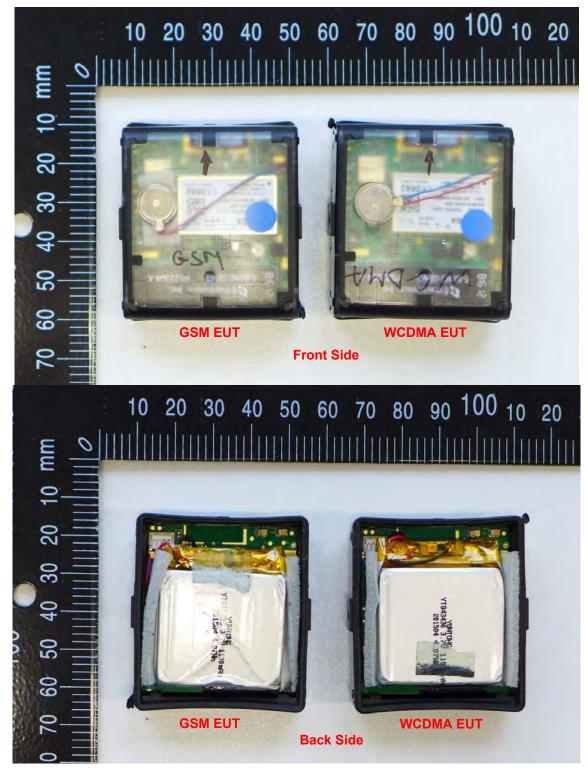
M S T


Appendixes for the SAR Report

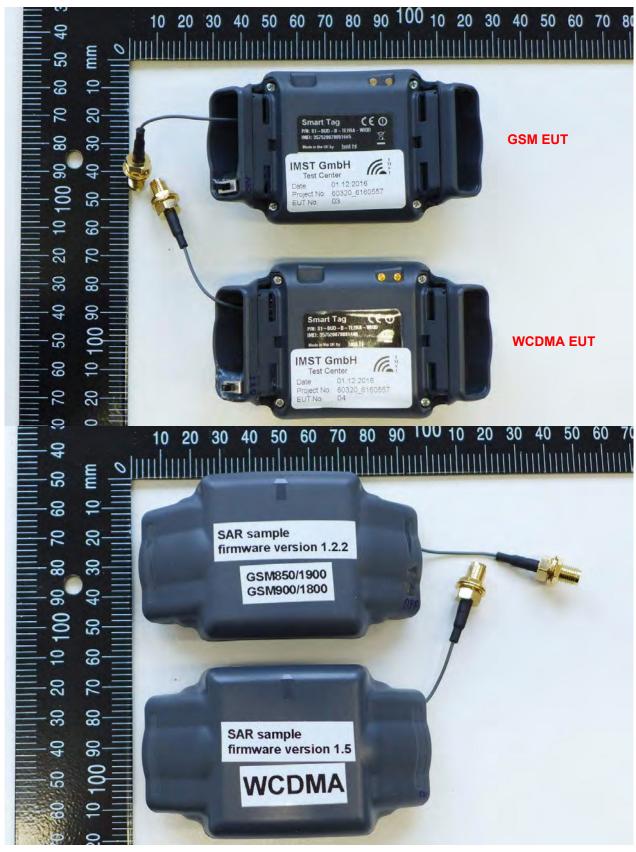
Appendix A - Pictures

Pictures of the EUT and Accessory

Pic.1: Front view of the EUT.

Pic. 2: Front and back views of the EUT without housing.

Pic. 3: Pictures of the DUT for GSM bands – back and front sides.


SAR_Report_IEC62209-2_v1.0/DP

Pic. 4: Pictures of the DUT for WCDMA bands - back and front sides

SAR_Report_IEC62209-2_v1.0/DP

Pic. 5: Pictures of the conducted sample for GSM and WCDMA bands – back and front sides

Pic. 6: Pictures of the On-Body-Charger (OBC) alone and a sample attachment to EUT

Pictures of Test Positions of the EUT

Pic. 7: Configuration 1 - back side towards the phantom, 0 mm distance.

Pic. 8: Configuration 2 – back side, without housing towards the phantom, 0 mm distance

Pic. 9: Configuration 3 - back side towards the phantom with OBC attached, 0 mm distance.

Appendix B - SAR Distribution Plots

Plots for Extremity Exposure Condition

Test Laboratory: IMST GmbH, DASY Yellow (II); File Name: SmartTag y gprs850_4TX_fl_back.da4

DUT: Buddi; Type: Smart Tag Colorado; Serial: IMST 01

Program Name: GPRS 850

Communication System: GPRS 850; Frequency: 824.2 MHz; Duty Cycle: 1:4 Medium parameters used: f = 824.2 MHz; $\sigma = 0.97$ mho/m; $\varepsilon_r = 53$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6R - SN1579; ConvF(6.4, 6.4, 6.4); Calibrated: 2/23/2016

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn335; Calibrated: 2/16/2016

- Phantom: SAM Sugar 1341; Type: QD 000 P40 CB; Serial: TP-1341

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body/Area Scan (8x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.899 mW/g

Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 32.0 V/m; Power Drift = 0.035 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.870 mW/g; SAR(10 g) = 0.607 mW/gMaximum value of SAR (measured) = 0.928 mW/g

0.928

0.758

0.588

0.418

0.248

0.078

Plot 1: SAR distribution plot for Smart Tag Location QUAD from buddi Limited, GPRS 850 4TX, channel 128, body position, 0mm distance, Configuration 1.

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: SmartTag b gprs1900 4TX fh back.da4

DUT: Buddi; Type: Smart Tag; Serial: IMST 01

Program Name: GPRS1900 (Class 12)

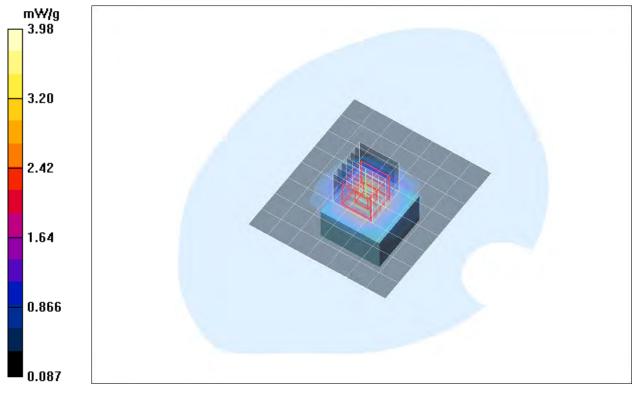
Communication System: GPRS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:2 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.57$ mho/m; $\varepsilon_r = 52$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6R SN1579; ConvF(4.63, 4.63, 4.63); Calibrated: 2/23/2016
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 2/16/2016
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body/Area Scan (8x9x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 3.84 mW/g

Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.6 V/m; Power Drift = -0.105 dB

Peak SAR (extrapolated) = 4.59 W/kg

SAR(1 g) = 3.66 mW/g; SAR(10 g) = 2.29 mW/g Maximum value of SAR (measured) = 3.98 mW/g

Plot. 2: SAR distribution plot for Smart Tag Location QUAD from buddi Limited, GPRS 1900 4TX, channel 810, body position, 0mm distance, Configuration 1.

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: SmartTag b umts2 fl back.da4

DUT: Buddi; Type: Smart Tag; Serial: IMST 02

Program Name: WCDMA II

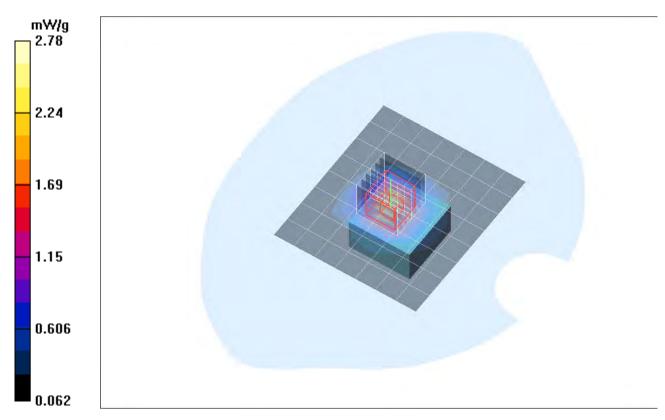
Communication System: WCDMA FDD Band II; Frequency: 1852.4 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1852.4 MHz; $\sigma = 1.5$ mho/m; $\varepsilon_r = 52.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6R SN1579; ConvF(4.63, 4.63, 4.63); Calibrated: 2/23/2016
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 2/16/2016
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body/Area Scan (8x9x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 2.67 mW/g

Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 44.1 V/m; Power Drift = 0.081 dB

Peak SAR (extrapolated) = 3.12 W/kg

SAR(1 g) = 2.51 mW/g; SAR(10 g) = 1.55 mW/g Maximum value of SAR (measured) = 2.78 mW/g

Plot. 3: SAR distribution plot for Smart Tag Location QUAD from buddi Limited, WCDMA 2, channel 9262, body position, 0mm distance, Configuration 1.

Test Laboratory: IMST GmbH, DASY Yellow (II); File Name: SmartTag y u5 fm_back_batt-only.da4

DUT: Buddi; Type: Smart Tag Colorado; Serial: IMST 02

Program Name: WCDMA 5

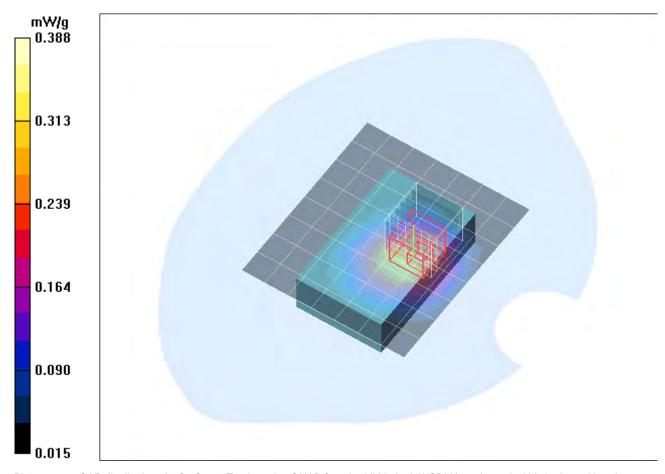
Communication System: WCDMA (FDD) Band V; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.5 MHz; $\sigma = 0.99$ mho/m; $\varepsilon_r = 52.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6R SN1579; ConvF(6.4, 6.4, 6.4); Calibrated: 2/23/2016
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 2/16/2016
- Phantom: SAM Sugar 1341; Type: QD 000 P40 CB; Serial: TP-1341
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body/Area Scan (8x9x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.384 mW/g

Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.9 V/m; Power Drift = -0.091 dB

Peak SAR (extrapolated) = 0.624 W/kg

SAR(1 g) = 0.362 mW/g; SAR(10 g) = 0.232 mW/g Maximum value of SAR (measured) = 0.388 mW/g

Plot. 4: SAR distribution plot for Smart Tag Location QUAD from buddi Limited, WCDMA 5, channel 4183, body position, 0mm distance, Configuration 2.

Appendix C – System Verification Plots

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: 061216_b_1579_335.da4

DUT: Dipole 1900 MHz SN: 535; Type: D1900V2; Serial: D1900V2 - SN535

Program Name: System Performance Check at 1900 MHz

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

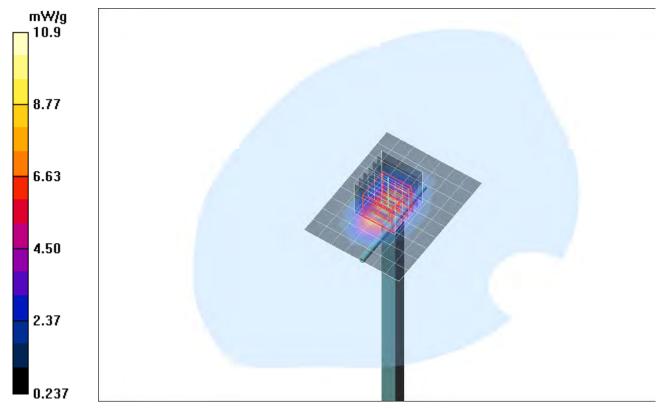
Medium parameters used: f = 1900 MHz; σ = 1.56 mho/m; ε_r = 52.1; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6R SN1579; ConvF(4.63, 4.63, 4.63); Calibrated: 2/23/2016
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 2/16/2016
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (8x10x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 10.4 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.1 V/m; Power Drift = 0.012 dB

Peak SAR (extrapolated) = 15.4 W/kg

SAR(1 g) = 9.61 mW/g; SAR(10 g) = 5.19 mW/g Maximum value of SAR (measured) = 10.9 mW/g

Plot. 5: System verification measurement 1900 MHz Body (GPRS 1900, WCDMA 2, December 06, 2016)

Test Laboratory: IMST GmbH, DASY Yellow (II); File Name: 081216 y 1579 335.da4

DUT: Dipole 835 MHz SN470; Type: D835V2; Serial: D835V2 - SN:470

Program Name: System Performance Check at 835 MHz

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

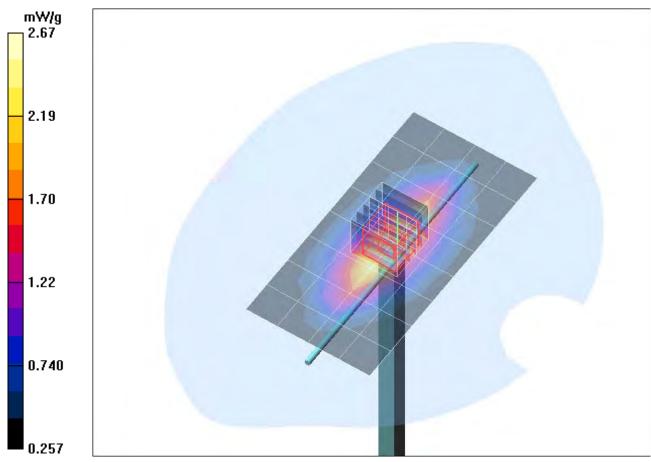
Medium parameters used: f = 835 MHz; $\sigma = 0.99 \text{ mho/m}$; $\varepsilon_r = 52.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6R SN1579; ConvF(6.4, 6.4, 6.4); Calibrated: 2/23/2016
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 2/16/2016
- Phantom: SAM Sugar 1341; Type: QD 000 P40 CB; Serial: TP-1341
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=10mm, Pin=250mW/Area Scan (5x9x1): Measurement grid: dx=20mm, dy=20mm


Maximum value of SAR (measured) = 2.70 mW/g

d=10mm, Pin=250mW/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=6mm, dy=6mm, dz=5mm

Reference Value = 54.4 V/m; Power Drift = 0.025 dB

Peak SAR (extrapolated) = 3.57 W/kg

SAR(1 g) = 2.51 mW/g; SAR(10 g) = 1.66 mW/g Maximum value of SAR (measured) = 2.67 mW/g

Plot. 6: System verification measurement 835 MHz Body (GPRS 850, WCDMA 5, December 08, 2016)

Appendix D – Certificates of Conformity

Schmid & Partner Engineering AG

a q e

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Certificate of conformity

Cordinate or come.		
Item	Dosimetric Assessment System DASY4	
Type No	SD 000 401A, SD 000 402A	
Software Version No	DASY 4.7	
Manufacturer / Origin	Schmid & Partner Engineering AG	
	Zeughausstrasse 43, CH-8004 Zürich, Switzerland	

References

- [1] IEEE 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209 1, "Specific Absorption Rate (SAR) in the frequency range of 300 MHz to 3 GHz -Measurement Procedure, Part 1: Hand-held mobile wireless communication devices", February 2005
- IEC 62209 2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation and Procedures, Part 2: Procedure to determine the Specific Absorption Rate (SAR) for ... including accessories and multiple transmitters", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- ANSI-C63.19-2011, "American National Standard for Methods of Measurement of Compatibility between Wireless Communication Devices and Hearing Aids", May 2011

Conformity

We certify that this system is designed to be fully compliant with the standards [1-5] for RF emission tests of wireless devices.

Uncertainty

The uncertainty of the measurements with this system was evaluated according to the above standards and is documented in the applicable chapters of the DASY4 system handbook and in Chapter 27 of the DASY5 system handbook.

The uncertainty values represent current state of methodology and are subject to changes. They are applicable to all laboratories using DASY4 provided the following requirements are met (responsibility of the system end user):

- the system is used by an experienced engineer who follows the manual and the guidelines taught during the training provided by SPEAG,
- the probe and validation dipoles have been calibrated for the relevant frequency bands and media 2) within the requested period.
- the DAE has been calibrated within the requested period,
- the "minimum distance" between probe sensor and inner phantom shell and the radiation source is 4) selected properly,
- the system performance check has been successful,
- the operational mode of the DUT is CW, CDMA, FDMA or TDMA (GSM, DCS, PCS, IS136, PDC) and the measurement/integration time per point is ≥ 500 ms,
- if applicable, the probe modulation factor is evaluated and applied according to field level, modulation and frequency,
- the dielectric parameters of the liquid are conform with the standard requirement, 8)
- the DUT has been positioned as described in the manual.
- 10) the uncertainty values from the calibration certificates, and the laboratory and measurement equipment dependent uncertainties, are updated by end user accordingly

p Schmid & Partner Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland
Phone +41 44 245 9700, Fax +41 44 245 9779 ag.com, http://www.speag.com Signature / Stamp **Date** 19.09.2016

Doc No 880 - SD00040XA-Standards_1609 - G

KP/FB

Page 1 (1)

Fig. 4: Certificate of conformity for the used DASY4 system:

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Certificate of Conformity / First Article Inspection

Item	SAM Twin Phantom V4.0 and V5.0	
Type No	QD 000 P40 C	
Series No	TP-1150 and higher	
Manufacturer	Untersee Composites Knebelstrasse 8, CH-8268 Mannenbach, Switzerland	

Tests

Complete tests were made on the pre-series QD 000 P40 A, # TP-1001, on the series first article QD 000 P40 B # TP-1006. Certain parameters are retested on series items.

Test	Requirement	Details	Units tested
Dimensions	Compliant with the geometry according to the CAD model.	IT'IS CAD File *	First article, Samples
Material thickness of shell	2mm +/- 0.2mm in flat section, other locations: +/- 0.2mm with respect to CAD file	in flat section, in the cheek area	First article, Samples, TP-1314 ff.
Material thickness at ERP	6mm +/- 0.2mm at ERP		First article, All items
Material parameters	rel. permittivity 2 – 5, loss tangent ≤ 0.05, at f ≤ 6 GHz	rel. permittivity 3.5 +/- 0.5 loss tangent ≤ 0.05	Material samples
Material resistivity	Compatibility with tissue simulating liquids .	Compatible with SPEAG liquids. **	Phantoms, Material sample
Sagging	Sagging of the flat section in tolerance when filled with tissue simulating liquid.	< 1% for filling height up to 155 mm	Prototypes, Sample testing

The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of the other documents.

Standards

- OET Bulletin 65, Supplement C, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition 01-01
- [2] IEEE 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, December 2003
- [3] IEC 62209–1 ed1.0, "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", 2005-02-18
- [4] IEC 62209–2 ed1.0, "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", 2010-03-30

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of **hand-held** SAR measurements and system performance checks as specified in [1-4] and further standards. **s** p e a g

Date 25.07.2011

Signature / Stamp

Doc No 881 - QD 000 P40 C - H Page 1 (1)

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerlan Phony 41 44 25 3100 Lag + Class 5979

Fig. 5: Certificate of conformity for the used SAM phantom.

^{**} Note: Compatibility restrictions apply certain liquid components mentioned in the standard, containing e.g. DGBE, DGMHE or Triton X-100. Observe technical note on material compatibility.

I M S T

Appendix E - Calibration Certificates for DAEs

DAE 3 - SN: 335

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client IMST Certificate No: DAE3-335_Feb16

CALIBRATION CERTIFICATE

Object DAE3 - SD 000 D03 AA - SN: 335

Calibration procedure(s) QA CAL-06.v29

Calibration procedure for the data acquisition electronics (DAE)

Calibration date: February 16, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

011 0010000		
SN: 0810278	09-Sep-15 (No:17153)	Sep-16
ID#	Check Date (in house)	Scheduled Check
SE UWS 053 AA 1001	05-Jan-16 (in house check)	In house check: Jan-17
SE UMS 006 AA 1002	05-Jan-16 (in house check)	In house check: Jan-17
	ID # SE UWS 053 AA 1001	1

Calibrated by: Dominique Steffen

Function Technician

Approved by: Fin Bomholt Deputy Technical Manager

Signature

i.V. Blumo

Issued: February 16, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE3-335_Feb16

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Cartificate	No:	DAE3-335	Feb16
Certificate	MO.	DAE3-333	Lenio

DC Voltage Measurement A/D - Converter Resolution nominal

High Range:

1LSB =

 $6.1\mu V$,

Low Range: 1LSB = 61nV, DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

full range = -100...+300 mV full range = -1......+3mV

Calibration Factors	X	Υ	Z
High Range	404.023 ± 0.02% (k=2)	404.586 ± 0.02% (k=2)	403.697 ± 0.02% (k=2)
Low Range	3.95885 + 1.50% (k=2)	3.97065 ± 1.50% (k=2)	3.96397 + 1.50% (k=2)

Connector Angle

٦		
	Connector Angle to be used in DASY system	345.5 ° ± 1 °

Certificate No: DAE3-335_Feb16

Page 3 of 5

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	200035.76	1.52	0.00
Channel X + Input	20007.63	3.53	0.02
Channel X - Input	-20002.22	3.71	-0.02
Channel Y + Input	200034.59	0.04	0.00
Channel Y + Input	20004.50	0.46	0.00
Channel Y - Input	-20005.05	1.06	-0.01
Channel Z + Input	200034.54	0.07	0.00
Channel Z + Input	20003.77	-0.14	-0.00
Channel Z - Input	-20006.54	-0.35	0.00

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2000.21	-0.05	-0.00
Channel X + Input	200.29	0.00	0.00
Channel X - Input	-199.63	-0.05	0.02
Channel Y + Input	2000.26	0.02	0.00
Channel Y + Input	199.36	-0.85	-0.42
Channel Y - Input	-200.63	-0.97	0.49
Channel Z + Input	2000.18	-0.05	-0.00
Channel Z + Input	199.34	-0.93	-0.46
Channel Z - Input	-201.30	-1.63	0.82

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-11.04	-12.44
	- 200	13.99	12.19
Channel Y	200	-10.11	-10.91
	- 200	9.59	9.47
Channel Z	200	2.52	2.21
	- 200	-4.50	-5.15

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200		-1.59	-2.12
Channel Y	200	9.73	1	-0.02
Channel Z	200	3.76	7.40	

Certificate No: DAE3-335_Feb16

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16175	15706
Channel Y	16085	16504
Channel Z	16105	15909

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	-0.00	-0.99	0.92	0.33
Channel Y	2.25	1.40	3,08	0.40
Channel Z	0.29	-0.97	1.48	0.37

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE3-335_Feb16

Page 5 of 5

Appendix F - Calibration Certificates for E-Field Probes

Probe ET3DV6R - SN1579

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client IMST

Certificate No: ET3-1579_Feb16

CALIBRATION CERTIFICATE

Object ET3DV6R - SN:1579

Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date: February 23, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	31-Dec-15 (No. ES3-3013_Dec15)	Dec-16
DAE4	SN: 660	23-Dec-15 (No. DAE4-660_Dec15)	Dec-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: February 23, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ET3-1579_Feb16

Page 1 of 11

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ET3-1579_Feb16

Page 2 of 11

February 23, 2016

Probe ET3DV6R

SN:1579

Manufactured:

May 7, 2001

Calibrated:

February 23, 2016

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ET3-1579_Feb16

Page 3 of 11

February 23, 2016

DASY/EASY - Parameters of Probe: ET3DV6R - SN:1579

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.91	1.87	1.55	± 10.1 %
DCP (mV) ^B	98.4	97.6	95.9	1

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	235.1	±3.0 %
		Y	0.0	0.0	1.0		219.7	
		Z	0.0	0.0	1.0		238.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1579_Feb16

Page 4 of 11

 $^{^{}A}_{-}$ The uncertainties of Norm X,Y,Z do not affect the E 2 -field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

February 23, 2016

DASY/EASY - Parameters of Probe: ET3DV6R - SN:1579

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
300	45.3	0.87	8.42	8.42	8.42	0.21	2.40	± 13.3 %
450	43.5	0.87	7.60	7.60	7.60	0.25	2.80	± 13.3 %
750	41.9	0.89	7.12	7.12	7.12	0.80	1.67	± 12.0 %
900	41.5	0.97	6.52	6.52	6.52	0.49	2.03	± 12.0 %
1750	40.1	1.37	5.56	5.56	5.56	0.80	1.90	± 12.0 %
1900	40.0	1.40	5.30	5.30	5.30	0.77	2.17	± 12.0 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Fat frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: ET3-1579_Feb16

Page 5 of 11

February 23, 2016

DASY/EASY - Parameters of Probe: ET3DV6R - SN:1579

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	56.7	0.94	7.69	7.69	7.69	0.16	1.70	± 13.3 %
750	55.5	0.96	6.65	6.65	6.65	0.57	1.78	± 12.0 %
900	55.0	1.05	6.40	6.40	6.40	0.32	2.76	± 12.0 %
1750	53.4	1.49	4.91	4.91	4.91	0.80	2.40	± 12.0 %
1900	53.3	1.52	4.63	4.63	4.63	0.80	2.35	± 12.0 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

FAI frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

Certificate No: ET3-1579_Feb16

Page 6 of 11

The quenties below 3 GHz, the validity of tissue parameters (a and σ) can be relaxed to \pm 10% if induit compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (a and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

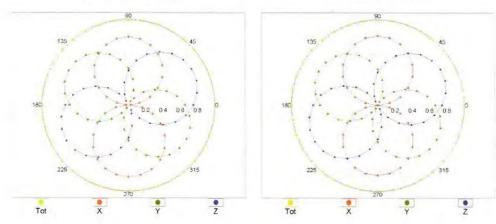
Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

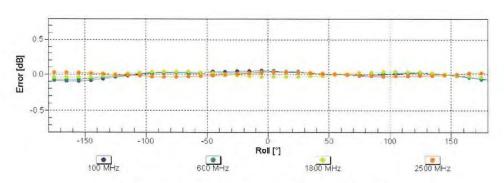
February 23, 2016

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

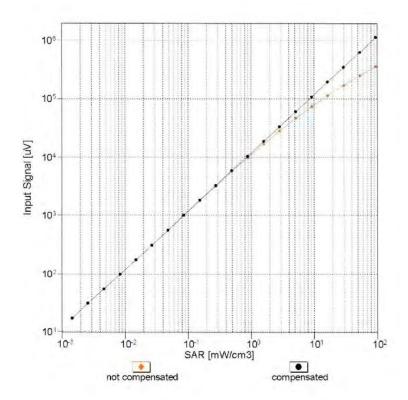
Certificate No: ET3-1579_Feb16

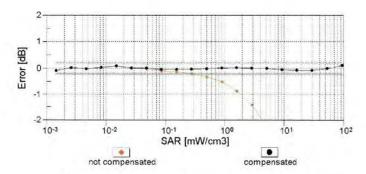

Page 7 of 11



ET3DV6R- SN:1579 February 23, 2016

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

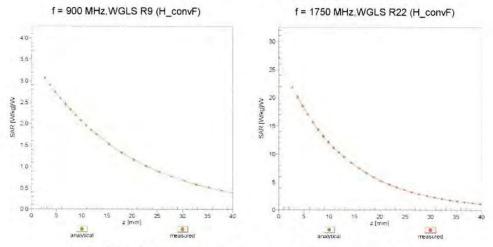



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

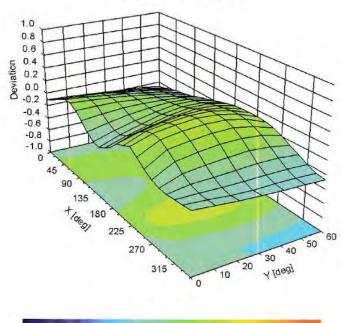
ET3DV6R- SN:1579 February 23, 2016

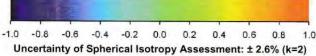
Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ET3-1579_Feb16

Page 9 of 11




ET3DV6R- SN:1579 February 23, 2016

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

Certificate No: ET3-1579_Feb16

Page 10 of 11

February 23, 2016

DASY/EASY - Parameters of Probe: ET3DV6R - SN:1579

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	74.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Certificate No: ET3-1579_Feb16

Page 11 of 11

Appendix G - Calibration Certificates for Dipoles

Dipole 835 MHz - SN470

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client IMST Certificate No: D835V2-470_Mar15

CALIBRATION CERTIFICATE

Object D835V2 - SN:470

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: March 20, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature
Calibrated by:	Israe Elnaouq	Laboratory Technician	Steen Oldoneses
Approved by:	Katja Pokovic	Technical Manager	20111

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-470_Mar15

Page 1 of 8

Issued: March 20, 2015

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-470_Mar15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.24 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.02 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.6 ± 6 %	1.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.34 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.58 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.12 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-470_Mar15

Page 3 of 8

Revision No.: -

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.3 Ω - 2.6 jΩ	
Return Loss	- 31.6 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω - 4.6 jΩ	
Return Loss	- 24.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.387 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 27, 2002

Certificate No: D835V2-470_Mar15

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 19.03.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:470

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.2, 6.2, 6.2); Calibrated: 30.12.2014;

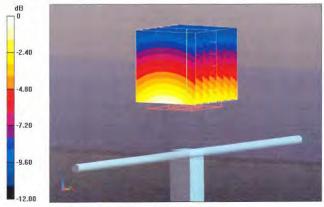
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

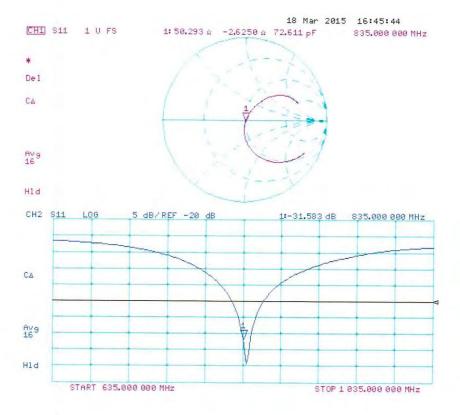

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.45 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 3.52 W/kg

SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.53 W/kg

Maximum value of SAR (measured) = 2.75 W/kg


0 dB = 2.75 W/kg = 4.39 dBW/kg

Certificate No: D835V2-470_Mar15

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-470_Mar15

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 20.03.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:470

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.02$ S/m; $\varepsilon_r = 54.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(6.17, 6.17, 6.17); Calibrated: 30.12.2014;

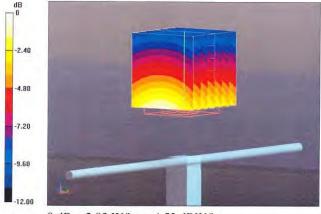
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

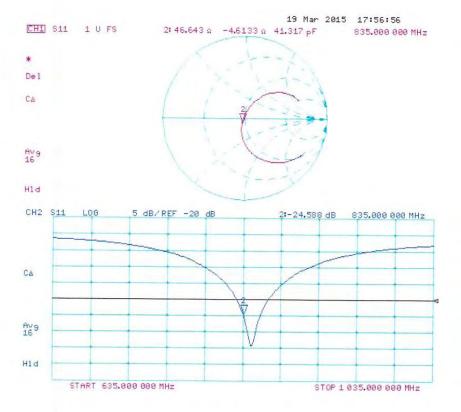

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.65 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 3.59 W/kg

SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.58 W/kg

Maximum value of SAR (measured) = 2.83 W/kg

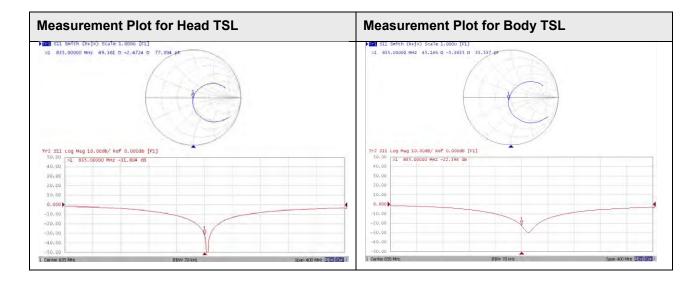

0 dB = 2.83 W/kg = 4.52 dBW/kg

Certificate No: D835V2-470_Mar15

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-470_Mar15


Page 8 of 8

Extended Dipole Calibration for D835V2, SN: 470

Referring to section 3.2.2 of KDB 865664 D01, the tables below contain the measurement results for the impedance and return loss of the dipole.

Justification of the Extended Calibration			
	Calibration March 20, 2015	Verification March 14, 2016	
835 Head TSL	Target	Measured	Delta
Impedance, transformed to feed point	50.3 Ω - 2.6 jΩ	49.4 Ω - 2.5 jΩ	$R = -0.9 \Omega,$ $X = -0.1 \Omega$
Return Loss	-31.6 dB	-31.8 dB	-0.6 %
835 Body TSL	Target	Measured	Delta
Impedance, transformed to feed point	46.6 Ω - 4.6 jΩ	45.1 Ω - 5.4 jΩ	R = -1.5 Ω, X = -0.8 Ω
Return Loss	-24.6 dB	-22.4 dB	8.9%

The impedance is within 5 ohm of prior calibration.

The return loss is <-20 dB and within 20% of prior calibration.

Therefore the verification result supports extended dipole calibration.

Dipole 1900 MHz - SN535

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

IMST Certificate No: D1900V2-535_Mar15 Client

CALIBRATION CERTIFICATE

Object D1900V2 - SN: 535

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

March 24, 2015 Calibration date:

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	MWI -

Approved by: Katja Pokovic Technical Manager

Issued: March 24, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-535_Mar15

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-535_Mar15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.0 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.88 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.28 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-535_Mar15

Revision No.: -

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.6 \Omega + 6.4 j\Omega$	
Return Loss	- 23.0 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$49.1 \Omega + 7.4 j\Omega$	
Return Loss	- 22.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.185 ns
Libertion Doing (one sincerior)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	March 22, 2001	

Certificate No: D1900V2-535_Mar15

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 24.03.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 535

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ S/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

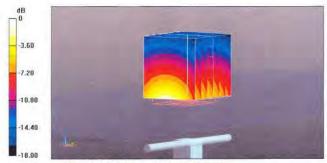
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 18.08.2014

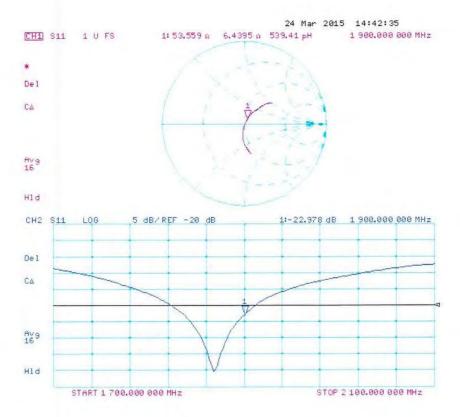

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.90 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 18.4 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.24 W/kg

Maximum value of SAR (measured) = 12.5 W/kg


0 dB = 12.5 W/kg = 10.97 dBW/kg

Certificate No: D1900V2-535_Mar15

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-535_Mar15

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 24.03.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 535

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.5 \text{ S/m}$; $\varepsilon_r = 52.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601: Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

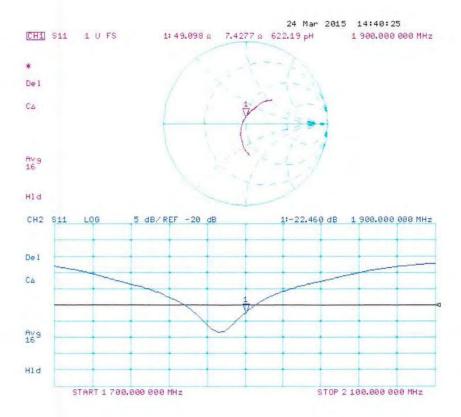

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.36 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 9.88 W/kg; SAR(10 g) = 5.28 W/kg

Maximum value of SAR (measured) = 12.4 W/kg

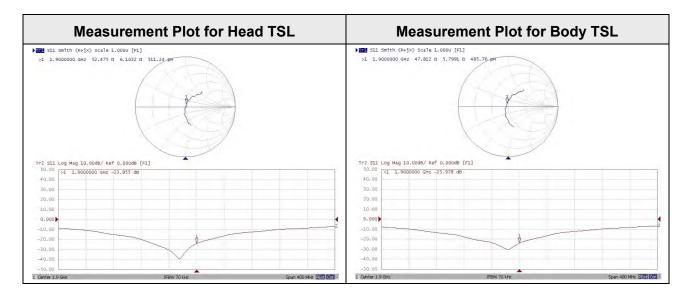

0 dB = 12.4 W/kg = 10.93 dBW/kg

Certificate No: D1900V2-535_Mar15

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-535_Mar15


Page 8 of 8

Extended Dipole Calibration for D1900V2, SN: 535

Referring to section 3.2.2 of KDB 865664 D01, the tables below contain the measurement results for the impedance and return loss of the dipole.

Justification of the Extended Calibration				
	Calibration March 24, 2015	Verification March 11, 2016		
1900 Head TSL	Target	Measured	Delta	
Impedance, transformed to feed point	53.6 Ω + 6.4 jΩ	52.5 Ω + 6.1 jΩ	R = -1.1 Ω, X = -0.3 Ω	
Return Loss	-23.0 dB	-23.9 dB	-3.9 %	
1900 Body TSL	Target	Measured	Delta	
Impedance, transformed to feed point	49.1 Ω + 7.4 jΩ	47.8 Ω + 5.8 jΩ	R = -1.3 Ω, X = -1.6 Ω	
Return Loss	-22.5 dB	-24.0 dB	-6.7%	

The impedance is within 5 ohm of prior calibration.

The return loss is <-20 dB and within 20% of prior calibration.

Therefore the verification result supports extended dipole calibration.