

RF Test Report

For

Applicant Name: ShenZhen Foscam Intelligent Technology Co., Ltd.

Address: Room 901, Unit B, Building 7, Xingke 1st Street, Vanke Cloud City

Phase 1, Nanshan Dist., Shenzhen, Guangdong, China

EUT Name: QHD WiFi IP Camera

Brand Name: FOSCAM

Model Number: V5P

Series Model Number: Refer to section 2

Issued By

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

Address: F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou

Community, Songgang Street, Bao'an District, Shenzhen, China

Report Number: BTF230801R00202 Test Standards: 47 CFR Part 15E

Test Conclusion: Pass FCC ID: ZDEV5P

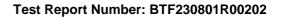
Test Date: 2023-08-01 to 2023-08-16

Date of Issue: 2023-08-17

Prepared By:

Approved By:

Chris Liu/ Project Fngineer

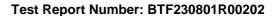

Date: 2023-08-17

1

Ryan.CJ / EMC Manager

Date: 2023-08-17

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.



Revision History			
Version	Issue Date	Revisions Content	
R_V0	2023-08-17	Original	
Note: Once the revision has been made, then previous versions reports are invalid.			

Table of Contents

1 INTRODUCTION	5
1.1 Identification of Testing Laboratory	5
1.2 Identification of the Responsible Testing Location	
1.3 Announcement	5
2 PRODUCT INFORMATION	6
2.1 Application Information	
2.2 Manufacturer Information	
2.3 Factory Information	
2.4 General Description of Equipment under Test (EUT)	6
2.5 Technical Information	
3 SUMMARY OF TEST RESULTS	7
3.1 Test Standards	7
3.2 Uncertainty of Test	
3.3 Summary of Test Result	7
4 TEST CONFIGURATION	8
4.1 Test Equipment List	
4.2 Test Auxiliary Equipment	
4.3 Test Modes	14
5 EVALUATION RESULTS (EVALUATION)	15
5.1 Antenna requirement	15
6 RADIO SPECTRUM MATTER TEST RESULTS (RF)	15
6.1 Conducted Emission at AC power line	15
6.1.1 E.U.T. Operation:	15
6.1.2 Test Setup Diagram:	15
6.1.3 Test Data:	16
6.2 Duty Cycle	18
6.2.1 E.U.T. Operation:	
6.2.2 Test Data:	18
6.3 Maximum conducted output power	19
6.3.1 E.U.T. Operation:	
6.3.2 Test Data:	
6.4 Power spectral density	21
6.4.1 E.U.T. Operation:	
6.4.2 Test Data:	
6.5 Emission bandwidth and occupied bandwidth	23
6.5.1 E.U.T. Operation:	24
6.5.2 Test Data:	24
6.6 Band edge emissions (Radiated)	25
6.6.1 E.U.T. Operation:	26
6.6.2 Test Setup Diagram:	
6.6.3 Test Data:	
6.7 Undesirable emission limits (below 1GHz)	
6.7.1 E.U.T. Operation:	
6.7.2 Test Setup Diagram:	
6.7.3 Test Data:	
6.8 Undesirable emission limits (above 1GHz)	
6.8.1 E.U.T. Operation:	36

6.8.2 Test Data:	37
7 TEST SETUP PHOTOS	40
8 EUT CONSTRUCTIONAL DETAILS (EUT PHOTOS)	
APPENDIX	

1 Introduction

1.1 Identification of Testing Laboratory

Company Name:		BTF Testing Lab (Shenzhen) Co., Ltd.
	Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou
	Address.	Community, Songgang Street, Bao'an District, Shenzhen, China
	Phone Number:	+86-0755-23146130
	Fax Number:	+86-0755-23146130

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130
FCC Registration Number:	518915
Designation Number:	CN1330

1.3 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 Product Information

2.1 Application Information

Company Name:	ShenZhen Foscam Intelligent Technology Co., Ltd.
Address:	Room 901, Unit B, Building 7, Xingke 1st Street, Vanke Cloud City Phase 1, Nanshan Dist., Shenzhen, Guangdong, China

2.2 Manufacturer Information

Company Name:	ompany Name: ShenZhen Foscam Intelligent Technology Co., Ltd.	
Address:	Room 901, Unit B, Building 7, Xingke 1st Street, Vanke Cloud City Phase 1, Nanshan Dist., Shenzhen, Guangdong, China	

2.3 Factory Information

Company Name:	ShenZhen Foscam Intelligent Technology Co., Ltd.	
Address:	Room 901, Unit B, Building 7, Xingke 1st Street, Vanke Cloud City Phase 1, Nanshan Dist., Shenzhen, Guangdong, China	

2.4 General Description of Equipment under Test (EUT)

EUT Name:	QHD WiFi IP Camera
Test Model Number:	V5P
Series Model Number:	V5S, V9905P, V9915P
Description of Model	Different names are used for different sales regions, and there is no
name differentiation: difference in products	

2.5 Technical Information

Power Supply:	AC 120V 60Hz
Operation Frequency	U-NII Band 1: 5.18~5.24 GHz
Range	U-NII Band 3: 5.745~5.825 GHz
Frequency Block	U-NII Band 1: 5.15~5.25 GHz
Frequency block	U-NII Band 3: 5.725~5.825 GHz
	802.11a: 20 MHz
Channel Bandwidth	802.11n: 20 MHz, 40 MHz
	802.11ac: 20 MHz, 40 MHz, 80 MHz
Antenna Type:	external antenna
Antenna Gain:	2 dBi

Note:

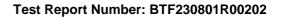
#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices

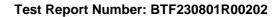

3.2 Uncertainty of Test

Item	Measurement Uncertainty	
Conducted Emission (150 kHz-30 MHz)	±2.64dB	

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.3 Summary of Test Result

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15E	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15E	47 CFR Part 15.207(a)	Pass
Maximum conducted output power	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	47 CFR Part 15E	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
Channel Availability Check Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(ii)	Pass
U-NII Detection Bandwidth	47 CFR Part 15E	47 CFR Part 15.407(h)(2)	Pass
Statistical Performance Check	47 CFR Part 15E	KDB 935210 D02, Clause 5.1 Table 2	Pass
Channel Move Time, Channel Closing Transmission Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iii)	Pass
Non-Occupancy Period Test	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iv)	Pass
DFS Detection Thresholds	47 CFR Part 15E	KDB 905462 D02, Clause 5.2 Table 3	Pass
Band edge emissions (Radiated)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
Undesirable emission limits (below 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

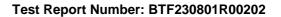

Test Configuration

Test Equipment List

Conducted Emission at AC power line							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23		
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23		
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23		
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22		
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23		

Duty Cycle								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	1	/	/			
RF Control Unit	Techy	TR1029-1	1	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	1	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

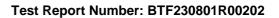
Maximum conducted output power							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		



Power spectral density							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Emission bandwidth and occupied bandwidth							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	1	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	1	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Channel Availability Check Time								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			

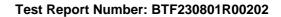


MXA Signal Analyzer KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23
------------------------------	--------	------------	------------	------------

U-NII Detection Bandwidth								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

Statistical Performance Check								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	1	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

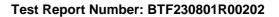
Channel Move Time, Channel Closing Transmission Time								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			



WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Non-Occupancy Period Test								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

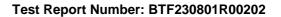
DFS Detection Thresholds								
Equipment	Manufacturer	Cal Date	Cal Due Date					
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			


Band edge emissions (Radiated)								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23			
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23			

RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	1
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	ESCI7 101032		2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	1
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	1
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Undesirable emission limits (below 1GHz)								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23			
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23			
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/			
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27			
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23			
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23			
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/			
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	80000	2023-03-24	2024-03-23			
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21			
EZ_EMC	Frad	FA-03A2 RE+	/	/	/			
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/			
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27			

Undesirable emission	limits (above 1GF	lz)			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27



4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

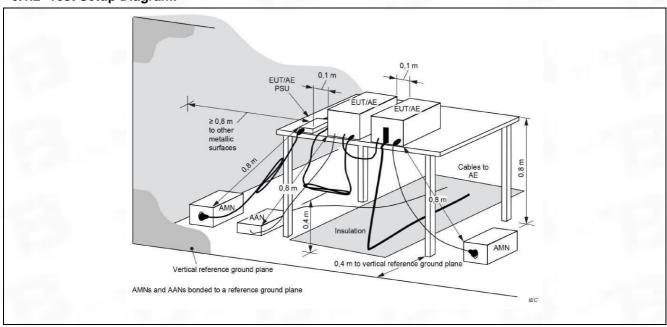
No.	Test Modes	Description
TM1	802.11a mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	802.11n mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
ТМЗ	802.11ac mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. Only the data of worst case is recorded in the report.
TM4	Normal Operating	Keep the EUT works in normal operating mode and connect to companion device

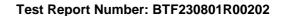
5 Evaluation Results (Evaluation)

5.1 Antenna requirement

Test Requirement:	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	--

6 Radio Spectrum Matter Test Results (RF)

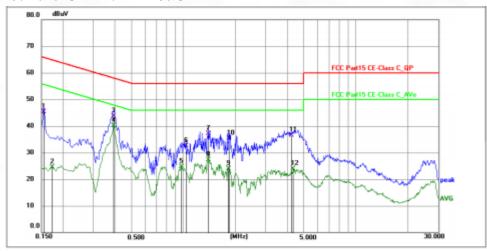

6.1 Conducted Emission at AC power line

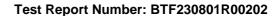

Test Requirement:	47 CFR Part 15.207(a)					
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices					
	Frequency of emission (MHz)	Conducted limit (dBµV)				
		Quasi-peak	Average			
Test Limit:	0.15-0.5	66 to 56*	56 to 46*			
rest Limit.	0.5-5	56	46			
	5-30	60	50			
	*Decreases with the logarithm of the frequency.					

6.1.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

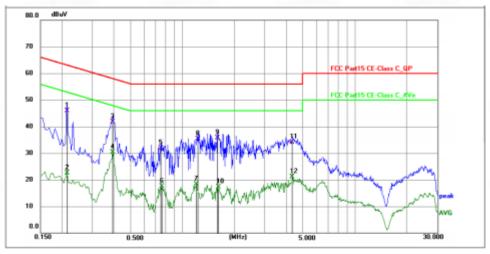
6.1.2 Test Setup Diagram:



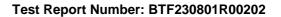


6.1.3 Test Data:

TM1 / Line: Line / Band: U-NII 1 / BW: 20 / CH: L



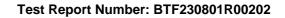
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1544	34.75	10.55	45.30	65.76	-20.46	QP	Р	
2	0.1723	13.98	10.56	24.54	54.85	-30.31	AVG	Р	
3	0.3930	33.10	10.60	43.70	58.00	-14.30	QP	Р	
4 *	0.3930	29.42	10.60	40.02	48.00	-7.98	AVG	Р	
5	0.9690	14.00	10.77	24.77	46.00	-21.23	AVG	Р	
6	1.0363	21.82	10.78	32.60	56.00	-23.40	QP	Р	
7	1.3965	26.36	10.74	37.10	56.00	-18.90	QP	Р	
8	1.3965	16.53	10.74	27.27	46.00	-18.73	AVG	Р	
9	1.8285	13.24	10.71	23.95	46.00	-22.05	AVG	Р	
10	1.8330	24.70	10.70	35.40	56.00	-20.60	QP	Р	
11	4.2404	25.75	10.75	36.50	56.00	-19.50	QP	Р	
12	4.3573	13.24	10.76	24.00	46.00	-22.00	AVG	P	



TM1 / Line: Neutral / Band: U-NII 1 / BW: 20 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.2130	35.31	10.59	45.90	63.09	-17.19	QP	Р	
2	0.2130	11.93	10.59	22.52	53.09	-30.57	AVG	Р	
3 *	0.3930	31.20	10.60	41.80	58.00	-16.20	QP	Р	
4	0.3930	19.72	10.60	30.32	48.00	-17.68	AVG	P	
5	0.7485	21.16	10.74	31.90	56.00	-24.10	QP	Р	
6	0.7620	6.81	10.74	17.55	46.00	-28.45	AVG	Р	
7	1.1983	7.46	10.76	18.22	46.00	-27.78	AVG	Р	
8	1.2255	24.64	10.76	35.40	56.00	-20.60	QP	Р	
9	1.5945	25.07	10.73	35.80	56.00	-20.20	QP	Р	
10	1.6213	6.65	10.72	17.37	46.00	-28.63	AVG	P	
11	4.3573	23.34	10.76	34.10	56.00	-21.90	QP	P	
12	4.3573	10.34	10.76	21.10	46.00	-24.90	AVG	Р	

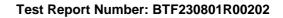
6.2 Duty Cycle


Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Test Limit:	No limits, only for report use.
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

6.2.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.2.2 Test Data:


Please Refer to Appendix for Details.

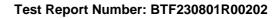
6.3 Maximum conducted output power

0.5 Maximum Cond	ucted output power
	47 CFR Part 15.407(a)(1)(i)
	47 CFR Part 15.407(a)(1)(ii)
Total Day Survey	47 CFR Part 15.407(a)(1)(iii)
Test Requirement:	47 CFR Part 15.407(a)(1)(iv)
	47 CFR Part 15.407(a)(2)
	47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.3
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1
	W provided the maximum antenna gain does not exceed 6 dBi.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any
	elevation angle above 30 degrees as measured from the horizon must not exceed
	125 mW (21 dBm).
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum
	conducted output power over the frequency band of operation shall not exceed 1
	W provided the maximum antenna gain does not exceed 6 dBi.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the
	maximum conducted output power over the frequency band of operation shall not
	exceed 1 W.
	Fixed point-to-point U-NII devices may employ antennas with directional gain up to
	23 dBi without any corresponding reduction in the maximum conducted output
	power.
Test Limit:	For fixed point-to-point transmitters that employ a directional antenna gain greater
	than 23 dBi, a 1 dB reduction in maximum conducted output power is required for
	each 1 dB of antenna gain in excess of 23 dBi.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems,
	omnidirectional applications, and multiple collocated transmitters transmitting the
	same information. The operator of the U-NII device, or if the equipment is
	professionally installed, the installer, is responsible for ensuring that systems
	employing high gain directional antennas are used exclusively for fixed,
	point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output
	power over the frequency band of operation shall not exceed 250 mW provided the
	maximum antenna gain does not exceed 6 dBi.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	For the 5.25.5.35 GHz and 5.47.5.725 GHz hands, the maximum conducted output
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250
	mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	ancononal gain of the antenna execeds o abi.

	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	However, fixed point-to-point U-NII devices operating in this band may employ
	transmitting antennas with directional gain greater than 6 dBi without any
	corresponding reduction in transmitter conducted power. Fixed, point-to-point
	operations exclude the use of point-to-multipoint systems, omnidirectional
	applications, and multiple collocated transmitters transmitting the same
	information. The operator of the U-NII device, or if the equipment is professionally
	installed, the installer, is responsible for ensuring that systems employing high gain
	directional antennas are used exclusively for fixed, point-to-point operations.
	Method SA-1
	a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.
	b) Set RBW = 1 MHz.
	c) Set VBW >= 1 MHz.
	d) Number of points in sweep >= [2 x span / RBW]. (This gives bin-to-bin spacing
	d) Number of points in sweep >= [2 x span / KBW]. (This gives bin-to-bin spacing <= RBW / 2, so
	that narrowband signals are not lost between frequency bins.)
	e) Sweep time = auto.
	f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample
	detector mode.
	g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to
	enable triggering
	only on full power pulses. The transmitter shall operate at maximum power control
	level for the
Procedure:	entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF
	intervals) or
	at duty cycle >= 98%, and if each transmission is entirely at the maximum power
	control level,
	then the trigger shall be set to "free run."
	h) Trace average at least 100 traces in power averaging (rms) mode.
	i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW
	of the signal
	using the instrument's band power measurement function, with band limits set
	equal to the
	EBW or OBW band edges. If the instrument does not have a band power function,
	then sum the
	spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB
	EBW or 99%
	OBW of the spectrum.
COA FILE Operations	

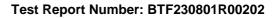
6.3.1 E.U.T. Operation:

Operating Environment:		
Temperature:	25.5 °C	
Humidity:	50.6 %	
Atmospheric Pressure:	1010 mbar	


6.3.2 Test Data:

Please Refer to Appendix for Details.

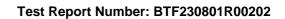
6.4 Power spectral	density			
	47 CFR Part 15.407(a)(1)(i)			
	47 CFR Part 15.407(a)(1)(ii)			
Test Requirement:	47 CFR Part 15.407(a)(1)(iii)			
rest requirement.	47 CFR Part 15.407(a)(1)(iv)			
	47 CFR Part 15.407(a)(2)			
	47 CFR Part 15.407(a)(3)(i)			
Test Method:	ANSI C63.10-2013, section 12.5			
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum			
	power spectral density shall not exceed 17 dBm in any 1 megahertz band.			
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the			
	directional gain of the antenna exceeds 6 dBi.			
	directional gain of the antenna exceeds o dbi.			
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum			
	power spectral density shall not exceed 17 dBm in any 1 megahertz band.			
	If transmitting antennas of directional gain greater than 6 dBi are used, the			
	maximum power spectral density shall be reduced by the amount in dB that the			
	directional gain of the antenna exceeds 6 dBi.			
	For fixed point to point access points apprehing in the hand 5.45 5.05 CHz. the			
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz			
	band.			
	Fixed point-to-point U-NII devices may employ antennas with directional gain up to			
	23 dBi without any corresponding reduction in the maximum power spectral			
	density. For fixed point-to-point transmitters that employ a directional antenna gain			
	greater than 23 dBi, a 1 dB reduction in maximum power spectral density is			
	required for each 1 dB of antenna gain in excess of 23 dBi.			
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems,			
	omnidirectional applications, and multiple collocated transmitters transmitting the			
Test Limit:	same information. The operator of the U-NII device, or if the equipment is			
	professionally installed, the installer, is responsible for ensuring that systems			
	employing high gain directional antennas are used exclusively for fixed,			
	point-to-point operations.			
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density			
	shall not exceed 11 dBm in any 1 megahertz band.			
	If transmitting antennas of directional gain greater than 6 dBi are used, the			
	maximum power spectral density shall be reduced by the amount in dB that the			
	directional gain of the antenna exceeds 6 dBi.			
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral			
	density shall not exceed 11 dBm in any 1 megahertz band.			
	If transmitting antennas of directional gain greater than 6 dBi are used, the			
	maximum power spectral density shall be reduced by the amount in dB that the			
	directional gain of the antenna exceeds 6 dBi.			
	For the hand 5.705 5.050 OHz, the manifes are accepted by a little of			
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not			
	exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the			
	maximum power spectral density shall be reduced by the amount in dB that the			
	directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII			
	devices operating in this band may employ transmitting antennas with directional			
	gain greater than 6 dBi without any corresponding reduction in transmitter			
	gain greater than o der marout any corresponding reduction in transmitter			


	Lead of the Lead of
	conducted power.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems,
	omnidirectional applications, and multiple collocated transmitters transmitting the
	same information. The operator of the U-NII device, or if the equipment is
	professionally installed, the installer, is responsible for ensuring that systems
	employing high gain directional antennas are used exclusively for fixed,
	point-to-point operations.
	a) Create an average power spectrum for the EUT operating mode being tested by following the
	instructions in 12.3.2 for measuring maximum conducted output power using a
	spectrum
	analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their
	respective alternatives) and apply it up to, but not including, the step labeled, "Compute
	power" (This procedure is required even if the maximum conducted output power
	measurement was performed using the power meter method PM.)
	b) Use the peak search function on the instrument to find the peak of the spectrum.
	c) Make the following adjustments to the peak value of the spectrum, if applicable:
	1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty
	cycle, to the peak of the spectrum.
	2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7,
	add
Procedure:	1 dB to the final result to compensate for the difference between linear averaging and
	power averaging.
	d) The result is the PPSD.
	e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to
	satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities. This
	requirement also permits use of resolution bandwidths less than 1 MHz "provided that the
	measured power is integrated to show the total power over the measurement
	bandwidth" (i.e.,
	1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated
	over 1 MHz bandwidth, the following adjustments to the procedures apply:
	1) Set RBW >= 1 / T, where T is defined in 12.2 a).
	2) Set VBW >= [3 x RBW].
	3) Care shall be taken such that the measurements are performed during a period
	of continuous transmission or are corrected upward for duty cycle.

6.4.1 E.U.T. Operation:

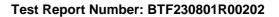
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.4.2 Test Data:


Please Refer to Appendix for Details.

6.5 Emission bandwidth and occupied bandwidth

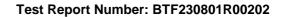
To d Door 1	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Requirement:	11 NII 2 11 NII 4: 47 CEP Port 15 407(a)
	U-NII 3, U-NII 4: 47 CFR Part 15.407(e) ANSI C63.10-2013, section 6.9.3 & 12.4
Test Method:	KDB 789033 D02, Clause C.2
	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the
	minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
	Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW.
	c) Detector = peak.
	d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak
	of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat
	measurement as needed until the RBW/EBW ratio is approximately 1%.
	as needed until the Now/Low fatto is approximately 176.
	Occupied bandwidth:
	a) The instrument center frequency is set to the nominal EUT channel center frequency. The
	frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW,
	and VBW shall be approximately three times the RBW, unless otherwise specified by the
Procedure:	applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the
riocedule.	maximum input mixer level for linear operation. In general, the peak of the spectral envelope
	shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given
	in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the specified range.
	e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode
	shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be
	used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured
	bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the trace data points are
	recovered and directly summed in linear power terms. The recovered amplitude
	data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached;
	that frequency is recorded as the lower frequency. The process is repeated until


99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies. h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s). 6 dB emission bandwidth: a) Set RBW = 100 kHz. b) Set the video bandwidth (VBW) ≥ 3 >= RBW. c) Detector = Peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.5.1 E.U.T. Operation:

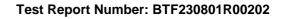
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.5.2 Test Data:


Please Refer to Appendix for Details.

6.6 Band edge emissions (Radiated)

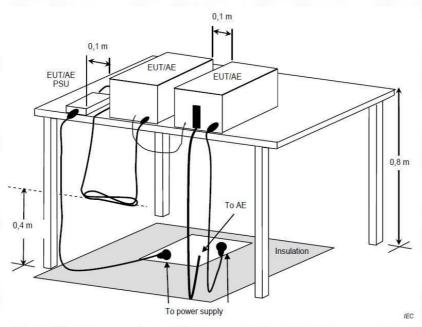
	47 CFR Part 15.407(b)	(1)				
T. (D. () (47 CFR Part 15.407(b)	(2)				
Test Requirement:	47 CFR Part 15.407(b)					
	47 CFR Part 15.407(b)					
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6					
TOST WICTION.	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the					
	5.15-5.35 GHz band sh	nall not exceed an e.i.r.	p. of −27 dBm/M	lHz.		
		For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.				
	For transmitters operat	ing solely in the 5.725-	5.850 GHz band	l:		
	All emissions shall be I					
	or below the band edge					
	below the band edge, a					
	linearly to a level of 15.					
	from 5 MHz above or b		creasing linearly	to a level of 27		
	dBm/MHz at the band	edge.				
	MHz	MHz	MHz	GHz		
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
	¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46		
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75		
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5		
			5	0.0 0.0		
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
	6.26775-6.26825	108-121.94	1718.8-1722. 2	13.25-13.4		
Test Limit:	6.31175-6.31225	123-138	2200-2300	14.47-14.5		
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
	8.362-8.366	156.52475-156.525 25	2483.5-2500	17.7-21.4		
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
	12.57675-12.57725 13.36-13.41	322-335.4	3600-4400	(²)		
	¹ Until February 1, 1999), this restricted band sl	nall be 0.490-0.5	510 MHz.		
	² Above 38.6					
	The field strength of en exceed the limits show MHz, compliance with measurement instrume 1000 MHz, compliance based on the average 15.35apply to these me	n in § 15.209. At frequenthe limits in § 15.209sh entation employing a Clawith the emission limit value of the measured	encies equal to o all be demonstra SPR quasi-peak s in § 15.209sha	or less than 1000 ated using a detector. Above all be demonstrated		
	Except as provided els	ewhere in this subpart.	the emissions fr	om an intentional		



	radiator shall not exceed the	e field strength levels specified	in the following table:
	Frequency (MHz)	Field strength	Measurement
		(microvolts/meter)	distance
		,	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
		100 **	
	30-88		3
	88-216	150 **	3
	216-960	200 **	3
	Above 960 Above 1GHz:	500	3
Procedure:	a. For above 1GHz, the EU above the ground at a 3 med degrees to determine the potential by the EUT was set 3 meters was mounted on the top of c. The antenna height is varied determine the maximum varied polarizations of the antenna d. For each suspected emisting the antenna was tuned to how the suspected emisting the antenna was tuned from 0 degrees e. The test-receiver system Bandwidth with Maximum He. If the emission level of the specified, then testing could reported. Otherwise the emire-tested one by one using in a data sheet. In g. Test the EUT in the lower he. The radiation measurement transmitting mode, and four in Repeat above procedures Remark: In Level= Read Level+ Cab 2. Scan from 18GHz to 4000 points marked on above plottesting, so only above point emissions from the radiator need not be reported. As shown in this section, are based on average limits not exceed the maximum ped B under any condition of methan the average limit, only 4. The disturbance above 1	T was placed on the top of a rotater fully-anechoic chamber. The position of the highest radiation. It is away from the interference-real variable-height antenna tower ried from one meter to four meter to four meter to five of the field strength. Both how are set to make the measurement is sion, the EUT was arranged to eights from 1 meter to 4 meters has a was tuned to heights 1 meter to 360 degrees to find the maximum was set to Peak Detect Functional Mode. The EUT in peak mode was 10dB is be stopped and the peak value is sions that did not have 10dB is peak or average method as spends of the example of the exam	e table was rotated 360 eceiving antenna, which r. ers above the ground to orizontal and vertical nent. its worst case and then r. (for the test frequency r) and the rotatable table mum reading. on and Specified lower than the limit es of the EUT would be margin would be ecified and then reported the Highest channel. its positioning for it is the worst case. was complete. mp Factor GHz was very low. The ould be found when olitude of spurious in 20dB below the limit are field strength limits of the field strength limits of the speak level is lower of in the report. for in the report.

6.6.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %



Atmospheric Pressure:

1010 mbar

6.6.2 Test Setup Diagram:

6.6.3 Test Data:

Note:All mode are tested and only the worst mode of 802.11a data is shown

UNII-1 20M 5180MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5140.000	83.13	-31.01	52.12	68.20	-16.08	peak	Р
2	5150.000	83.73	-30.97	52.76	68.20	-15.44	peak	Р

UNII-1 20M_5180MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5141.500	75.63	-30.61	45.02	68.20	-23.18	peak	Р
2	5150.000	76.23	-30.57	45.66	68.20	-22.54	peak	Р

UNII-1 20M 5240MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5350.000	84.72	-31.61	53.11	68.20	-15.09	peak	Р
2	5358.400	82.09	-31.57	50.52	68.20	-17.68	peak	Р

UNII-1 20M_5240MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5350.000	84.12	-31.01	53.11	68.20	-15.09	peak	Р
2	5356.700	81.49	-30.97	50.52	68.20	-17.68	peak	Р

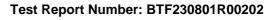
UNII-3 20M 5745MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5650.000	85.76	-31.94	53.82	68.20	-14.38	peak	Р
2	5700.000	92.70	-32.05	60.65	105.60	-44.95	peak	Р
3	5720.000	93.60	-32.11	61.49	110.8	-49.31	peak	Р

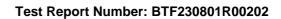
UNII-3_20M_5745MHz_Vertical

• • • • • • • • • • • • • • • • • • • •	<u></u>	<u>_</u>						
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5650.000	85.76	-31.94	53.82	68.20	-14.38	peak	Р
2	5700.000	92.70	-32.05	60.65	105.60	-44.95	peak	Р
3	5720.000	93.60	-32.11	61.49	110.8	-49.31	peak	Р

UNII-3_20M_5825MHz_Horizontal

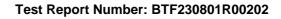

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5850.000	84.16	-31.62	52.54	122.20	-69.66	peak	Р
2	5875.000	91.10	-31.73	59.37	110.80	-51.43	peak	Р
3	5925.000	92.00	-31.79	60.21	68.20	-7.99	peak	Р

UNII-3_20M_5825MHz_Vertical

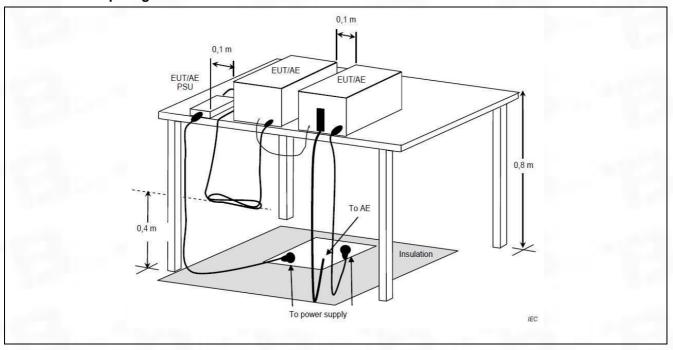

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5850.000	84.76	-31.12	53.64	122.20	-68.56	peak	Р
2	5875.000	91.70	-31.23	60.47	110.80	-50.33	peak	Р
3	5925.000	92.60	-31.29	61.31	68.20	-6.89	peak	Р

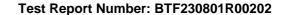
6.7 Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(,	
Test Method:	ANSI C63.10-2013, sec	tion 12.7.4, 12.7.5, 12.7.6	
	limits set forth in § 15.2		
Test Limit:		ewhere in this subpart, the emis d the field strength levels speci Field strength (microvolts/meter)	
163t Lillill.	0.009-0.490	2400/F(kHz)	300
	0.490-1.705 1.705-30.0	24000/F(kHz) 30	30 30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
Procedure:	above the ground at a 3 degrees to determine the b. The EUT was set 3 owhich was mounted on c. The antenna height is determine the maximum polarizations of the antend. For each suspected of the antenna was turned of below 30MHz, the answas turned from 0 degree. The test-receiver system Bandwidth with Maximum f. If the emission level of specified, then testing correported. Otherwise the re-tested one by one us data sheet. g. Test the EUT in the load to the testing mode, and in the readiation measure. Transmitting mode, and in the readiation measure. 1. Level= Read Level+ 2. Scan from 9kHz to 30 points marked on above testing, so only above pemissions from the radianced not be reported. 3. The disturbance beloage to the set of	EUT was placed on the top of a meter semi-anechoic chamber to position of the highest radiator 10 meters away from the interpretate the top of a variable-height and a varied from one meter to four an value of the field strength. Both and are set to make the measurements are set to make the measurements are set to make the measurements are set to Peak Detect Furth Hold Mode. If the EUT in peak mode was 10 ould be stopped and the peak emissions that did not have 10 ould be stopped and the peak emissions that did not have 10 ould be stopped and the peak emissions that did not have 10 ould be stopped and the peak emissions that did not have 10 ould be stopped and the peak emissions that did not have 10 ould be stopped and the peak emissions that did not have 10 ould be stopped and the peak emissions that did not have 10 ould be stopped and the peak emission are performed in X, Y, found the X axis positioning we have until all frequencies measures unti	r. The table was rotated 360 ion. rference-receiving antenna, enna tower. meters above the ground to th horizontal and vertical urement. ed to its worst case and then eters (for the test frequency neter) and the rotatable table maximum reading. nction and Specified OdB lower than the limit values of the EUT would be odB margin would be cified and then reported in a linel, the Highest channel. Z axis positioning for hich it is the worst case. ured was complete. Preamp Factor OMHz was very low. The maximum for the position of the second when amplitude of spurious entan 20dB below the limit tharmonics were the highest

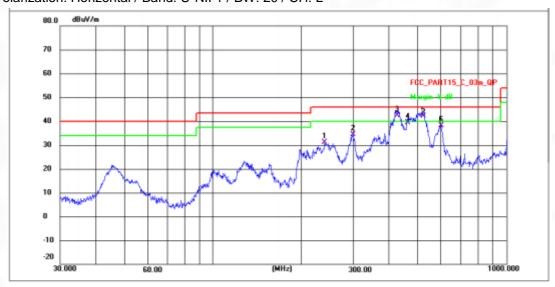


- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

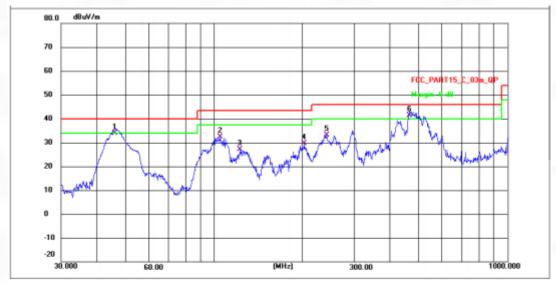

6.7.1 E.U.T. Operation:

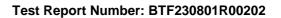

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.7.2 Test Setup Diagram:

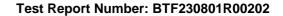


6.7.3 Test Data:


Note: All the mode have been tested, and only the worst case mode are in the report TM1 / Polarization: Horizontal / Band: U-NII 1 / BW: 20 / CH: L

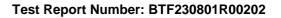

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	239.9873	56.96	-25.94	31.02	46.00	-14.98	QP	P
2	299.3158	59.80	-25.43	34.37	46.00	-11.63	QP	P
3 *	424.2835	65.89	-23.49	42.40	46.00	-3.60	QP	P
4	461.5355	61.53	-22.03	39.50	46.00	-6.50	QP	P
5 !	520.8881	63.45	-21.35	42.10	46.00	-3.90	QP	P
6	600.3730	60.42	-22.21	38.21	46.00	-7.79	QP	Р

TM1 / Polarization: Vertical / Band: U-NII 1 / BW: 20 / CH: L


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	45.7750	54.31	-20.41	33.90	40.00	-6.10	QP	P
2	104.9033	60.53	-28.19	32.34	43.50	-11.16	QP	P
3	122.6188	55.27	-28.02	27.25	43.50	-16.25	QP	P
4	203.1663	56.81	-27.19	29.62	43.50	-13.88	QP	P
5	242.1004	59.11	-25.92	33.19	46.00	-12.81	QP	P
6 *	467.2349	63.19	-21.89	41.30	46.00	-4.70	QP	P

6.8 Undesirable emission limits (above 1GHz)

	47.050 D. 1.45.407(1)					
	47 CFR Part 15.407(b)(1)					
Test Requirement:	47 CFR Part 15.407(b)(2)					
·	47 CFR Part 15.407(b)(4)					
	47 CFR Part 15.407(b)(10)					
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6 For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the					
	5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.					
		For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.				
	5.15-5.35 GHZ band si	nali not exceed an e.i.r.	p. of -27 aBm/lv	IHZ.		
	For transmitters energy	ting cololy in the E 70E	E OEO CHa bona	1.		
	For transmitters operating solely in the 5.725-5.850 GHz band:					
		All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above				
		or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or				
	below the band edge, and from 25 MHz above or below the band edge increasing					
		linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and				
		from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.				
	MHz	MHz	MHz	GHz		
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
	10.495-0.505	16.69475-16.69525	608-614	5.35-5.46		
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75		
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5		
			5	0.0 0.0		
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
	6.26775-6.26825	108-121.94	1718.8-1722.	13.25-13.4		
			2			
Total Limits	6.31175-6.31225	123-138	2200-2300	14.47-14.5		
Test Limit:	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
	8.362-8.366	156.52475-156.525	2483.5-2500	17.7-21.4		
		25				
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
	12.57675-12.57725	322-335.4	3600-4400	(²)		
	13.36-13.41					
	1					
	¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.					
	² Above 38.6					
	The field strength of ou		in these frames	and hands shall not		
		The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000				
		MHz, compliance with the limits in § 15.209shall be demonstrated using				
	measurement instrumentation employing a CISPR quasi-peak detector. Above					
	1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in §					
	15.35apply to these measurements.					
	10.00appiy to these illi	oasaroments.				
	Except as provided els	ewhere in this subpart	the emissions for	rom an intentional		
	Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:					
	Frequency (MHz)	Field strength		Measurement		
	1 10 quotito y (ivii 12)	. ioid oliongin		5454151110111		



			(microvolts/meter)	distance	
ı				(meters)	
		0.009-0.490	2400/E(kHz)	300	
			2400/F(kHz)		
		0.490-1.705	24000/F(kHz)	30	
		1.705-30.0	30	30	
		30-88	100 **	3	
		88-216	150 **	3	
		216-960	200 **	3	
				3	
ŀ		Above 960	500	3	
		Above 1GHz:			
		a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters			
		above the ground at a 3 me	ter fully-anechoic chamber. The	e table was rotated 360	
		degrees to determine the position of the highest radiation.			
		b. The EUT was set 3 meters away from the interference-receiving antenna, which			
		was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to			
		determine the maximum value of the field strength. Both horizontal and vertical			
		polarizations of the antenna are set to make the measurement.			
		d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.			
		e. The test-receiver system was set to Peak Detect Function and Specified			
		Bandwidth with Maximum Hold Mode.			
		f. If the emission level of the EUT in peak mode was 10dB lower than the limit			
ı		specified, then testing could be stopped and the peak values of the EUT would be			
ı		reported. Otherwise the emissions that did not have 10dB margin would be			
		re-tested one by one using peak or average method as specified and then reported			
	Procedure:	in a data sheet.			
	1 10004410.	g. Test the EUT in the lowest channel, the middle channel, the Highest channel.			
		h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.			
			until all frequencies measured	was complete.	
		Remark:			
			le Loss+ Antenna Factor- Prear		
		2. Scan from 18GHz to 40G	Hz, the disturbance above 18G	SHz was very low. The	
			ets are the highest emissions co		
١			s had been displayed. The amp		
			which are attenuated more that	• • • • • • • • • • • • • • • • • • •	
			which are attenuated more than	II 2006 below the limit	
		need not be reported.			
		3. As shown in this section, for frequencies above 1GHz, the field strength limits			
		are based on average limits	 However, the peak field streng 	gth of any emission shall	
		not exceed the maximum pe	ermitted average limits specified	above by more than 20	
			nodulation. For the emissions w		
			a when testing, so only the above	ve narmonics had been	
		than the average limit, only 4. The disturbance above 1	nodulation. For the emissions we the peak measurement is show 8GHz were very low and the ha d when testing, so only the abou	n in the report.	

6.8.1 E.U.T. Operation:

Operating Environment:	erating Environment:		
Temperature:	25.5 °C		
Humidity:	50.6 %		
Atmospheric Pressure:	1010 mbar		

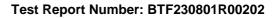
displayed.

6.8.2 Test Data:

Note:All mode are tested and only the worst mode of 802.11a data is shown UNII-1 20M 5180MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3224.300	79.40	-29.89	49.51	68.20	-18.69	peak	Р
2	5201.600	81.14	-30.40	50.74	68.20	-17.46	peak	Р
3	7816.680	82.80	-30.62	52.18	68.20	-16.02	peak	Р
4	8796.950	84.10	-31.40	52.70	68.20	-15.50	peak	Р
5	11098.841	84.81	-31.89	52.92	68.20	-15.28	peak	Р
6	14757.452	85.66	-34.28	51.38	68.20	-16.82	peak	Р

UNII-1_20M_5180MHz_Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3527.300	79.51	-29.67	49.84	68.20	-18.36	peak	Р
2	5504.600	81.25	-30.18	51.07	68.20	-17.13	peak	Р
3	8119.680	82.91	-30.40	52.51	68.20	-15.69	peak	Р
4	9099.950	84.21	-31.18	53.03	68.20	-15.17	peak	Р
5	11401.841	84.92	-31.67	53.25	68.20	-14.95	peak	Р
6	15060.452	85.77	-34.06	51.71	68.20	-16.49	peak	Р

UNII-1_20M_5200MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3467.300	78.53	-29.72	48.81	68.20	-19.39	peak	Р
2	5444.600	80.27	-30.23	50.04	68.20	-18.16	peak	Р
3	8059.680	81.93	-30.45	51.48	68.20	-16.72	peak	Р
4	9039.950	83.23	-31.23	52.00	68.20	-16.20	peak	Р
5	11341.841	83.94	-31.72	52.22	68.20	-15.98	peak	Р
6	15000.452	84.79	-34.11	50.68	68.20	-17.52	peak	Р

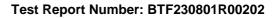
UNII-1_20M_5200MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3485.300	79.52	-28.72	50.80	68.20	-17.40	peak	Р
2	5462.600	81.26	-29.23	52.03	68.20	-16.17	peak	Р
3	8077.680	82.92	-29.45	53.47	68.20	-14.73	peak	Р
4	9057.950	84.22	-30.23	53.99	68.20	-14.21	peak	Р
5	11359.841	84.93	-30.72	54.21	68.20	-13.99	peak	Р
6	15018.452	85.78	-33.11	52.67	68.20	-15.53	peak	Р

UNII-1_20M_5240MHz_Horizontal

	0.111.1_0.1101.101.101.101.101.101.101.1										
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F			
1	3587.300	79.41	-29.32	50.09	68.20	-18.11	peak	Р			
2	5564.600	81.15	-29.83	51.32	68.20	-16.88	peak	Р			
3	8179.680	82.81	-30.05	52.76	68.20	-15.44	peak	Р			
4	9159.950	84.11	-30.83	53.28	68.20	-14.92	peak	Р			
5	11461.841	84.82	-31.32	53.50	68.20	-14.70	peak	Р			
6	15120.452	85.67	-33.71	51.96	68.20	-16.24	peak	Р			

UNII-1 20M 5240MHz Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3834.300	77.73	-28.63	49.10	68.20	-19.10	peak	Р
2	5811.600	79.47	-29.14	50.33	68.20	-17.87	peak	Р
3	8426.680	81.13	-29.36	51.77	68.20	-16.43	peak	Р
4	9406.950	82.43	-30.14	52.29	68.20	-15.91	peak	Р
5	11708.841	83.14	-30.63	52.51	68.20	-15.69	peak	Р
6	15367.452	83.99	-33.02	50.97	68.20	-17.23	peak	Р

UNII-3 20M 5745MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3057.300	77.49	-27.70	49.79	68.20	-18.41	peak	Р
2	5034.600	79.23	-28.21	51.02	68.20	-17.18	peak	Р
3	7649.680	80.89	-28.43	52.46	68.20	-15.74	peak	Р
4	8629.950	82.19	-29.21	52.98	68.20	-15.22	peak	Р
5	10931.841	82.90	-29.70	53.20	68.20	-15.00	peak	Р
6	14590.452	83.75	-32.09	51.66	68.20	-16.54	peak	Р

UNII-3_20M_5745MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3213.300	78.19	-28.60	49.59	68.20	-18.61	peak	Р
2	5190.600	79.93	-29.11	50.82	68.20	-17.38	peak	Р
3	7805.680	81.59	-29.33	52.26	68.20	-15.94	peak	Р
4	8785.950	82.89	-30.11	52.78	68.20	-15.42	peak	Р
5	11087.841	83.60	-30.60	53.00	68.20	-15.20	peak	Р
6	14746.452	84.45	-32.99	51.46	68.20	-16.74	peak	Р

UNII-3_20M_5785MHz_Horizontal

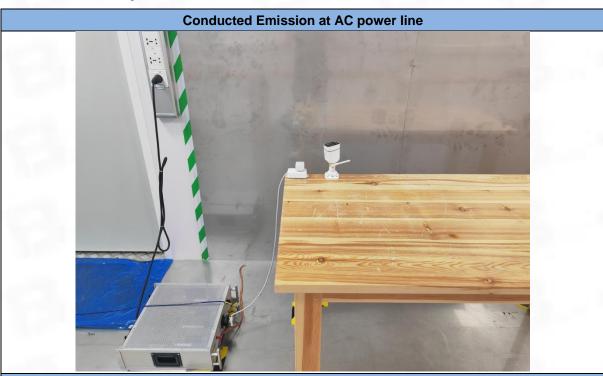
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3287.300	77.53	-29.42	48.11	68.20	-20.09	peak	Р
2	5264.600	79.27	-29.93	49.34	68.20	-18.86	peak	Р
3	7879.680	80.93	-30.15	50.78	68.20	-17.42	peak	Р
4	8859.950	82.23	-30.93	51.30	68.20	-16.90	peak	Р
5	11161.841	82.94	-31.42	51.52	68.20	-16.68	peak	Р
6	14820.452	83.79	-33.81	49.98	68.20	-18.22	peak	Р

UNII-3_20M_5785MHz_Vertical

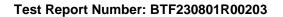
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4447.300	78.20	-28.67	49.53	68.20	-18.67	peak	Р
2	6424.600	79.94	-29.18	50.76	68.20	-17.44	peak	Р
3	9039.680	81.60	-29.40	52.20	68.20	-16.00	peak	Р
4	10019.950	82.90	-30.18	52.72	68.20	-15.48	peak	Р
5	12321.841	83.61	-30.67	52.94	68.20	-15.26	peak	Р
6	15980.452	84.46	-33.06	51.40	68.20	-16.80	peak	Р

UNII-3_20M_5825MHz_Horizontal

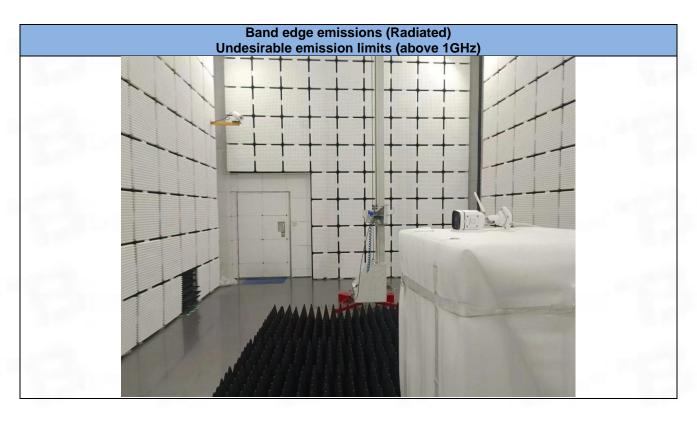
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4244.300	78.52	-28.70	49.82	68.20	-18.38	peak	Р
2	6221.600	80.26	-29.21	51.05	68.20	-17.15	peak	Р
3	8836.680	81.92	-29.43	52.49	68.20	-15.71	peak	Р
4	9816.950	83.22	-30.21	53.01	68.20	-15.19	peak	Р
5	12118.841	83.93	-30.70	53.23	68.20	-14.97	peak	Р
6	15777.452	84.78	-33.09	51.69	68.20	-16.51	peak	Р

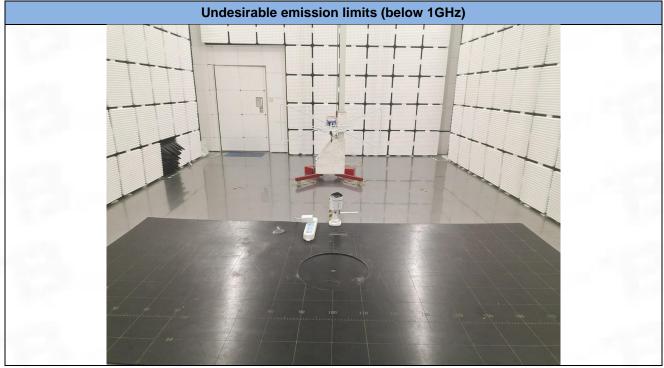

UNII-3 20M 5825MHz Vertical

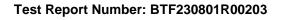
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4199.300	78.42	-29.59	48.83	68.20	-19.37	peak	Р
2	6176.600	80.16	-30.10	50.06	68.20	-18.14	peak	Р
3	8791.680	81.82	-30.32	51.50	68.20	-16.70	peak	Р
4	9771.950	83.12	-31.10	52.02	68.20	-16.18	peak	Р
5	12073.841	83.83	-31.59	52.24	68.20	-15.96	peak	Р
6	15732.452	84.68	-33.98	50.70	68.20	-17.50	peak	Р



Test Setup Photos



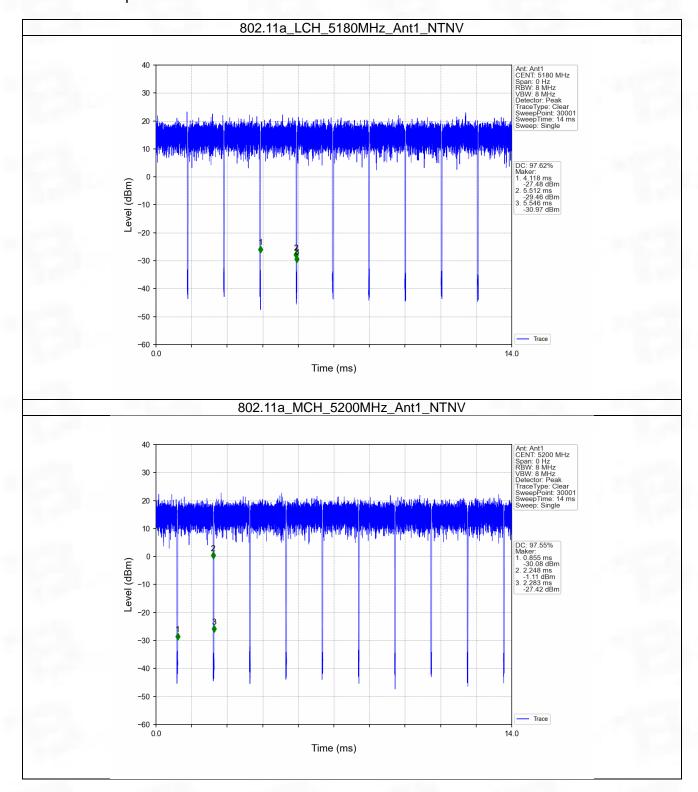

Duty Cycle Maximum conducted output power
Power spectral density
Emission bandwidth and occupied bandwidth

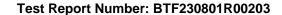

8 EUT Constructional Details (EUT Photos)

Please refer to the report No.BTF230801R00201

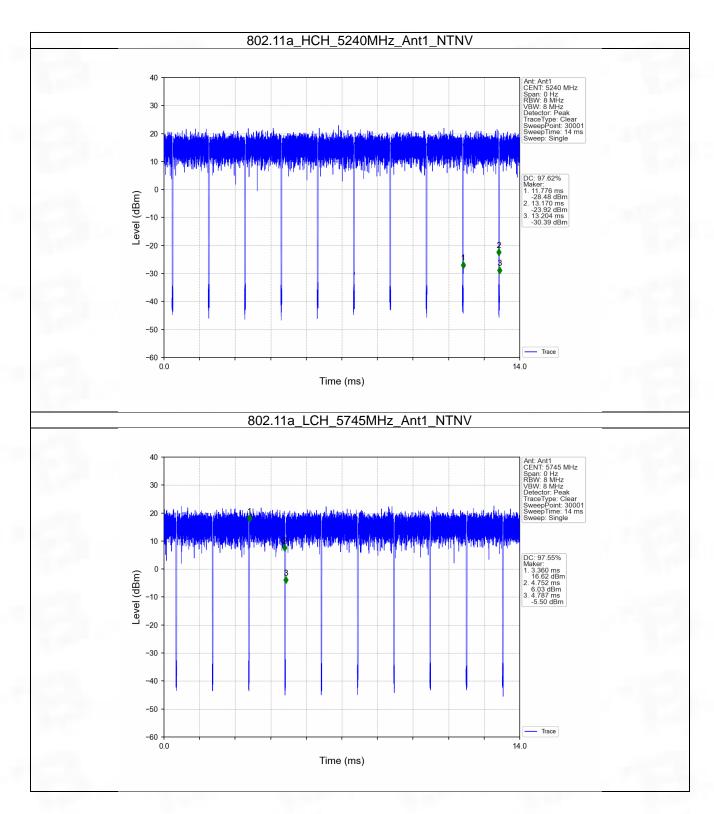
Appendix

1. Duty Cycle

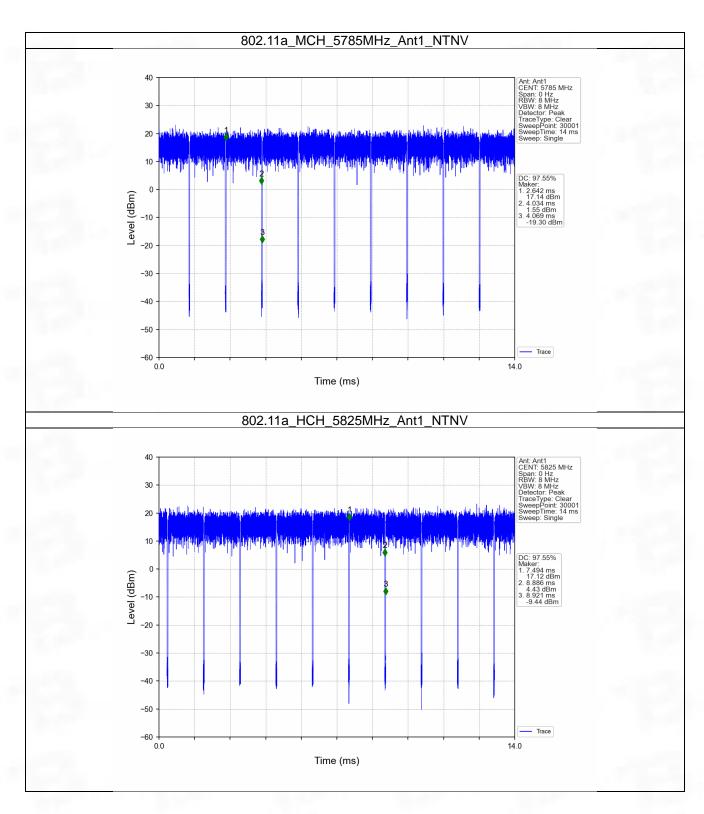

1.1 Ant1

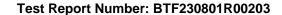

1.1.1 Test Result

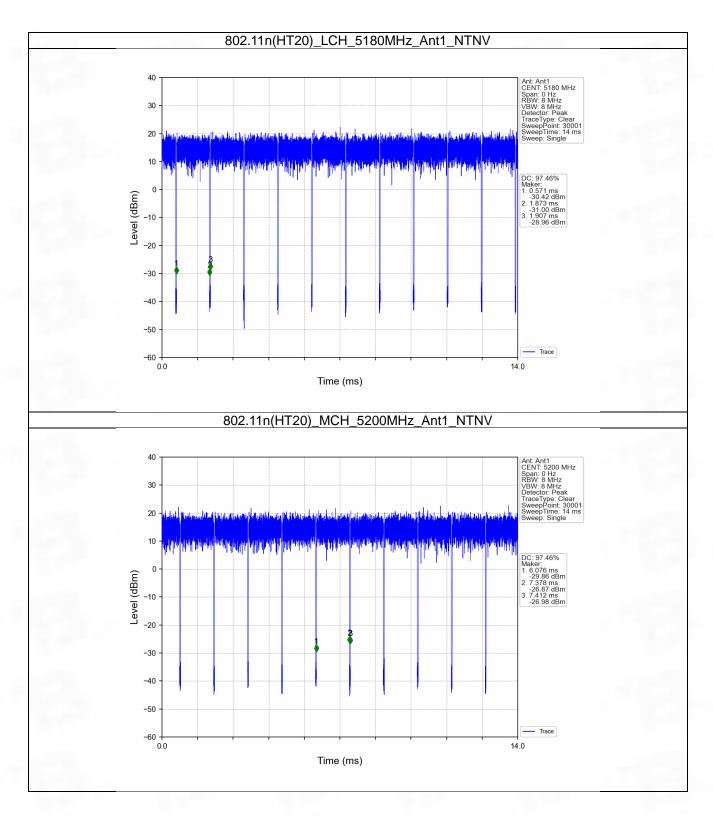
					Ant1		
Mode	TX	Frequency	T_on	Period	Duty Cycle	Duty Cycle	Max. DC
	Type	(MHz)	(ms)	(ms)	(%)	Correction Factor (dB)	Variation (%)
802.11a	SISO	5180	1.394	1.428	97.62	0.10	0.06
		5200	1.393	1.428	97.55	0.11	0.10
		5240	1.394	1.428	97.62	0.10	0.07
		5745	1.392	1.427	97.55	0.11	0.03
		5785	1.392	1.427	97.55	0.11	0.03
		5825	1.392	1.427	97.55	0.11	0.03
802.11n (HT20)	SISO	5180	1.302	1.336	97.46	0.11	0.04
		5200	1.302	1.336	97.46	0.11	0.04
		5240	1.300	1.336	97.31	0.12	0.04
		5745	1.300	1.335	97.38	0.12	0.03
		5785	1.300	1.335	97.38	0.12	0.03
		5825	1.300	1.336	97.31	0.12	0.03
802.11n (HT40)	SISO	5190	0.649	0.683	95.02	0.22	0.03
		5230	0.648	0.683	94.88	0.23	0.07
		5755	0.648	0.683	94.88	0.23	0.07
		5795	0.648	0.683	94.88	0.23	0.07
802.11ac (VHT20)	SISO	5180	1.312	1.347	97.40	0.11	0.07
		5200	1.312	1.348	97.33	0.12	0.03
		5240	1.314	1.348	97.48	0.11	0.07
		5745	1.313	1.348	97.40	0.11	0.07
		5785	1.314	1.349	97.41	0.11	0.10
		5825	1.312	1.347	97.40	0.11	0.03
802.11ac (VHT40)	SISO	5190	0.652	0.687	94.91	0.23	0.04
		5230	0.652	0.687	94.91	0.23	0.04
		5755	0.652	0.687	94.91	0.23	0.03
		5795	0.653	0.687	95.05	0.22	0.03
802.11ac (VHT80)	SISO	5210	0.325	0.359	90.53	0.43	0.10
		5775	0.324	0.358	90.50	0.43	0.07

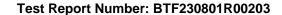


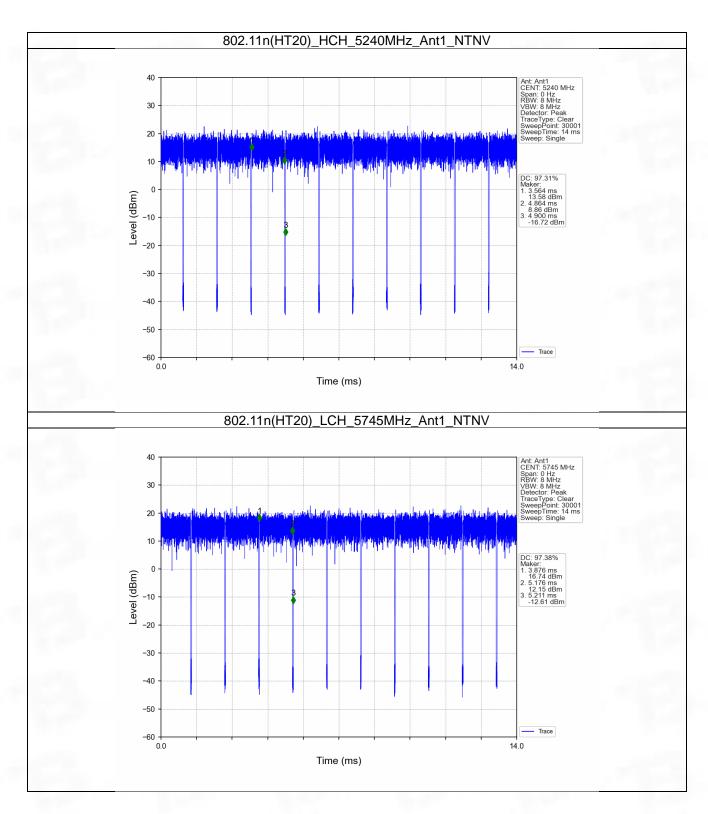
1.1.2 Test Graph

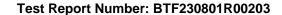


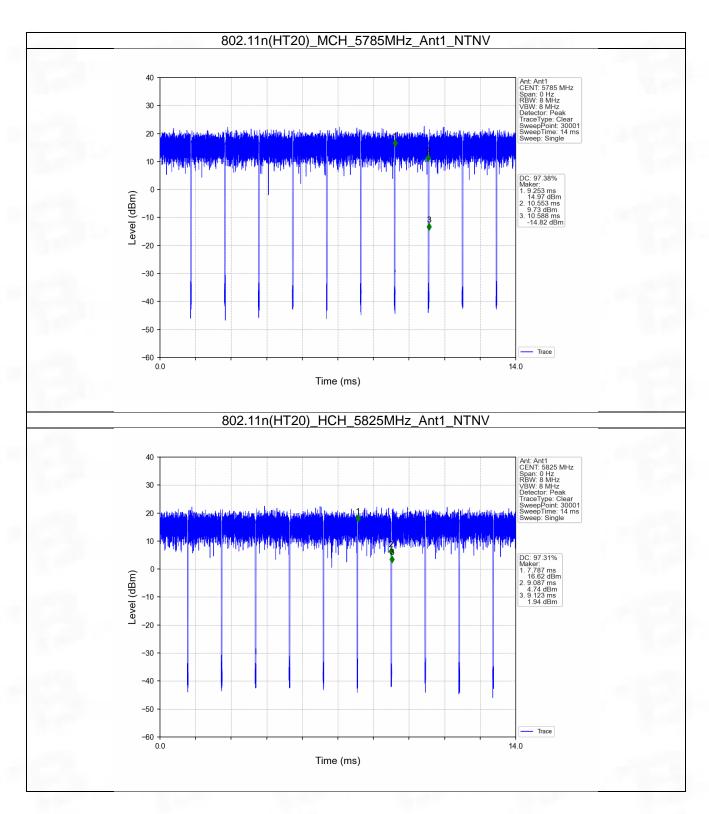


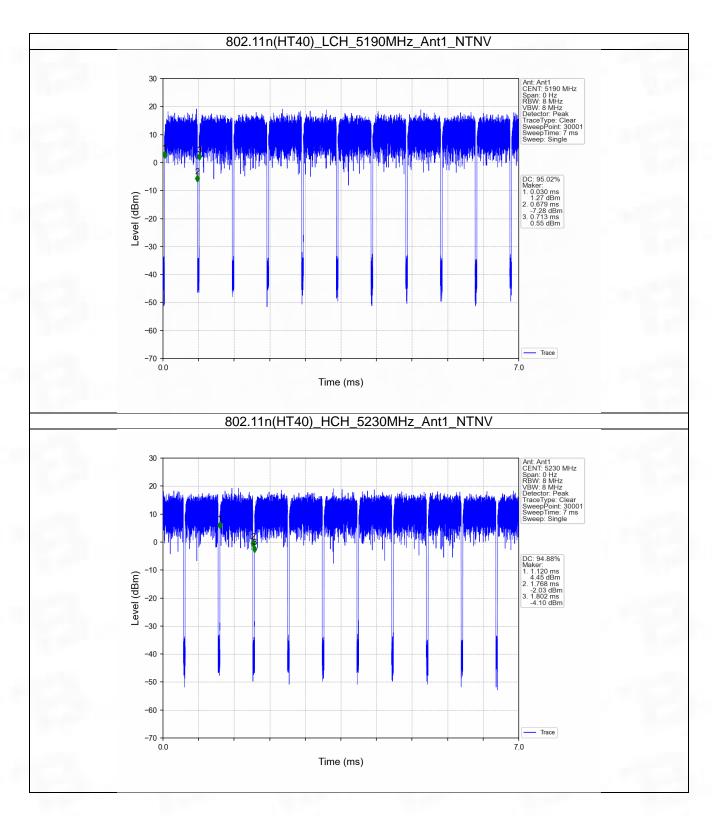


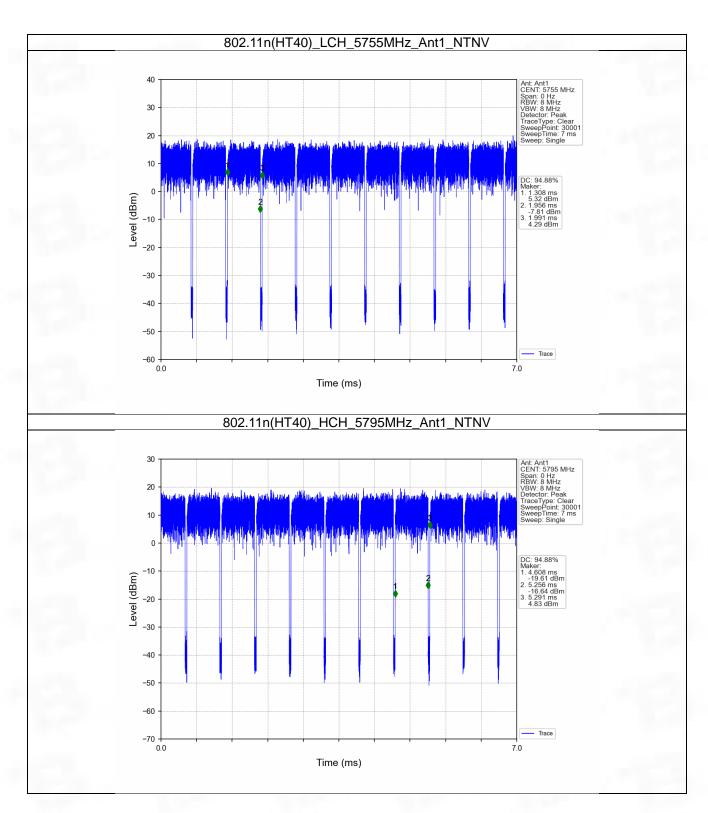


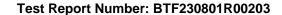


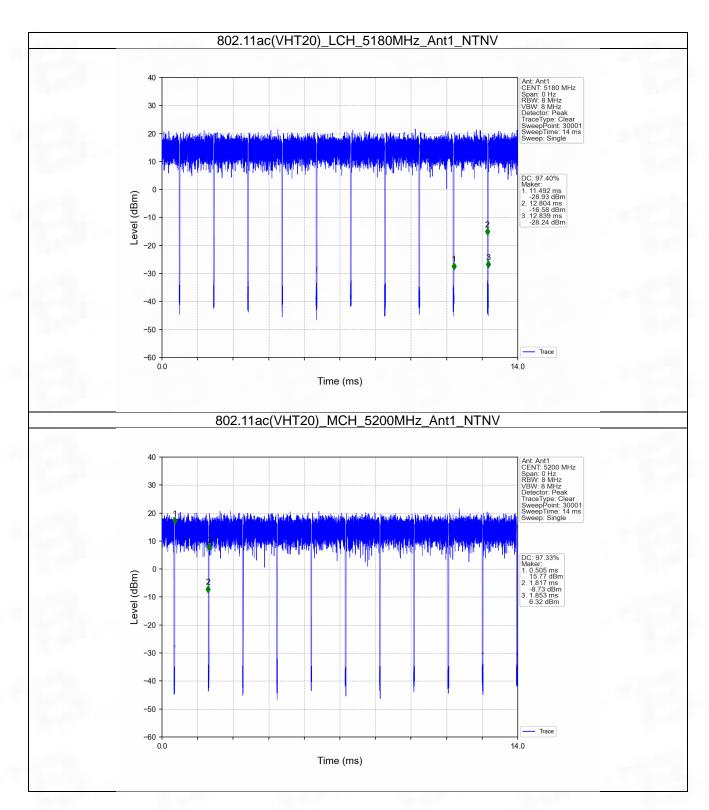


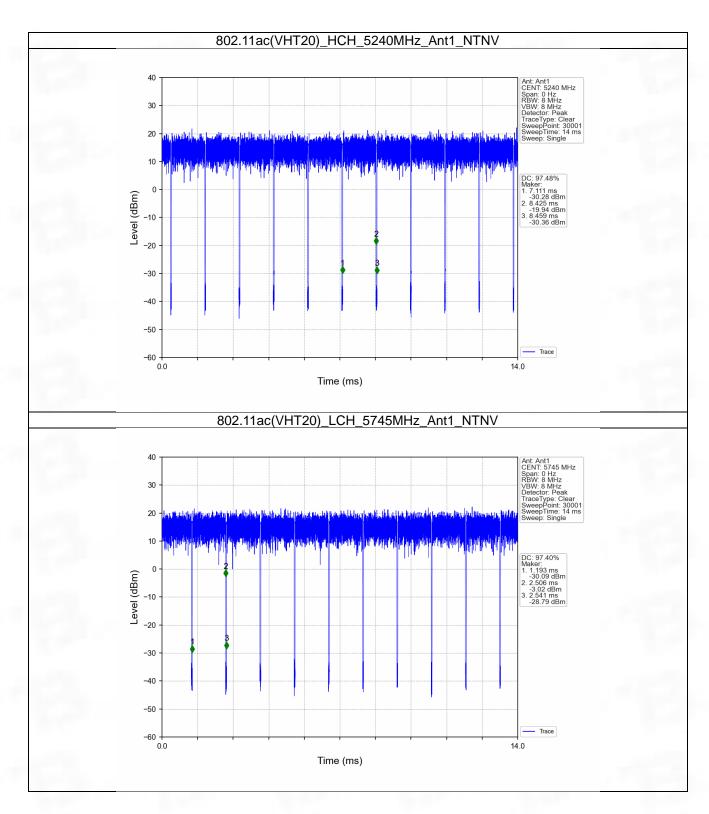


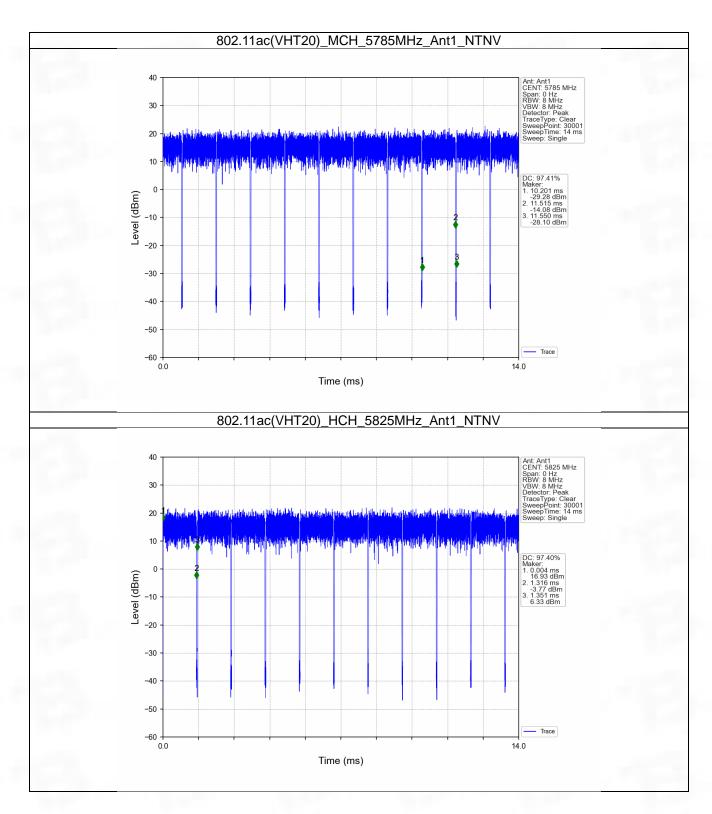


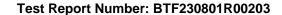


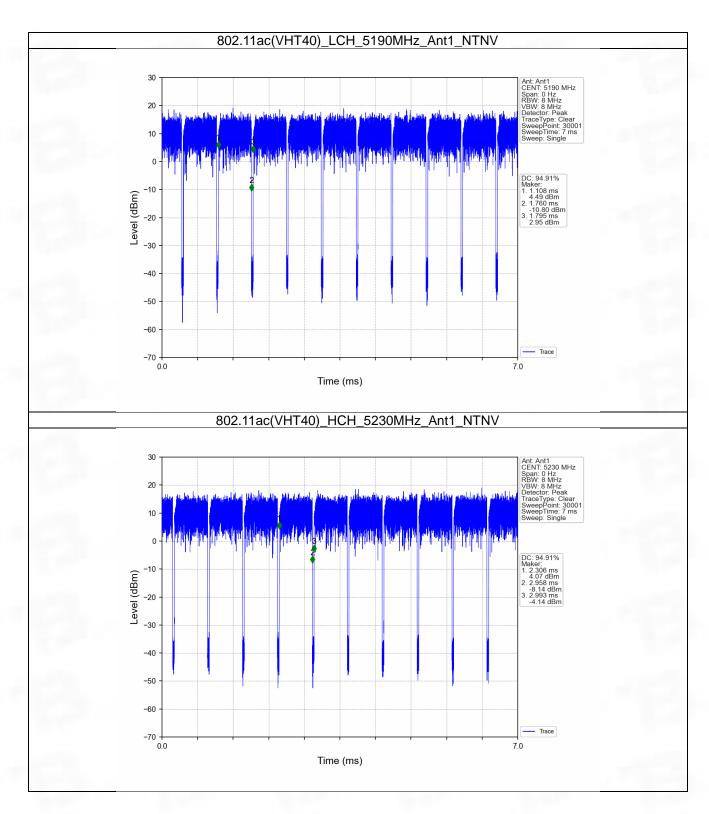


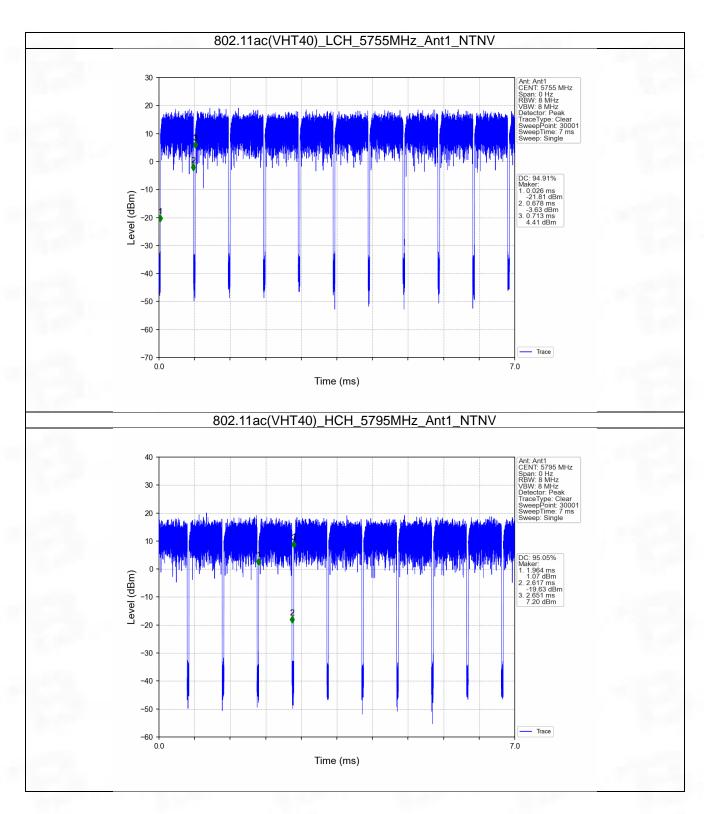


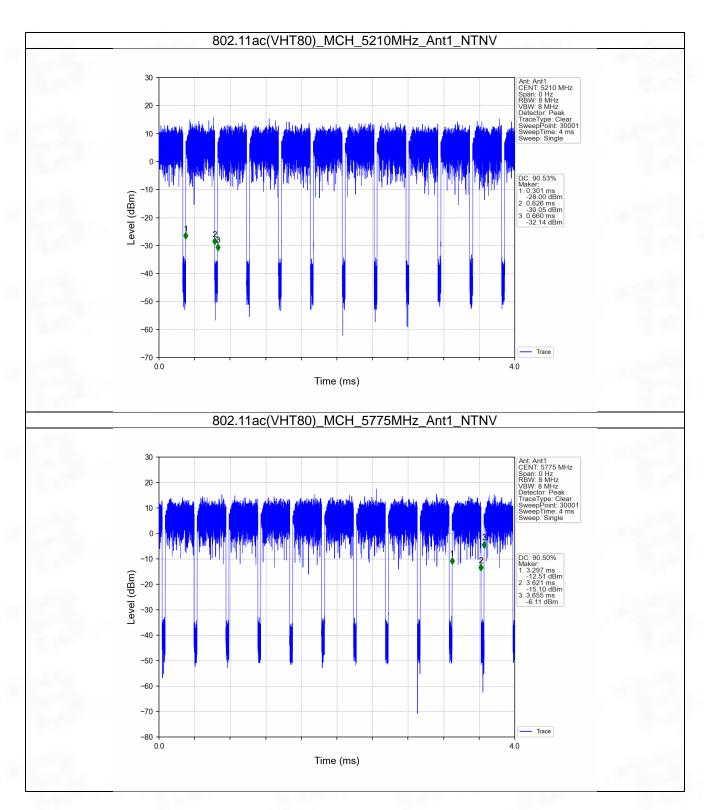


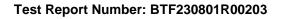


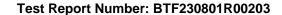






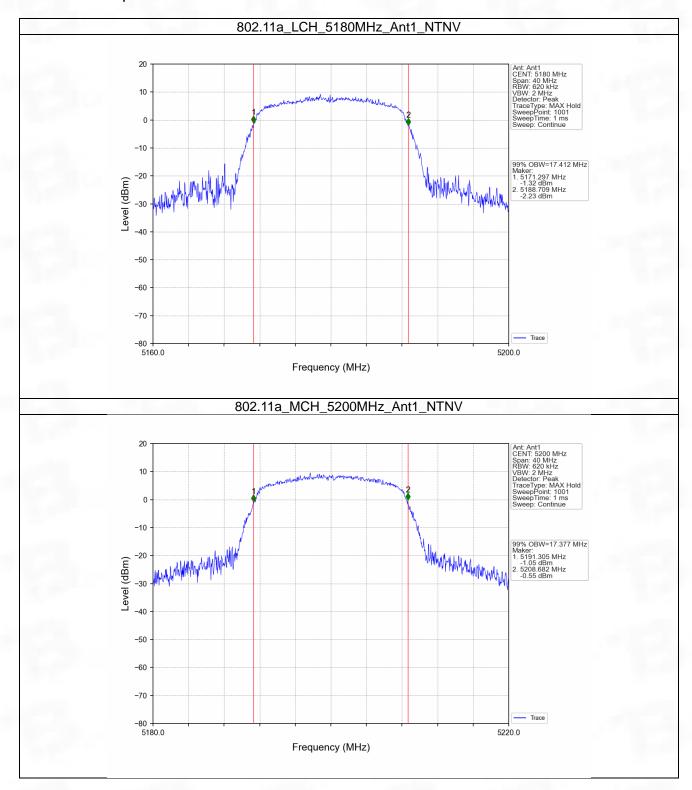




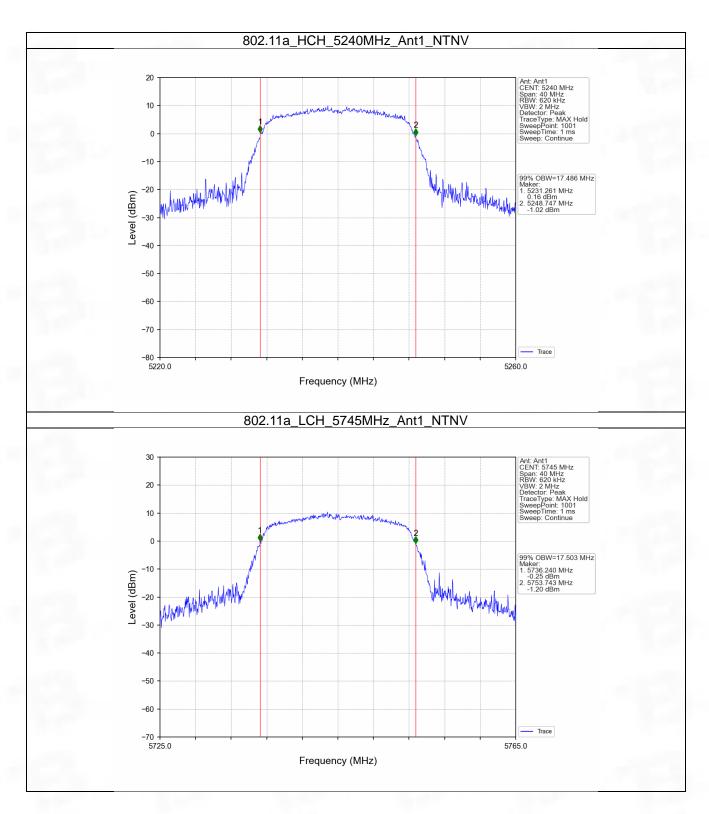


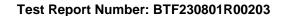
2. Bandwidth

2.1 OBW


2.1.1 Test Result

Mode	TX	Frequency	ANT	99% Occupied Bandwidth (MHz)	Verdict
Mode	Type	(MHz)	AINT	Result	
802.11a		5180	1	17.412	Pass
	SISO	5200	1	17.377	Pass
		5240	1	17.486	Pass
		5745	1	17.503	Pass
		5785	1	17.501	Pass
		5825	1	17.537	Pass
	SISO	5180	1	18.449	Pass
		5200	1	18.440	Pass
802.11n (HT20)		5240	1	18.462	Pass
		5745	1	18.491	Pass
		5785	1	18.518	Pass
		5825	1	18.477	Pass
	SISO	5190	1	36.822	Pass
802.11n (HT40)		5230	1	36.830	Pass
		5755	1	36.969	Pass
		5795	1	36.990	Pass
	SISO	5180	1	18.274	Pass
		5200	1	18.252	Pass
802.11ac (VHT20)		5240	1	18.284	Pass
		5745	1	18.305	Pass
		5785	1	18.358	Pass
		5825	1	18.311	Pass
	SISO	5190	1	36.469	Pass
802.11ac		5230	1	36.486	Pass
(VHT40)		5755	1	36.543	Pass
		5795	1	36.581	Pass
802.11ac	SISO	5210	1	75.664	Pass
(VHT80)		5775	1	75.747	Pass




2.1.2 Test Graph

