

TEST REPORT

For

Applicant : Magnadyne Corporation

- Address: 1111 W. Victoria Street Compton, CA 90220 USA
- Product Name : Car Audio
 - Model Name : AT449150
 - Brand Name : N/A
 - FCC Number : FCC ID: ZGM-AT449150
 - Report No. : MTE/TYW/S16102239
 - Date of Issue : Oct. 21, 2016
 - Issued by : Most Technology Service Co., Ltd.
 - Address : No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China
 - Tel: 86-755-8602 6850
 - Fax : 86-755-26013350

The report consists 53 pages in total. t may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by MOST. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver.

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	4
2. GENERAL INFORMATION	5
2.1 Product Information	5
2.2 Objective	
2.3 Test Standards and Results	6
2.4 Environmental Conditions	6
3. TEST METHODOLOGY	7
3. 1TEST FACILITY	
3.2 GENERAL TEST PROCEDURES	7
4. SETUP OF EQUIPMENT UNDER TEST	8
4.1 SETUP CONFIGURATION OF EUT	
4.2 TEST EQUIPMENT LIST	8
5. 47 CFR Part 15 C Requirements	9
5.1 ANTENNA REQUIREMENT	
5.1.1 Applicable Standard	
5.1.2 Evaluation Criteria	
5.1.3 Result: Compliance.	9
5.2 AC Power Line Conducted Emission	
5.2.1Requirement	. 10
5.2.2 Block Diagram of Test Setup	10
5.2.3 Test procedure	10
5.2.4 Test Result	10
Not Applicable	10
5.3 Radiated Emission	11
5.3.1Requirement	. 11
5.3.2 Test Configuration	11
5.3.3 Test Procedure:	. 12
5.3.4 Test Result	13
5.4.1 Requirement	20
5.4.2 Block Diagram of Test Setup	
5.4.3 Test Procedure	
5.4.4 Test Result	
5.5 20dB Emission Bandwidth	
5.5.1 Test Requirement	
5.5.2 Test Procedure	
5.5.3 Test Result	
5.6 Carrier Frequency Separation	
5.6.1 Test Requirement	
5.6.2 Test Procedure	
5.6.3 Test Result	
5.7 Number of Hopping Channel	
5.7.1 Test Requirement	
5.7.2 Test Procedure	
5.7.3 Test Result	
5.8 Dwell Time	
5.8.1 Test Requirement	
channels are used.	
Page 2 o	л 53

5.8.2 Test Procedure	34
5.8.3 Test Result	
5.9 Band Edge and Conducted Spurious Emissions	44
5.9.1 Test Requirement	44
5.9.2 Test Procedure	44
5.9.3 Test Result	44
5.10 Restricted Frequency Bands	49
5.10.1 Test Requirement	49
5.10.2 Test Configuration	49
5.10.3 Test Procedure:	49
5.10.4 Test Result	49

1. VERIFICATION OF CONFORMITY

Equipment Under Test:	Car Audio
Brand Name:	N/A
Model Number:	AT449150
FCC Number:	FCC ID: ZGM-AT449150
Applicant:	Magnadyne Corporation
	1111 W. Victoria Street Compton, CA 90220 USA
Manufacturer:	Magnadyne Corporation
	1111 W. Victoria Street Compton, CA 90220 USA
Technical Standards:	47 CFR Part 15 Subpart C
File Number:	MTE/TYW/S16102239
Date of test:	Oct. 17-20, 2016
Deviation:	None
Condition of Test Sample:	Normal
Test Result:	PASS

The above equipment was tested by Most Technology Service Co., Ltd. for compliance with the requirements set forth in FCC rules and the Technical Standards mentioned above. This said equipment in the configuration described in this report shows the maximum emission levels emanating from equipment and the level of the immunity endurance of the equipment are within the compliance requirements.

The test results of this report relate only to the tested sample identified in this report.

Tested by (+ signature):	Jammy	
	Tammy Wang	Oct. 17-20, 2016
Review by (+ signature):	John	
	Turbo Chen(Engineer) Oct. 21, 2016	Lin
Approved by (+ signature):	The start and th	

Yvette Zhou (Manager) Oct. 21, 2016

2. GENERAL INFORMATION

2.1 Product Information

Product	Car Audio
Brand Name	N/A
Model Number	AT449150
Series Model Name:	N/A
Series Model Difference description:	N/A
Power Supply	DC 14V by DC Source
Frequency Range	2402MHz -2480MHz
Modulation Type:	GFSK, π /4-DQPSK, 8DPSK
Modulation Technique	FHSS
Channel Number	79
Antenna Type	PCB Antenna, 0 dBi
Temperature Range	-20°C ~ +70°C

NOTE:

1. For a more detailed features description about the EUT, please refer to User's Manual.

2.2 Objective

The objective of the report is to perform tests according to FCC Part 15 Subpart C for the EUT FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 15	Car Audio Frequency Devices
2	ANSI C63.10: 2013	Test Procedure
3	DA 00-705: 2000	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.

No.	Section	Test Items	Result	Date of Test
1	FCC 15.247 (i)	RF EXPOSURE	PASS	2016-10-19
2	FCC 15.203	Antenna Requirement	PASS	2016-10-19
3	FCC15.207 (a)	AC Power Line Conducted Emission	N/A	
4	FCC15.209, 15.247(d)	Radiated Emission	PASS	2016-10-19
5	FCC 15.247 (b)(1)	Conducted Peak Output Power	PASS	2016-10-19
6	FCC 15.247 (a)(1)	20dB Emission Bandwidth	PASS	2016-10-19
7	FCC 15.247 (a)(1)	Carrier Frequency Separation	PASS	2016-10-19
8	FCC 15.247 (a)(1)(iii)	Number of Hopping Channel	PASS	2016-10-19
9	FCC 15.247 (a)(1) (iii)	Dwell Time	PASS	2016-10-19
10	FCC15.247(d)	Band Edge and Conducted Spurious Emissions	PASS	2016-10-19
11	FCC15.247(d)	Restricted Frequency Bands	PASS	2016-10-19
Rema	rk: N/A means not applicabl	e		

2.3 Test Standards and Results

Note: 1. The test result judgment is decided by the limit of measurement standard 2. The information of measurement uncertainty is available upon the customer's request.

2.4 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

- Temperature: 15-35°C
- Humidity: 30-60 %
- Atmospheric pressure: 86-106 kPa

3. TEST METHODOLOGY

3. 1TEST FACILITY

Test Site:	Most Technology Service Co., Ltd
Location:	No.5, Langshan 2nd Rd., North Hi-Tech Industrial park, Nanshan, Shenzhen, Guangdong, China
Description:	There is one 3m semi-anechoic an area test sites and two line conducted labs for final
	test. The Open Area Test Sites and the Line Conducted labs are constructed and
	calibrated to meet the FCC requirements in documents ANSI C63.10:2013 and CISPR
	16 requirements.
	The FCC Registration Number is 490827. The IC Registration Number is 7103A-1.
Site Filing:	The site description is on file with the Federal Communications
	Commission, 7435 Oakland Mills Road, Columbia, MD 21046.
Instrument	All measuring equipment is in accord with ANSI C63.10:2013 and CISPR 16
Tolerance:	requirements that meet industry regulatory agency and accreditation agency
	requirement.
Ground Plane:	Two conductive reference ground planes were used during the Line Conducted
	Emission, one in vertical and the other in horizontal. The dimensions of these ground
	planes are as below. The vertical ground plane was placed distancing 40 cm to the
	rear of the wooden test table on where the EUT and the support equipment were
	placed during test. The horizontal ground plane projected 50 cm beyond the footprint
	of the EUT system and distanced 80 cm to the wooden test table. For Radiated
	Emission Test, one horizontal conductive ground plane extended at least 1m beyond
	the periphery of the EUT and the largest measuring antenna, and covered the entire
	area between the EUT and the antenna.

3.2 GENERAL TEST PROCEDURES

Radiated Emissions

The EUT is placed on a turn table, which is 1.5 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.5 of ANSI C63.10:2013.

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10:2013, Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

4. SETUP OF EQUIPMENT UNDER TEST

4.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

4.2 TEST EQUIPMENT LIST

Instrumentation: The following list contains equipment used at Most for testing. The equipment conforms to the CISPR 16-1 / ANSI C63.2 Specifications for Electromagnetic Interference and Field Strength Instrumentation from 10 kHz to 1.0 GHz or above.

No.	Equipment	Manufacturer	Model No.	S/N	Calibration date	Calibration Interval
1	Test Receiver	Rohde & Schwarz	ESCI	100492	2016/03/10	1 Year
2	Spectrum Analyzer	Agilent	E7405A	US44210471	2016/03/14	1 Year
3	L.I.S.N.	Rohde & Schwarz	ENV216	100093	2016/03/10	1 Year
4	Coaxial Switch	Anritsu Corp	MP59B	6200283933	2016/03/07	1 Year
5	Terminator	Hubersuhner	50Ω	No.1	2016/03/07	1 Year
6	RF Cable	SchwarzBeck	N/A	No.1	2016/03/07	1 Year
7	Test Receiver	Rohde & Schwarz	ESPI	101202	2016/03/10	1 Year
8	Bilog Antenna	Sunol	JB3	A121206	2016/03/14	1 Year
9	Horn Antenna	SCHWARZBECK	BBHA9120D	756	2016/03/14	1 Year
10	Horn Antenna	Penn Engineering	9034	8376	2016/03/14	1 Year
11	Cable	Resenberger	N/A	NO.1	2016/03/07	1 Year
12	Cable	SchwarzBeck	N/A	NO.2	2016/03/07	1 Year
13	Cable	SchwarzBeck	N/A	NO.3	2016/03/07	1 Year
14	Single Phase Power Line Filter	DuoJi	FNF 202B30	N/A	2016/03/07	1 Year
15	Test Receiver	Rohde & Schwarz	ESCI	100492	2016/03/10	1 Year
16	Loop antenna	ARA	PLA-1030/B	1039	2016/03/14	1 Year

NOTE: Equipments listed above have been calibrated and are in the period of validation.

5. 47 CFR Part 15 C Requirements

5.1 ANTENNA REQUIREMENT

5.1.1 Applicable Standard

According to FCC § 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

5.1.2 Evaluation Criteria

(a) Antenna must be permanently attached to the unit.

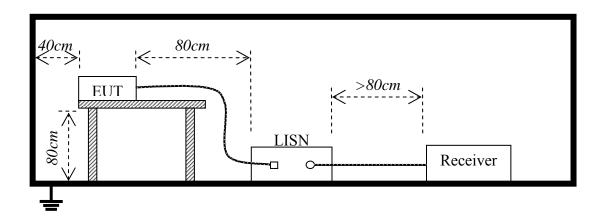
(b) Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, Installer shall be responsible for verifying that the correct antenna is employed with the unit.

5.1.3 Result: Compliance.

The EUT has one integral antenna arrangement, which was permanently attached and the antenna gain is 0 dBi, fulfill the requirement of this section.

5.2 AC Power Line Conducted Emission 5.2.1Requirement


A Car Audio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the Car Audio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the and 150 kHz-30 MHz, shall not exceed the limits in the following table:

Frequency	Maximum RF	Line Voltage
Frequency	Q.P.(dBuV)	Average(dBuV)
150kHz-500kHz	66-56	56-46
500kHz-5MHz	56	46
5MHz-30MHz	60	50

**Note: 1. the lower limit shall apply at the band edges.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

5.2.2 Block Diagram of Test Setup

5.2.3 Test procedure

- 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.
- 2. Exploratory measurements were made to identify the frequency of the emission that has the highest amplitude relative to the limit;
- 3. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).
- 4. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.
- 5. The bandwidth of test receiver (ESCI) set at 9 KHz.
- 6. All data was recorded in the Quasi-peak and average detection mode.

5.2.4 Test Result

Not Applicable

5.3 Radiated Emission 5.3.1Requirement

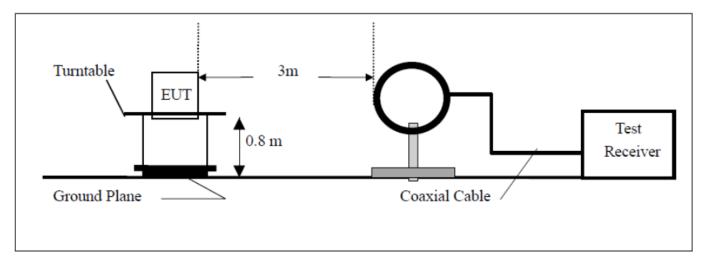
According to FCC section 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to FCC section 15.209(a), Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

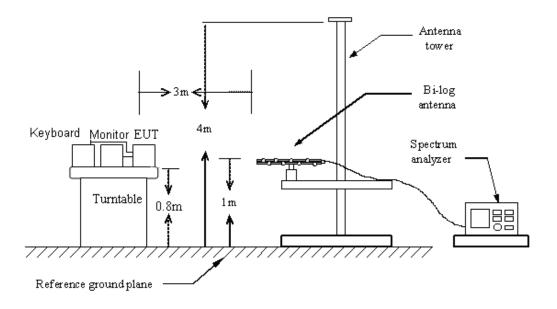
Frequency (MHz)	Field Strength (µV/m at 3-meter)	Test Distance (m)	Field Strength (dBµV/m at 3-meter)
0.009 - 0.490	2400/F(kHz)	300	
0.490 - 1.705	24000/F(kHz)	30	
1.705-30	30	30	
30-88	100	3	40
88-216	150	3	43.5
216-960	200	3	46
Above 960	500	3	54

Note:

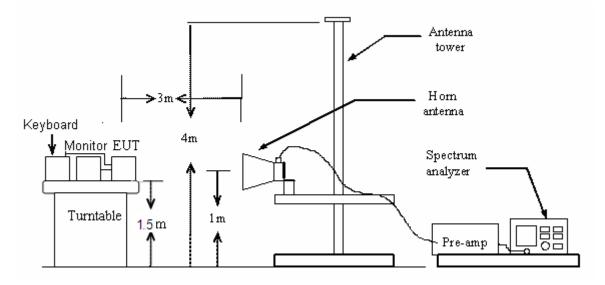
1. For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.


2. For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


5.3.2 Test Configuration

Test Setup:


1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz

3) For radiated emissions above 1GHz

5.3.3 Test Procedure:

- 1. For frequencies above 1GHz, the frequencies of maximum emission was recorded by manually positioning the antenna close to the EUT and by moving the antenna over all sides of the EUT while observing a spectral display.
- 2. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 3. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 4. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rote table was turned from 0 degrees to 360 degrees to find the maximum reading.

6. For frequencies above 1GHz, horn antenna mouth should face to the EUT all the time when rise or fall.

7. Set the spectrum analyzer in the following setting as:

Below 1GHz: PEAK: RBW=100 kHz / VBW=300 kHz / Sweep=AUTO QP: RBW=120 kHz / Sweep=AUTO Above 1GHz: (a)PEAK: RBW=VBW=1MHz / Sweep=AUTO (b)AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

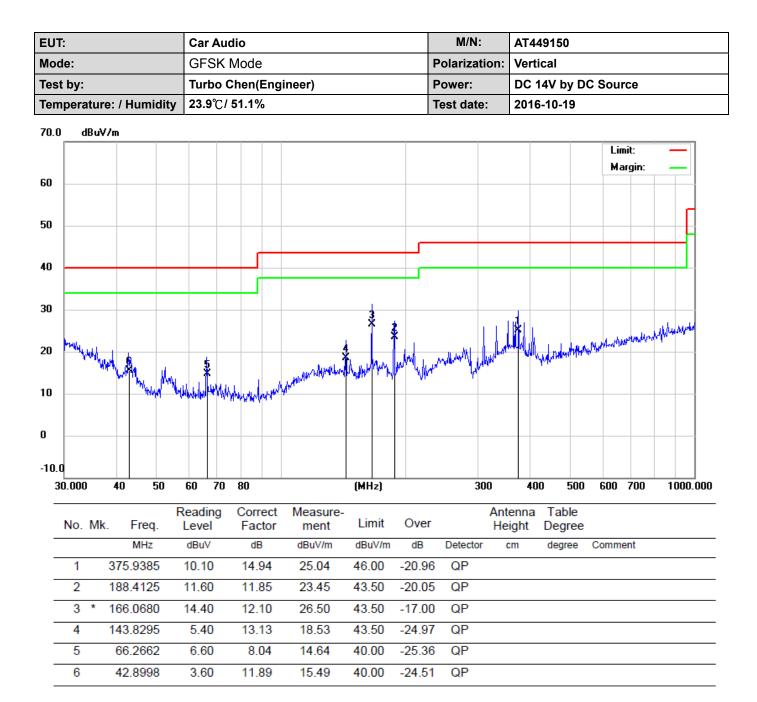
The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

8. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

5.3.4 Test Result

Pass

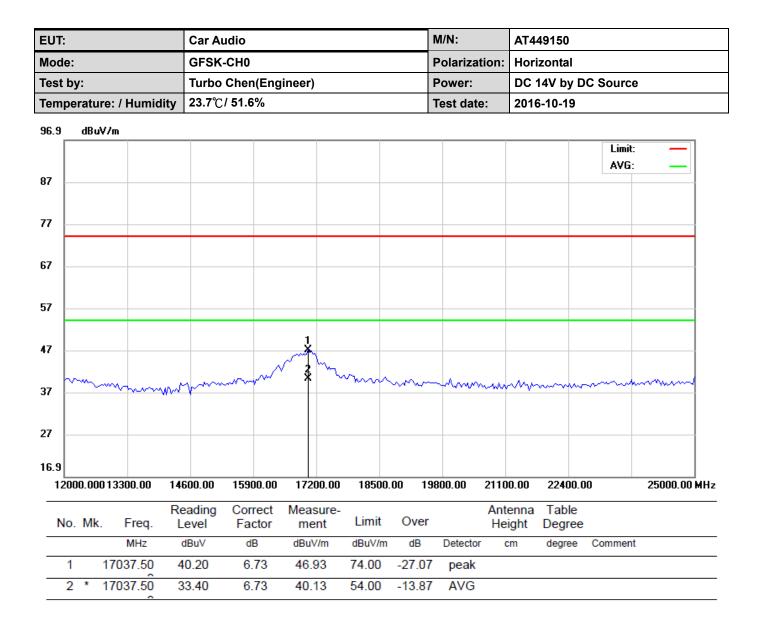
Remark:

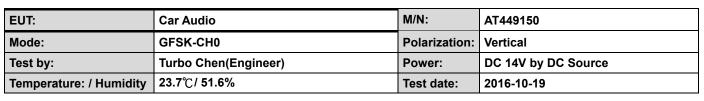

1. During the test, pre-scan the GFSK, π /4-QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case in above 1GHz and the GFSK Low channel modulation which it is worse case in below 1GHz.

2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Please refer the following pages.

Below 1GHz:

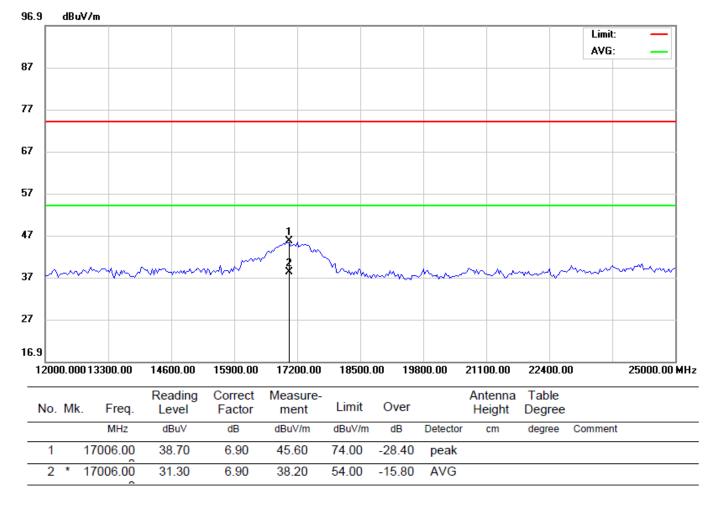

EUT:				Car A	Audio				M/N	N:	AT4	49150					
Mode:				GFSI	K Mode	ļ			Polariza	ation:	Hor	rizonta	I				
Fested	l by:			Turb	o Chen	(Engineer)			Power:		DC	14V by	y DC	Sou	rce		
Гетре	eratur	re: / Hun	nidity	23.9°	C/ 51.1 9	%			Test da	te:	201	6-10-1	9				
70.0	dBu\	V/m													mit:		
60 -														M	argin:	-	
50 -																	
40 -																	
			_														
30							*	4									. Ma
20	Whotelay	w Mingh		L.M	Mulleren	he will surger the lass	*	Mary Mary	byjunumh	-	ulond	horistonedbe	ullulur	water	undersite	frankriser	broch
aba	han been	WANNA .		LM	Weyellowing	hand my film	* harrilaaneme		hypernanth	phonoralised	Where	horsdondle	hillin	lon Merri	een de sele	frankriven	book a
20	how how have		ny lànn	La	Whatere	handennadulus	4 Kahulunaha										
20 MA		40	50	L 60 7	70 80	handburgertulus	4 X Kuhuluumu (MH2	2)		200			6414.14m	600			000.000
20 M	000 . Mk.		R	60 7 eading			e-			300	4 enna	00 !	500 e				
20 MA		. Frec	Re a. L	eading	Corre Fac	tor ment dBuV/m	re- Limi	it Ove /m dB	r Detecto	300 Ante Hei	4 enna	00 ! Table	500 e ee		700		
20 M	. Mk.	. Free MHz 39.437	Re q. L :	eading evel dBuV 8.50	Corre Fact dB 14.2	tor ment dBuV/m 22 22.72	e- Limi dBuV/ 40.00	it Ove /m dB D -17.2	r Detecto 8 QP	300 Ante Hei	4 enna ght	00 ! Table Degre	500 e ee	600	700		
20 M 10 10.0 30.0 No. 11 2	. Mk.	. Free MHz 39.437 44.275	R(1. L 1. 2	eading evel dBuV 8.50 9.40	Corre Fact dB 14.2 10.9	tor ment dBuV/m 22 22.72 98 20.38	re- Limit dBuV/ 40.00 40.00	it Ove /m dB D -17.2 D -19.6	r Detecto 8 QP 2 QP	300 Ante Hei	4 enna ght	00 ! Table Degre	500 e ee	600	700		
20 M 10	. Mk.	. Free MHz 39.437 44.275 53.505	Re 1. L 2. 2. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	eading evel dBuV 8.50 9.40 12.30	Corre Fact dB 14.2 10.9 7.9	tor ment dBuV/m 22 22.72 98 20.38 92 20.22	re- Limi dBuV/ 40.00 40.00 40.00	it Ove /m dB D -17.2 D -19.6 D -19.7	r Detecto 8 QP 2 QP 8 QP	300 Ante Hei	4 enna ght	00 ! Table Degre	500 e ee	600	700		
20 No. 10 10.0 30.0 10.0 10.0 30.0 10 2 3 4	. Mk.	. Free MHz 39.437 44.275 53.505 166.068	R(q. L 1 2 2 1 2 1 0 1	eading evel dBuV 8.50 9.40 12.30 14.40	Corre Fact dB 14.2 10.9 7.9 12.1	tor ment dBuV/m 22 22.72 98 20.38 92 20.22 10 26.50	e- Limi dBuV/ 40.00 40.00 40.00 43.50	it Ove /m dB 0 -17.2 0 -19.6 0 -19.7 0 -19.7	r Detecto 8 QP 2 QP 8 QP 8 QP 0 QP	300 Ante Hei	4 enna ght	00 ! Table Degre	500 e ee	600	700		
20 M 10	. Mk.	. Free MHz 39.437 44.275 53.505	R(1) 2 2 1 2 1 2 1 5 1	eading evel dBuV 8.50 9.40 12.30	Corre Fact dB 14.2 10.9 7.9	tor ment dBuV/m 22 22.72 98 20.38 92 20.22 10 26.50 35 23.05	re- Limi dBuV/ 40.00 40.00 40.00	it Ove /m dB 0 -17.2 0 -19.6 0 -19.7 0 -19.7 0 -20.4	r Detecto 8 QP 2 QP 8 QP 8 QP 0 QP 5 QP	300 Ante Hei	4 enna ght	00 ! Table Degre	500 e ee	600	700		



*:Maximum data x:Over limit 1:over margin

Above 1GHz:

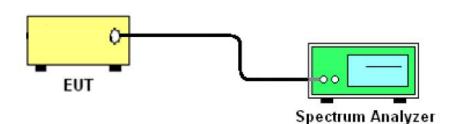
EUT:					Car Au	ıdio					N	1/N:		AT44	AT449150				
Mode	e:				GFSK-	CH0					Ρ	olarizati	on:	Hori	zonta	ıl			
Test	by:				Turbo	Chen(En	gineer)				Ρ	ower:		DC 1	I4V b	y DC	Sourc	e	
Temp	pera	atuı	re: / Hur	nidity	23.7℃	/ 51.6%					Т	est date:		2016-10-19					
96.9		dBu∿	//m																
Γ																	Limit		-
87			1	(AVG	-	-
°'				-															
77																			
·													_						_
67																			
57																			
ŀ																			-
47																			_
	λ.						3					ma .M . a							
37		~V~	m w	m	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1hr	~~~	~~	~~~	~~~	21W WV	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~	N	$\sim\sim\sim$	mon	~
							4												
27							1												_
10.0																			
16.9	00.0	000	2100.00	32	00.00	4300.00	540	D. 00	6500	.00	760	0.00 8	3700.	00	980	D. 00		12000.	.00 MHz
						Correct		sure-						enna	Tat				
N	No.	Mk	. Fre		eading Level	Factor		ent	Limi	t O	/er			ight	Deg				
			MH	z	dBuV	dB	dBu	V/m	dBuV/	m d	В	Detector	0	m	degi	ee	Commen	nt	
	1	Х	2402.5	00	95.80	-8.43	87	.37	74.00) 13	.37	peak							
	2	*	2402.5	00	85.60	-8.43	77.	.17	54.00	23	.17	AVG							
	3		4804.0	00	46.70	-6.15	40	.55	74.00) -33	.45	peak							
	4		4804.0	00	35.40	-6.15	29	25	54.00) -24	.75	AVG							



96.9 dBuV/m

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	Х	2402.500	96.70	-8.43	88.27	74.00	14.27	peak			
2	*	2402.500	86.70	-8.43	78.27	54.00	24.27	AVG			
3		4804.000	49.80	-6.15	43.65	74.00	-30.35	peak			
4		4804.000	40.90	-6.15	34.75	54.00	-19.25	AVG			

EUT:	Car Audio	M/N:	AT449150
Mode:	GFSK-CH0	Polarization:	Vertical
Test by:	Turbo Chen(Engineer)	Power:	DC 14V by DC Source
Temperature: / Humidity	23.7℃/ 51.6%	Test date:	2016-10-19

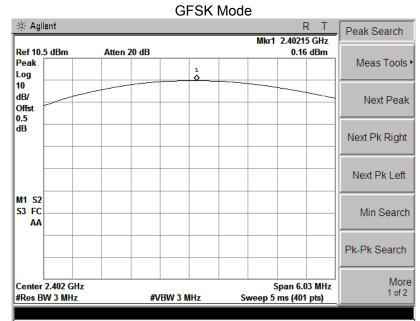

*:Maximum data x:Over limit !:over margin

5.4 Conducted Peak Output Power

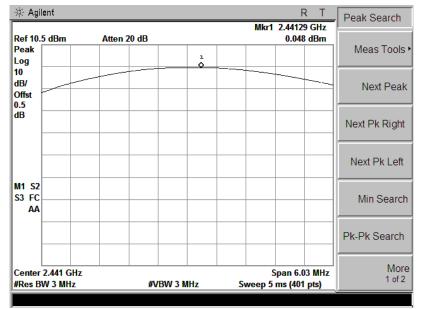
5.4.1 Requirement

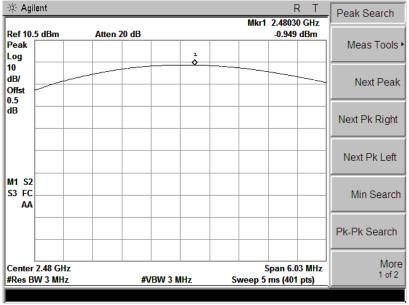
According to FCC Section 15.247(b)(1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725- 5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts

5.4.2 Block Diagram of Test Setup


5.4.3 Test Procedure

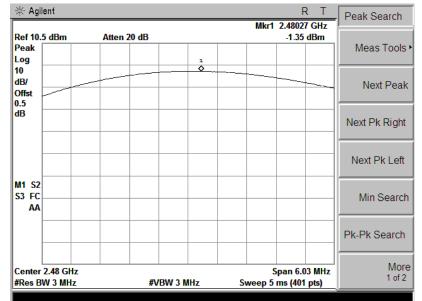
- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to an EMI test receiver.
- 3. Add a correction factor to the display.


5.4.4	Test	Result
VI-TI-T	1000	1.00 and


Test Item:	Peak Output Power	Temperature :	21°C
Test Engineer:	Kang	Relative Humidity :	59%

Mode	Channel	Frequency	Peak Output	Lir	Pass/Fail		
mode	Chaine	(MHz)	Power(dBm)	(mW)	(dBm)		
	Low	2402	0.16	1000	30	Pass	
BDR (GFSK)	Middle	2441	0.048	1000	30	Pass	
	High	2480	-0.949	1000	30	Pass	
	Low	2402	-0.91	125	20.97	Pass	
EDR (π/4-DQPSK)	Middle	2441	-1.278	125	20.97	Pass	
	High	2480	-1.35	125	20.97	Pass	
	Low	2402	-0.58	125	20.97	Pass	
EDR (8DPSK)	Middle	2441	-0.905	125	20.97	Pass	
	High	2480	-1.968	125	20.97	Pass	

Ch 0

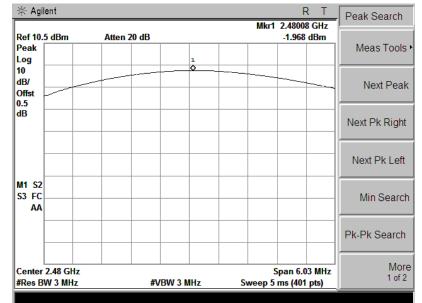


🔆 Agilent				RT	Peak Search
Ref 10.5 dBm	Atten 2) dB	Mkr1	2.40215 GHz -0.91 dBm	J
Peak Log	Aden Z	1			Meas Tools
10 dB/ Offst 0.5		¥			Next Peak
dB					Next Pk Right
					Next Pk Left
M1 S2 S3 FC AA					Min Search
					Pk-Pk Search
Center 2.402 G #Res BW 3 MH		#VBW 3 MHz		Span 6.03 MHz ms (401 pts)	More 1 of 2

π/4-DQPSK Mode

Ch 0

🔆 Agile	nt				RT	- Peak Search
Ref 10.5	dBm	Atten 20 df	3	Mkr1	2.44108 GHz -1.278 dBm	
Peak Log			1			Meas Tools
10 dB/ Offst ~ 0.5						Next Peak
dB						Next Pk Right
						Next Pk Left
M1 S2 S3 FC AA						Min Search
-						Pk-Pk Search
Center 2 #Res BW	2.441 GHz V 3 MHz		#VBW 3 MHz		Span 6.03 MHz ms (401 pts)	More 1 of 2



🔆 Agiler	nt					F	<u> </u>	Peak Search
Ref 10.5	dBm	Atten 20 dB			Mkr1	2.4020 -0.58	0 GHz dBm	
Peak Log			1					Meas Tools
10 dB/ Offst 0.5				_				Next Peak
dB								Next Pk Right
								Next Pk Left
M1 S2 S3 FC AA								Min Search
								Pk-Pk Search
Center 2. #Res BW	.402 GHz 3 MHz	<u> </u>	VBW 3 MI	Hz	Sweep 5	Span 6.0 ms (401		More 1 of 2

8DPSK Mode

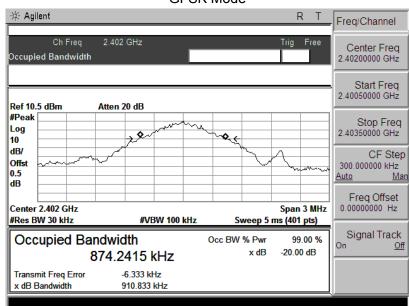
Ch 0

🔆 Agilent							F	<u> </u>	Peak Search
						Mkr1	2.4411		
Ref 10.5 dBm Peak Log	Atten 2	0 dB		1			-0.905	dBm	Meas Tools
10 dB/ Offst	 							<u> </u>	Next Peak
0.5 dB									Next Pk Right
									Next Pk Left
M1 S2 S3 FC AA									Min Search
									Pk-Pk Search
Center 2.441 #Res BW 3 M		#V	/BW 3 M	Hz	Sv		pan 6.0 ms (401		More 1 of 2

5.5 20dB Emission Bandwidth

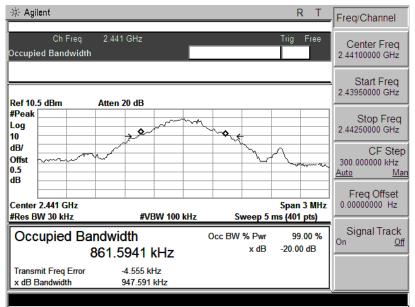
5.5.1 Test Requirement

The bandwidth of a frequency hopping channel is the -20 dB emission bandwidth, measured with the hopping stopped.

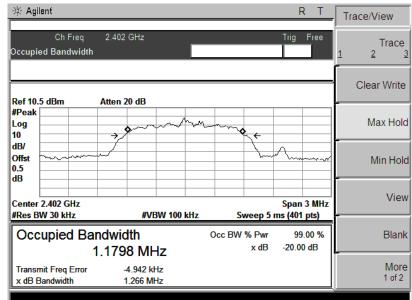

5.5.2 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the 99% emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

5.5.3 Test Result

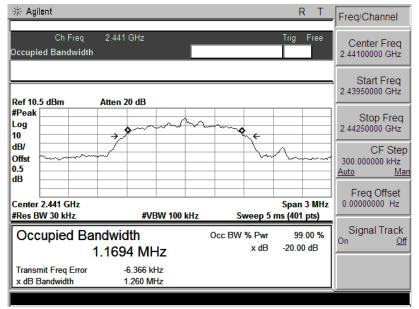

Test Item:	20dB Emission Bandwidth	Temperature :	23°C
Test Engineer:	Kang	Relative Humidity :	65%

Mode	Channel	Frequency (MHz)	20dB Emission Bandwidth (MHz)
חחח	Low	2402	0.911
BDR (GFSK)	Middle	2441	0.948
	High	2480	0.943
	Low	2402	1.266
EDR (π/4-DQPSK)	Middle	2441	1.260
(174-DQI SI()	High	2480	1.282
	Low	2402	1.300
EDR (8DPSK)	Middle	2441	1.243
	High	2480	1.270

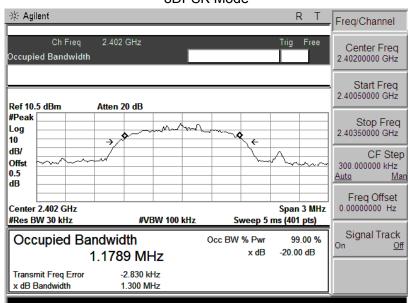


GFSK Mode

Ch 0

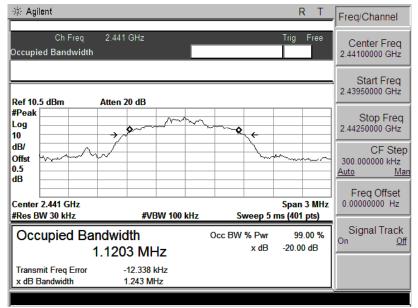


🔆 Agilent			RT	Trace/View
Ch Freq Occupied Bandwidth	2.48 GHz		Trig Free	Trace 1 <u>2</u> <u>3</u>
Ref 10.5 dBm	Atten 20 dB			Clear Write
#Peak Log		~~~~~		Max Hold
dB/ Offst 0.5 dB			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Min Hold
Center 2.48 GHz #Res BW 30 kHz	#VBW 100 kH	lz Sweep 5 ı	Span 3 MHz ns (401 pts)	View
Occupied Ba	andwidth 861.7395 kHz	Occ BW % Pwr x dB	99.00 % -20.00 dB	Blank
Transmit Freq Error x dB Bandwidth	-5.463 kHz 942.740 kHz			More 1 of 2



π/4-DQPSK Mode

Ch 0



🔆 Ag	jilent			RT	Trace/View
Occup	Ch Freq ied Bandwidth	2.48 GHz		Trig Free	Trace <u>1 2 3</u>
Ref 10).5 dBm	Atten 20 dB			Clear Write
#Peak Log 10		→ Annon	Aurona Art		Max Hold
dB/ Offst 0.5 dB	y www			· ^	Min Hold
Cente	r 2.48 GHz BW 30 kHz	#VBW 100	kHz Sweep S	Span 3 MHz 5 ms (401 pts)	View
Oco	cupied Ba	ndwidth 1.1907 MHz	Occ BW % Pwr x dB	99.00 % -20.00 dB	Blank
	smit Freq Error Bandwidth	-3.965 kHz 1.282 MHz			More 1 of 2

8DPSK Mode

Ch 0

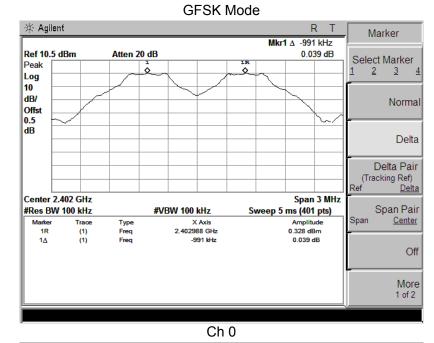
🔆 Agilent			RT	Trace/View
Ch Freq Occupied Bandwidth	2.48 GHz		Trig Free	Trace 1 2 3
Ref 10.5 dBm	Atten 20 dB			Clear Write
#Peak Log	→ A ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	man of t		Max Hold
dB/ Offst ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			^	Min Hold
Center 2.48 GHz #Res BW 30 kHz	#VBW 100 k	Hz Sweep 5	Span 3 MHz ms (401 pts)	View
Occupied Ba	ndwidth 1.1705 MHz	Occ BW % Pwr x dB	99.00 % -20.00 dB	Blank
Transmit Freq Error x dB Bandwidth	-4.775 kHz 1.270 MHz			More 1 of 2

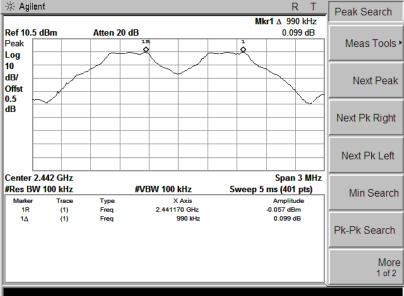
5.6 Carrier Frequency Separation 5.6.1 Test Requirement

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.50 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

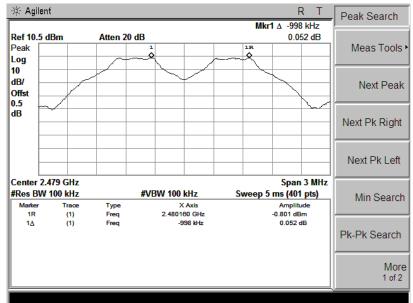
5.6.2 Test Procedure

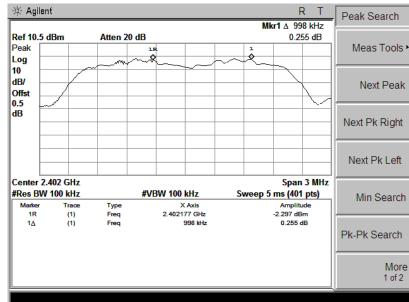
1.Set the EUT in transmitting mode, spectrum Bandwidth was set at 100 kHz, maxhold the channel.

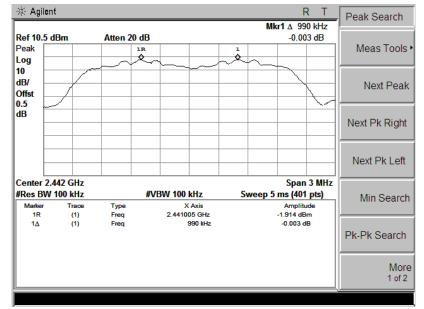

2.Set the adjacent channel of the EUT maxhold another trace

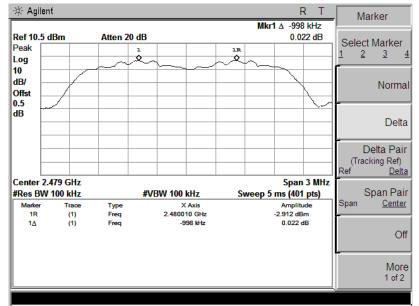

3.Measure the channel separation.

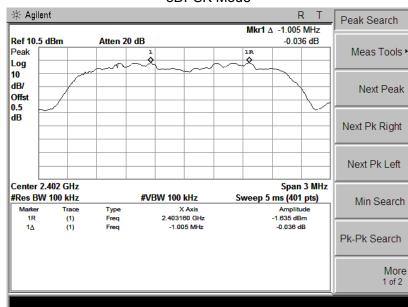
5.6.3 Test Result


Test Item:	Carrier Frequency Separation	Temperature :	23°C
Test Engineer:	Kang	Relative Humidity :	65%


Mode	Channel	Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Result
	Low	2402	0.991	0.911	Pass
BDR (GFSK)	Middle	2441	0.990	0.948	Pass
	High	2480	0.998	0.943	Pass
	Low	2402	0.998	0.932	Pass
EDR (π/4-DQPSK)	Middle	2441	0.990	0.926	Pass
	High	2480	0.998	0.948	Pass
	Low	2402	1.005	0.966	Pass
EDR (8DPSK)	Middle	2441	0.998	0.909	Pass
	High	2480	1.005	0.936	Pass

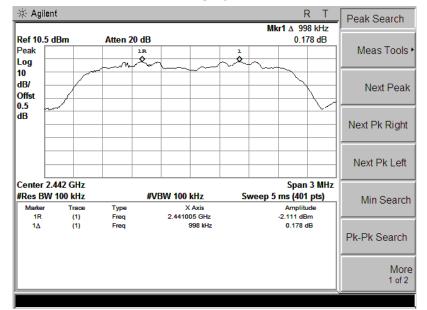

Ch 39

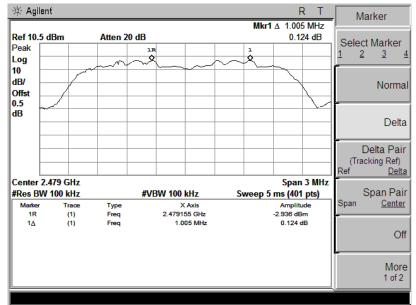




π/4-DQPSK Mode

Ch 0





8DPSK Mode

Ch 0

5.7 Number of Hopping Channel 5.7.1 Test Requirement

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

5.7.2 Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the Max-Hold function record the Quantity of the channel.

5.7.3 Test Result

Test Item:	Number of Hopping Channel	Temperature :	23°C		
Test Engineer:	Kang	Relative Humidity :	65%		

Mode	Frequency Range (MHz)	Number of Hopping Channel	Limit
GFSK	2400-2483.5	79	≥15
π /4-DQPSK	2400-2483.5	79	≥15
8DPSK	2400-2483.5	79	≥15

🔆 Agil	ent								F	R T	T	race/Vie	w
Ref 10. Peak Log	5 dBm		Atten 2	0 dB							<u>1</u>	Tr <u>2</u>	race
10 dB/ Offst 0.5	M M 	₩₩ ₩	WWW		WWW	WWW	WW	WW	MMM	MM T		Clear V	Vrite
dB	VB											Мах	Holo
	300	0.000	0000) KHZ								Min	Hold
M1 S2 S3 FC AA											_	,	View
												E	Blank
Start 2. #Res B	4 GHz W 100 k	Hz		#VE	3W 300	kHz	Swee	S1 p 8.599 i	top 2.48 ms (401				More of 2

GFSK Mode

						-	••••		-				
來,	Agil	ent								F	R T	Trac	e/View
Ref Pea		5 dBm		Atten 2	20 dB							1	Trace
Log 10 dB/ Offs 0.5		MuM	NWWW	WWW	WWW.AU	uww.	MMM	MAMA	MMW	www	WWA	C	≟ lear Write
dB		ļ									h		Max Hold
		·											Min Hol
W1 53													Viev
													Blan
		4 GHz W 100			#VE	3W 300	kHz	Sweep	St 5 8.599 i	op 2.48 ns (401			More 1 of 2

π/4-DQPSK

🔆 Agi	ileı	nt								F	<u>₹</u>	Trace/	View
Ref 10. Peak	.5	dBm		Atten 2	0 dB							1	Trace
Log 10 dB/ Offst 0.5		MMA	www	www	MMMA	WWW	www	WWWW	www	WWW.W	WW A	ſ	ar Write
dB	¥											Ν	lax Holo
	╞											-	Min Hold
M1 S2 S3 FC AA	⊢												Viev
													Blank
Start 2 #Res B			۲		#VE	3W 300	kHz	Sweep	St 0 8.599 (op 2.48 ns (401			More 1 of 2

8DPSK Mode

5.8 Dwell Time

5.8.1 Test Requirement

15.247(a) (1) (iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

5.8.2 Test Procedure

ANSI C63.10: Clause 7.7.4

1. Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0. centered on a hopping channel;

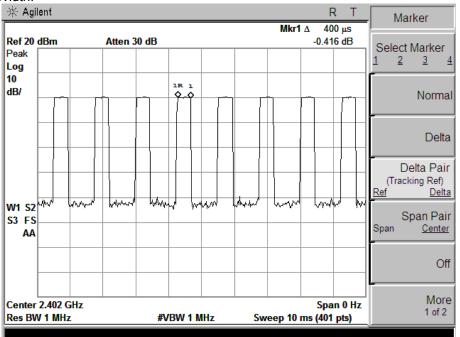
3. Set RBW = 1 MHz and VBW = 1 MHz. Sweep = as necessary to capture the entire dwell time per hopping channel. Detector Function = Peak. Trace = Max hold;

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.). Repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s). An oscilloscope may be used instead of a spectrum analyzer.

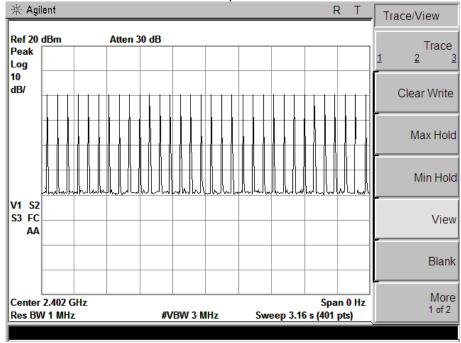
5.8.3 Test Result

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

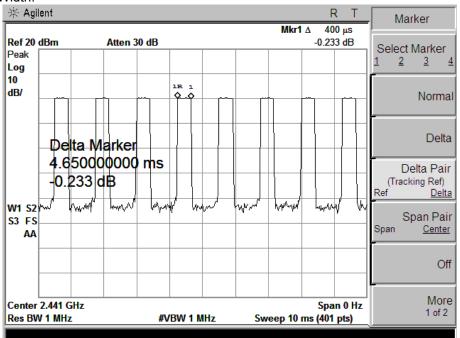
1. Channel 0: 2.40	1. Channel 0: 2.402GHz													
3DH1 time slot	=	0.400	(ms)	*	32	*	(31.6/3.16)	=	<mark>128.000</mark>	ms				
3DH3 time slot	=	1.625	(ms)	*	16	*	(31.6/3.16)	=	<mark>260.000</mark>	ms				
3DH5 time slot	=	2.900	(ms)	*	10	*	(31.6/3.16)	=	<mark>290.000</mark>	ms				
2. Channel 39: 2.441GHz														
3DH1 time slot	=	0.400	(ms)	*	32	*	(31.6/3.16)	=	<mark>128.000</mark>	ms				
3DH3 time slot	=	1.650	(ms)	*	16	*	(31.6/3.16)	=	<mark>264.000</mark>	ms				
3DH5 time slot	=	2.875	(ms)	*	11	*	(31.6/3.16)	=	<mark>316.250</mark>	ms				
3. Channel 78: 2.4	1800	SHz												
3DH1 time slot	=	0.400	(ms)	*	32	*	(31.6/3.16)	=	<mark>128.000</mark>	ms				
3DH3 time slot	=	1.625	(ms)	*	16	*	(31.6/3.16)	=	<mark>260.000</mark>	ms				
3DH5 time slot	=	<mark>2.900</mark>	(ms)	*	10	*	(31.6/3.16)	=	<mark>290.000</mark>	ms				


The average time of occupancy in the specified 31.6 second period is equal to pulse width*(# of pulse in observation period)*(test period / observation period)

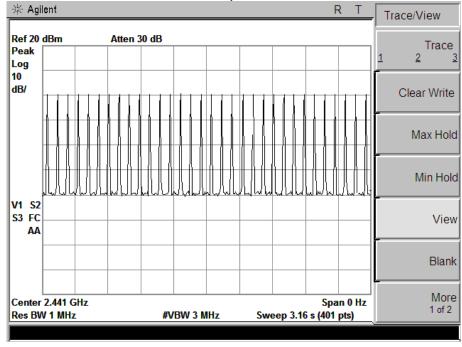
The results are not greater than 0.4 seconds.

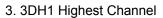

The unit does meet the FCC requirements.

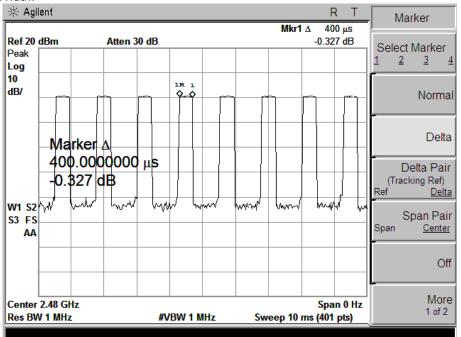
Please refer the graph as below: 1. 3DH1 Lowest channel

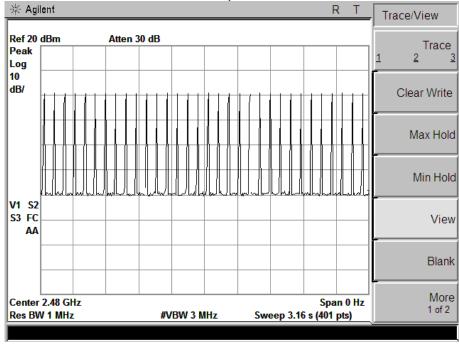


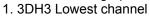
Number of Pulses in 3.16 S observation period:

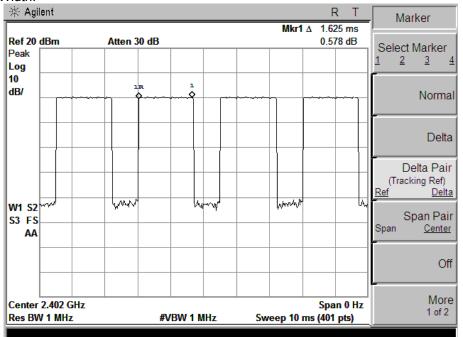



2. 3DH1 Middle Channel

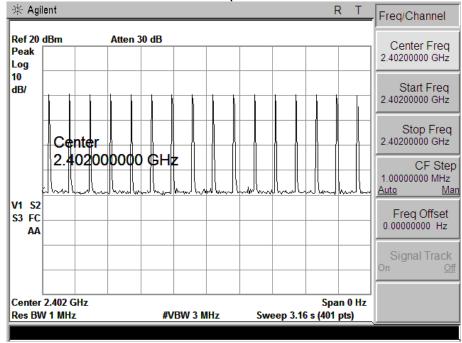

Pulse Width:


Number of Pulses in 3.16 S observation period:

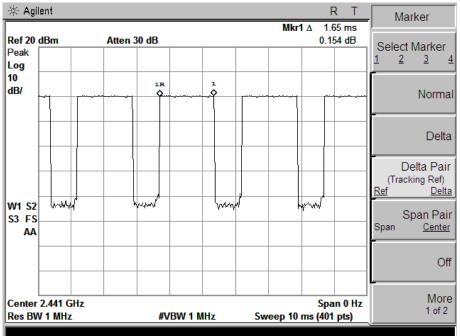


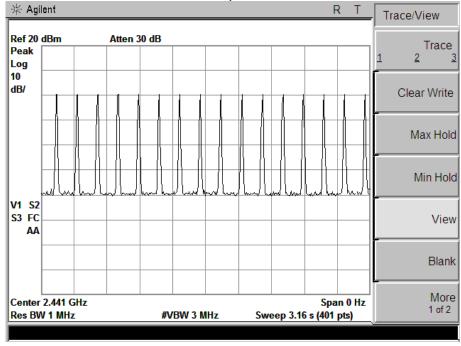


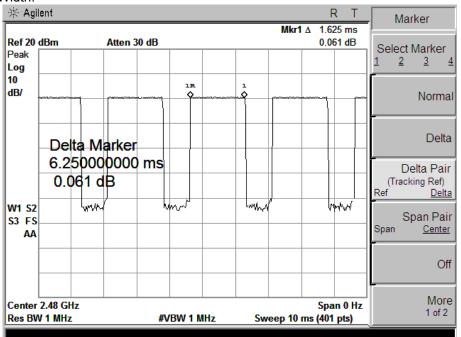
Number of Pulses in 3.16 S observation period:

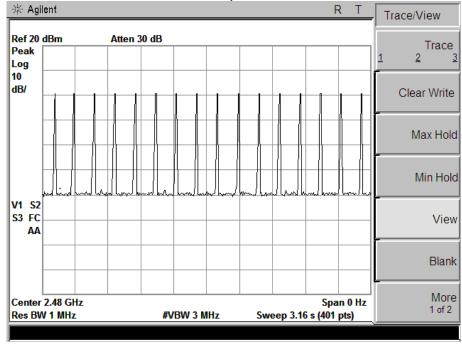


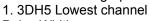
Please refer the graph as below:

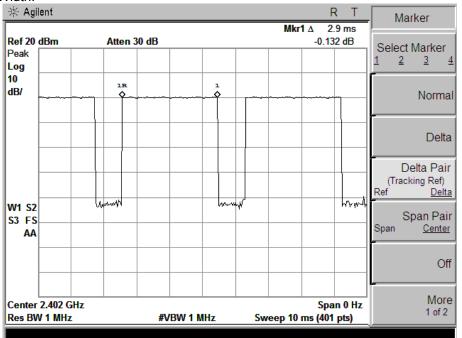



Number of Pulses in 3.16 S observation period:

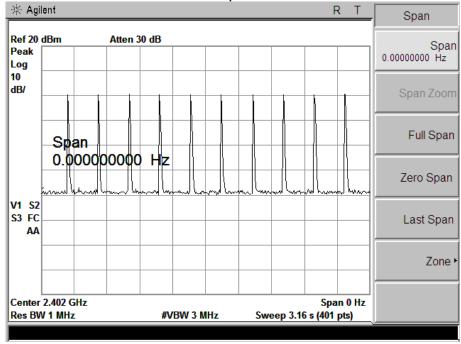

2. 3DH3 Middle Channel

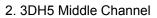

Number of Pulses in 3.16 S observation period:

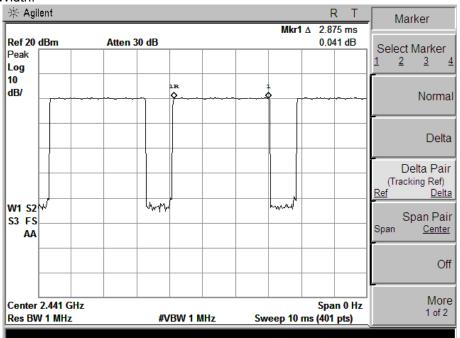

3. 3DH3 Highest Channel

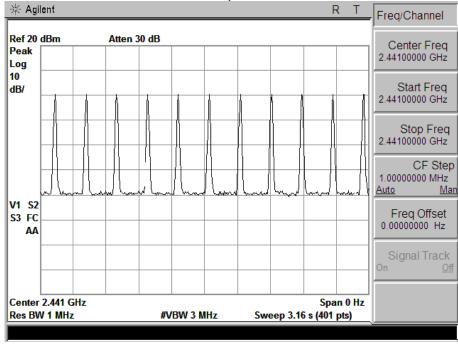


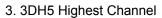
Number of Pulses in 3.16 S observation period:

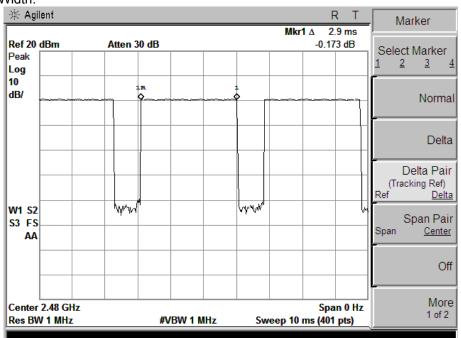



Please refer the graph as below:

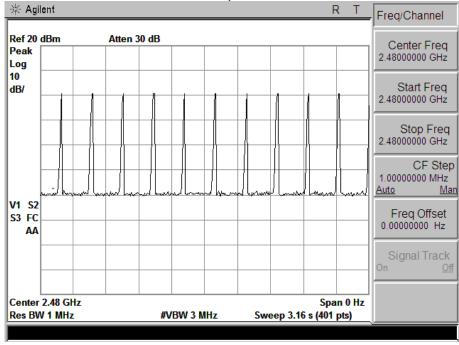



Number of Pulses in 3.16 S observation period:





Number of Pulses in 3.16 S observation period:



Pulse Width:

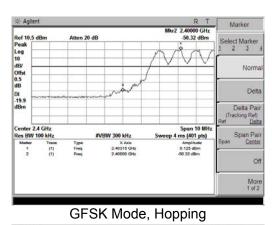
Number of Pulses in 3.16 S observation period:

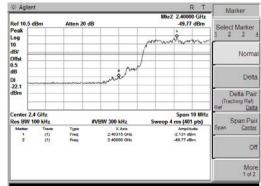
5.9 Band Edge and Conducted Spurious Emissions 5.9.1 Test Requirement

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the Car Audio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

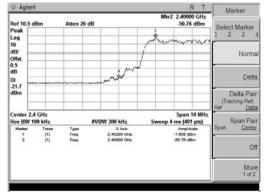
5.9.2 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

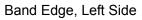

5.9.3 Test Result

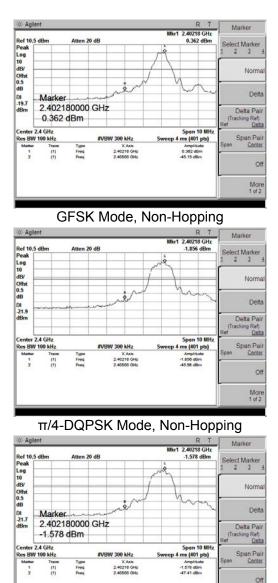

Pass

Remark:

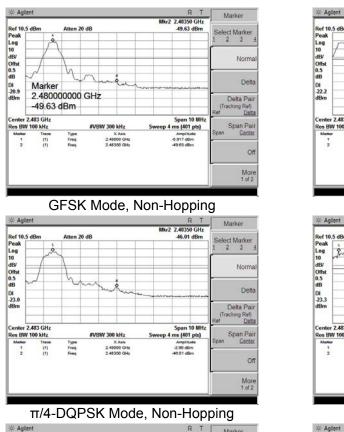

During the Conducted Spurious Emissions test, pre-scan the GFSK, $\pi/4$ -QPSK, 8DPSK modulation, and found the GFSK modulation which it is worse case.

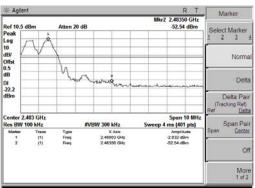
Test Item:	Band Edge	Temperature :	23°C
Test Engineer:	Kang	Relative Humidity :	65%





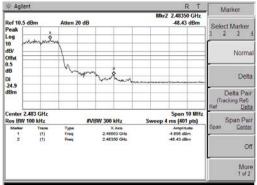
 π /4-DQPSK Mode, Hopping


8DPSK Mode, Hopping

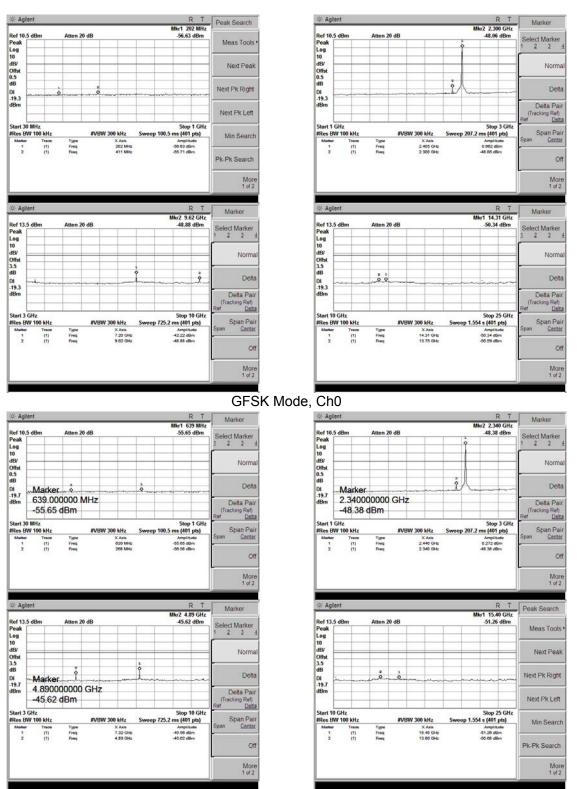


8DPSK Mode, Non-Hopping

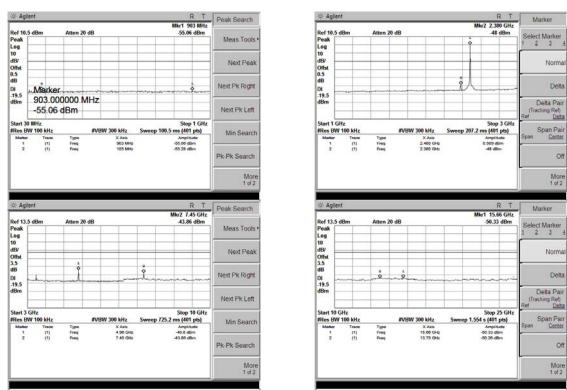
More 1 of 2


Band Edge, Right Side

GFSK Mode, Hopping


π/4-DQPSK Mode, Hopping

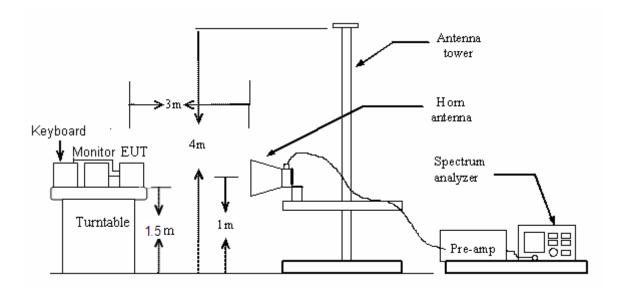
8DPSK Mode, Hopping


读 Agilent R T kr2 2.48350 GHz -47.03 dBm Marker Ref 10 Peak Log 10 dB/ Offst 0.5 dB DI -23.0 dBm ten 20 dB ect Marker Norma Delta Marker 2.48000000 GHz Delta Pair racking Ref) Delta -47.03 dBm 2.483 GHz Span 10 MH ep 4 ms (401 pts) Span Pair Res BW 100 kHz X Axis 2.48000 GHz 2.48350 GHz Type Freq Freq (1) (1) -2.974 dBm -47.03 dBm 1 Off More 1 of 2

8DPSK Mode, Non-Hopping

Conducted Spurious Emissions

Conducted Spurious Emissions


GFSK Mode, Ch78

5.10 Restricted Frequency Bands 5.10.1 Test Requirement

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the Car Audio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.10.2 Test Configuration

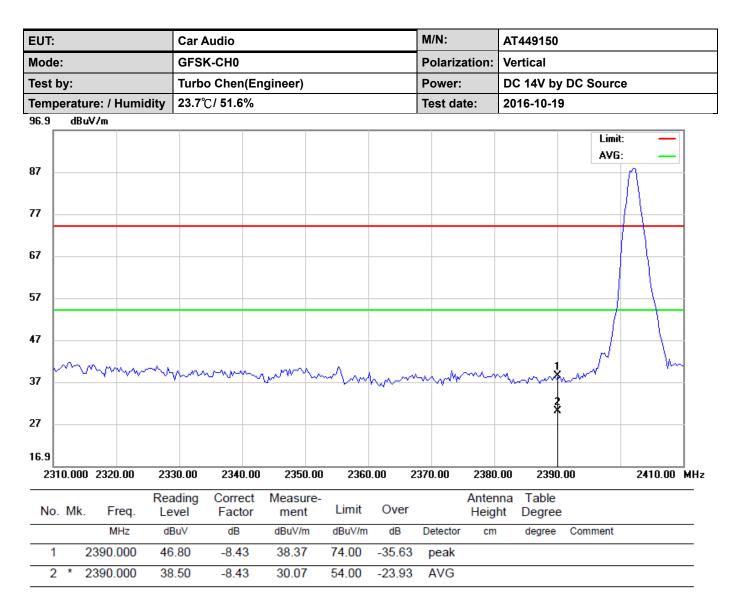
Test Setup:

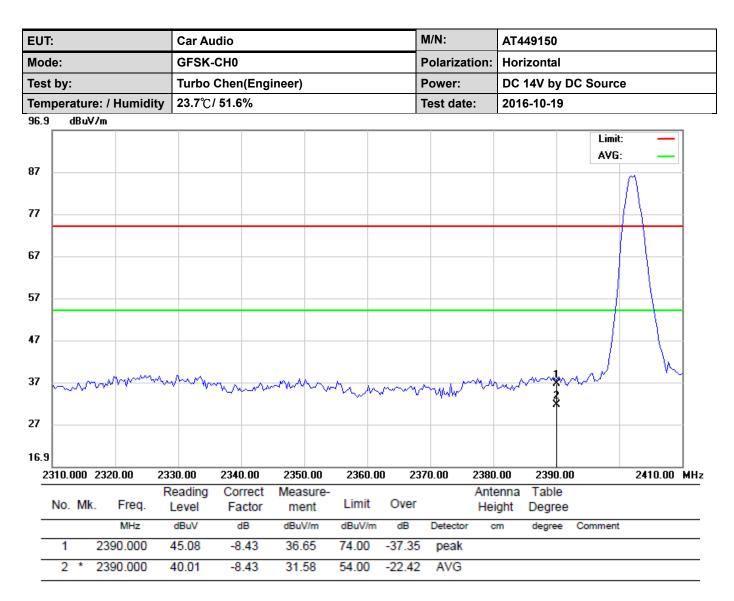
5.10.3 Test Procedure:

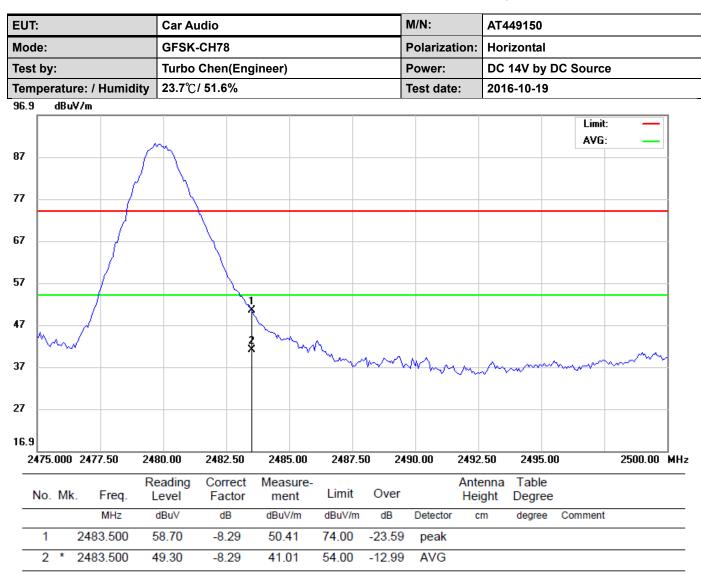
1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.


5.10.4 Test Result


Pass

Note: During the test, pre-scan the 15.205 All Restricted bands, and found the GFSK modulation 2390MHZ and 2483.5MHZ channel which it is worse.

Please refer the following pages.

*:Maximum data x:Over limit !:over margin

Report No.: MTE/TYW/S16102239

UT:	Car Audio		M/N:	AT449150		
lode:	GFSK-CH78		Polarization:			
est by:				DC 14V by DC Source		
			Power: DC 14V by DC Source Test date: 2016-10-19			
emperature: / Humidity 6.9 dBuV/m	23.9 (7 51.1%		Test date:	2010-10-19		
	1			Limit: AVG:		
/						
7	+ $ -$					
-						
/						
m	1	mmmmmm				
7		www.	w www.	man man	~~~~	
7						
6.9						
	80.00 2482.50	2485.00 2487.50 2	490.00 2492	2.50 2495.00 25	500.00 MH	
R		Measure- ment Limit Over	Ant	enna Table ight Degree		
MHz	dBuV dB	dBuV/m dBuV/m dB		cm degree Comment		
1 2483.500	54.60 -8.29	46.31 74.00 -27.69	9 peak			
	46.20 -8.29	37.91 54.00 -16.09	-			

*:Maximum data x:Over limit !:over margin

End of Report