

Page 1 of 60

TEST REPORT

Product Name	:	M1 Bluetooth Mouse
Brand Mark	:	SATECHI
Model No.	:	ST-ABTCMM
Extension model	:	ST-ABTCMS, ST-ABTCMG, ST-ABTCMP, ST-ABTCMR, ST-ABTCMB, ST-ABTCMK, ST-ABTCMV, ST-ABTCML, ST-ABTCMO, ST-ABTCMY
FCC ID	:	ZE9-ST-ABTCM1
Report Number	:	BLA-EMC-202206-A1002
Date of Sample Receipt	:	2022/6/2
Date of Test	:	2022/6/2 to 2022/6/16
Date of Issue	:	2022/6/16
Test Standard	:	47 CFR Part 15, Subpart C 15.247
Test Result	:	Pass

Prepared for:

SARIANA LLC

7365 Mission Gorge Road, Suite G, San Diego, CA 92120, USA

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China TEL: +86-755-23059481

Compiled by: Approved by:

Jozu 13/me Thong

Review by: Date:

C.

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Add: Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

REPORT REVISE RECORD

Version No. Date		Description	
00 2022/6/16		Original	

TABLE OF CONTENTS

1	•	TEST SUMMARY	5
2	(GENERAL INFORMATION	6
3	(GENERAL DESCRIPTION OF E.U.T.	6
4	•	TEST ENVIRONMENT	
-		TEST MODE	
5			
6		MEASUREMENT UNCERTAINTY	
7		DESCRIPTION OF SUPPORT UNIT	
8	I		8
9	•	TEST INSTRUMENTS LIST	9
10	(CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	
	10.		
	10. 10.		
	10.		
	10.		
11	(CONDUCTED BAND EDGES MEASUREMENT	
	11.		
	11.		
	11.		
12		ANTENNA REQUIREMENT	
	12.	2.1 CONCLUSION	
13		RADIATED SPURIOUS EMISSIONS	19
	13.	3.1 LIMITS	19
	13.	BLOCK DIAGRAM OF TEST SETUP	20
	13.	3.3 PROCEDURE	20
	13.	3.4 TEST DATA	22
14	I	RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
	14.	4.1 LIMITS	30
	14.	BLOCK DIAGRAM OF TEST SETUP	31
	14.	1.3 PROCEDURE	31
	14.	1.4 TEST DATA	

15	CON	NDUCTED SPURIOUS EMISSIONS	37
15	5.1	LIMITS	37
15	5.2	BLOCK DIAGRAM OF TEST SETUP	37
15	5.1	ТЕЅТ DATA	38
16	POV	VER SPECTRUM DENSITY	39
16	5.1	LIMITS	39
16	5.2	BLOCK DIAGRAM OF TEST SETUP	39
16	5.3	TEST DATA	
17	CON	NDUCTED PEAK OUTPUT POWER	40
17	7.1	LIMITS	
17	7.2	BLOCK DIAGRAM OF TEST SETUP	
17	7.3	TEST DATA	41
18	MIN	IMUM 6DB BANDWIDTH	42
18	8.1	LIMITS	.42
18	8.2	BLOCK DIAGRAM OF TEST SETUP	42
18	8.3	ТЕЅТ DATA	42
19	APF	PENDIX	43
APP	END	IX A: PHOTOGRAPHS OF TEST SETUP	58
APP	END	IX B: PHOTOGRAPHS OF EUT	60

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power			47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass

2 **GENERAL INFORMATION**

Applicant	SARIANA LLC			
Address	7365 Mission Gorge Road, Suite G, San Diego, CA 92120, USA			
Manufacturer	SARIANA LLC			
Address	7365 Mission Gorge Road, Suite G, San Diego , CA 92120, USA.			
Factory	ShenZhen Wintop Technology Co., Ltd			
Address	No. 388 Bihu Road, Fenggang Town, Dongguan city, Guangdong Province.			
Product Name	M1 Bluetooth Mouse			
Test Model No.	ST-ABTCMM			
Extension model	ST-ABTCMS, ST-ABTCMG, ST-ABTCMP, ST-ABTCMR, ST-ABTCMB, ST-ABTCMK, ST-ABTCMV, ST-ABTCML, ST-ABTCMO, ST-ABTCMY			
Note	All above models are identical in the same PCB layout, interior structure and electrical circuits. The differences are model name for commercial purpose.			
3 GENERAL DES	3 GENERAL DESCRIPTION OF E.U.T.			

GENERAL DESCRIPTION OF E.U.T. 3

6

Hardware Version	V1.0
Software Version	V1.0
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK
Channel Spacing:	2MHz
Number of Channels:	40
Antenna Type:	PCB Antenna
Antenna Gain:	0dBi (Provided by the applicant)

4 TEST ENVIRONMENT

Environment	Temperature	Voltage		
Normal	25°C	DC5V		

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION
Transmitting mode	Keep the EUT in continuously transmitting mode with modulation.

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)
Radiated Emission(9kHz-30MHz)	±4.34dB
Radiated Emission(30Mz-1000MHz)	±4.24dB
Radiated Emission(1GHz-18GHz)	±4.68dB
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
AC Adapter	UGREEN	CD112	N/A	N/A

8 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673 No tests were sub-contracted.

9 TEST INSTRUMENTS LIST

Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)						
Equipment	Cal.Date	Cal.Due				
Shield room	SKET	833	N/A	25/11/2020	24/11/2023	
Receiver	R&S	ESPI3	101082	24/9/2021	23/9/2022	
LISN	R&S	ENV216	3560.6550.15	24/9/2021	23/9/2022	
LISN	AT	AT166-2	AKK1806000003	26/9/2021	25/9/2022	
EMI software	EZ	EZ-EMC	N/A	N/A	N/A	

Test Equipment Of Conducted Band Edges Measurement								
Equipment	Equipment Manufacturer		S/N	Cal.Date	Cal.Due			
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022			
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022			
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022			
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022			
			·					

Test Equipment Of	Test Equipment Of Radiated Spurious Emissions								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due				
Chamber	SKET	966	N/A	10/11/2020	9/11/2023				
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022				
Receiver	R&S	ESR7	101199	24/9/2021	23/9/2022				
broadband Antenna	Schwarzbeck VUI B9168		00836 P:00227	26/9/2020	25/9/2022				
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/2022				

Amplifier	SKET LNPA-01		N/A	24/9/2021	23/9/2022
EMI software	EZ	EZ-EMC	N/A	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/2022

Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Chamber	SKET	966	N/A	10/11/2020	9/11/202	
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/202	
Receiver	R&S	ESR7	101199	24/9/2021	23/9/202	
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	26/9/2020	25/9/202:	
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	26/9/2020	25/9/202	
Amplifier	SKET	LNPA-0118-45	N/A	24/9/2021	23/9/202	
EMI software	EZ	EZ-EMC	N/A	N/A	N/A	
Loop antenna	SCHNARZBECK	FMZB1519B	00102	26/9/2020	25/9/202	

Test Equipment Of Conducted Spurious Emissions									
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due				
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022				
Spectrum	Agilent	N9020A MY49100060		24/9/2021	23/9/2022				
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022				
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022				

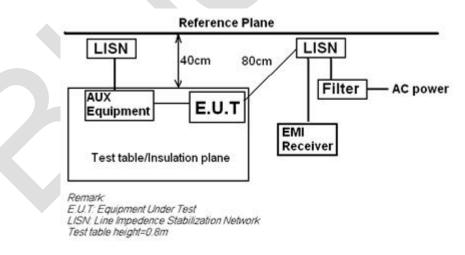
Test Equipment Of Power Spectrum Density						
Equipment Manufacturer		Model	S/N	Cal.Date	Cal.Due	

Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022

Test Equipment Of Conducted Peak Output Power								
Equipment Manufacturer		Model	S/N	Cal.Date	Cal.Due			
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022			
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022			
Signal Generator	Agilent	N5182A	MY49060650	24/9/2021	23/9/2022			
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022			
				I	1			

Test Equipment Of Minimum 6dB Bandwidth								
Equipment	Manufacturer	S/N	Cal.Date	Cal.Due				
Spectrum	R&S	FSP40	100817	24/9/2021	23/9/2022			
Spectrum	Agilent	N9020A	MY49100060	24/9/2021	23/9/2022			
Signal Generator	Agilent	N5182A MY49060650		24/9/2021	23/9/2022			
Signal Generator	Agilent	E8257D	MY44320250	24/9/2021	23/9/2022			

10 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25 ℃
Humidity	55%

10.1 LIMITS

Frequency of	Conducted limit(dBµV)					
emission(MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

*Decreases with the logarithm of the frequency.

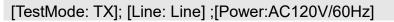
10.2 BLOCK DIAGRAM OF TEST SETUP

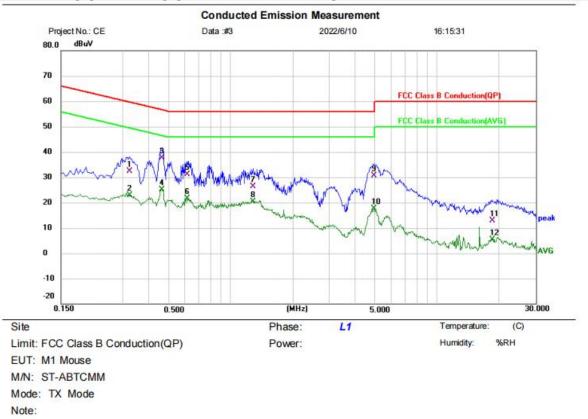
10.3 PROCEDURE

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

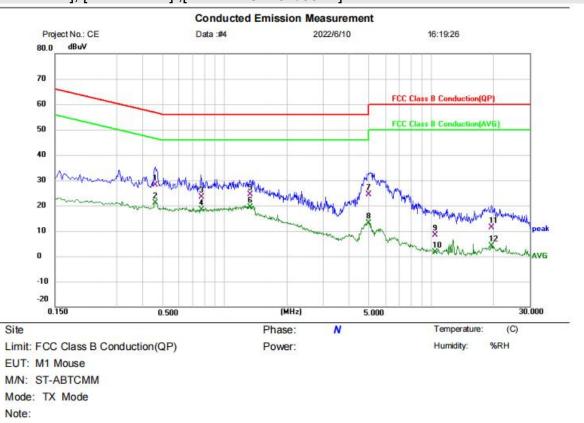
3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,


4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.


5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

10.4 TEST DATA

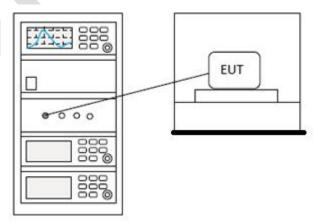


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.3220	22.48	9.85	32.33	59.66	-27.33	QP	
2		0.3220	12.91	9.85	22.76	49.66	-26.90	AVG	
3	*	0.4620	27.87	9.87	37.74	56.66	-18.92	QP	
4		0.4620	15.29	9.87	25.16	46.66	-21.50	AVG	
5		0.6140	21.17	9.87	31.04	56.00	-24.96	QP	
6		0.6140	11.78	9.87	21.65	46.00	-24.35	AVG	
7		1.2780	16.45	9.93	26.38	56.00	-29.62	QP	
8		1.2780	10.38	9.93	20.31	46.00	-25.69	AVG	
9		4.9260	20.73	10.01	30.74	56.00	-25.26	QP	
10	1	4.9260	7.54	10.01	17.55	46.00	-28.45	AVG	
11		18.4260	2.58	10.41	12.99	60.00	-47.01	QP	
12		18.4260	-5.00	10.41	5.41	50.00	-44.59	AVG	
_									

*:Maximum data x:Over limit I:over margin

[TootModo	· TVI· [l inc.	Nutroll (Do	wer:AC120V/60Hz]	
T LESUVIOUE.	. 1 / 1. 1 / 1110.			

No.	Mk.	Freq.	Reading Level	Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.4580	18.38	9.79	28.17	56.73	-28.56	QP	
2	*	0.4580	11.32	9.79	21.11	46.73	-25.62	AVG	
3		0.7700	13.57	9.82	23.39	56.00	-32.61	QP	
4	8	0.7700	8.55	9.82	18.37	46.00	-27.63	AVG	
5		1.3300	14.54	9.85	24.39	56.00	-31.61	QP	
6		1.3300	9.43	9.85	19.28	46.00	-26.72	AVG	
7) <u>- 1</u>	4.9939	14.40	9.95	24.35	56.00	-31.65	QP	
8	1	4.9939	3.20	9.95	13.15	46.00	-32.85	AVG	
9		10.4860	-1.69	10.18	8.49	60.00	-51.51	QP	
10		10.4860	-8.47	10.18	1.71	50.00	-48.29	AVG	
11		19.6340	0.89	10.43	11.32	60.00	-48.68	QP	
12		19.6340	-6.42	10.43	4.01	50.00	-45.99	AVG	


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25 ℃
Humidity	55%

11 CONDUCTED BAND EDGES MEASUREMENT

11.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

11.2 BLOCK DIAGRAM OF TEST SETUP

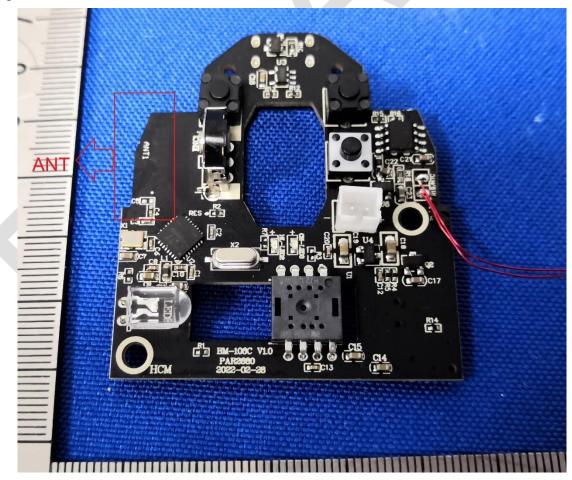
Report No.: BLA-EMC-202206-A1002 Page 17 of 60

11.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

12 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A


12.1 CONCLUSION

Standard Requirement:

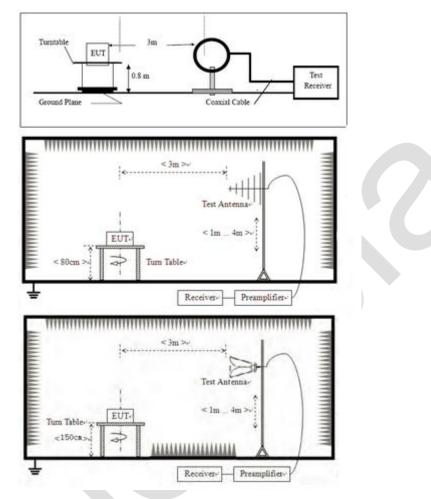
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

13 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25 ℃
Humidity	55%


13.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

13.2 BLOCK DIAGRAM OF TEST SETUP

13.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

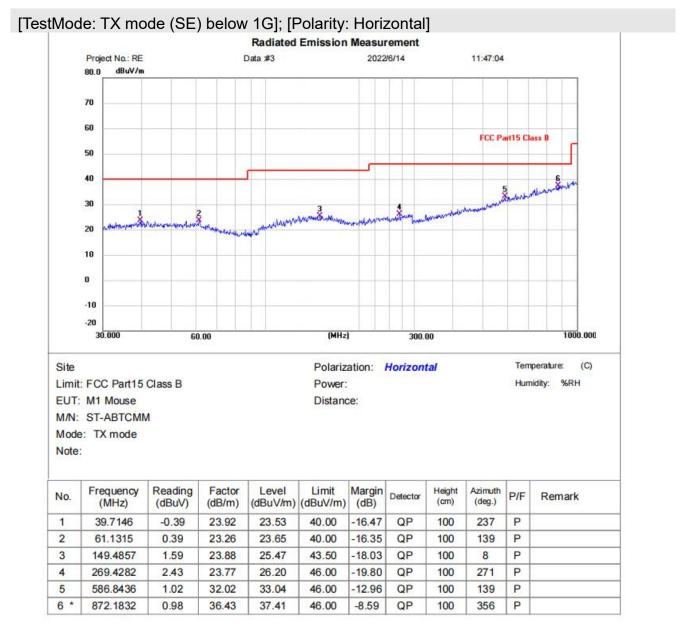
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark:

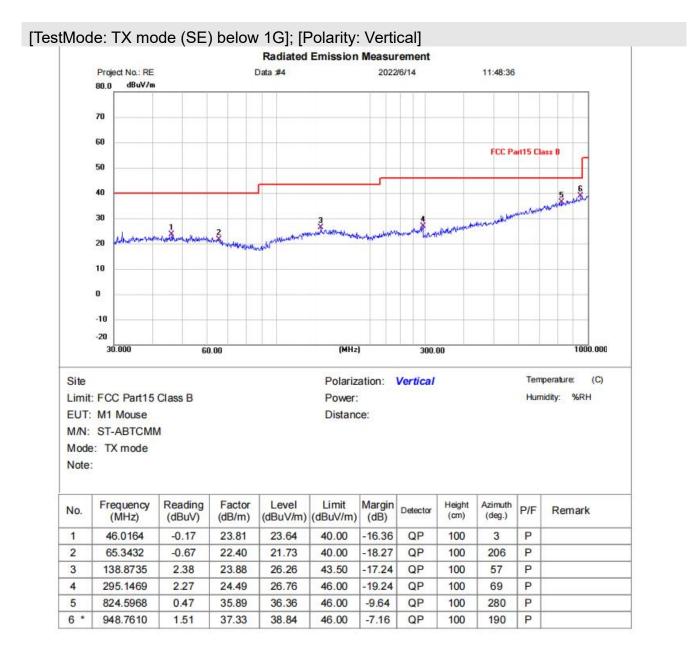
1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown.

4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.



13.4 TEST DATA

*:Maximum data x:Over limit !:over margin

[TestMode: TX low channel]; [Polarity: Horizontal]

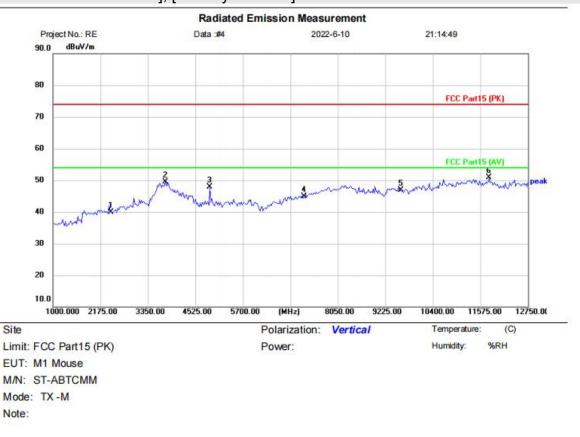
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2402.000	42.56	-0.93	41.63	74.00	-32.37	peak		
2		3773.000	42.26	7.67	49.93	74.00	-24.07	peak		
3		4807.000	41.82	3.71	45.53	74.00	-28.47	peak		
4	8	7206.000	37.79	5.96	43.75	74.00	-30.25	peak		
5		9608.000	37.38	9.29	46.67	74.00	-27.33	peak		
6	*	11410.500	38.23	11.78	50.01	74.00	-23.99	peak		

*:Maximum data x:Over limit !:over margin

[TestMode: TX low channel]; [Polarity: Vertical]

No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	2402.000	43.76	-0.93	42.83	74.00	-31.17	peak		
2	3843.500	42.06	7.12	49.18	74.00	-24.82	peak		
3	4807.000	42.54	3.71	46.25	74.00	-27.75	peak		
4	7206.000	38.79	5.96	44.75	74.00	-29.25	peak		
5	9608.000	37.49	9.29	46.78	74.00	-27.22	peak		
6 *	11269.500	39.05	11.94	50.99	74.00	-23.01	peak		

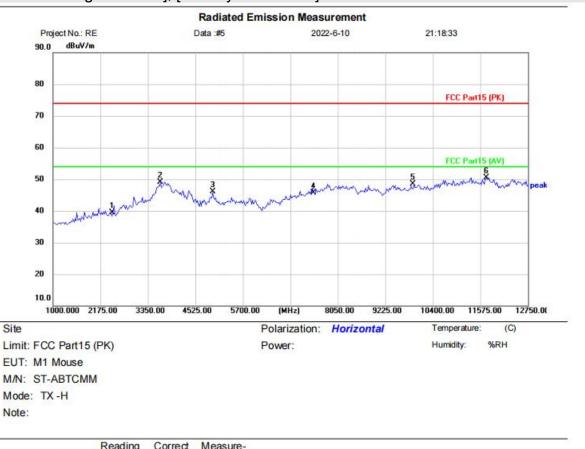
*:Maximum data x:Over limit !:over margin



[TestMode: TX mid channel]; [Polarity: Horizontal]

Mk.	Freq.	Level	Factor	ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
	2292.500	47.31	-2.73	44.58	74.00	-29.42	peak		
	3843.500	41.94	7.12	49.06	74.00	-24.94	peak		
	4877.500	45.16	3.37	48.53	74.00	-25.47	peak		
	7323.000	38.61	6.43	45.04	74.00	-28.96	peak		
	9764.000	36.26	9.63	45.89	74.00	-28.11	peak		
*	11763.000	39.65	11.63	51.28	74.00	-22.72	peak		
	*	2292.500 3843.500 4877.500 7323.000	2292.500 47.31 3843.500 41.94 4877.500 45.16 7323.000 38.61 9764.000 36.26	2292.500 47.31 -2.73 3843.500 41.94 7.12 4877.500 45.16 3.37 7323.000 38.61 6.43 9764.000 36.26 9.63	2292.500 47.31 -2.73 44.58 3843.500 41.94 7.12 49.06 4877.500 45.16 3.37 48.53 7323.000 38.61 6.43 45.04 9764.000 36.26 9.63 45.89	2292.500 47.31 -2.73 44.58 74.00 3843.500 41.94 7.12 49.06 74.00 4877.500 45.16 3.37 48.53 74.00 7323.000 38.61 6.43 45.04 74.00 9764.000 36.26 9.63 45.89 74.00	2292.500 47.31 -2.73 44.58 74.00 -29.42 3843.500 41.94 7.12 49.06 74.00 -24.94 4877.500 45.16 3.37 48.53 74.00 -25.47 7323.000 38.61 6.43 45.04 74.00 -28.96 9764.000 36.26 9.63 45.89 74.00 -28.11	2292.500 47.31 -2.73 44.58 74.00 -29.42 peak 3843.500 41.94 7.12 49.06 74.00 -24.94 peak 4877.500 45.16 3.37 48.53 74.00 -25.47 peak 7323.000 38.61 6.43 45.04 74.00 -28.96 peak 9764.000 36.26 9.63 45.89 74.00 -28.11 peak	2292.500 47.31 -2.73 44.58 74.00 -29.42 peak 3843.500 41.94 7.12 49.06 74.00 -24.94 peak 4877.500 45.16 3.37 48.53 74.00 -25.47 peak 7323.000 38.61 6.43 45.04 74.00 -28.96 peak 9764.000 36.26 9.63 45.89 74.00 -28.11 peak

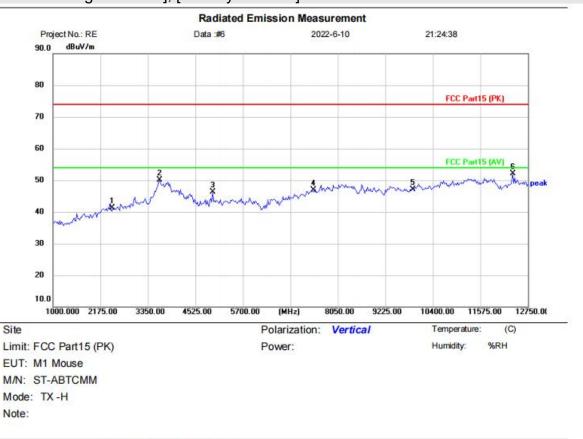
*:Maximum data x:Over limit !:over margin



[TestMode: TX mid channel]; [Polarity: Vertical]

No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	2441.000	40.92	-1.08	39.84	74.00	-34.16	peak		
2	3773.000	41.81	7.67	49.48	74.00	-24.52	peak		
3	4877.500	44.44	3.37	47.81	74.00	-26.19	peak		
4	7206.000	38.99	5.96	44.95	74.00	-29.05	peak		
5	9608.000	37.54	9.29	46.83	74.00	-27.17	peak		
6 *	11786.500	39.32	11.57	50.89	74.00	-23.11	peak		

*:Maximum data x:Over limit !:over margin



[TestMode: TX high channel]; [Polarity: Horizontal]

No.	Mk	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2480.000	40.67	-1.26	39.41	74.00	-34.59	peak		
2	-	3655.500	41.40	7.76	49.16	74.00	-24.84	peak		
3		4948.000	42.42	3.65	46.07	74.00	-27.93	peak		
4		7440.000	38.92	6.86	45.78	74.00	-28.22	peak		
5		9920.000	38.32	10.16	48.48	74.00	-25.52	peak		
6	*	11716.000	38.74	11.76	50.50	74.00	-23.50	peak		

*:Maximum data x:Over limit !:over margin

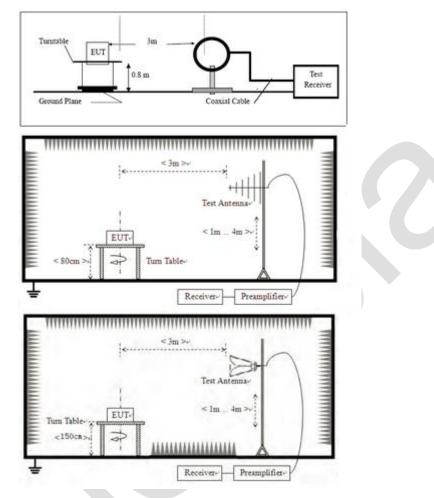
[TestMode: TX high channel]; [Polarity: Vertical]

No. N	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	2480.00	0 42.54	-1.26	41.28	74.00	-32.72	peak		
2	3632.00	0 42.28	7.77	50.05	74.00	-23.95	peak		
3	4948.00	42.59	3.65	46.24	74.00	-27.76	peak		
4	7440.00	40.13	6.86	46.99	74.00	-27.01	peak		
5	9920.00	36.86	10.16	47.02	74.00	-26.98	peak		
6 *	12374.00	40.32	11.72	52.04	74.00	-21.96	peak		

*:Maximum data x:Over limit !:over margin

14 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25 ℃
Humidity	55%


14.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

14.2 BLOCK DIAGRAM OF TEST SETUP

14.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

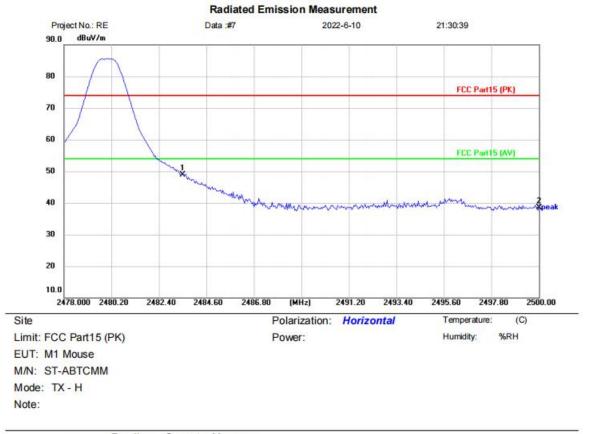
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

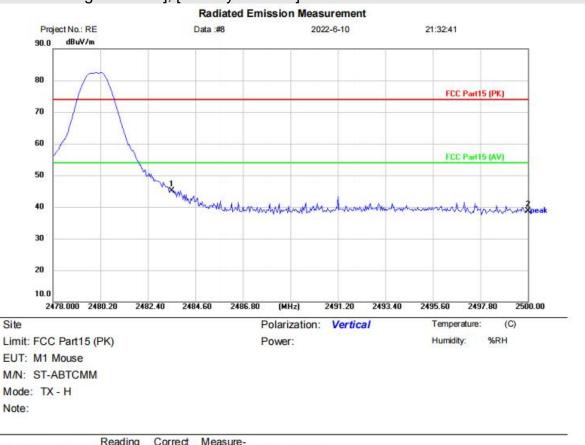
i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.


j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

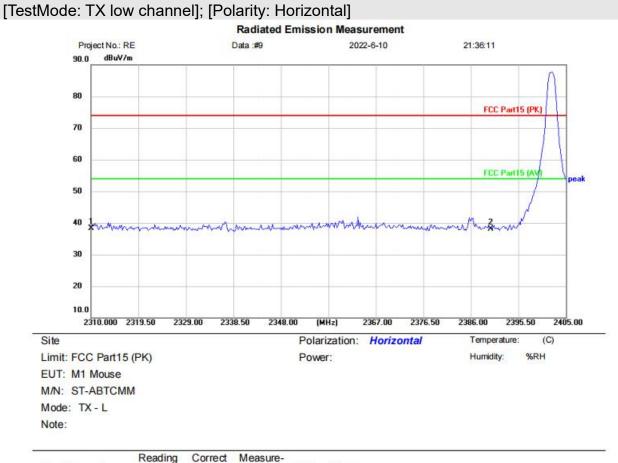
14.4 TEST DATA


[TestMode: TX high channel]; [Polarity: Horizontal]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment		Over					
		MHz	MHz	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	2483.500	51.97	-3.14	48.83	74.00	-25.17	peak				
2		2500.000	41.53	-3.08	38.45	74.00	-35.55	peak				

*:Maximum data x:Over limit !:over margin

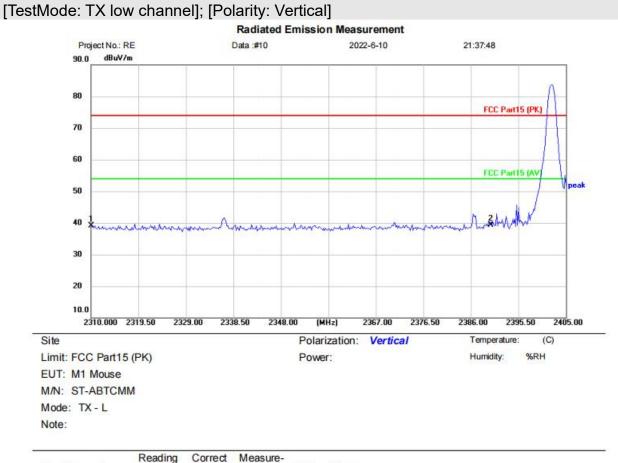
(Reference Only



[TestMode: TX high channel]; [Polarity: Vertical]	
---	--

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
_		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	2483.500	48.28	-3.14	45.14	74.00	-28.86	peak		
2		2500.000	41.87	-3.08	38.79	74.00	-35.21	peak		

(Reference Only

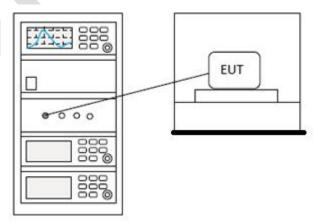


No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	2310.000	42.29	-3.93	38.36	74.00	-35.64	peak		
2		2390.000	41.78	-3.58	38.20	74.00	-35.80	peak		

(Reference Only

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
_		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2310.000	43.01	-3.93	39.08	74.00	-34.92	peak		
2	*	2390.000	42.96	-3.58	39.38	74.00	-34.62	peak		

(Reference Only


15 CONDUCTED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	55%

15.1 LIMITS

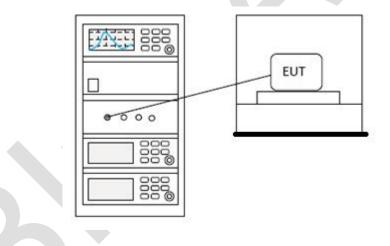
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

15.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202206-A1002 Page 38 of 60

15.1 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


16 POWER SPECTRUM DENSITY

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.10.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25 ℃
Humidity	55%

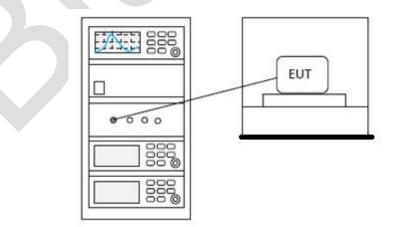
16.1 LIMITS

Limit: ≤ 8 dBm in any 3 kHz band during any time interval of continuous transmission

16.2 BLOCK DIAGRAM OF TEST SETUP

16.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


17 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.5
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25 ℃
Humidity	55%

17.1 LIMITS

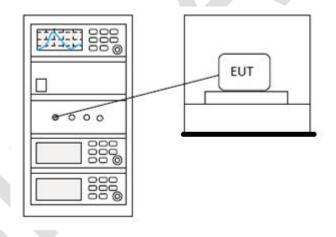
Frequency range(MHz)	Output power of the intentional radiator(watt)			
	1 for \geq 50 hopping channels			
902-928	0.25 for $25 \le$ hopping channels < 50			
	1 for digital modulation			
	1 for ≥75 non-overlapping hopping channels			
2400-2483.5	0.125 for all other frequency hopping systems			
	1 for digital modulation			
5725 5950	1 for frequency hopping systems and digital			
5725-5850	modulation			

17.2 BLOCK DIAGRAM OF TEST SETUP

Report No.: BLA-EMC-202206-A1002 Page 41 of 60

17.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


18 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.8.1
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25 ℃
Humidity	55%

18.1 LIMITS

Limit: $\geq 500 \text{ kHz}$

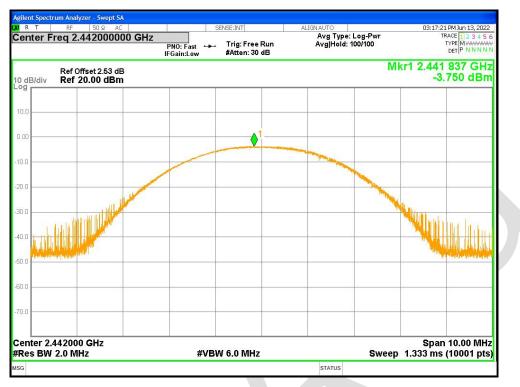
18.2 BLOCK DIAGRAM OF TEST SETUP

18.3 TEST DATA

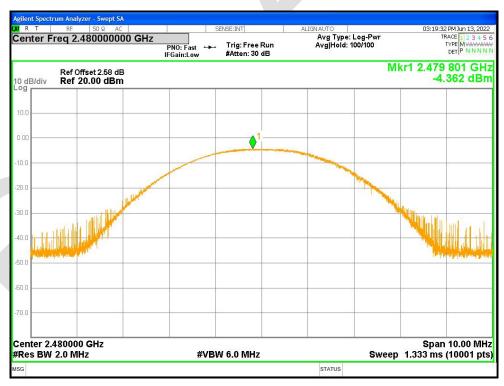
Pass: Please Refer To Appendix: Appendix1 For Details

19 APPENDIX

Maximum Conducted Output Power


Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-3.063	30	Pass
NVNT	BLE	2442	Antl	-3.75	30	Pass
NVNT	BLE	2480	Ant1	-4.362	30	Pass

Power NVNT BLE 2402MHz Ant1



Power NVNT BLE 2442MHz Ant1

Power NVNT BLE 2480MHz Ant1

-6dB Bandwidth

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant1	0.685	0.5	Pass
NVNT	BLE	2442	Ant1	0.682	0.5	Pass
NVNT	BLE	2480	Ant1	0.691	0.5	Pass

-6dB Bandwidth NVNT BLE 2402MHz Ant1

-6dB Bandwidth NVNT BLE 2442MHz Ant1

Agilent Spectrum Analyzer - Occupied	BW				
R T RF 50 Ω AC Center Freq 2.442000000	0 GHz #IFGain:Low	SENSE:INT Center Freq: 2.4420000 Trig: Free Run #Atten: 30 dB	ALIGN AUTO 000 GHz Avg Hold: 100/100		03:17:34 PMJun 13, 2022 dio Std: None dio Device: BTS
Ref Offset 2.53 c				Mkr3	2.442341 GHz -15.086 dBm
.og 12.5					
2.53		A1			
7.47	\wedge^2	Land Land	3		
17.5	and which	The Adam	an addressed	Ne	
27.5		· · · · · · · · · · · · · · · · · · ·	V	nom	
37.5 mmmmmmmmmm					and house all
17.5					8
57.5					
67.5					
Center 2.442 GHz #Res BW 100 kHz		#VBW 300 k	Hz		Span 2 MHz Sweep 1.333 ms
Occupied Bandwid	th	Total Power	0.76 dBm		
	.0663 MHz				
Transmit Freq Error	339 Hz	OBW Power	99.00 %		
x dB Bandwidth	682.1 kHz	x dB	-6.00 dB		
sg			STATUS		

-6dB Bandwidth NVNT BLE 2480MHz Ant1

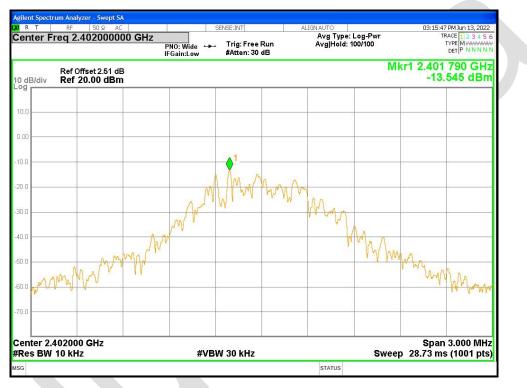
Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE	2402	Ant1	1.0643
NVNT	BLE	2442	Ant1	1.0666
NVNT	BLE	2480	Ant1	1.0500

OBW NVNT BLE 2402MHz Ant1

OBW NVNT BLE 2442MHz Ant1

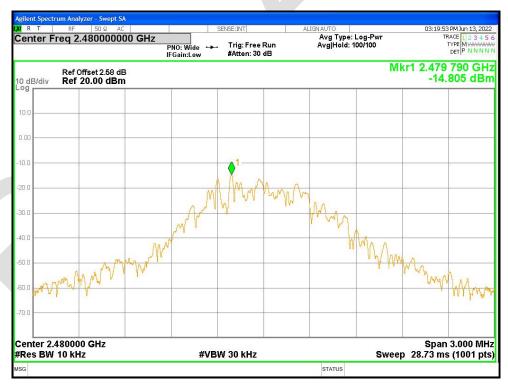
OBW NVNT BLE 2480MHz Ant1



Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-13.545	8	Pass
NVNT	BLE	2442	Ant1	-14.135	8	Pass
NVNT	BLE	2480	Ant1	-14.805	8	Pass

PSD NVNT BLE 2402MHz Ant1



PSD NVNT BLE 2442MHz Ant1

PSD NVNT BLE 2480MHz Ant1

Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Antl	-45.48	-30	Pass
NVNT	BLE	2480	Antl	-49.61	-30	Pass

Band Edge NVNT BLE 2402MHz Ant1 Ref

Band Edge NVNT BLE 2402MHz Ant1 Emission

		ectrur		lyzer - Swept SA							
X/R			RF	50 Ω AC	9	SENSE:INT		ALIGNAUTO			4 PM Jun 13, 2022
Cen	ter	Fre	eq 2	.356000000 GHz	PNO: Fast +++ IFGain:Low	Trig: Fre #Atten: 3		Avg Type Avg Hold:		Т	RACE 123456 TYPE MWWWW DET PNNNNN
l0 d	B/div			Offset 2.51 dB 20.00 dBm							02 3 GHz 369 dBm
10.0										~	
0.00											
-10.0											r i
-20.0											
-30.0											
-40.0											-34.45 dBm
-40.0				0.	$\langle \rangle^4$					A3	
-60.0	10 At	re los	a dem	http://www.tonacharden	A martine	Adatabara	A. ANTINA AN	applanter and and a second and a	Menhaltere	Anumantion	what he
-70.0											
-70.0											
			00 (00		#VB\	N 300 kH	z		Swee	Stop 2. p 9.600 ms	40600 GHz s (1001 pts)
MKR	MODE	TRC	SCL	×	Y		INCTION	FUNCTION WIDTH		FUNCTION VALUE	~
1 2 3	N N N	1	f f	2.402 3 GH 2.400 0 GH 2.390 0 GH	z -47.063	dBm					
	N		f	2.336 9 GH							
5 6											a
7											
4 5 7 8 9											
10 11											
<											
SG								STATUS			

Band Edge NVNT BLE 2480MHz Ant1 Ref

Band Edge NVNT BLE 2480MHz Ant1 Emission

T RF 50 \$	vept SA Ω AC	SENS	SE:INT	ALIGN AUTO		03:20:01 PM Jun 13, 3
ter Freq 2.5260	PN	D: Fast 🔸	Trig: Free Run #Atten: 30 dB	Avg Type: Avg Hold: 1		TRACE 1 2 3 TYPE MWW DET P N N
Ref Offset 2 B/div Ref 20.00					N	1kr1 2.480 0 G -5.896 di
					c	
 ∲ ' ────						
A I		2				
						-35.6
1054						
w Whenrene	monowenter	han mount of the	mandahaha	monal of all marken war	www.www.www.www.	manunaliphan
2 2	9.	12			2	
t 2.47600 GHz s BW 100 kHz		#VBW	300 kHz		Sweep	Stop 2.57600 C 9.600 ms (1001
MODE TRC SCL	× 2.480 0 GHz	-5.896 dB	FUNCTION	FUNCTION WIDTH	FUN	ICTION VALUE
N 1 f	2.483 5 GHz 2.500 0 GHz	-56.454 dB -58.751 dB	m			
N 1 f N 1 f	2.484 2 GHz	-55.301 dB				

Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-41.02	-30	Pass
NVNT	BLE	2442	Ant1	-39.95	-30	Pass
NVNT	BLE	2480	Ant1	-39.5	-30	Pass

Tx. Spurious NVNT BLE 2402MHz Ant1 Ref

Tx. Spurious NVNT BLE 2402MHz Ant1 Emission

Agiler	it Spe	ctrur	n Anal	lyzer - Swept SA				12				
^ø R Den	ter	Fre	RF eq 1	50 Ω AC 3.2650000	00 GHz		SENSE:INT	Run	ALIGNAUTO Avg Type: Avg Hold:			8 PM Jun 13, 2022 RACE 1 2 3 4 5 6 TYPE M WWWWWW
						NO: Fast ↔ Gain:Low	#Atten: 30					DET PNNNNN
10 d	B/div			Offset 2.51 dB 20.00 dBm								.412 GHz 312 dBm
Log												
10.0							-					
0.00				201			-					
10.0			0	1.			2	-			-	
-20.0			Ť									
-30.0											3	-34.40 dBm
-40.0				\wedge^3	∧4	() ⁵	8				San San San	manu
-50.0			A	werdenander	man madam	mandin	mound	all malls	mansonaturener	And a start and a start of the		
-60.0	hand	Non P	401									
-70.0							8			6	2	
	t 30 s Bl		Hz 00 k	Hz		#VB	W 300 kHz			Sw		26.50 GHz s (1001 pts)
MKR	MODE	TRC		×		Y		ICTION	FUNCTION WIDTH		FUNCTION VALUE	~
1	NN		f		2.412 GHz 25.706 GHz	-20.312 -45.427						
23	N		f		4.795 GHz	-51.448	dBm					
4 5	N N		f f		7.256 GHz 9.612 GHz	-54.984 -50.280						
6												
4 5 6 7 8 9												
9 10												
2 3 4 5 6 7 8 9 10 11												~
SG									STATUS			
-									0.11130			

Tx. Spurious NVNT BLE 2442MHz Ant1 Emission

Agile	nt Spe	ctru	n Anal	lyzer - Swept SA								
XI R Cer	ter	Fre	RF 9 q 1	50 Ω AC 3.2650000	Р	NO: Fast +++ Gain:Low	Trig: Free #Atten: 30		ALIGN AUTO Avg Type Avg Hold	e: Log-Pwr : 10/10		6 PM Jun 13, 2022 RACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N
10 d Log	B/div			Offset 2.53 dB 20.00 dBm								.439 GHz 807 dBm
10.0	-						-					
0.00	⊢			1			-					
-10.0	-		-7					20		-		
-20.0	⊢		-									
-30.0												-35,11 dBm
-40.0	-			03	a A	5						\wedge
-50.0			h	aming a first	mandina	\bigcirc	- marken	and the second	at more many and and	and the second s	and the second	Product subscript.
-60.0	-	hila		- Marchard								
-70.0			2				2			0	2	
	rt 30 s B		Hz 00 k	Hz		#VB	W 300 kH	z		Sw	Stop eep 2.530	26.50 GHz s (1001 pts)
	MODE	TRC		×		Y		NCTION	FUNCTION WIDTH		FUNCTION VALUE	~
1 2 3	NN		f f		2.439 GHz 25.150 GHz	-9.807 -45.060						
	N	1	f		4.874 GHz 7.150 GHz	-54.546 -54.966						
5	N		f		9.771 GHz	-54.887						1
4 5 7 8 9												
9												
11												~
<												
ISG									STATUS			

Tx. Spurious NVNT BLE 2480MHz Ant1 Emission

R T RF 50	Ω AC	SE	NSE:INT	ALIGN AUTO		03:20:36 PM Jun 13, 2022
nter Freq 13.26	Ph	IO: Fast ↔ ain:Low	Trig: Free Run #Atten: 30 dB	Avg Type: Avg Hold: ^		TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N
Ref Offset: dB/div Ref 20.00					N	/kr1 2.492 GHz -6.610 dBm
.0						
io						
0						
0						
						-35.70 dBr
0	A3 A4	- 5				
0	almonth	5	woodware and	ahr Margar Marthan Marthan	a show the second	
0						
		2				
art 30 MHz es BW 100 kHz		#VBW	í 300 kHz		Sweep	Stop 26.50 GHz 2.530 s (1001 pts
MODE TRC SCL	X	Y	FUNCTION	FUNCTION WIDTH	FUNCT	ION VALUE
N 1 f N 1 f N 1 f	2.492 GHz 23.747 GHz 4.953 GHz	-6.610 d -45.210 d -53.102 d	Bm Bm			
N 1 f N 1 f	7.521 GHz 10.036 GHz	-55.209 d -56.293 d				

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

APPENDIX B: PHOTOGRAPHS OF EUT

Reference to the test report No. BLA-EMC-202206-A1001

----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.