

TEST REPORT

Applicant Name : Dragino Technology Co., Limited.

Address: Room 202, BaoChengTai industrial park, No.8 CaiYun,

LongCheng Street, LongGang District, Shenzhen, China

Report Number: SZ1210818-52990E-RF-00B

FCC ID: ZHZLDS02

Test Standard (s) FCC PART 15.247

Sample Description

Product Type: LoRaWAN Door Sensor

Model No.: LDS02

Multiple Model(s) No.: LWL02(model difference see product declaration letter of

similarity)

Trade Mark: Dragino

Date Received: 2021/08/18

Date of Test: 2021/12/23~2021/12/31

Report Date: 2022/01/08

Test Result: Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By: Approved By:

Ting LV Candy Li

EMC Engineer EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "⋆ ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
Objective	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
EQUIPMENT MODIFICATIONS	
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	
FCC §15.247 (I) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	10
APPLICABLE STANDARD	10
Result	10
FCC §15.203 - ANTENNA REQUIREMENT	11
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	11
FCC §15.209, §15.205 & §15.247(D) - SPURIOUS EMISSIONS	12
APPLICABLE STANDARD	
EUT SETUP	12
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
CORRECTED FACTOR & MARGIN CALCULATION	
FCC §15.247(A) (2) – 6 DB EMISSION BANDWIDTH	
Applicable Standard	
TEST PROCEDURE TEST DATA	
FCC §15.247(B) (3) - MAXIMUM CONDUCTED OUTPUT POWER	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(D) – 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	24
APPLICABLE STANDARD	24
TEST PROCEDURE	
Test Data	24
FCC §15.247(E) - POWER SPECTRAL DENSITY	26
APPLICABLE STANDARD	
TEST PROCEDURE	26
TEST DATA	26

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Frequency Range	903-914.2MHz
Maximum Conducted Peak Output Power	1.49dBm
Technique	DTS
Antenna Specification*	2.0dBi
Voltage Range	DC3V From Battery
Sample serial number	SZ1210818-52990E-RF-S1 (Assigned by ATC)
Sample/EUT Status	Good condition

Report No.: SZ1210818-52990E-RF-00B

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

meter	Uncertainty
nnel Bandwidth	5%
wer, conducted	0.73dB
ssion, conducted	1.6dB
lucted emission	2.72dB
30MHz – 1GHz	4.28dB
1GHz – 18GHz	4.98dB
18GHz – 26.5GHz	5.06dB
erature	1℃
nidity	6%
voltages	0.4%
	nnel Bandwidth wer, conducted ssion, conducted lucted emission 30MHz – 1GHz 1GHz – 18GHz 18GHz – 26.5GHz erature

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Version 42: 2021-11-09 Page 3 of 28 FCC-DTS

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. To collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

Report No.: SZ1210818-52990E-RF-00B

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

Version 42: 2021-11-09 Page 4 of 28 FCC-DTS

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in engineering mode.

Channel list:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
8	903	12	909.4
9	904.6	13	911
10	906.2	14	912.6
11	907.8	15	914.2

Report No.: SZ1210818-52990E-RF-00B

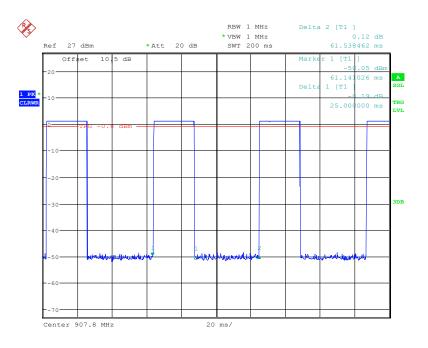
EUT was test with channel 8/11/15

EUT Exercise Software

"Friendly Serial Assistant" software was used to the EUT tested and power level is default*. The software and power level was provided by the applicant.

Equipment Modifications

No modification was made to the EUT tested.


Special Accessories

No special accessory.

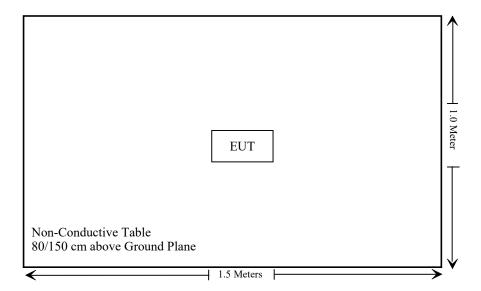
Duty cycle

Ton (ms)	T _P (ms)	Duty Cycle
25.00	61.54	40.62

Version 42: 2021-11-09 Page 5 of 28 FCC-DTS

Date: 27.DEC.2021 22:33:45

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
/	/	/	/
/	/	/	/

External I/O Cable

Cable Description	Length (m)	From/Port	То
/	/	/	/

Block Diagram of Test Setup

For radiated emission:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §2.1091	Maximum Permissible Exposure(MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Not Applicable
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant

Report No.: SZ1210818-52990E-RF-00B

Not Applicable: The EUT is powered by the battery. Note: pre-scan two models, the worst case model LDS02 was selected to test.

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
	Radiated Emission Test							
Rohde& Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12			
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12			
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08			
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2021/11/09	2022/11/08			
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05			
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04			
CD	High Pass Filter	HPM-1.2/18G-60	110	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13			
	Radiated Emiss	ion Test Software: e3	19821b (V9)					
RF Conducted Test								
Rohde & Schwarz	Spectrum Analyzer	FSU26	200982	2021/07/06	2022/07/05			
WEINSCHEL	10dB Attenuator	5324	AU 3842	2021/12/14	2022/12/13			
Unknown	RF Cable	Unknown	Unknown	Each time	/			

Report No.: SZ1210818-52990E-RF-00B

Version 42: 2021-11-09 Page 9 of 28 FCC-DTS

^{*} Statement of Traceability: Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.247 (i) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure

Report No.: SZ1210818-52990E-RF-00B

Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (Minutes)		
0.3-1.34	614	1.63	*(100)	30		
1.34-30	824/f	2.19/f	$*(180/f^2)$	30		
30-300	27.5	0.073	0.2	30		
300-1500	/	/	f/1500	30		
1500-100,000	/	/	1.0	30		

f = frequency in MHz

* = Plane-wave equivalent power density

a)

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Frequency	Ante	nna Gain	Tune up conducted power		Evaluation Distance	Power Density	MPE Limit
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm ²)
903-914.2	2.0	1.58	2.0	1.58	20	0.0005	0.602

Note: To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliance

Version 42: 2021-11-09 Page 10 of 28 FCC-DTS

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: SZ1210818-52990E-RF-00B

- b. Antenna must be permanently attached to the unit.
- c. Antenna must use a unique type of connector to attach to the EUT.

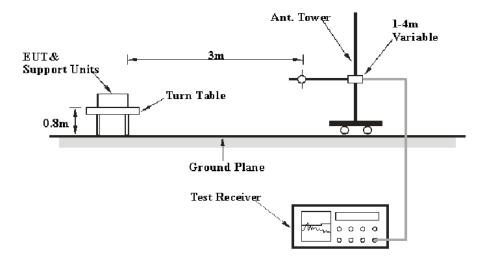
Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

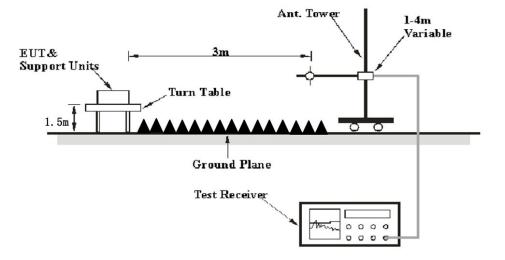
The EUT has an internal antenna which was permanently attached, the antenna gain is 2.0dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.


FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;


EUT Setup

Below 1 GHz:

Report No.: SZ1210818-52990E-RF-00B

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 10GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Report No.: SZ1210818-52990E-RF-00B

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
	1MHz	3 MHz	/	PK
Above 1 GHz	1MHz	10 Hz Note 1	/	Average
	1MHz	>1/T Note 2	/	Average

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Factor & Margin Calculation

The Corrected Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

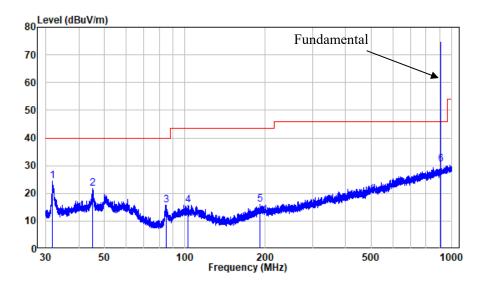
Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "Over Limit or Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a over limit/margin of -7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Over Limit/Margin = Level/Corrected Amplitude – Limit Level/Corrected Amplitude= Read Level + Corrected Factor

Test Data

Environmental Conditions

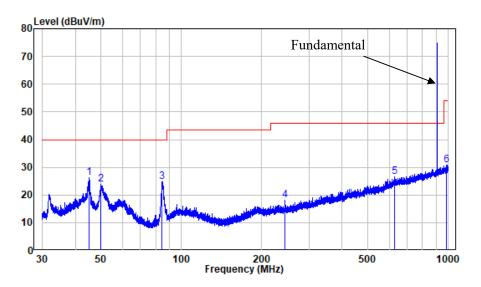

Temperature:	25~25.8 °C
Relative Humidity:	51~64 %
ATM Pressure:	101.0 kPa

The testing was performed by Bin Deng on 2021-12-31 for below 1G and Caro Hu on 2021-12-23 for above 1G.

EUT operation mode: Transmitting (Pre-scan in the X, Y and Z axes of orientation, the worst case of X orientation was recorded)

30MHz - 1GHz: (worst case is Middle channel)

Horizontal


Site : chamber Condition: 3m HORIZONTAL

Job No. : SZ1210818-52990E-RF

Test Mode: DTS

					Limit		
	Freq	Factor	Level	Level	Line	Limit	Remark
				1=	1=		
	MHZ	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	31.899	-12.19	36.50	24.31	40.00	-15.69	Peak
2	45.157	-9.95	31.68	21.73	40.00	-18.27	Peak
3	84.888	-15.67	31.41	15.74	40.00	-24.26	Peak
4	102.900	-11.65	27.42	15.77	43.50	-27.73	Peak
5	191.577	-11.31	27.36	16.05	43.50	-27.45	Peak
6	907.278	1.67	28.75	30.42	46.00	-15.58	Peak

Vertical

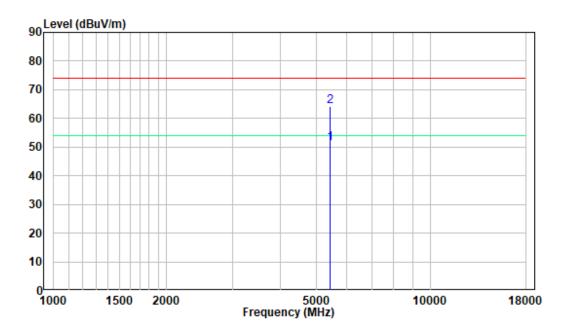
Site : chamber Condition: 3m VERTICAL

Job No. : SZ1210818-52990E-RF

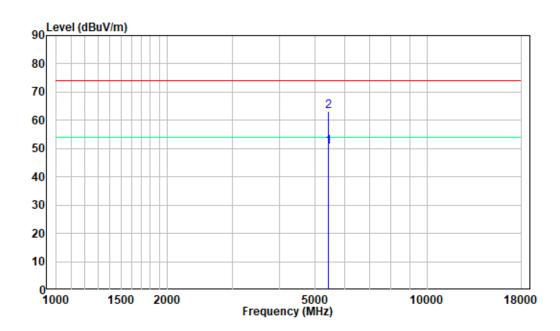
Test Mode: DTS

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	45.039	-9.94	36.09	26.15	40.00	-13.85	Peak
2	49.969	-9.91	33.89	23.98	40.00	-16.02	Peak
3	84.702	-15.75	40.62	24.87	40.00	-15.13	Peak
4	243.911	-10.65	28.72	18.07	46.00	-27.93	Peak
5	626.999	-2.25	28.83	26.58	46.00	-19.42	Peak
6	986.072	2.73	28.14	30.87	54.00	-23.13	Peak

Above 1 GHz:


Frequency	Re	eceiver	Turntable	Rx An	itenna		Corrected		C Part //205/209
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)		Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Low C	hannel(903MH	z)			
2709	64.86	PK	121	2	Н	-6.61	58.25	74	-15.75
2709	57.23	Ave.	121	2	Н	-6.61	50.62	54	-3.38
2709	63.66	PK	13	1.4	V	-6.61	57.05	74	-16.95
2709	56.04	Ave.	13	1.4	V	-6.61	49.43	54	-4.57
5418	67.61	PK	87	1	Н	-2.29	65.32	74	-8.68
5418	53.5	AV	87	1	Н	-2.29	51.21	54	-2.79
5418	66.27	PK	264	2.1	V	-2.29	63.98	74	-10.02
5418	52.61	AV	264	2.1	V	-2.29	50.32	54	-3.68
			Middle C	Channel(907.8M	IHz)			
5446.8	66.54	PK	323	2.4	Н	-2.3	64.24	74	-9.76
5446.8	53.55	Ave.	323	2.4	Н	-2.3	51.25	54	-2.75
5446.8	65.46	PK	23	1	V	-2.3	63.16	74	-10.84
5446.8	52.88	Ave.	23	1	V	-2.3	50.58	54	-3.42
	High Channel(914.2 MHz)								
5485.2	65.57	PK	123	1.6	Н	-2.09	63.48	74	-10.52
5485.2	52.8	Ave.	123	1.6	Н	-2.09	50.71	54	-3.29
5485.2	64.4	PK	314	2.1	V	-2.09	62.31	74	-11.69
5485.2	51.28	Ave.	314	2.1	V	-2.09	49.19	54	-4.81

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Corrected Amplitude = Corrected Factor + Reading Margin = Corrected. Amplitude - Limit

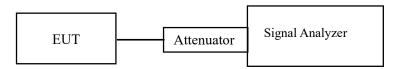

The other spurious emission which is 20dB to the limit was not recorded.

Pre-scan with Middle channel

Horizontal

Vertical

FCC $\S15.247(a)$ (2) – 6 dB EMISSION BANDWIDTH


Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: SZ1210818-52990E-RF-00B

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

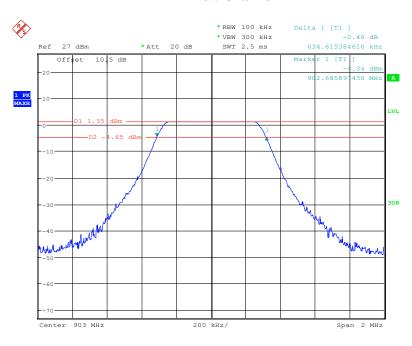
Test Data

Environmental Conditions

Temperature:	23.5 ℃	
Relative Humidity:	42 %	
ATM Pressure:	101.0 kPa	

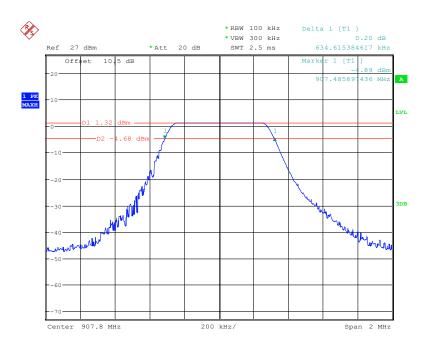
The testing was performed by Paul Liu on 2021-12-27.

Test Result: Pass.

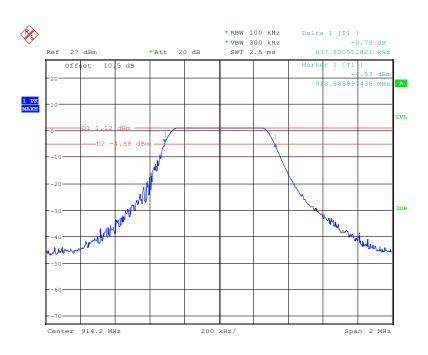

Please refer to the following table and plots.

EUT operation mode: Transmitting

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (kHz)
Low	903.0	0.635	≥500
Middle	907.8	0.635	≥500
High	914.2	0.638	≥500


Version 42: 2021-11-09 Page 18 of 28 FCC-DTS

Low Channel


Date: 27.DEC.2021 22:22:43

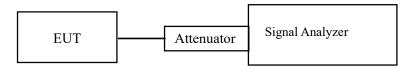
Middle Channel

Date: 27.DEC.2021 22:10:41

High Channel

Date: 27.DEC.2021 22:15:35

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER


Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: SZ1210818-52990E-RF-00B

Test Procedure

- d. Place the EUT on a bench and set it in transmitting mode.
- e. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- f. Add a correction factor to the display.

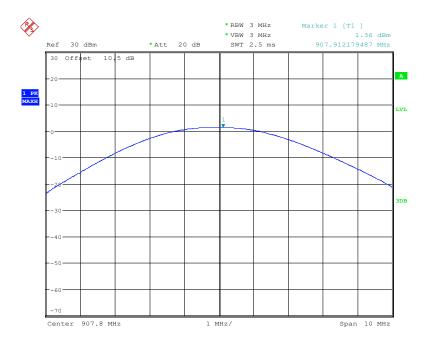
Test Data

Environmental Conditions

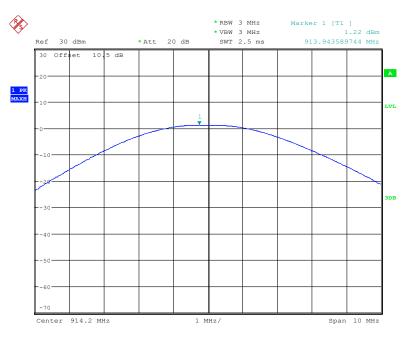

Temperature:	23.5 ℃	
Relative Humidity:	42 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Paul Liu on 2021-12-27.

EUT operation mode: Transmitting


Channel	Frequency (MHz)	Max Conducted Peak Output Power (dBm)	Limit (dBm)
Low	903.0	1.49	30
Middle	907.8	1.36	30
High	914.2	1.22	30

Low Channel


Date: 27.DEC.2021 21:53:34

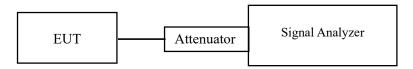
Middle Channel

Date: 27.DEC.2021 22:00:07

High Channel

Date: 27.DEC.2021 22:04:10

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE


Report No.: SZ1210818-52990E-RF-00B

Applicable Standard

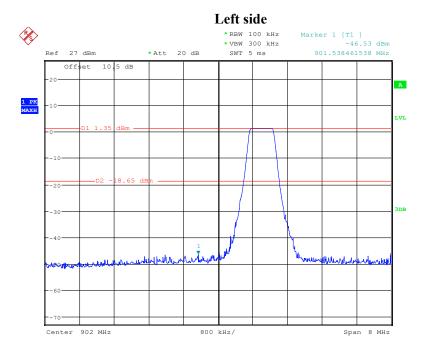
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

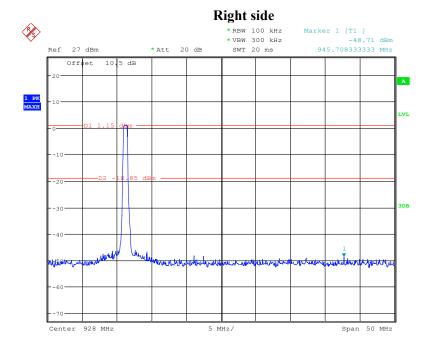
- g. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- h. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- i. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- j. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- k. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions


Temperature:	23.5 ℃	
Relative Humidity:	42 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Paul Liu on 2021-12-27.


EUT operation mode: Transmitting

Test Result: Compliance

Please refer to the following plots.

Date: 27.DEC.2021 22:24:36

Date: 27.DEC.2021 22:37:33

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: SZ1210818-52990E-RF-00B

Test Procedure

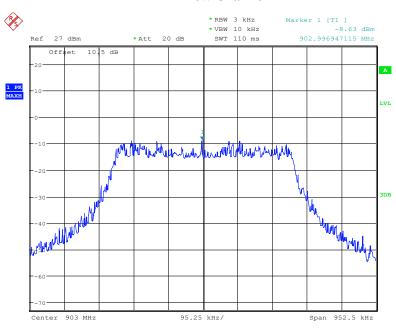
- I. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- m. Set the RBW to: 3kHz < RBW < 100 kHz.
- n. Set the VBW $\geq 3 \times RBW$.
- o. Set the span to 1.5 times the DTS bandwidth.
- p. Detector = peak.
- q. Sweep time = auto couple.
- r. Trace mode = max hold.
- s. Allow trace to fully stabilize.
- t. Use the peak marker function to determine the maximum amplitude level within the RBW.
- u. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

Environmental Conditions

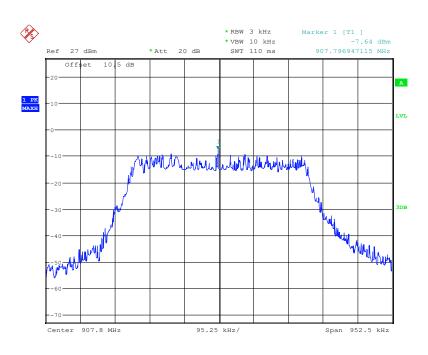
Temperature:	23.5 ℃	
Relative Humidity:	42 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Paul Liu on 2021-12-27.

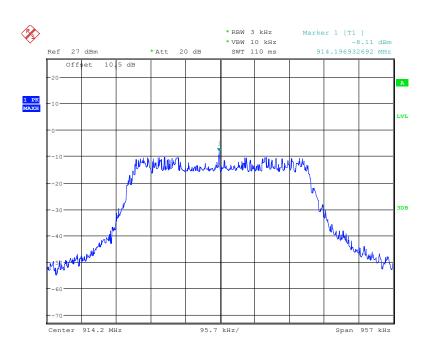

EUT operation mode: Transmitting

Test Result: Pass

Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)
Low	903.0	-8.63	≤8
Middle	907.8	-7.64	≤8
High	914.2	-8.11	≤8


Version 42: 2021-11-09 Page 26 of 28 FCC-DTS

Low Channel


Date: 27.DEC.2021 22:27:01

Middle Channel

Date: 27.DEC.2021 22:32:30

High Channel

Date: 27.DEC.2021 22:36:02

***** END OF REPORT *****