

FCC §15.247 (i), §2.1091 - RF Exposure

FCC ID: ZGM-MV2400 IC: 23051-MV2400

Applied procedures / limit

According to FCC §15.247(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ²or S (minutes)		
0.3-3.0	614	1.63	(100)*	6		
3.0-30	1842 / f	4.89 / f	(900 / f)*	6		
30-300	61.4	0.163	1.0	6		
300-1500			F/300	6		
1500-100,000			5	6		

Note: f is frequency in MHz

Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz

^{* =} Power density limit is applicable at frequencies greater than 100 MHz

^{* =} Plane-wave equivalent power density

Shenzhen BCTC Technology Co., Ltd.

MPE PREDICTION

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna, R=0.2m

TEST RESULTS

	tune up power tolerance (dBm)		max. output power(mW)		Antenna Gain	Power Density (S) (mW/ cm2)		Total Power Density (S)	Power Density (S)	Limit of Power Density (S)	RSS- 102 Limit of Power	Result
	ANT1	ANT2	ANT1	ANT2	(numeric)	ANT1	ANT2	(mW/ cm2)	(W/m²)	(mW/ cm2)	Density (S) (W/m²)	
2.4g 802.11b	15±1	15±1	39.81	39.81	2.0 (3.0dBi)	0.01580	0.01580	/	0.15803	1	5.37	Pass
2.4g 802.11g	14±1	14±1	31.62	31.62	2.0 (3.0dBi)	0.01255	0.01255	/	0.00263	1	5.37	Pass
2.4g 802.11n (HT20)	13±1	13±1	25.12	25.12	3.98 (6.0dBi)	0.01989	0.01989	0.03978	0.00539	1	5.37	Pass
2.4g 802.11n (HT40)	12±1	12±1	19.95	19.95	3.98 (6.0dBi)	0.01580	0.01580	0.03160	0.00505	1	5.37	Pass

Note: the Directional Gain=3dBi+10log(2)=6dBi