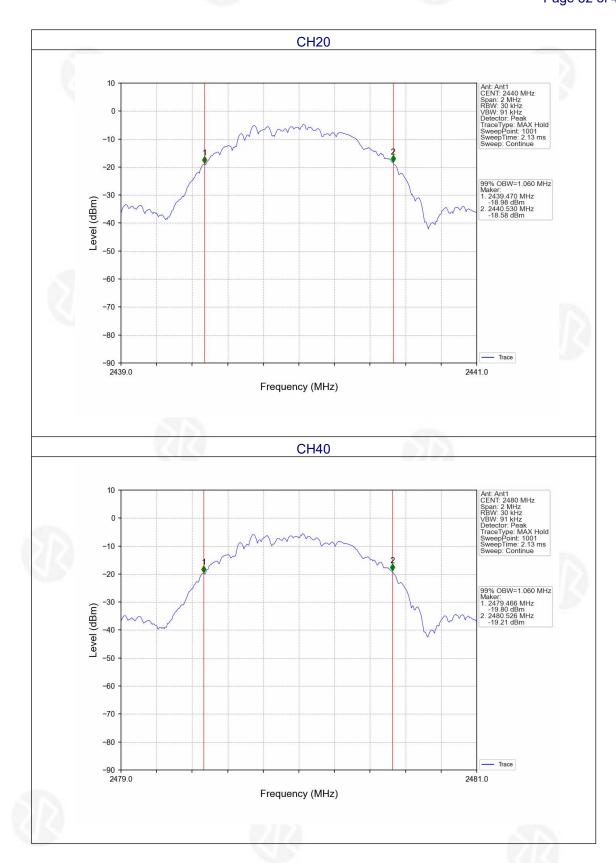
Test channel	Channel Bandwidth	99% Occupied Bandwidth (MHz)		
	(MHz)	Limit(KHz)	Result	
Lowest	1.058	140		
Middle	1.060	1	Pass	
Highest	1.060			

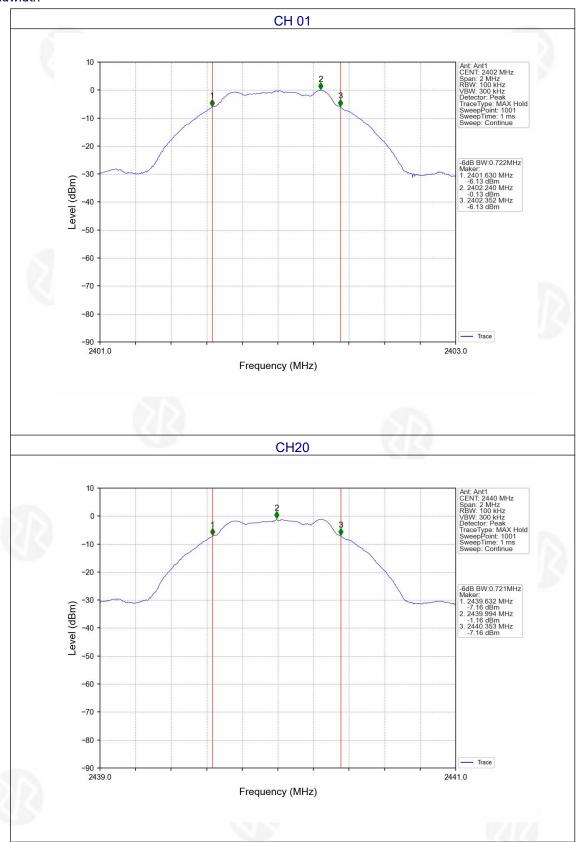
Test channel	Channel Bandwidth	6dB Bandwidth (MHz)		
(2) (2)	(MHz)	Limit(KHz)	Result	
Lowest	0.722	>=0.5		
Middle	0.721	>=0.5	Pass	
Highest	0.721	>=0.5		

99% Occupied Bandwidth

Shenzhen ZKT Technology Co., Ltd.

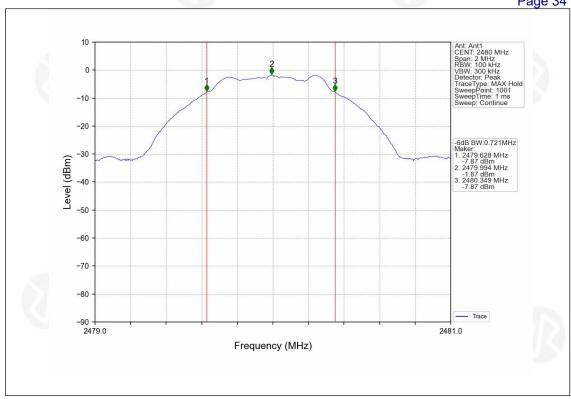
1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China





-6 Bandwidth

Shenzhen Z


1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

CH40

8.PEAK OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

8.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section Test Item Limit Frequency Range (MHz) Result			Result	
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power meter

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen ZKT Technology Co., Ltd.

8.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity:	54%
Test Mode :	GFSK	Test Voltage :	DC 5V

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	0.83		
Middle	-0.11	30.00	Pass
Highest	-0.88	12/12/	

Shenzhen ZKT Technology Co., Ltd.
1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Project No.: ZKT-240105L0224E-4

Page 37 of 43

9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

9.1 APPLICABLE STANDARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

9.2 TEST PROCEDURE

Using the following spectrum analyzer setting:

- A) Set the RBW = 100KHz.
- B) Set the VBW = 300KHz.
- C) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

9.3 DEVIATION FROM STANDARD

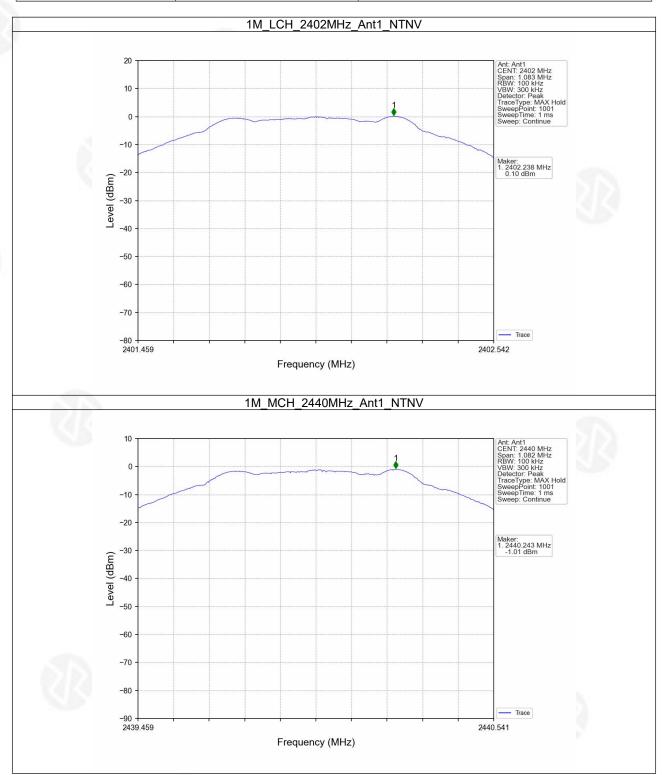
No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

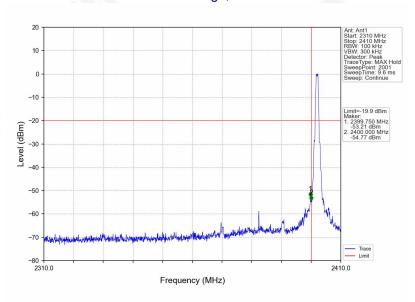
9.6 TEST RESULTS

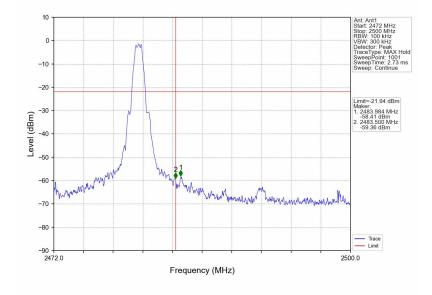


Ref

Test channel	Frequency (MHz)	Level of Reference (dBm)
Lowest	2402	0.10
Middle	2440	-1.01
Highest	2480	-1.94

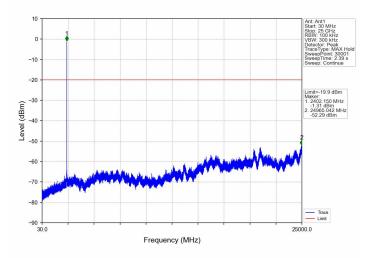
Shenzhen ZKT Technology Co., Ltd.

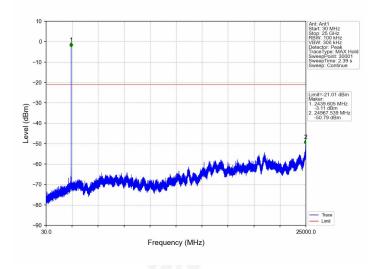


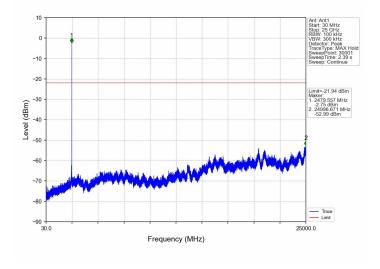


Frequency (MHz)	Level of Reference (dBm)	Limit (dBm)	Verdict
2402	0.10	-19.90	Pass
2440	-1.01	-21.01	Pass
2480	-1.94	-21.94	Pass

GFSK: Band Edge, Left Side


GFSK: Band Edge, Right Side




Lowest channel

Middle channel

Highest channel

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Project No.: ZKT-240105L0224E-4

Page 42 of 43

10.ANTENNA REQUIREMENT

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is Integrating antenna, the best case gain of the antennas is 1dBi, reference to the appendix II for details

Shenzhen ZKT Technology Co., Ltd.

11. TEST SETUP PHOTO

Reference to the appendix I for details.

12. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

**** END OF REPORT ****

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

