

Report No.:CTA231114011W01

Issued for

Buddi Limited

Talbot House 17 Church Street Rickmansworth, WD3 1DE United Kingdom

Product Name: Smart ID

Brand Name: Buddi Limited

TING

Model Name: S10-BUD-A-TEEU-SID

Series Model(s): 7630001

FCC ID: ZDLST9

Test Standards: FC

FCC Part15.247

CTATESTING

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from CTA, all test data presented in this report is only applicable to presented test sample.

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

TEST REPORT

Applicant's Name	Buddi Limited	
Address	Talbot House 17 Church Street Rickmansworth, WD3 1DE United Kingdom	
Manufacturer's Name	Buddi Limited	
Address	Talbot House 17 Church Street Rickmansworth, WD3 1DE United Kingdom	
Product Description	CTATES TNG	
Product Name:	Smart ID Buddi Limited	
Brand Name:	Buddi Limited	
Model Name		
Series Model(s):	7630001	
Test Standards	FCC Part 15.247	
Test Procedure:	ANSI C63.10-2013	
test (EUT) is in compliance with identified in the report. This report shall not be reproduce	s been tested by CTA, the test results show that the equipment under the FCC requirements. And it is applicable only to the tested sample ced except in full, without the written approval of CTA, this document A, personal only, and shall be noted in the revision of the document.	
Date of Test		

20 Oct. 2023
20 Oct. 2023 ~ 27 Dec. 2023
27 Dec. 2023
Pass

Testing Engineer

Joey Car

(Zoey Cao)

Anny Won

(Amy Wen)

unori Authorized Signatory :

Technical Manager :

Eric Wang رست (Eric Wang)

Table of Contents	Page TES'
	GA
1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	TEST 8
2.2 DESCRIPTION OF THE TEST MODES	CTATES 10
2.3 TEST SOFTWARE AND POWER LEVEL	10
2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATIO	ON OF SYSTEM TESTED 11
2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	13
3. EMC EMISSION TEST	15
3.1 CONDUCTED EMISSION MEASUREMENT	15
3.2 RADIATED EMISSION MEASUREMENT	TESTING 19
4. CONDUCTED SPURIOUS & BAND EDGE EMISSION	30
4.1 LIMIT	30 30
4.2 TEST PROCEDURE	30
4.3 DEVIATION FROM STANDARD	30
4.4 TEST SETUP	30
4.5 EUT OPERATION CONDITIONS	30
4.6 TEST RESULTS 5. POWER SPECTRAL DENSITY TEST	30
5. POWER SPECTRAL DENSITY TEST	31
5.1 LIMIT	CTA TEST 31 31 31
5.2 TEST PROCEDURE	C1 31
5.3 DEVIATION FROM STANDARD	31
5.4 TEST SETUP	31
5.5 EUT OPERATION CONDITIONS	31
5.6 TEST RESULTS 6. BANDWIDTH TEST 6.1 LIMIT	31
6. BANDWIDTH TEST	32 32
6.1 LIMIT	TATESTING 32 32 32 32 32 32 32 32 32 32
6.2 TEST PROCEDURE	32 - STIN
6.3 DEVIATION FROM STANDARD	32 32 32 32
6.4 TEST SETUP 6 5 FUT OPERATION CONDITIONS	32
	32
6.6 TEST RESULTS	32
6.6 TEST RESULTS	
GA CTATES	
C CTA IE	TESTING
	TED

Page 3 of 78

Page 4 of 78	Report No.: CTA231114011W01
Table of Contents	Page
7. PEAK OUTPUT POWER TEST	33
7.1 LIMIT	33
7.2 TEST PROCEDURE	33
7.2 TEST PROCEDURE 7.3 DEVIATION FROM STANDARD 7.4 TEST SETUP	33
	34
7.5 EUT OPERATION CONDITIONS 7.6 TEST RESULTS	CTA TES 34 34 34
8. ANTENNA REQUIREMENT 8.1 STANDARD REQUIREMENT	35 35
8.2 EUT ANTENNA	35
APPENDIX 1-TEST DATA	20
1. DUTY CYCLE	STATESTING 36
2. MAXIMUM AVERAGE CONDUCTED OUTPUT POWER	CTATES 42 CTIN
	42 TESTI
3. MAXIMUM PEAK CONDUCTED OUTPUT POWER	48
G 46DB BANDWIDTH	49
5. MAXIMUM POWER SPECTRAL DENSITY LEVEL	55
6. BAND EDGE	61
7. CONDUCTED RF SPURIOUS EMISSION	<i>5</i> 68
APPENDIX 2-PHOTOS OF TEST SETUP	78
7. CONDUCTED RF SPURIOUS EMISSION APPENDIX 2-PHOTOS OF TEST SETUP	CTATESTI78G

Page 5 of 78 Report No.: CTA231114011W01

Revision	History	κŲ

			(20)	1
Rev.	Issue Date	Report No.	Effect Page	Contents
00	27 Dec. 2023	CTA231114011W01	ALL	Initial Issue
	STIN	G		
	CTATESTIN	CTA CTA		
		CTA CTA		
	ring			
ia tes				
		CTATESTING	GA CTAT	ESTING
			CTA '	GA CTAT
				CTA '
	CTATESTIN			
	CTA			
				TESTING
				CTA TESTING
	ring			
		CTATESTING		
			GTA CTAT	
				ES
	CTATESTIN			
		GACTAT	ESTING	
		CTA		ESTING

1. SUMMARY OF TEST RESULTS

	FCC Part 15.247,Subpart C		
Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	PASS	
15.247 (a)(2)	6dB Bandwidth	PASS	-55TING
15.247 (b)(3)	Output Power	PASS	
15.209	Radiated Spurious Emission	PASS	
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS	
5 15.247 (e)	Power Spectral Density	PASS	
15.205	Restricted Band Edge Emission	PASS	
Part 15.247(d)/ part 15.209(a)	Band Edge Emission	PASS	
15.203	Antenna Requirement	PASS	
	Gro		
1) 'N/A' denotes test is	not applicable in this Test Report.		CV

NOTE:

.ang (2) All tests are according to ANSI C63.10-2013.

1.1 TEST FACTORY

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,Fuhai Street, Bao'an District, Shenzhen, China FCC test Firm Registration Munit District, Shenzhen, China

FCC test Firm Registration Number: 517856

IC test Firm Registration Number: 27890 CTATESTING

A2LA Certificate No.: 6534.01

IC CAB ID: CN0127

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence CTATEST of approximately 95 %.

Test	Range	Measurement Uncertainty	
Radiated Emission	30~1000MHz	4.06 dB	
Radiated Emission	1~18GHz	5.14 dB	
Radiated Emission	18-40GHz	5.38 dB	
Conducted Disturbance	0.15~30MHz	2.14 dB	
Output Peak power	30MHz~18GHz	0.55 dB	TIN
Power spectral density		0.57 dB	TESI
Spectrum bandwidth		1.1%	CTA'
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	GTA TESTIN
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	
GA	CTATESTING	CTATE	STING

Report No.: CTA231114011W01

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

1 GENERAL DESCRIPTION		CA CTATE		
Product Name	Smart ID			
Brand Name	Buddi Limited			
Model Name	S10-BUD-A-TEEU-S	SID		
Series Model(s)	7630001	7630001		
Model Difference	The difference only in the model name.			
	The EUT is a Smart	ID CTA		
Product Description	Operation Frequency:	802.11b/g/n 20: 2412~2462 MHz		
	Modulation Type:	802.11b(DSSS):CCK,DQPSK,DBPSK 802.11g(OFDM):BPSK,QPSK,16-QAM,64-QAM 802.11n(OFDM):BPSK,QPSK,16-QAM,64-QAM		
	Bit Rate of Transmitter:	802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6Mbps 802.11n(20MHz): 65/58.5/52/39/26/19.5/13/6.5Mbps		
	Number of	802.11b/g/n20: 11CH		
	Antenna Type:	SMD		
	Antenna Gain (dBi):	3.5 dBi		
Channel List	Please refer to the N	Please refer to the Note 3.		
Adapter	Smart ID Dock (with Input: DC 5V, 1.2A Output: DC 5V, 1.2A Charging head: Input:100-240V~, 50 Output:DC 5V 1.2A	D/60Hz, 0.3A		
Battery	Rated Voltage: 3.7V Charge Limit Voltage Capacity: 2650mAh	e: 4.2V		
Rating	Input:DC 5V 1.2A			
Hardware version number	V14.0			
Software version number	1.41.2			
Connecting I/O Port(s)	Please refer to the N	Note 1.		

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.
- 2. The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer. CTA TESTING

Page 9 of 78

Report No.: CTA231114011W01

\mathbf{r}	
J	,

Channel	Frequency	Channel	Frequency
01	2412	07	2442
02	2417	08	2447
03	2422	09	2452
04	2427	10	2457
05	2432	11	2462
06	2437	TING	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, themiddle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below: **Carrier Frequency Channel**

2.4GHz Test Frequency:

For 802	2.11b/g/n (HT20)	
Channel	Freq.(MHz)	
01	2412	
06	2437	
11	2462	TE
		CTA
CTATESTING		

2.2 DESCRIPTION OF THE TEST MODES

Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

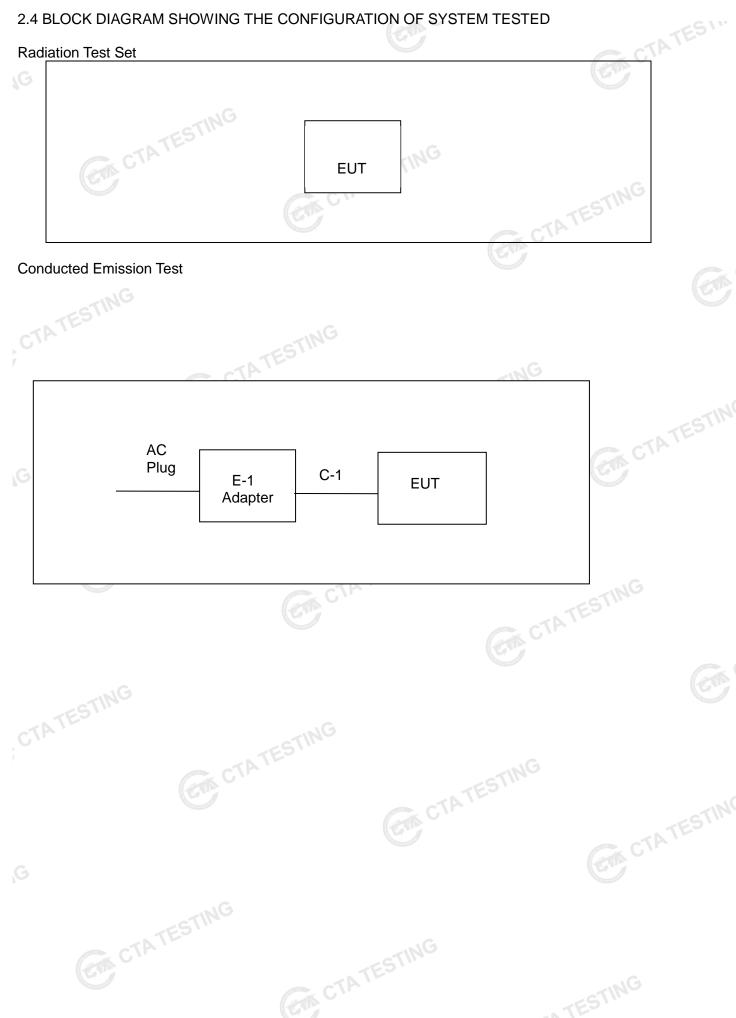
Worst Mode	Description	Data Rate			
Mode 1	TX IEEE 802.11b CH1	1 Mbps			
Mode 2	TX IEEE 802.11b CH6	1 Mbps			
Mode 3	TX IEEE 802.11 b CH11	1 Mbps			
Mode 4	TX IEEE 802.11g CH1	6 Mbps			
Mode 5	TX IEEE 802.11g CH6	6 Mbps			
Mode 6	TX IEEE 802.11g CH11	6 Mbps			
Mode 7	TX IEEE 802.11n HT20 CH1	MCS 0			
Mode 8	TX IEEE 802.11n HT20 CH6	MCS 0			
Mode 9	TX IEEE 802.11n HT20 CH11	MCS 0			
lote.	GA	CTATES			

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

- (2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz
- and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V /60Hz is shown in the report.
- (3) The battery is fully-charged during the radited and RF conducted test.

AC Conducted Emission


Test Case	
Mode10: Keeping WIFI TX	ESTIN

2.3 TEST SOFTWARE AND POWER LEVEL

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

-1-	RF Function	Туре	Mode Or Modulation type	ANT Gain(dBi)	Power Class	Software For Testing	
			802.11b		Default	The EUT has	
	WIFI(2.4G)	2.4G WIFI	802.11g	3.5	Default	signal transmission	
		G	802.11n(HT20)	- AT	Default	when it is powered on	
				CIA O.		TA	TESTIN
						GIA CT	

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Page 12 of 78

2.5 DESCRIPTION OF necessary accessories AND support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
N/A	N/A	N/A	N/A	G N/A	N/A
	CAN CT		TESTI		.6
			CIACIA		TESTING
				G	CTA

Support units

							H.C.
	Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note	
Č	E-1	Adapter	HUAWEI	HW-050450C00	N/A	N/A	
٢	C-1	USB Cable	N/A	N/A	100cm	G NO	
					CTATES.		-IN!
				G		TP	TESI
						Carlo C.	

Note:

(1) For detachable type I/O cable should be specified the length in cm in [®]Length column.

(2) "YES" is means "with core"; "NO" is means "without core".

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date	
LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01	
LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01	
EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01	
EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01	
Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01	100
Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01	
Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01	
Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01	
WIDEBAND RADIO COMMUNICATIO N TESTER	CMW500	R&S	CTA-302	2023/08/02	2024/08/01	ES
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01	
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16	
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12	
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16	
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06	
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01	6100
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01	
Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01	
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01	
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01	ES
Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01	
Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01	
Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01	
(CTA)		CTATES	* -		STING	-

Page 14 of 78

Report No.: CTA231114011W01

Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date	
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A	
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A	
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A	
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	ST N/A	
				CIA CI	·	

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

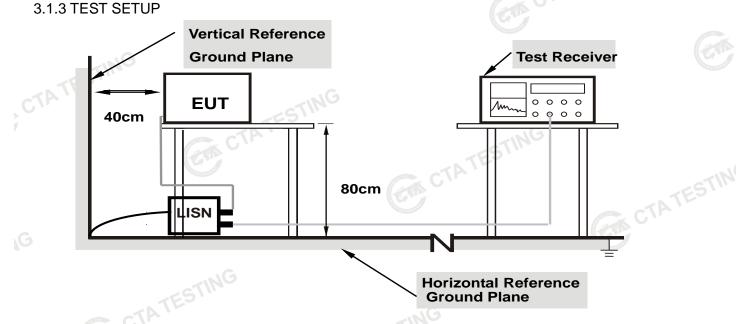
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

FREQUENCY (MHz)	Conducted Emissionlimit (dBuV)				
FREQUENCT (MHZ)	Quasi-peak	Average			
0.15 -0.5	66 - 56 *	56 - 46 *			
0.50 -5.0	56.00	46.00			
5.0 -30.0	60.00	50.00			

Note:

(1) The tighter limit applies at the band edges.


(2) The limit of "*" marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

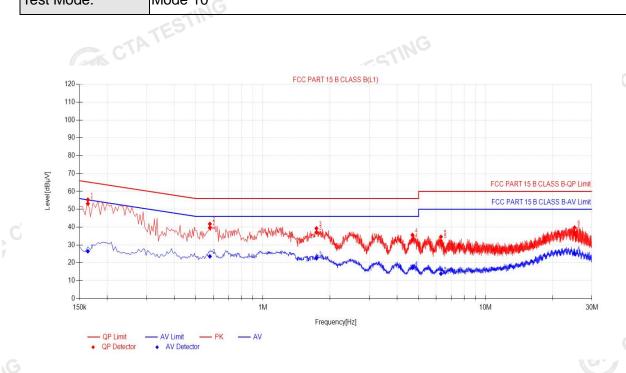
The following table is the setting of the receiver

to relieving table to the botting of				
Receiver Parameters	5		Setting	
Attenuation		GTA C'	10 dB	
Start Frequency		and the second sec	0.15 MHz	GTA CTA
Stop Frequency			30 MHz	Constant of the second se
IF Bandwidth			9 kHz	
CTATES CTATES		TESTING		
		TES		
				TESTING

3.1.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note: 1. Support units were connected to second LISN.


2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.1.4EUT OPERATING CONDITIONS

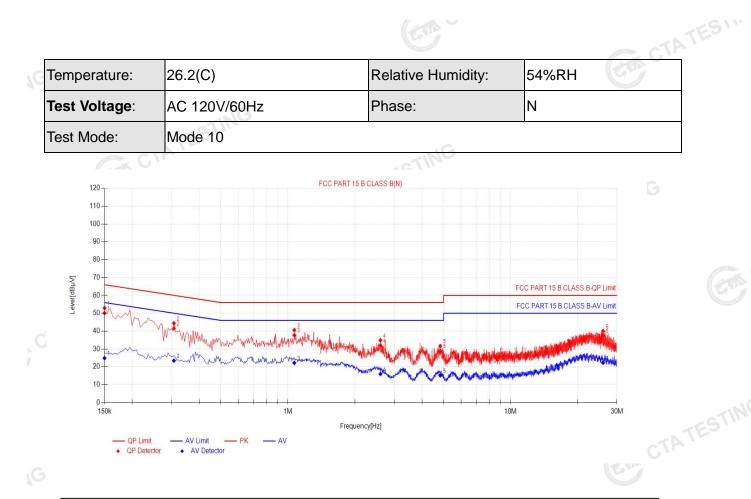
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.5 TEST RESULT

3.1.5 TEST RESUL	Т				-51"
Temperature:	23.5(C)	Relative Humidity:	62%RH	CTP	TES
Test Voltage:	AC 120V/60Hz	Phase:	L	(CTA)	
Test Mode:	Mode 10				

Final	Final Data List										
NO.	Freq. [MHz]	Factor (dB)	QP Readingid <u>B</u>	QP Value MBUVJ	QP Limit IdBu\J	QP Margin (dB)	AV Reading IdBu\\]	AV Value IdBuVJ	AV Limit IdBu\J	AV Margin (dB)	Verdict
1	0.1635	10.50	42.69	53.19	65.28	12.09	15.99	26.49	55.28	28.79	PASS
2	0.5775	10.50	29.13	39.63	56.00	16.37	13.11	23.61	46.00	22.39	PASS
3	1.7385	10.50	26.63	37.13	56.00	18.87	12.04	22.54	46.00	23.46	PASS
4	4.6905	10.50	22.36	32.86	56.00	23.14	6.73	17.23	46.00	28.77	PASS
5	6.3015	10.50	21.71	32.21	60.00	27.79	3.41	13.91	50.00	36.09	PASS
6	25.0755	10.50	26.56	37.06	60.00	22.94	14.63	25.13	50.00	24.87	PASS

Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)


2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)

3). QPMargin(dB) = QP Limit (dB μ V) - QP Value (dB μ V)

4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)

Page 18 of 78

Report No.: CTA231114011W01

Fina	Final Data List										
NO.	Freq. [MHz]	Factor (dB)	QP Readingid <u>R</u> W	QP Value MBUVJ	QP Limit IdBu\J	QP Margin (dB)	AV Reading IdBu\J	AV Value MBUM	AV Limit IdBu\J	AV Margin (dB)	Verdict
1	0.15	10.50	39.58	50.08	66.00	15.92	14.37	24.87	56.00	31.13	PASS
2	0.3075	10.50	31.04	41.54	60.04	18.50	12.97	23.47	50.04	28.57	PASS
3	1.068	10.50	27.22	37.72	56.00	18.28	11.69	22.19	46.00	23.81	PASS
4	2.6025	10.50	21.50	32.00	56.00	24.00	5.50	16.00	46.00	30.00	PASS
5	4.83	10.50	18.38	28.88	56.00	27.12	4.67	15.17	46.00	30.83	PASS
6	26.016	10.50	27.06	37.56	60.00	22.44	11.77	22.27	50.00	27.73	PASS

Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)

2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)

3). QPMargin(dB) = QP Limit (dB μ V) - QP Value (dB μ V)

4). AVMargin(dB) = AV Limit (dBμV) - AV Value (dBμV)

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

	Frequencies	Field Strength	Measurement Distance
	(MHz)	(micorvolts/meter)	(meters)
	0.009~0.490	2400/F(KHz)	300 511
	0.490~1.705	24000/F(KHz)	30
	1.705~30.0	30	30
	30~88	100	3
	88~216	150	3
CTAT	216~960	200	3
	Above 960	TES 500	3
			ING

LIMITS OF RADIATED EMISSION MEASUREMENT (1000MHz-25GHz)

	(dBuV/	(dBuV/m) (at 3M)				
FREQUENCY (MHz)	PEAK	AVERAGE	CTATES			
Above 1000	74	54	0.			

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

LIMITS OF RESTRIC	TED FREQUENCY BAN	DS	FESTING
FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41	1.00		
CTA IL	GK CTP	TESTING	STATESTING
	G		ATATES

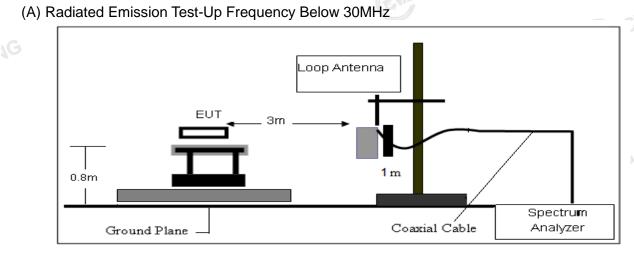
For Radiated Emission

Setting
Auto
Peak/QP/AV
9 KHz/150KHz(Peak/QP/AV)
150KHz/30MHz(Peak/QP/AV)
200Hz (From 9kHz to 0.15MHz)/
9KHz (From 0.15MHz to 30MHz);
200Hz (From 9kHz to 0.15MHz)/
9KHz (From 0.15MHz to 30MHz)

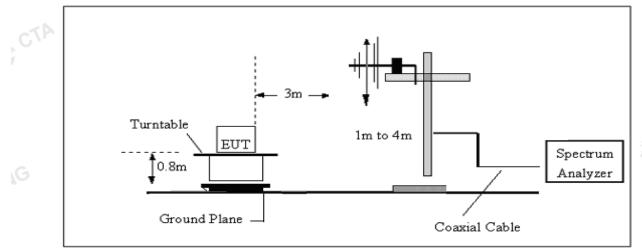
	Spectrum Parameter	Setting	
	Attenuation	Auto	
	Detector	Peak/QP	
J	Start Frequency	30 MHz(Peak/QP)	
	Stop Frequency	1000 MHz (Peak/QP)	
	RB / VB (emission in restricted band)	120 KHz / 300 KHz	
			10
	Spectrum Parameter	Setting	
- E			

G	Spectrum Parameter	Setting
	Attenuation	Auto
	Detector	Peak/AV
	Start Frequency	1000 MHz(Peak/AV)
	Stop Frequency	10th carrier hamonic(Peak/AV)
	RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)
	band)	1 MHz/1/T MHz(AVG)
Fo	r Restricted band	C. C.

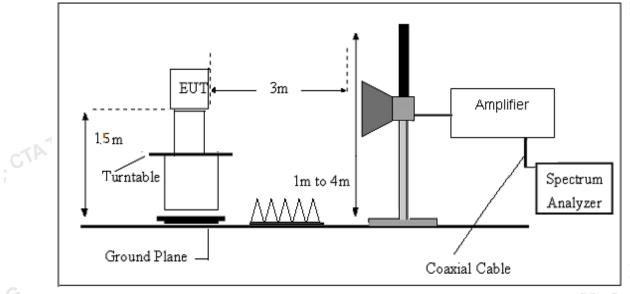
	Spectrum Parameter		Setting		
	Detector		Peak/AV		
	Stort/Stop Frequency		Lower Band Edge: 2310 to 243	0 MHz	
C	Start/Stop Frequency	TING	Upper Band Edge: 2445 to 250	0 MHz	
	RB / VB	5	1 MHz / 3 MHz(Peak)		
	RB7 VB		1 MHz/1/T MHz(AVG)		
	Co.		CTATL		
				CACTAT	ESI
				GAN CIN	


	Receiver Parameter	Setting
	Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
\G	Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
	Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
	Start ~ Stop Frequency490kHz~30MHz / RB 9kHz for QP	
	Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP
		TIN

3.2.2 TEST PROCEDURE


- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, TATESTING the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported. Jrs


3.2.3 TEST SETUP

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.4 EUT OPERATING CONDITIONS Please refer to section 3.1.4 of this report.

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the matter of the matte Gequation with a sample calculation is as follows:

FS = RA + AF + CL - AGWhere FS = Field Strength

FS = Field Strength CL = Cable Attenuati RA = Reading Amplit AG = Amplifier Gain	ude	ble Loss)	TATES			
AF = Antenna Factor For example						TESTING
Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300 G	40	58.1	12.2	1.6	31.9	-18.1
Factor=AF+CL-AG	CTA CTA	TESTING			ESTING	
				CTAT		

Factor=AF+CL-AG

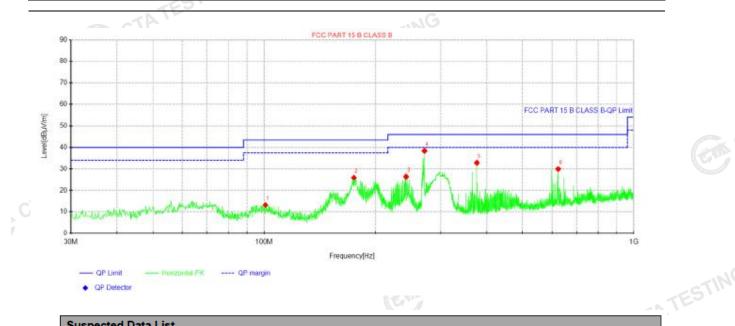
Page 24 of 78

Report No.: CTA231114011W01

3.2.6 TEST RESULT

3.2.6 TEST RESU	LT	(61)			TESI"
9KHz-30MHz				GAN CTP	
G Temperature:	23.1(C)	Relative Humidtity:	60%RH	Constant of the second se	
Test Voltage:	DC 3.7V	Polarization:			
Test Mode:	TX Mode	TING			
GIA		TATESI		G	- -

Course of the					- NG	
Freq.	Reading	Limit	Margin	State	Test	
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	Result	
					PASS	
					PASS	
Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the						


The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); CTATE Limit line = specific limits(dBuv) + distance extrapolation factor.

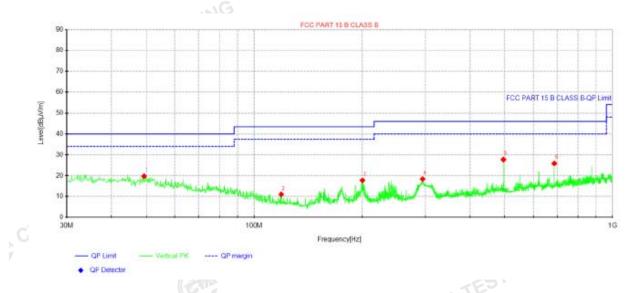
Page 25 of 78

Report No.: CTA231114011W01

	(30MHz - 1000MHz)	Ň		TESI"
	Temperature:	23.1(C)	Relative Humidtity:	60%RH	
ľG	Test Voltage:	DC 3.7V	Phase:	Horizontal	
	Test Mode:	Mode 1/2/3/4/5/6/7/8/9 (Mode 6 worst r	node)		

NO.		Reading	Level	Factor	Limit	Margin	Height	Angle		
	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	100.81	31.62	13.22	-18.40	43.50	30.28	100	261	Horizontal	
2	174.893	46.76	25.96	-20.80	43.50	17.54	100	269	Horizontal	
3	242.187	44.63	26.42	-18.21	46.00	19.58	100	106	Horizontal	
4	271.408	56.12	38.43	-17.69	46.00	7.57	100	163	Horizontal	
5	376.047	48.66	32.87	-15.79	46.00	13.13	100	163	Horizontal	
6	624.61	42.08	29.90	-12.18	46.00	16.10	100	163	Horizontal	
1).Level (dB μ V/m)= Reading (dB μ V)+ Factor (dB/m)										

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)


.argir 3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Page 26 of 78

Report No.: CTA231114011W01

TESTING

Temperature:	23.1(C)	Relative Humidity:	60%RH		-
Test Voltage:	DC 3.3V	Phase:	Vertical	CTP CTP	
Test Mode:	Mode 1/2/3/4/5/6/7/8/9 (Mode	6 worst mode)			

						~ 1			
Suspe	ected Data	List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delevity
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	49.2788	35.89	19.77	-16.12	40.00	20.23	100	189	Vertical
2	118.997	31.13	10.98	-20.15	43.50	32.52	100	51	Vertical
3	200.477	37.01	17.73	-19.28	43.50	25.77	100	341	Vertical
4	294.81	35.80	18.38	-17.42	46.00	27.62	100	123	Vertical
5	496.085	42.09	27.72	-14.37	46.00	18.28	100	26	Vertical
6	687.538	37.63	25.89	-11.74	46.00	20.11	100	18	Vertical

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB) 3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

Page 27 of 78

(1000MHz-25GHz) Spurious emission Requirements

					802.11	g				CTATE
Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Corrected Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	0011110111
	•	-55	1	Low Cha	annel (802.11g	/2412 MHz)		•		
3264.84	61.25	44.70	6.70	28.20	-9.80	51.45	74.00	-22.55	PK	Vertical
3264.84	51.48	44.70	6.70	28.20	-9.80	41.68	54.00	-12.32	AV	Vertical
3264.67	61.32	44.70	6.70	28.20	-9.80	51.52	74.00	-22.48	PK	Horizontal
3264.67	51.26	44.70	6.70	28.20	-9.80	41.46	54.00	-12.54	AV	Horizontal
4824.42	58.88	44.20	9.04	31.60	-3.56	55.32	74.00	-18.68	PK	Vertical
4824.42	49.47	44.20	9.04	31.60	-3.56	45.91	54.00	-8.09	AV	Vertical
4824.58	58.71	44.20	9.04	31.60	-3.56	55.15	74.00	-18.85	PK	Horizontal
4824.58	49.13	44.20	9.04	31.60	-3.56	45.57	54.00	-8.43	AV	Horizontal
5359.85	49.02	44.20	9.86	32.00	-2.34	46.67	74.00	-27.33	PK	Vertical
5359.85	40.37	44.20	9.86	32.00	-2.34	38.02	54.00	-15.98	AV	Vertical
5359.60	47.97 🕤	44.20	9.86	32.00	-2.34	45.63	74.00	-28.37	PK	Horizontal
5359.60	38.06	44.20	9.86	32.00	-2.34	35.72	54.00	-18.28	AV	Horizontal
7235.79	54.65	43.50	11.40	35.50	3.40	58.05	74.00	-15.95	PK	Vertical
7235.79	44.49	43.50	11.40	35.50	3.40	47.89	54.00	-6.11	AV	Vertical
7235.86	53.97	43.50	11.40	35.50	3.40	57.37	74.00	-16.63	PK	Horizontal
7235.86	43.49	43.50	11.40	35.50	3.40	46.89	54.00	-7.11	AV	Horizontal
				Middle Cl	nannel (802.11	g/2437 MHz)	-ESI	1.		
3264.73	61.48	44.70	6.70	28.20	-9.80	51.68	74.00	-22.32	PK	Vertical
3264.73	51.67	44.70	6.70	28.20	-9.80	41.87	54.00	-12.13	AV	Vertical
3264.59	61.14	44.70	6.70	28.20	-9.80	51.34	74.00	-22.66	PK	Horizontal
3264.59	50.72	44.70	6.70	28.20	-9.80	40.92	54.00	-13.08	AV	Horizontal
4874.31	58.89	44.20	9.04	31.60	-3.56	55.33	74.00	-18.67	PK	Vertical
4874.31	49.21	44.20	9.04	31.60	-3.56	45.65	54.00	-8.35	AV	Vertical
4874.44	58.70	44.20	9.04	31.60	-3.56	55.14	74.00	-18.86	PK	Horizontal
4874.44	49.76	44.20	9.04	31.60	-3.56	46.20	54.00	-7.80	AV	Horizontal
5359.87	49.27	44.20	9.86	32.00	-2.34	46.92	74.00	-27.08	PK	Vertical
5359.87	39.52	44.20	9.86	32.00	-2.34	37.18	54.00	-16.82	AV	Vertical
5359.78	47.97	44.20	9.86	32.00	-2.34	45.63	74.00	-28.37	PK	Horizontal
5359.78	39.21	44.20	9.86	32.00	-2.34	36.86	54.00	-17.14	AV	Horizontal
7310.90	54.49	43.50	11.40	35.50	3.40	57.89	74.00	-16.11	PK	Vertical
7310.90	44.21	43.50	11.40	35.50	3.40	47.61	54.00	-6.39	AV	Vertical
7310.71	54.32	43.50	11.40	35.50	3.40	57.72	74.00	-16.28	PK	Horizontal
7310.71	44.72	43.50	11.40	35.50	3.40	48.12	54.00	-5.88	AV	Horizontal
							#S7	and the second se		

802.11 g

Page 28 of 78

Report No.: CTA231114011W01

				High Chan	nel (802.11g	/2462 MHz)				
3264.71	60.97	44.70	6.70	28.20	-9.80	51.17	74.00	-22.83	PK	Vertical
3264.71	50.43	44.70	6.70	28.20	-9.80	40.63	54.00	-13.37	AV	Vertical
3264.56	61.47	44.70	6.70	28.20	-9.80	51.67	74.00	-22.33	PK	Horizontal
3264.56	50.11	44.70	6.70	28.20	-9.80	40.31	54.00	-13.69	AV	Horizontal
4924.53	59.20	44.20	9.04	31.60	-3.56	55.64	74.00	-18.36	PK	Vertical
4924.53	49.72	44.20	9.04	31.60	-3.56	46.16	54.00	-7.84	AV	Vertical
4924.46	58.55	44.20	9.04	31.60	-3.56	54.99	74.00	-19.01	PK	Horizontal
4924.46	49.95	44.20	9.04	31.60	-3.56	46.39	54.00	-7.61	AV	Horizontal
5359.74	48.49	44.20	9.86	32.00	-2.34	46.15	74.00	-27.85	PK	Vertical
5359.74	39.51	44.20	9.86	32.00	-2.34	37.17	54.00	-16.83	AV	Vertical
5359.65	47.46	44.20	9.86	32.00	-2.34	45.11	74.00	-28.89	PK	Horizontal
5359.65	38.85	44.20	9.86	32.00	-2.34	36.51	54.00	-17.49	AV	Horizontal
7385.89	54.84	43.50	11.40	35.50	3.40	58.24	74.00	-15.76	PK	Vertical
7385.89	43.66	43.50	11.40	35.50	3.40	47.06	54.00	-6.94	AV	Vertical
7385.77	53.91	43.50	11.40	35.50	3.40	57.31	74.00	-16.69	PK	Horizontal
7385.77	44.43	43.50	11.40	35.50	3.40	47.83	54.00	-6.17	AV	Horizontal

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

2. Scan with 802.11b, 802.11g, 802.11n (HT-20) the worst case is 802.11 g.

- Emission Level = Reading + Factor
- Margin = Emission Level-Limit

3. The frequency emission of peak points that did not show above the forms are at least 20dB below

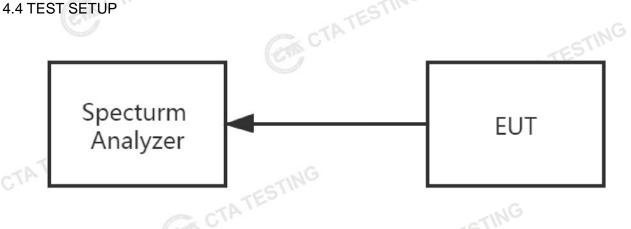
the limit, the frequency emission is mainly from the environment noise.

3.2.6 TEST RESULTS(Band edge Requirements)

						802.11	g				CTI
S		Meter			Antenna	Orrected	Emission				
	Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
	2390.00	66.68	43.80	4.91	25.90	-12.99	53.69	3 74.00	-20.31	PK	Vertical
	2390.00	53.42	43.80	4.91	25.90	-12.99	40.43	54.00	-13.57	AV	Vertical
	2390.00	65.64	43.80	4.91	25.90	-12.99	52.65	74.00	-21.35	РК	Horizontal
	2390.00	53.19	43.80	4.91	25.90	-12.99	40.20	54.00	-13.80	AV	Horizontal
	2483.50	65.38	43.80	5.12	25.90	-12.78	52.60	74.00	-21.40	РК	Vertical
	2483.50	52.86	43.80	5.12	25.90	-12.78	40.08	54.00	-13.92	AV	Vertical
	2483.50	65.45	43.80	5.12	25.90	-12.78	52.67	74.00	-21.33	РК	Horizontal
	2483.50	53.42	43.80	5.12	25.90	-12.78	40.64	54.00	-13.36	AV	Horizontal

Note: 802.11b, 802.11g, 802.11n (HT-20) mode all have been tested, the worst case is 802.11 g, only show the worst case.

4. CONDUCTED SPURIOUS & BAND EDGE EMISSION


4.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

4.2 TEST PROCEDURE

- conducted or a radiated measurement.		
2 TEST PROCEDURE		
	TATE	
Spectrum Parameter	Setting	
Detector	Peak	
Start/Stop Frequency	30 MHz to 10th carrier harmonic	
RB / VB (emission in restricted band)	100 KHz/300 KHz	
Trace-Mode:	Max hold	
or Band edge	NG	
Spectrum Parameter	Setting	
Detector	Peak	
Stort/Stop Frequency	Lower Band Edge: 2300 to 2432 MHz	
Stati/Stop Frequency	Upper Band Edge: 2442 to 2500 MHz	
RB / VB (emission in restricted band)	100 KHz/300 KHz	
Trace-Mode:	Max hold	
	2 TEST PROCEDURE Spectrum Parameter Detector Start/Stop Frequency RB / VB (emission in restricted band) Trace-Mode: or Band edge Spectrum Parameter Detector Start/Stop Frequency RB / VB (emission in restricted band) RB / VB (emission in restricted band)	2 TEST PROCEDURESpectrum ParameterSettingDetectorPeakStart/Stop Frequency30 MHz to 10th carrier harmonicRB / VB (emission in restricted band)100 KHz/300 KHzTrace-Mode:Max holdor Band edgeSettingSpectrum ParameterSettingDetectorPeakStart/Stop FrequencyLower Band Edge: 2300 to 2432 MHzStart/Stop FrequencyLower Band Edge: 2442 to 2500 MHzRB / VB (emission in restricted band)100 KHz/300 KHz

4.3 DEVIATION FROM STANDARD No deviation.

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal TATESTING is 500hm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

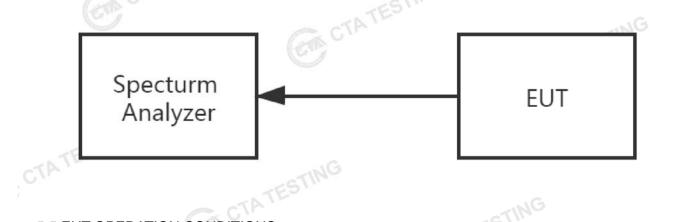
4.5 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report. **4.6 TEST RESULTS**

CTA TESTING Note: The test data please refer to APPENDIX 1.

5. POWER SPECTRAL DENSITY TEST

				CTAT
	FCC Par	t15.247, Subpart C	<u>г</u> т	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(e)	Power Spectral Density	≤8 dBm (RBW ≥3KHz)	2400-2483.5	PASS
5.2 TEST PROC		K CTA	T	ESTING
1. Set analyzer	center frequency to DTS ch	annel center frequen	cy. CTATI	
2. Set the span	to 1.5 times the DTS chann	el bandwidth.		
-				

5.2 TEST PROCEDURE


- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- TATESTING 9. Use the peak marker function to determine the maximum amplitude level.

CTATESTING

10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.3 DEVIATION FROM STANDARD No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report.

5.6 TEST RESULTS


Note: The test data please refer to APPENDIX 1.

6. BANDWIDTH TEST

6. BANDWIDTH T 6.1 LIMIT	EST		(cm)~		
	F	CC Part15.247,Subpar	rt C		
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(a)(2)	Bandwidth	≥500KHz (6dB bandwidth)	2400-2483.5	PASS	
6.2 TEST PROCED	URE	GI	TAT	ESTI	

6.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW≥3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be≥6 dB.

7. PEAK OUTPUT POWER TEST

7.1 LIMIT

7.	PEAK OUTPUT F	OWER TEST		⊳ ~		~cS\"
	7.1 LIMIT		C.		CTP.	150
١G		F	CC Part15.247,Subpa	rt C		
	Section	Test Item	Limit	Frequency Range (MHz)	Result	
	15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS	

7.2 TEST PROCEDURE

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

 $RBW \ge DTS$ bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

a) Set the RBW \geq DTS bandwidth.

b) Set VBW \geq [3 × RBW].

c) Set span ≥ [3 × RBW].

d) Sweep time = auto couple.

e) Detector = peak.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use peak marker function to determine the peak amplitude level.

Integrated band power method:

CTA TESTIN The following procedure can be used when the maximum available RBW of the instrument is less than the

DTS bandwidth:

a) Set the RBW = 1 MHz.

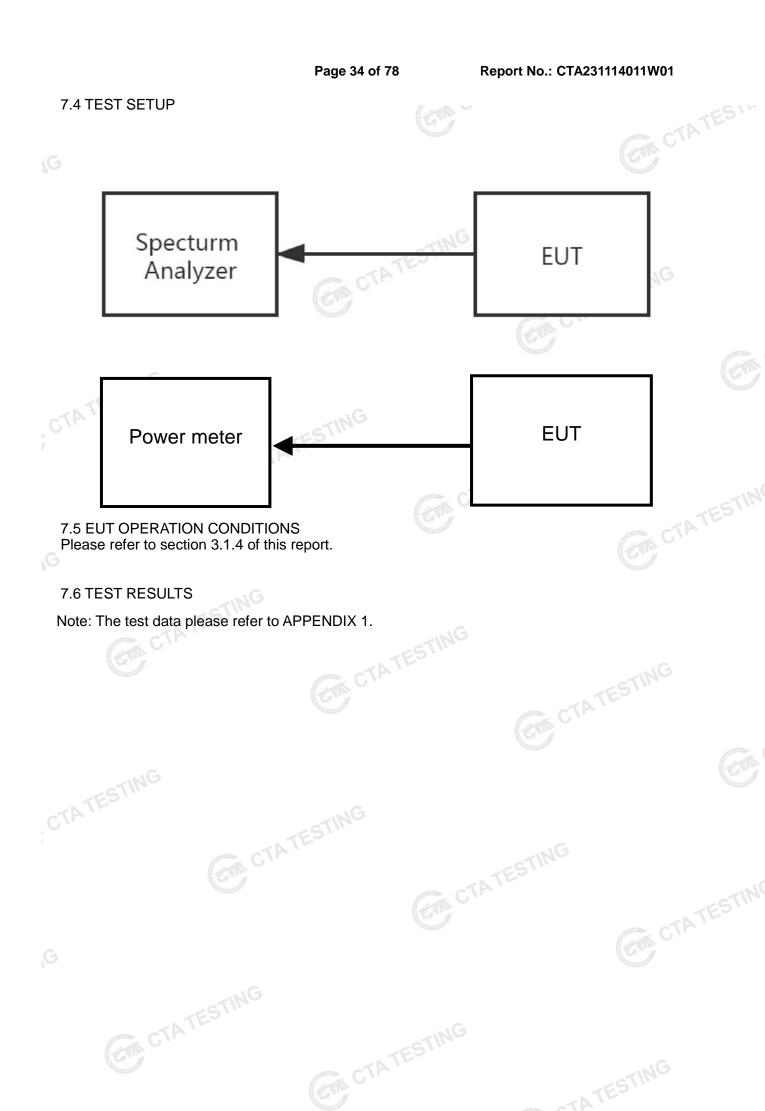
(^{Solution} b) Set the VBW ≥ [3 × RBW].

c) Set the span \geq [1.5 × DTS bandwidth].

d) Detector = peak.

e) Sweep time = auto couple.

f) Trace mode = max hold.


g) Allow trace to fully stabilize.

h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector). If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS channel bandwidth.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

7.3 DEVIATION FROM STANDARD No deviation.

8. ANTENNA REQUIREMENT

8.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device.

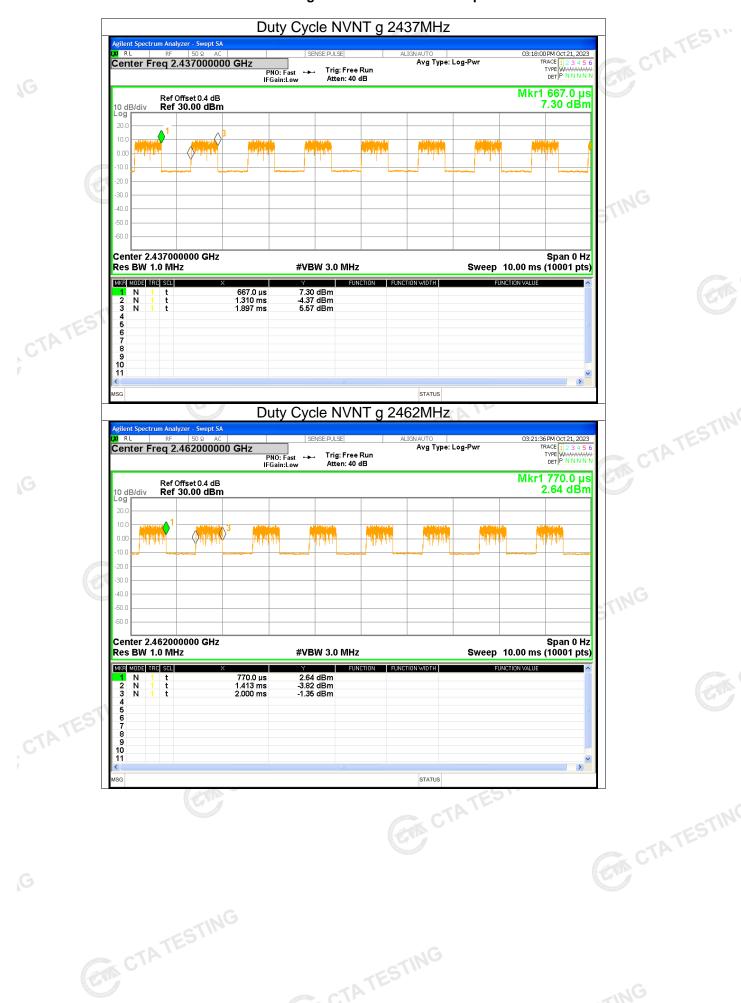
8.2 EUT ANTENNA

The EUT antenna is SMD Antenna. It comply with the standard requirement.

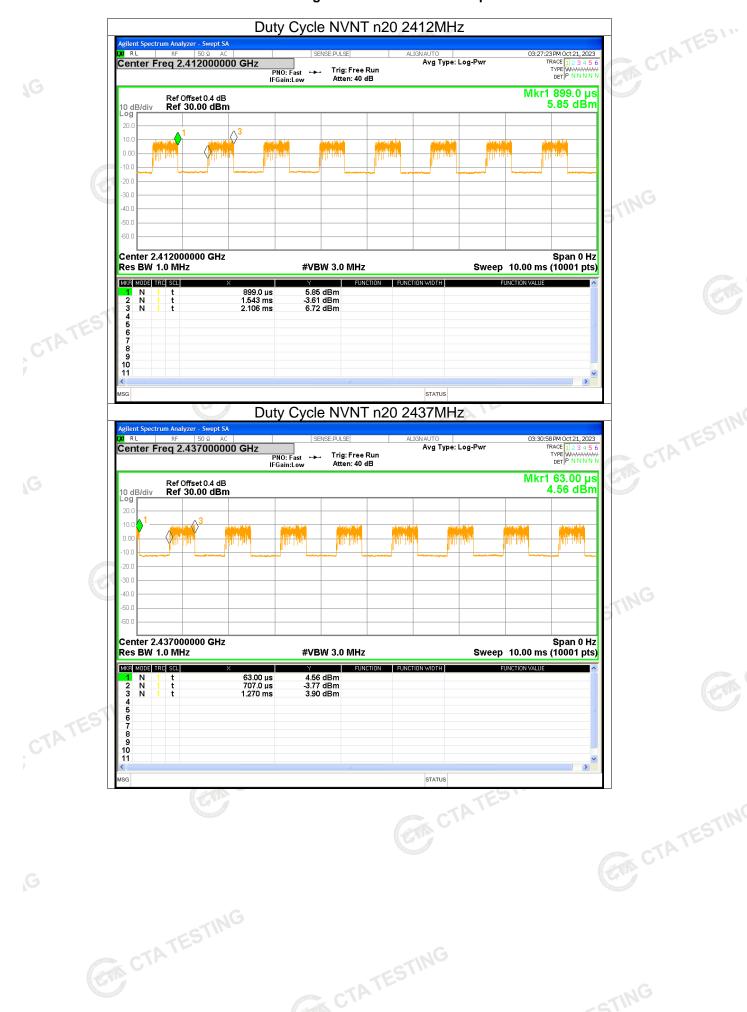
Report No.: CTA231114011W01

APPENDIX 1-TEST DATA

1. Duty Cycle


	DIX 1-TE	EST DATA			CTATES !!		
Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)		
NVNT	b	2412	47.94	3.19	1.69		
NVNT	b	2437	47.98	3.19	1.69		
NVNT	b	2462	47.94	3.19	1.69		
NVNT	g	2412	47.72	3.21	1.7		
NVNT	g	2437	47.72	3.21	1.7		
NVNT	g	2462	47.72	3.21	G 1.7		
NVNT	n20	2412	46.64	3.31	1.78		
NVNT	n20	2437	46.64	3.31	1.78		
NVNT	n20	2462	46.64	3.31	1.78		

Page 37 of 78

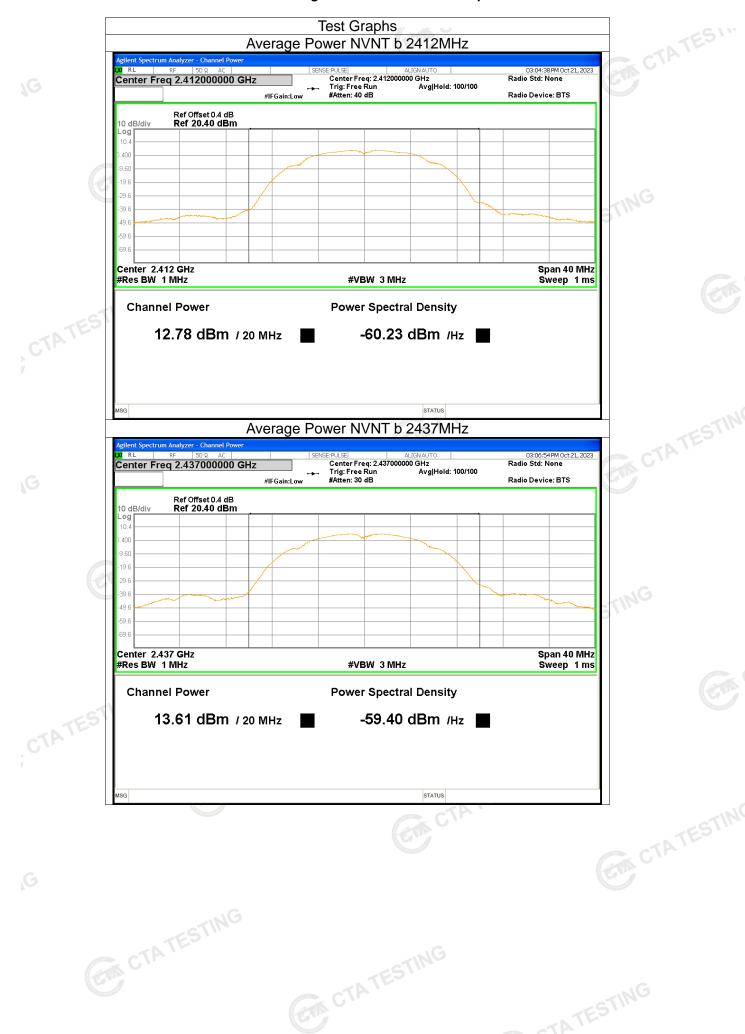




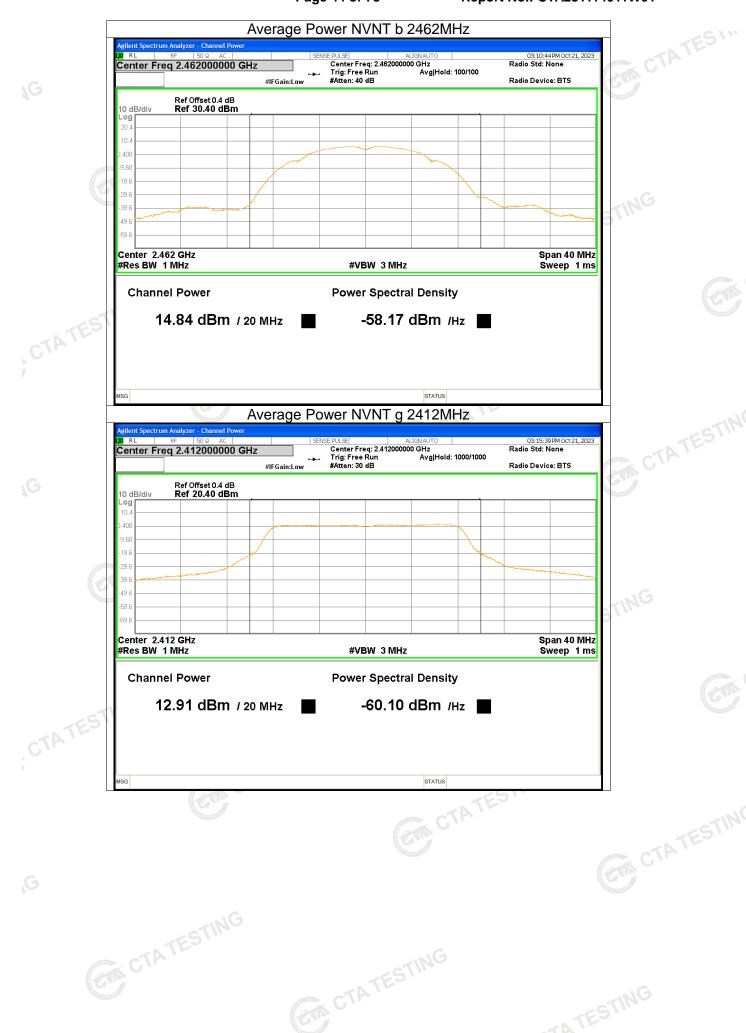
Page 39 of 78

Page 40 of 78

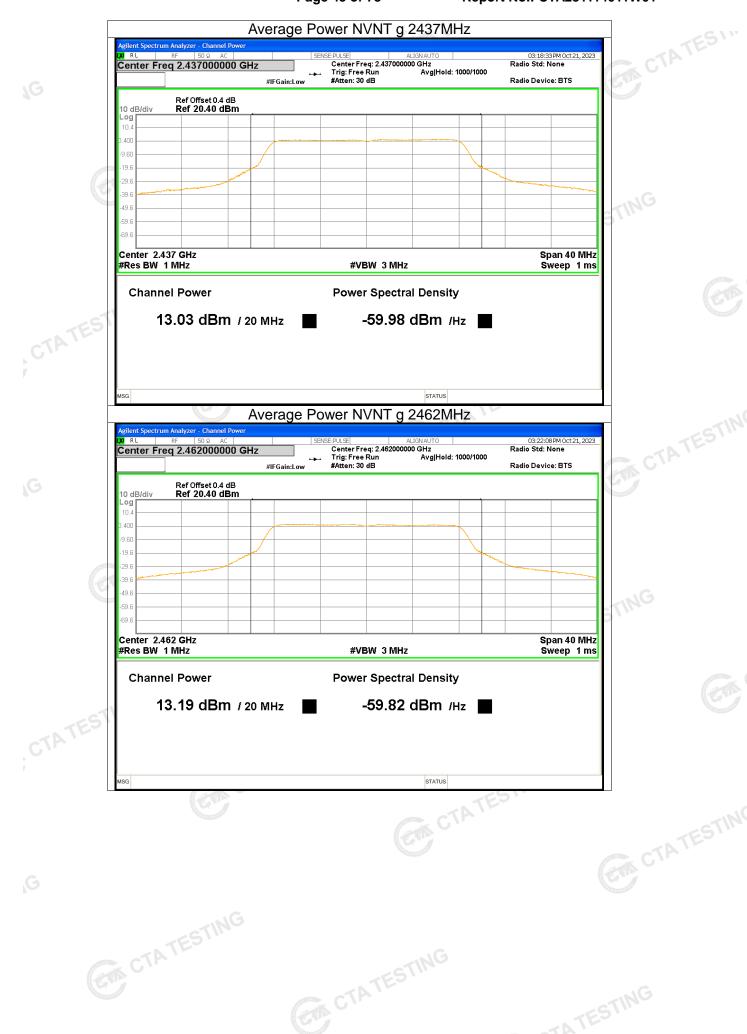
Page 41 of 78

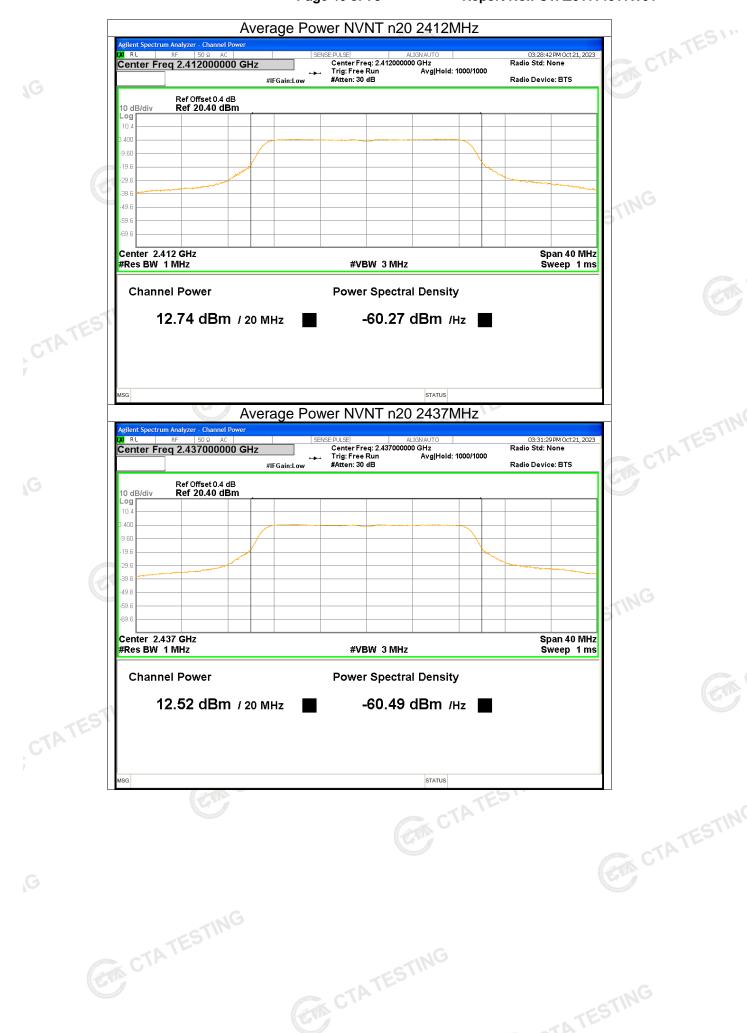

Page 42 of 78

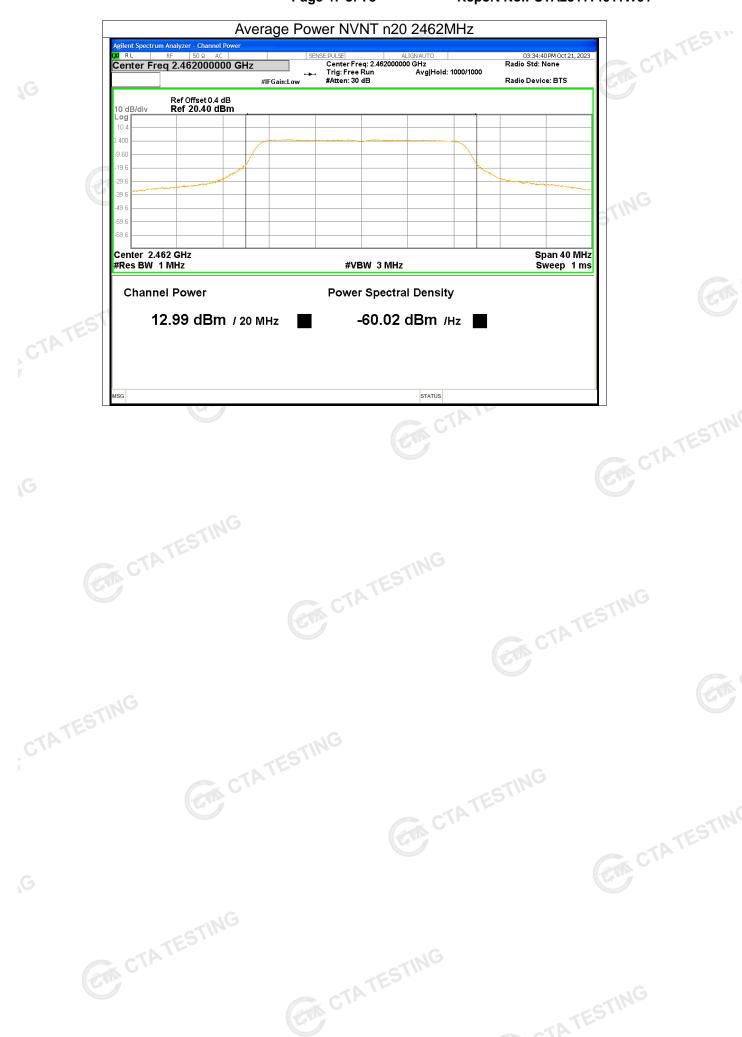
Report No.: CTA231114011W01


2. Maximum Average Conducted Output Power

Condition	Mode	Frequency	Conducted Power	Duty Factor	Total Power	Limit	Verdict
		(MHz)	(dBm)	(dB)	(dBm)	(dBm)	
NVNT	b	2412	12.78	3.19	15.97	<=30	Pass
NVNT	b	2437	13.61	3.19	16.8	<=30	Pass
NVNT	b	2462	14.84	3.19	18.03	<=30	Pass
NVNT	g	2412	12.91	3.21	16.12	<=30	Pass
NVNT	g	2437	13.03	3.21	16.24	<=30	Pass
NVNT	g	2462	13.19	3.21	16.4	<=30	Pass
NVNT	n20	2412	12.74	3.31	16.05	<=30	Pass
NVNT	n20	2437	12.52 C	3.31	15.83	<=30	Pass
NVNT	n20	2462	12.99	3.31	16.3	<=30	Pass
			A Descent and a second s		CTA		

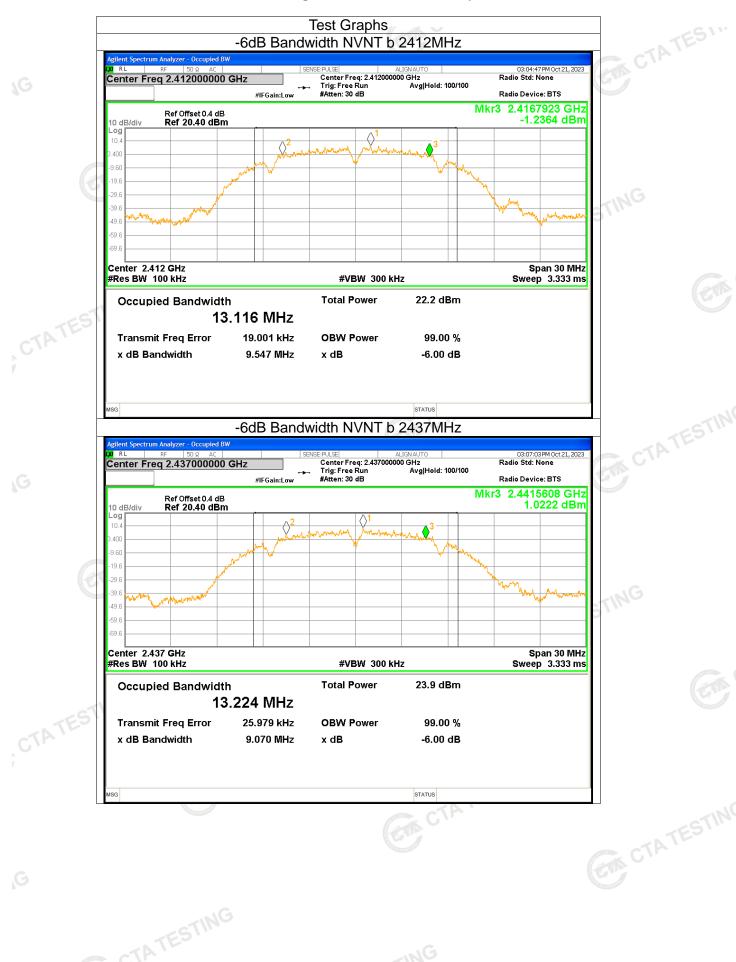

Page 43 of 78


Page 44 of 78


Page 45 of 78

Page 46 of 78

Page 47 of 78

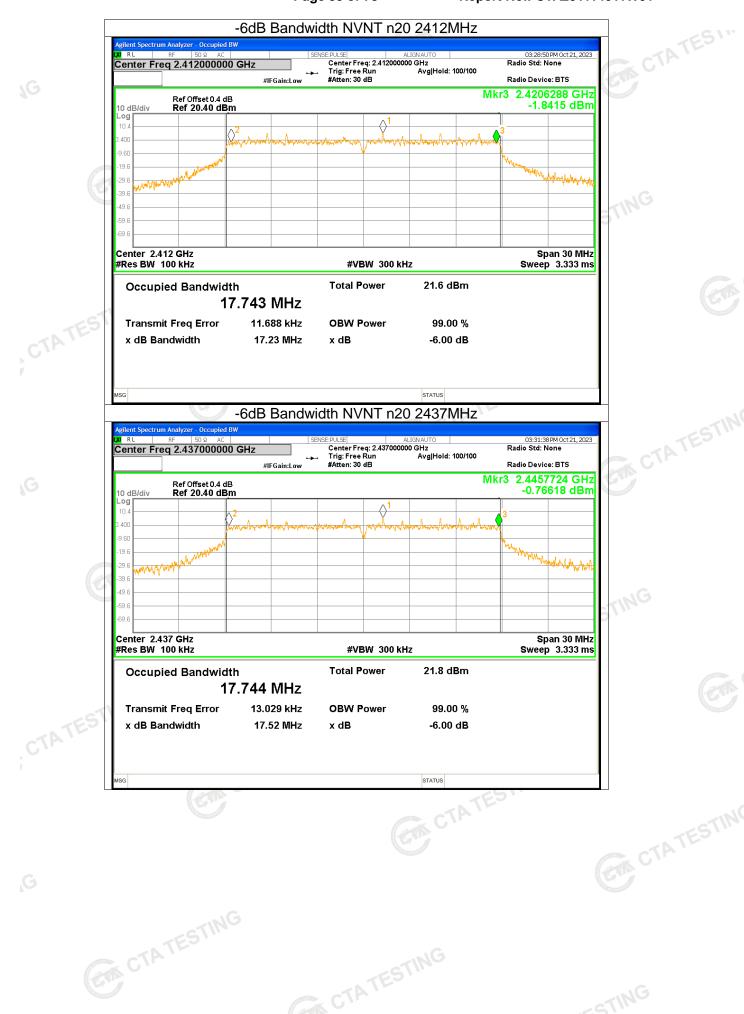

3. Maximum Peak Conducted Output Power

3. Maximum Peak Conducted Output Power						
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict	
NVNT	b	2412	19.37	<=30	Pass	
NVNT	b	2437	21.2	<=30	Pass	
NVNT	b	2462	21.48	<=30	Pass	
NVNT	g	2412	23.82	<=30	Pass	
NVNT	g	2437	24.04	<=30	Pass	
NVNT	g	2462	24.06	<=30	Pass	
NVNT	n20	2412	23.77	<=30	Pass	
NVNT	n20	2437	23.98	<=30	Pass	
NVNT	n20	2462	24.03	<=30	Pass	
				CTATES.		

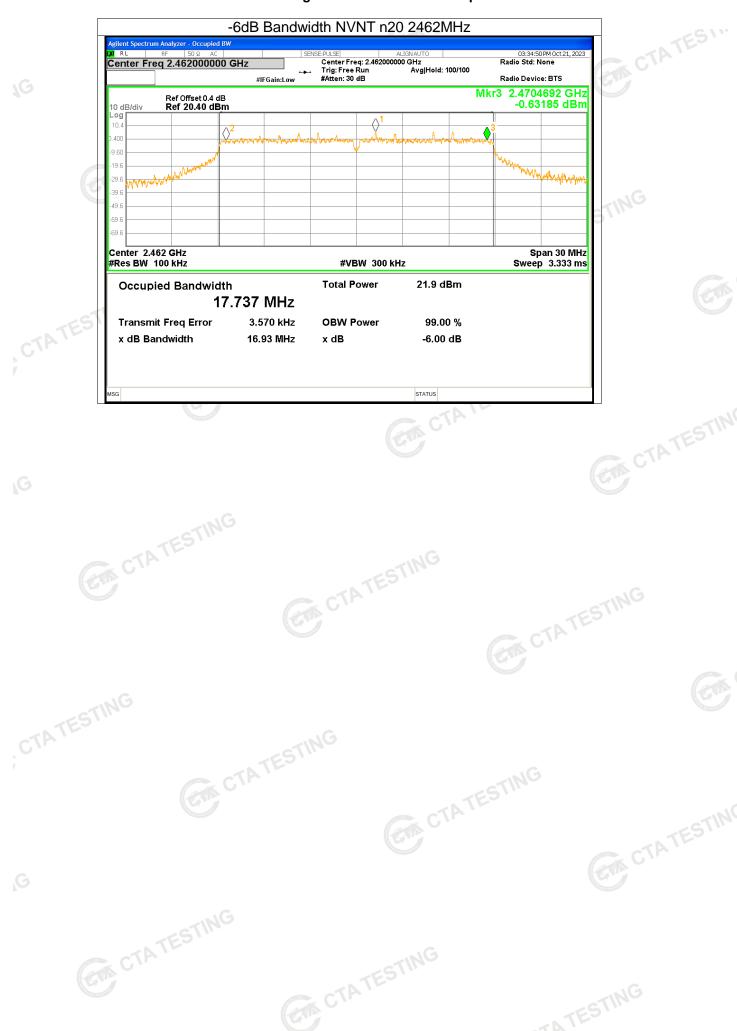
4. -6dB Bandwidth

46	dB Ba	andwidth		J	~cS\"
Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	b	2412	9.5465	>=0.5	Pass
NVNT	b	2437	9.0696	>=0.5	Pass
NVNT	b	2462	10.0336	>=0.5	Pass
NVNT	g	2412	16.0776	>=0.5	Pass
NVNT	g	2437	16.3127	>=0.5	Pass
NVNT	g	2462	16.324	>=0.5	Pass
NVNT	n20	G 2412	17.2342	>=0.5	Pass
NVNT	n20	2437	17.5188	>=0.5	Pass
NVNT	n20	2462	16.9313	>=0.5	Pass

Page 50 of 78


Page 51 of 78

Agilent Spectrum Analyzer - Occupied BW VX RL RF 50 Q AC Center Freq 2.462000000 GHz	Center Freq: 2.462000000 Trig: Free Run	GNAUTO GHz Avg Hold: 100/100	03:10:54 PM Oct 21, 2023 Radio Std: None	CTI CTI
#IFGain:Low	#Atten: 30 dB		Radio Device: BTS Mkr3 2.4670303 GHz	5
Ref Offset 0.4 dB 10 dB/div Ref 20.40 dBm			1.8983 dBm	243 USU
10.4 2	Amanan Amanan	3		
9.60		Ma		
-19.6			Mr.	
-29.6			Warn Marge Marge Swall when	<i>C</i> .
-49.6				TING
-59.6				
Center 2.462 GHz			Span 30 MHz	
#Res BW 100 kHz	#VBW 300 kHz		Sweep 3.333 ms	
Occupied Bandwidth	Total Power	24.4 dBm		
13.246 MHz				
Transmit Freq Error 13.469 kHz x dB Bandwidth 10.03 MHz	OBW Power x dB	99.00 % -6.00 dB		
Transmit Freq Error 13.469 kHz x dB Bandwidth 10.03 MHz	x ub	-0.00 ab		
MSG		STATUS		
-6dB Banc	dwidth NVNT g 2	412MHz		
Agilent Spectrum Analyzer - Occupied BW IM RL RF 50 Ω AC		IN AUTO	03:15:48 PM Oct 21, 2023	CT
	Center Freq: 2.412000000 Trig: Free Run #Atten: 30 dB	GHz Avg Hold: 100/100	Radio Std: None Radio Device: BTS	- c7
#IFGain:Low Ref Offset 0.4 dB	#Atten: 30 dB		Mkr3 2.4200728 GHz	
10 dB/div Ref 20.40 dBm		- 1	-1.6520 dBm	and the second second
D.400	And and and a second	Δ	3	
-9.60		in the solution while header in	Marca III	
-19.6			which a want and the a	
-29.6				
-49.6				TING
-69.6				
Center 2.412 GHz #Res BW 100 kHz	#VBW 300 kHz		Span 30 MHz Sweep 3.333 ms	
Occupied Bandwidth	Total Power	21.5 dBm		
16.569 MHz				
Transmit Freq Error 34.018 kHz	OBW Power	99.00 %		
x dB Bandwidth 16.08 MHz	x dB	-6.00 dB		
Transmit Freq Error 34.018 kHz x dB Bandwidth 16.08 MHz				
		074710		
MSG		STATUS	<5 ¹	
		CTAT		
				CTF
CTATESTING				
	CTATEST			


Page 52 of 78

Agilent Spectrum Analyzer - Occupied BW	andwidth NVNT g	2437MHz		CTA
XX RL RF 50Ω AC Center Freq 2.437000000 GHz	SENSE:PULSE Center Freq: 2.4370000	ALIGN AUTO 00 GHz Avg Hold: 100/100	03:18:43 PM Oct 21, 2023 Radio Std: None	CTA
#IFGain			Radio Device: BTS	
Ref Offset 0.4 dB 10 dB/div Ref 20.40 dBm		N	1kr3 2.4451755 GHz -1.5265 dBm	23 00.00
			3	
D. 400	Ano provident and more thank	warman warden		
-9.60			When when the	
-29.6 Mar Way Way Market			M. M. Marken	
-39.6				TING
-59.6				5
-69.6				
Center 2.437 GHz #Res BW 100 kHz	#VBW 300 ki	lz	Span 30 MHz Sweep 3.333 ms	
Occupied Bandwidth	Total Power	21.7 dBm		
16.538 M	Hz			
Transmit Freq Error 19.142	kHz OBW Power	99.00 %		
Transmit Freq Error 19.142 x dB Bandwidth 16.31 I	WHz xdB	-6.00 dB		
MSG		STATUS		
	andwidth NVNT g			_
Agilent Spectrum Analyzer - Occupied BW				CTA
X RL RF 50 Ω AC Center Freq 2.462000000 GHz	SENSE:PULSE Center Freq: 2.4620000	ALIGNAUTO 00 GHz Avg Hold: 100/100	03:22:19PM Oct 21, 2023 Radio Std: None	ATA
#IFGair			Radio Device: BTS	
Ref Offset 0.4 dB 10 dB/div Ref 20.40 dBm		I.	1kr3 2.4701717 GHz -1.2051 dBm	Constant of the second s
10.4			3	
9.60	have have been have been and the second	matrachimeration		
-19.6			Why we have been a second	
-29.6 -39.6			Marken Marken Marken M	
-49.6				ING
-59.6				STIN
Center 2.462 GHz			Span 30 MHz	
#Res BW 100 kHz	#VBW 300 ki	12 22.0 dBm	Sweep 3.333 ms	
Occupied Bandwidth 16.535 M	Total Power H7	22.0 GB M		
		99.00 %		
x dB Bandwidth 16.32 I	MHz xdB	-6.00 dB		
Transmit Freq Error 9.679 x dB Bandwidth 16.32 I				
MSG		STATUS		
			51	
		CTATE		CTAT
				CTA
TESTING				
CTA TESTING				

Page 53 of 78

Page 54 of 78

5. Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	b	2412	-5.64	<=8	Pass
NVNT	b	2437	-4.64	<=8	Pass
NVNT	b	2462	-3.55	<=8	Pass
NVNT	g	2412	-8.71	<=8	Pass
NVNT	g	2437	-8.58	<=8	Pass
NVNT	g	2462	-8.71	<=8	Pass
NVNT	n20	2412	-9.76	<=8	Pass
NVNT	n20	2437	-9.21	<=8	Pass
NVNT	n20	2462	-9.52	<=8	Pass


Page 56 of 78

Page 57 of 78

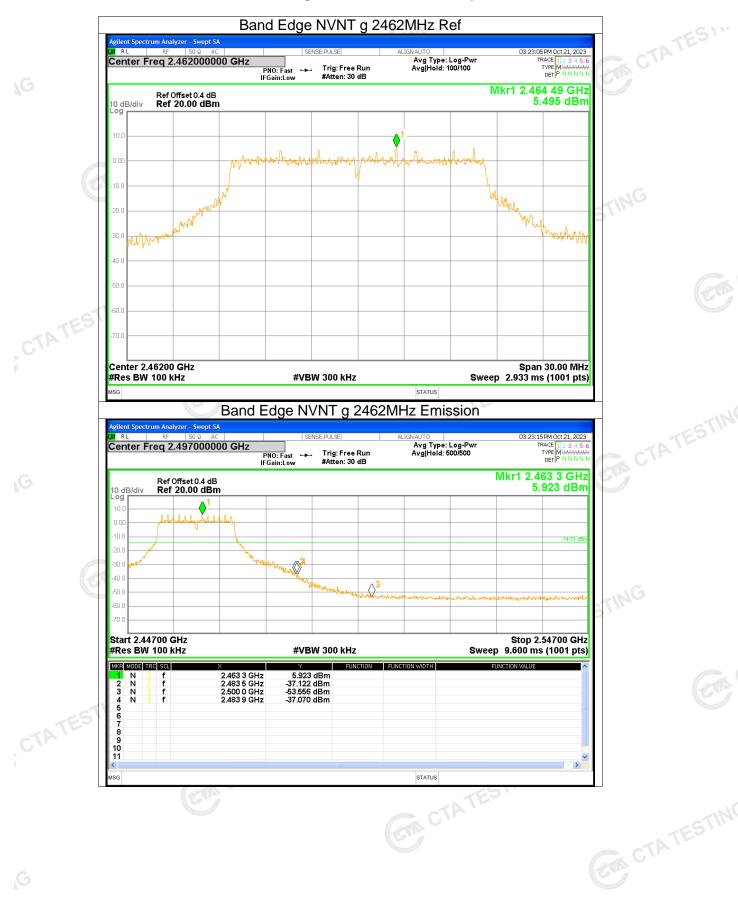
Page 59 of 78

CTATES !! PSD NVNT n20 2462MHz 32 PM Oct 21, 2023 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N RL Center Freq 2.462000000 GHz Avg Type: Log-Pwr Avg|Hold: 10/10 Trig: Free Run #Atten: 30 dB PNO: Fast ↔ Mkr1 2.461 02 GHz Ref Offset 0.4 dB Ref 20.00 dBm -9.516 dBm 10 dB/div 0.0 partition and the partition of the parti 20.0 Way was a share wa ANA JOSE MALLOW MAN MAN 30.0 40 r 50.0 CTATES Center 2.46200 GHz Span 33.86 MHz #VBW 10 kHz #Res BW 3.0 kHz Sweep 3.570 s (1001 pts) GA CTATESTING SG STATUS CTA'

Page 60 of 78

6. Band Edge

Page 62 of 78

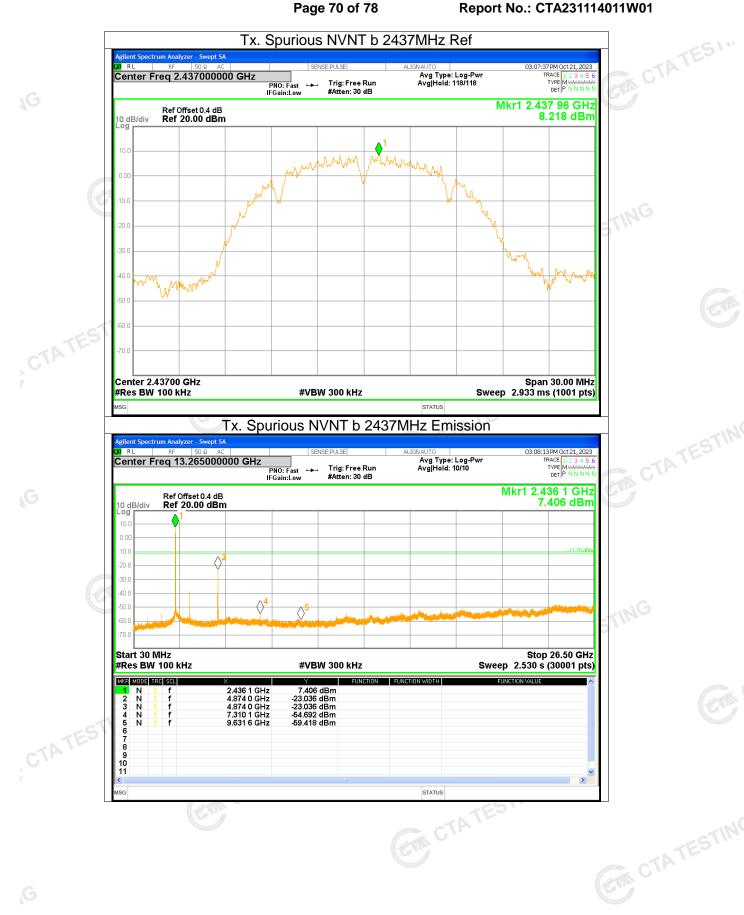


Page 63 of 78

Page 64 of 78

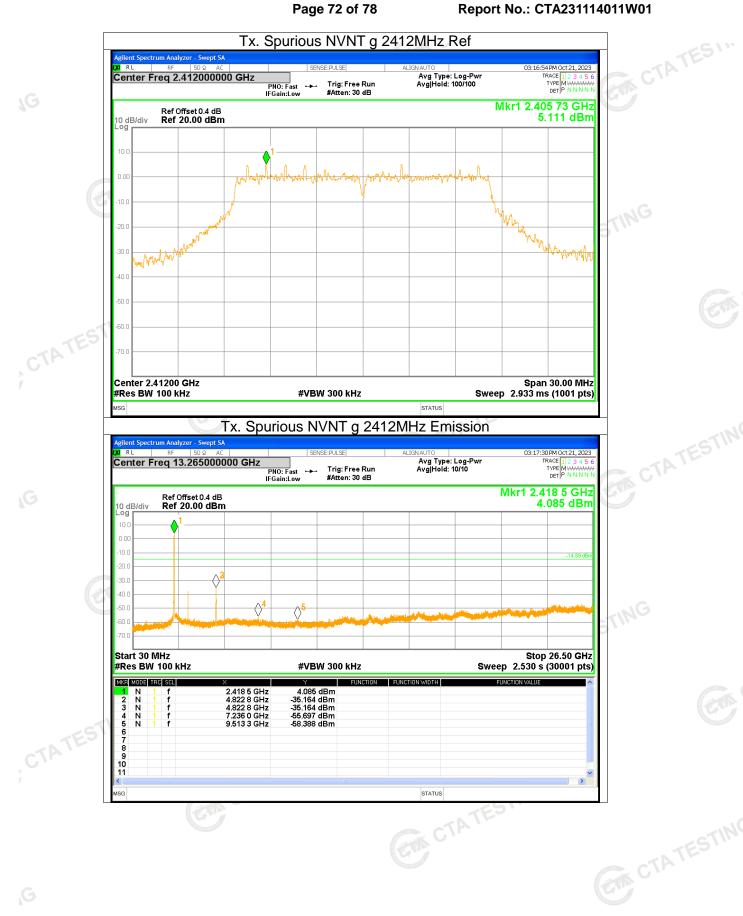
Page 65 of 78

Page 66 of 78


Page 67 of 78

7. Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	-31.06	<=-20	Pass
NVNT	b	2437	-31.25	<=-20	Pass
NVNT	b	2462	-32.16	<=-20	Pass
NVNT	g	2412	-40.27	<=-20	Pass
NVNT	g	2437	-39.3	<=-20	Pass
NVNT	g - 🔊	2462	-39.95	<=-20	Pass
NVNT	n20	2412	-37.7	<=-20	Pass
NVNT	n20	2437	-41.49	<=-20	Pass
NVNT	n20	2462	-41.65	<=-20	Pass


Page 69 of 78



Page 71 of 78



Page 74 of 78

CTATES !! Tx. Spurious NVNT n20 2412MHz Ref 59 PM Oct 21, 2023 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N B L Center Freq 2.412000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 30 dB PNO: Fast 🔸 Mkr1 2.413 26 GHz Ref Offset 0.4 dB Ref 20.00 dBm 5.330 dBm 0 dB/div 0.0 10 Www.manaland 20.0 M whith him 30. 4N (50.0 CTATES 60. Center 2.41200 GHz Span 30.00 MHz #VBW 300 kHz #Res BW 100 kHz Sweep 2.933 ms (1001 pts) SG STATUS CTA TESTING Tx. Spurious NVNT n20 2412MHz Emission Swept SA ilent Spectrum Analyzer 03:30:34 PM Oct 21, 2023 TRACE 1 2 3 4 5 6 TYPE M M N N N DET P N N N N R L Center Freg 13.265000000 GHz Avg Type: Log-Pwr Avg|Hold: 10/10 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.406 1 GHz Ref Offset 0.4 dB Ref 20.00 dBm 5.125 dBm 10 dB/div 0.0 -14.67 dE $\langle \rangle$ 30.0 -40.0 **♦** $\Diamond^{\mathbf{5}}$ Start 30 MHz Stop 26.50 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.530 s (30001 pts) MKR MODE TRC SCL FUNCTION WIDTH FUNCTION VALUE INCTION 2.406 1 GHz 4.822 8 GHz 4.822 8 GHz 7.239 5 GHz 9.462 1 GHz 5.125 dBm -32.374 dBm -32.374 dBm -55.192 dBm -58.379 dBm N N N N N 2 3 4 5 6 7 8 9 10 11 CTATES > CTA TES SG STATUS CTA TESTING

Page 75 of 78

CTATES !! Tx. Spurious NVNT n20 2462MHz Ref 56 PM Oct 21, 2023 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N Center Freq 2.462000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 30 dB PNO: Fast ↔ Mkr1 2.467 01 GHz 5.573 dBm Ref Offset 0.4 dB Ref 20.00 dBm 10 dB/div ð Mart n. Mh. W. Jumppluhang NIN WWW Center 2.46200 GHz Span 30.00 MHz #VBW 300 kHz Sweep 2.933 ms (1001 pts) #Res BW 100 kHz

STATUS

Tx. Spurious NVNT n20 2462MHz Emission

	IFGair	: Fast ↔→→ Trig: Free F n:Low #Atten: 30 d					
Ref Offset 0. B/div Ref 20.00					1.063 dBm	and the second sec	
					-14.43 dBr		
		5	line of the second s			TING	
			and the second statement of th			BULLE	
rt 30 MHz s BW 100 kHz		#VBW 300 kHz		Sweep	Stop 26.50 GHz 2.530 s (30001 pts		
MODE TRC SCL	×		CTION FUNCTION WIDTH				
N 1 f N 1 f N 1 f	2.455 5 GHz 4.912 8 GHz 4.912 8 GHz	1.063 dBm -36.085 dBm -36.085 dBm					
N 1 f N 1 f	7.507 8 GHz 9.936 0 GHz	-58.163 dBm -58.791 dBm					
			STATUS				
	(P)		STATUS	TES			
Ce			STATUS	TATES		_]	
<u> </u>			STATUS.	TATES	, .	CTATES	

Page 77 of 78

RL

0.0

20.0

30.0 4N (50.0

60.

SG

CTATES

CTATES

Report No.: CTA231114011W01

CTA TESTING

APPENDIX 2-PHOTOS OF TEST SETUP

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

CTATESTING * * * * * END OF THE REPORT * * * * *