

TEST REPORT

No.I22N01939-RF UMTS

for

FEITIAN Technologies Co., Ltd.

Android POS Terminal

Model Name: F310

FCC ID: ZD3FTF310

with

Hardware Version: V1.01

Software Version: F310_OS_1.01.06.00

Issued Date: 2022-11-17

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

SAICT, Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000. Tel:+86(0)755-33322000, Fax:+86(0)755-33322001

Email: yewu@caict.ac.cn. www.saict.ac.cn

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I22N01939-RF UMTS	Rev.0	1st edition	2022-11-17

CONTENTS

1.	SUMMARY OF TEST REPORT4
1.1.	TEST ITEMS4
1.2.	TEST STANDARDS4
1.3.	TEST RESULT4
1.4.	TESTING LOCATION4
1.5.	PROJECT DATA4
1.6.	SIGNATURE4
2.	CLIENT INFORMATION
2.1.	APPLICANT INFORMATION
2.2.	MANUFACTURER INFORMATION5
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)6
3.1.	ABOUT EUT
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST
3.4.	GENERAL DESCRIPTION
4.	REFERENCE DOCUMENTS
5.	LABORATORY ENVIRONMENT
6.	SUMMARY OF TEST RESULTS9
7.	STATEMENT11
8.	TEST EQUIPMENTS UTILIZED12
ANN	IEX A: MEASUREMENT RESULTS
А	.1 OUTPUT POWER
	2 FIELD STRENGTH OF SPURIOUS RADIATION
A	.3 FREQUENCY STABILITY
A	.4 OCCUPIED BANDWIDTH
A	.5 EMISSION BANDWIDTH
A	.6 BAND EDGE COMPLIANCE
A	.7 CONDUCTED SPURIOUS EMISSION
A	.8 PEAK-TO-AVERAGE POWER RATIO 69

1. SUMMARY OF TEST REPORT

1.1. Test Items

Description	Android POS Terminal
Model Name	F310
Brand Name	FEITIAN
Applicant's name	FEITIAN Technologies Co., Ltd.
Manufacturer's Name	FEITIAN Technologies Co., Ltd.

1.2. Test Standards

FCC Part 2/22/24/27	10-1-20 Edition
ANSI C63.26	2015
KDB971168 D01	v03r01

1.3. Test Result

All test items are pass. Please refer to "6 Summary of Test Results" for detail.

1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000

1.5. Project Data

Testing Start Date: 2022-09-26

1.6. Signature

Wang Ping (Prepared this test report)

Zhang Hao (Approved this test report)

Testing End Date: 2022-11-17

首款欲

Huang Qiuqin (Reviewed this test report)

2. CLIENT INFORMATION

2.1. Applicant Information

Company Name:FEITIAN Technologies Co., Ltd.Address /Post:17th Floor, Tower B, Huizhi Mansion, No.9 Xueqing Road, Haidian District,
Beijing, ChinaContact Person:ZangfeiqiongContact Emailfeiqiong@ftsafe.comTelephone:13811812336Fax:+86 10 62304477

2.2. Manufacturer Information

Company Name:	FEITIAN Technologies Co., Ltd.
Address /Post:	17th Floor, Tower B, Huizhi Mansion, No.9 Xueqing Road, Haidian District,
	Beijing, China
Contact Person:	Zangfeiqiong
Contact Email	feiqiong@ftsafe.com
Telephone:	13811812336
Fax:	+86 10 62304477

3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT

(AE)

3.1. About EUT

Description	Android POS Terminal
Model Name	F310
FCC ID	ZD3FTF310
Frequency Bands	WCDMA Band 2,4,5
Antenna	Integrated
Extreme vol. Limits	3.50V to 4.30V (nominal: 3.80V)
Condition of EUT as received	No abnormality in appearance

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of SAICT.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
UT06aa	864255060100075	V1.01	F310_OS_1.01.06.00	2022-09-24
UT09aa	867400020316612	V1.01	F310_OS_1.01.06.00	2022-09-24

*EUT ID: is used to identify the test sample in the lab internally.

UT06aa is used for conduction test, UT09aa is used for radiation test.

3.3. Internal Identification of AE used during the test

AE ID* Description 1

AE1

*AE ID: is used to identify the test sample in the lab internally.

AE: ancillary equipment

3.4. General Description

The Equipment Under Test (EUT) is a model Android POS Terminal with integrated antenna. It consists of normal options: lithium battery, charger. Manual and specifications of the EUT were provided to fulfil the test. Samples undergoing test were selected by the Client.

4. <u>REFERENCE DOCUMENTS</u>

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 22	PUBLIC MOBILE SERVICES	10-1-20
		Edition
FCC Part 2	FREQUENCY ALLOCATIONS AND RADIO TREATY	10-1-20
	MATTERS; GENERAL RULES AND REGULATIONS	Edition
FCC Part 24	PERSONAL COMMUNICATIONS SERVICES	10-1-20
1001 att 24	T ERSONAL COMMUNICATIONS SERVICES	Edition
FCC Part 27	MISCELLANEOUS WIRELESS COMMUNICATIONS	10-1-20
FUC Fall 27	SERVICES	Edition
ANSI C63.26	American National Standard for Compliance Testing of	2015
ANOI 003.20	Transmitters Used in Licensed Radio Services	2013
KDB971168 D01	Power Meas License Digital Systems	v03r01

5. LABORATORY ENVIRONMENT

Shielded room did not exceed following limits along the RF testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz>60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	>2 MΩ
Ground system resistance	<4 Ω

Fully-anechoic chamber did not exceed following limits along the EMC testing

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	<4 Ω
Voltage Standing Wave Ratio (VSWR)	\leq 6 dB, from 1 to 18 GHz, 3 m distance
Uniformity of field strength	Between 0 and 6 dB, from 80 to 6000 MHz

6. SUMMARY OF TEST RESULTS

Abbreviations used in this clause:		
Verdict Column	Р	Pass
	F	Fail
	NA	Not applicable
	NM	Not measured

WCDMA Band II

Items	Test Name	Clause in FCC rules	Section in this report	Verdict
1	Output Power	2.1046/24.232	A.1	Р
2	Field Strength of Spurious Radiation	2.1053/24.238	A.2	Р
3	Frequency Stability	2.1055/24.235	A.3	Р
4	Occupied Bandwidth	2.1049/24.238	A.4	Р
5	Emission Bandwidth	2.1049/24.238	A.5	Р
6	Band Edge Compliance	2.1051/24.238	A.6	Р
7	Conducted Spurious Emission	2.1051/24.238	A.7	Р
8	Peak-to-Average Power Ratio	24.232/KDB971168 D01	A.8	Р

WCDMA Band V

Items	Test Name	Clause in FCC rules	Section in this report	Verdict
1	Output Power	2.1046/22.913	A.1	Р
2	Field Strength of Spurious Radiation	2.1053/22.917	A.2	Р
3	Frequency Stability	2.1055/22.355	A.3	Р
4	Occupied Bandwidth	2.1049/22.917	A.4	Р
5	Emission Bandwidth	2.1049/22.917	A.5	Р
6	Band Edge Compliance	2.1051/22.917	A.6	Р
7	Conducted Spurious Emission	2.1051/22.917	A.7	Р
8	Peak-to-Average Power Ratio	KDB971168 D01	A.8	Р

WCDMA Band IV

Items	Test Name	Clause in FCC rules	Section in this report	Verdict
1	Output Power	2.1046/27.50(d)	A.1	Р
2	Field Strength of Spurious Radiation	2.1053/27.53(h)	A.2	Р
3	Frequency Stability	2.1055/27.54	A.3	Р
4	Occupied Bandwidth	2.1049/27.53(g)	A.4	Р
5	Emission Bandwidth	2.1049/27.53(g)	A.5	Р
6	Band Edge Compliance	2.1051/27.53(h)	A.6	Р
7	Conducted Spurious Emission	2.1051/27.53(h)	A.7	Р
8	Peak-to-Average Power Ratio	27.50(d) /KDB971168 D01	A.8	Р

7. STATEMENT

Since the information of samples in this report is provided by the client, the laboratory is not responsible for the authenticity of sample information.

This report takes measured values as criterion of test conclusion. The test conlusion meets the limit requirements.

8. TEST EQUIPMENTS UTILIZED

NO.	Description	TYPE	Manufacture	series number	CAL DUE DATE
1	Test Receiver	ESR7	R&S	101676	2022-11-24
2	BiLog Antenna	3142E	ETS-Lindgren	0224831	2024-05-27
3	Horn Antenna	3117	ETS-Lindgren	00066577	2025-04-17
4	Horn Antenna	QSH-SL-18-26- S-20	Q-par	17013	2023-01-06
5	Antenna	BBHA 9120D	Schwarzbeck	1593	2022-12-05
6	Antenna	VUBA 9117	Schwarzbeck	207	2023-07-15
7	Antenna	QWH-SL-18-40 -K-SG	Q-par	15979	2023-01-06
8	preamplifier	83017A	Agilent	MY39501110	/
9	Signal Generator	SMB100A	R&S	179725	2022-11-24
10	Fully Anechoic Chamber	FACT3-2.0	ETS-Lindgren	1285	2023-05-29
11	Spectrum Analyzer	FSV40	R&S	101192	2023-01-12
12	Universal Radio Communication Tester	CMU200	R&S	114545	2023-01-12
13	Universal Radio Communication Tester	CMW500	R&S	152499	2023-07-14
14	Universal Radio Communication Tester	CMW500	R&S	129146	2023-04-24
15	Spectrum Analyzer	FSU	R&S	101506	2022-12-13
16	Temperature Chamber	SH-241	ESPEC	92007516	2023-10-15
17	DC Power Supply	U3606A	Agilent Technologies	MY50450012	2023-11-13
18	Spectrum Analyzer	FSW26	R&S	102197	2022-11-24

Test software

ltem	Name	Vesion
Radiated	EMC32	V10.50.40

ANNEX A: MEASUREMENT RESULTS

A.1 OUTPUT POWER

Reference

FCC: CFR Part 2.1046, 22.913, 24.232, 27.50(d)

A.1.1 Summary

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMW500) to ensure max power transmission and proper modulation. This result contains max output power and EIRP measurements for the EUT. In all cases, output

power is within the specified limits. **A.1.2 Conducted**

A.1.2.1 Method of Measurements

The EUT was set up for the max output power with pseudo random data modulation.

These measurements were done at 3 frequencies, 1852.4 MHz, 1880.0MHz and 1907.6MHz for WCDMA Band II;826.4MHz, 836.6MHz and 846.6MHz for WCDMA Band V and 1712.4MHz, 1732.4MHz and 1752.6MHz for WCDMA Band IV (bottom, middle and top of operational frequency range).

Limit

According to FCC Part 2.1046

WCDMA Band II

A.1.2.2 Measurement result

QPSK

	СН	Frequency(MHz)	output power(dBm)
WCDMA	9262	1852.4	22.87
(Band II)	9400	1880.0	22.87
	9538	1907.6	22.89

16QAM

	СН	Frequency(MHz)	output power(dBm)
WCDMA	9262	1852.4	22.15
(Band II)	9400	1880.0	22.18
	9538	1907.6	22.16

WCDMA Band V Measurement result QPSK

	СН	Frequency(MHz)	output power(dBm)		
WCDMA	4132	826.4	22.63		
(Band V)	4183	836.6	22.52		
	4233	846.6	22.49		

16QAM

	СН	Frequency(MHz)	output power(dBm)
WCDMA	4132	826.4	22.03
(Band V)	4183	836.6	22.01
	4233	846.6	22.06

WCDMA Band IV

Measurement result

QPSK

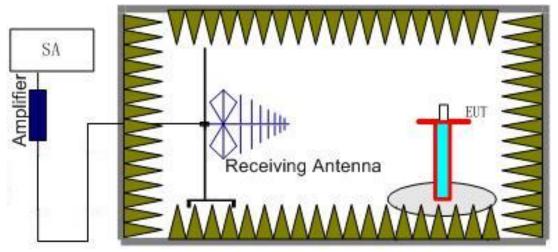
	СН	Frequency(MHz)	output power(dBm)
WCDMA	1312	1712.4	22.86
(Band IV)	1412	1732.4	22.58
	1513	1752.6	22.43

16QAM

	СН	Frequency(MHz)	output power(dBm)
WCDMA	1312	1712.4	22.10
(Band IV)	1412	1732.4	22.05
	1513	1752.6	22.08

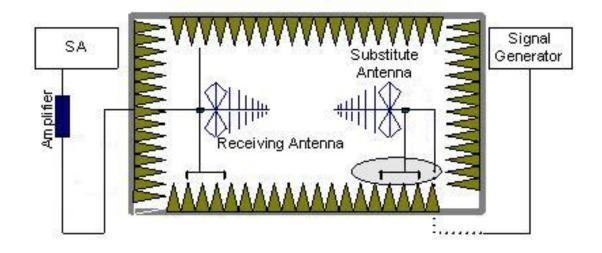
Note: Expanded measurement uncertainty is U = 0.49dB, k = 1.96

A.1.3 Radiated


A.1.3.1 Description

This is the test for the maximum radiated power from the EUT.

Rule Part 24.232(b) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."Rule Part 22.913(a) specifies " The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."


A.1.3.2 Method of Measurement

1. For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, EUT was placed on a 80 cm high non-conductive stand at a 3 meter test distance from the receive antenna. For radiated measurements performed at frequencies above 1 GHz, EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. Receiving antenna was placed on the antenna mast 3 meters from the EUT. For emission measurements. The receiving antenna shall be varied from 1 m to 4 m in height above the reference ground in a search for the relative positioning that produces the maximum radiated signal level. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

 A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}) ,the Substitution Antenna Gain(dBi) (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test.

The measurement results are obtained as described below:

Power(EIRP)=P_{Mea} - P_{Ag} - P_{cl} + G_a

- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dB.

WCDMA Band II-EIRP

Limits

	Burst Peak EIRP (dBm)
WCDMA Band II	≤33dBm (2W)

Measurement result

WCDMA Band II QPSK

Frequency	P _{Mea}	P _{cl} (dB)+	Ga Antenna	EIRP	Limit	Polarization
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dBm)	(dBm)	FUIAIIZALIUIT
1852.40	-15.39	-29.30	8.10	22.01	33.00	Н
1880.00	-15.92	-29.40	8.10	21.58	33.00	Н
1907.60	-16.38	-29.30	8.10	21.02	33.00	Н

WCDMA Band II 16QAM

Frequency	P _{Mea}	P _{cl} (dB)+	Ga Antenna	EIRP	Limit	Polarization
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dBm)	(dBm)	Polarization
1852.40	-15.53	-29.30	8.10	21.87	33.00	Н
1880.00	-16.07	-29.40	8.10	21.43	33.00	Н
1907.60	-16.42	-29.30	8.10	20.98	33.00	Н

Frequency: 1852.40MHz

Peak EIRP(dBm)= PMea(-15.39dBm)-(Pcl+PAg)(-29.30dB)+Ga (8.10dB) =22.01dBm

ANALYZER SETTINGS: RBW = VBW = 5MHz

WCDMA Band V-ERP

Limits

	Burst Peak ERP (dBm)
WCDMA Band V	≤38.45dBm

Measurement result

WCDMA Band V QPSK

Frequency	P _{Mea}	P _{cl} (dB)+	Ga Antenna	Correction	ERP	Limit	Delerization
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dB)	(dBm)	(dBm)	Polarization
826.40	-9.29	-33.60	-0.84	2.15	21.32	38.45	V
836.60	-8.99	-33.50	-0.74	2.15	21.62	38.45	V
846.60	-9.13	-33.50	-0.73	2.15	21.49	38.45	V

WCDMA Band V 16QAM

Frequency	P _{Mea}	P _{cl} (dB)+	Ga Antenna	Correction	ERP	Limit	Delorization
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dB)	(dBm)	(dBm)	Polarization
826.40	-9.40	-33.60	-0.84	2.15	21.21	38.45	V
836.60	-9.08	-33.50	-0.74	2.15	21.53	38.45	V
846.60	-9.24	-33.50	-0.73	2.15	21.38	38.45	V

Frequency: 836.60MHz

Peak ERP(dBm)= PMea(-8.99dBm)-(Pcl+PAg)(-33.50dB)+Ga (-0.74dB)-2.15dB=21.62dBm

ANALYZER SETTINGS: RBW = VBW = 5MHz

WCDMA Band IV-EIRP

Limits

	Burst Peak EIRP (dBm)
WCDMA Band IV	≤30.00dBm

Measurement result

WCDMA Band IV QPSK

Frequency	P _{Mea}	P _{cl} (dB)+	Ga Antenna	EIRP	Limit	Polarization
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dBm)	(dBm)	Polarization
1712.40	-16.72	-29.60	8.10	20.98	30.00	Н
1732.60	-15.97	-29.50	8.10	21.63	30.00	Н
1752.60	-15.52	-29.50	8.10	22.08	30.00	Н

WCDMA Band IV 16QAM

Frequency	P _{Mea}	P _{cl} (dB)+	Ga Antenna	EIRP	Limit	Polarization
(MHz)	(dBm)	P _{Ag} (dB)	Gain(dBi)	(dBm)	(dBm)	Polarization
1712.40	-16.85	-29.60	8.10	20.85	30.00	Н
1732.60	-16.13	-29.50	8.10	21.47	30.00	Н
1752.60	-15.61	-29.50	8.10	21.99	30.00	Н

Frequency: 1752.60 MHz

Peak EIRP(dBm)= PMea(-15.52dBm)-(Pcl+PAg)(-29.50dB)+Ga (8.10dB)=22.08dBm

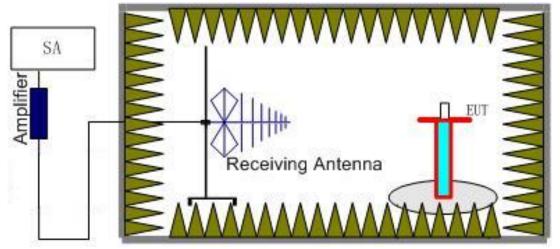
ANALYZER SETTINGS: RBW = VBW = 5MHz

Note: The maximum value of expanded measurement uncertainty for this test item is U = 2.87 dB(30MHz-3GHz)/3.35dB(3GHz-18GHz)/2.68dB(18GHz-40GHz), k = 2

Note: Both of Vertical and Horizontal polarizations are evaluated, but only the worst case is recorded in this report.

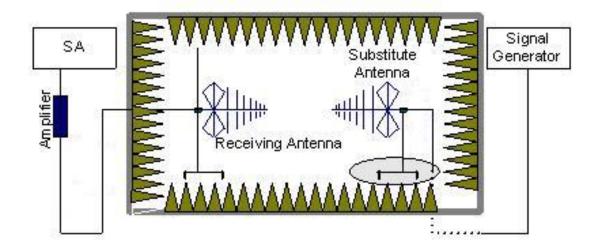
A.2 FIELD STRENGTH OF SPURIOUS RADIATION

Reference


FCC: CFR 2.1053, 22.917, 24.238, 27.53(h).

A.2.1 Measurement Method

The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment. The resolution bandwidth is set 1MHz as outlined in Part 24.238, Part 22.917 and Part 27.53. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of WCDMA Band II, WCDMA Band V and WCDMA Band IV.


The procedure of radiated spurious emissions is as follows:

1. For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, EUT was placed on a 80 cm high non-conductive stand at a 3 meter test distance from the receive antenna. For radiated measurements performed at frequencies above 1 GHz, EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. Receiving antenna was placed on the antenna mast 3 meters from the EUT. For emission measurements. The receiving antenna shall be varied from 1 m to 4 m in height above the reference ground in a search for the relative positioning that produces the maximum radiated signal level. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.

- 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr).
- 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below.

In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

 The Path loss (P_{pl}) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain(dBi) (G_a) should be recorded after test.
 A amplifier should be connected in for the test.

The Path loss (P_{pl}) is the summation of the cable loss and the gain of the amplifier. The measurement results are obtained as described below:

Power(EIRP)=P_{Mea} - P_{pl} + G_a

- 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dB.

A.2.2 Measurement Limit

Part 24.238 , Part 22.917 and Part 27.50 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

A.2.3 Measurement Results

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of WCDMA Band II (1852.4 MHz, 1880.0MHz and 1907.6MHz), WCDMA Band V(826.4MHz, 836.6MHz and 846.6MHz) and WCDMA Band IV (1712.4MHz, 1732.4MHz and 1752.6MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the WCDMA Band II,WCDMA Band V and WCDMA Band IV into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

A.2.4 Measurement Results Table

Frequency	Channel	Frequency Range	Result
	Low	30MHz-10GHz	Pass
WCDMA Band V	Middle	30MHz-10GHz	Pass
	High	30MHz-10GHz	Pass
	Low	30MHz-20GHz	Pass
WCDMA Band II	Middle	30MHz-20GHz	Pass
	High	30MHz-20GHz	Pass
	Low	30MHz-20GHz	Pass
WCDMA Band IV	Middle	30MHz-20GHz	Pass
	High	30MHz-20GHz	Pass

A.2.5 Sweep Table

Working	Subrange (GHz)	RBW	VBW	Sweep time (s)
Frequency				
	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
WCDMA Band V	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~10	1 MHz	3 MHz	3
	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
WCDMA Band II	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	MHz3 MHzMHz3 MHzMHz3 MHzMHz3 MHz00KHz300KHzMHz3 MHzMHz3 MHz	3
	14~18	1 MHz	3 MHz	3
	18~20	1 MHz	3 MHz	2
	0.03~1	100KHz	300KHz	10
	1-2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
WCDMA Band IV	5~8	1 MHz	3 MHz	3
	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	18~20	1 MHz	3 MHz	3

	D (dDm)	Path	Antenna	Peak	Limit	Polarization				
Frequency(MHz)	P _{Mea} (dBm)	r _{Mea} (ubiii)	r Mea(ubiii)	r _{Mea} (ubiii)	r _{Mea} (ubiii)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polanzation
16905.62	-45.90	2.90	16.50	-32.30	-13.00	Н				
16947.50	-45.02	2.90	16.50	-31.42	-13.00	Н				
17171.88	-43.39	2.90	14.50	-31.79	-13.00	Н				
17506.25	-40.50	2.90	12.80	-30.60	-13.00	Н				
17560.00	-39.49	2.90	12.80	-29.59	-13.00	Н				
17769.38	-39.49	3.60	12.80	-30.29	-13.00	Н				

WCDMA BAND II Mode Channel 9662/1932.4MHz(QPSK)

WCDMA BAND II Mode Channel 9800/1960MHz(QPSK)

Eroguopov(MHz)	D (dDm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
16940.62	-45.32	2.90	16.50	-31.72	-13.00	Н
17212.50	-43.97	2.90	14.50	-32.37	-13.00	Н
17257.50	-43.18	3.20	14.50	-31.88	-13.00	Н
17508.75	-40.67	2.90	12.80	-30.77	-13.00	Н
17597.50	-40.11	3.30	12.80	-30.61	-13.00	Н
17839.38	-40.32	3.60	12.80	-31.12	-13.00	Н

WCDMA BAND II Mode Channel 9938/1987.6MHz(QPSK)

	D (dDma)	Path	Antenna	Peak	Limit	Delerization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
16950.62	-45.40	2.90	16.50	-31.80	-13.00	Н
17121.88	-43.53	2.90	14.50	-31.93	-13.00	Н
17359.38	-43.59	3.20	14.50	-32.29	-13.00	Н
17456.88	-41.94	2.90	14.50	-30.34	-13.00	Н
17582.50	-40.30	3.30	12.80	-30.80	-13.00	Н
17830.62	-40.71	3.60	12.80	-31.51	-13.00	Н

	equency(MHz) P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization
		loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
16936.88	-45.75	2.90	16.50	-32.15	-13.00	Н
17208.75	-44.18	2.90	14.50	-32.58	-13.00	Н
17339.38	-43.17	3.20	14.50	-31.87	-13.00	Н
17505.62	-39.90	2.90	12.80	-30.00	-13.00	Н
17535.62	-40.26	2.90	12.80	-30.36	-13.00	Н
17793.75	-40.36	3.60	12.80	-31.16	-13.00	Н

WCDMA BAND II Mode Channel 9662/1932.4MHz(16QAM)

WCDMA BAND II Mode Channel 9800/1960MHz(16QAM)

Eroguopov (MHz)	juency(MHz) P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization
Frequency(winz)		loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
16966.88	-44.13	2.90	16.50	-30.53	-13.00	Н
17195.62	-42.29	2.90	14.50	-30.69	-13.00	Н
17306.88	-42.47	3.20	14.50	-31.17	-13.00	Н
17443.75	-41.40	2.90	14.50	-29.80	-13.00	Н
17562.50	-38.74	3.30	12.80	-29.24	-13.00	Н
17766.88	-38.82	3.60	12.80	-29.62	-13.00	Н

WCDMA BAND II Mode Channel 9938/1987.6MHz(16QAM)

	requency(MHz) P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Delevization
Frequency(MHZ)		loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
16981.88	-45.76	2.90	16.50	-32.16	-13.00	Н
17125.62	-43.26	2.90	14.50	-31.66	-13.00	Н
17286.25	-43.62	3.20	14.50	-32.32	-13.00	Н
17517.50	-40.35	2.90	12.80	-30.45	-13.00	Н
17584.38	-39.29	3.30	12.80	-29.79	-13.00	Н
17774.38	-40.14	3.60	12.80	-30.94	-13.00	Н

Frequency(MHz)	P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHZ)		loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polanzation
3422.25	-37.64	1.20	11.50	-27.34	-13.00	Н
16978.12	-45.15	2.90	16.50	-31.55	-13.00	Н
17273.12	-43.33	3.20	14.50	-32.03	-13.00	Н
17508.75	-39.64	2.90	12.80	-29.74	-13.00	Н
17581.88	-40.01	3.30	12.80	-30.51	-13.00	Н
17778.75	-40.23	3.60	12.80	-31.03	-13.00	Н

WCDMA BAND IV Mode Channel 1537/1712.4MHz(QPSK)

WCDMA BAND IV Mode Channel 1638/1732.6MHz(QPSK)

Frequency(MHz) P _{Mea} (D (dDm)	Path	Antenna	Peak	Limit	Polarization
Frequency(IVIHZ)	P _{Mea} (dBm)	loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
3462.75	-37.84	1.10	11.50	-27.44	-13.00	Н
16944.38	-45.36	2.90	16.50	-31.76	-13.00	Н
17311.88	-43.46	3.20	14.50	-32.16	-13.00	Н
17511.25	-40.67	2.90	12.80	-30.77	-13.00	Н
17575.00	-39.95	3.30	12.80	-30.45	-13.00	Н
17706.88	-40.77	3.30	12.80	-31.27	-13.00	Н

WCDMA BAND IV Mode Channel 1738/1752.6MHz(QPSK)

	P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Delerization
Frequency(MHz)		loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
16979.38	-45.14	2.90	16.50	-31.54	-13.00	Н
17116.25	-44.01	2.90	14.50	-32.41	-13.00	Н
17270.00	-43.35	3.20	14.50	-32.05	-13.00	Н
17516.25	-40.35	2.90	12.80	-30.45	-13.00	Н
17639.38	-39.61	3.30	12.80	-30.11	-13.00	Н
17825.62	-40.36	3.60	12.80	-31.16	-13.00	Н

	uency(MHz) P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization
Frequency(IVIEZ)		loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polanzation
3426.75	-36.08	1.20	11.50	-25.78	-13.00	Н
16978.12	-45.15	2.90	16.50	-31.55	-13.00	Н
17275.00	-42.08	3.20	14.50	-30.78	-13.00	Н
17433.75	-42.41	2.90	14.50	-30.81	-13.00	Н
17606.25	-39.47	3.30	12.80	-29.97	-13.00	Н
17701.25	-40.62	3.30	12.80	-31.12	-13.00	Н

WCDMA BAND IV Mode Channel 1537/1712.4MHz(16QAM)

WCDMA BAND IV Mode Channel 1638/1732.6MHz(16QAM)

Frequency(MHz)	P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization
		loss	Gain(dBi)	EIRP(dBm)	(dBm)	Polarization
3463.50	-38.23	1.10	11.50	-27.83	-13.00	Н
16935.62	-45.26	2.90	16.50	-31.66	-13.00	Н
17303.12	-43.47	3.20	14.50	-32.17	-13.00	Н
17461.25	-42.13	2.90	14.50	-30.53	-13.00	Н
17582.50	-39.92	3.30	12.80	-30.42	-13.00	Н
17771.88	-40.30	3.60	12.80	-31.10	-13.00	Н

WCDMA BAND IV Mode Channel 1738/1752.6MHz(16QAM)

· · · · · · · · · · · · · · · · · · ·				-		
	P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)		loss	Gain(dBi)	EIRP(dBm)	(dBm)	FUIAIIZALIUII
3507.00	-43.26	1.10	12.20	-32.16	-13.00	Н
16986.25	-45.38	2.90	16.50	-31.78	-13.00	Н
17256.88	-43.02	3.20	14.50	-31.72	-13.00	Н
17396.25	-42.54	2.90	14.50	-30.94	-13.00	Н
17526.25	-40.59	2.90	12.80	-30.69	-13.00	Н
17836.25	-39.90	3.60	12.80	-30.70	-13.00	Н

Frequency(MHz)	P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHZ)		loss	Gain(dBi)	ERP(dBm)	(dBm)	FUIdHZduUH
1655.00	-46.12	0.80	8.10	-40.97	-13.00	Н
8739.38	-52.55	2.00	12.00	-44.70	-13.00	V
9097.00	-51.61	2.20	11.60	-44.36	-13.00	Н
9300.38	-49.86	2.00	11.60	-42.41	-13.00	Н
9426.38	-51.28	2.10	11.60	-43.93	-13.00	Н
9734.00	-51.27	2.20	11.20	-44.42	-13.00	Н

WCDMA BAND V Mode Channel 4357/871.4MHz(QPSK)

WCDMA BAND V Mode Channel 4408/881.6MHz(QPSK)

Frequency(MHz) P _{Me}	D (dDm)	Path	Antenna	Peak	Limit	Polarization
Frequency(IVIHZ)	P _{Mea} (dBm)	loss	Gain(dBi)	ERP(dBm)	(dBm)	Polarization
7381.88	-53.17	1.70	12.00	-45.02	-13.00	Н
8470.12	-51.38	1.80	11.30	-44.03	-13.00	Н
9095.88	-51.88	2.20	11.60	-44.63	-13.00	Н
9307.88	-50.79	2.00	11.60	-43.34	-13.00	Н
9473.88	-51.02	2.10	11.60	-43.67	-13.00	V
9743.50	-50.68	2.20	11.20	-43.83	-13.00	Н

WCDMA BAND V Mode Channel 4458/891.6MHz(QPSK)

Eroguopov (MHz)	D (dDm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	ERP(dBm)	(dBm)	Polanzation
8480.25	-52.74	1.80	11.30	-45.39	-13.00	Н
9099.12	-50.76	2.20	11.60	-43.51	-13.00	Н
9303.88	-50.69	2.00	11.60	-43.24	-13.00	Н
9474.88	-48.06	2.10	11.60	-40.71	-13.00	V
9750.62	-51.02	2.20	11.20	-44.17	-13.00	Н
9799.88	-51.54	2.30	11.20	-44.79	-13.00	Н

	D (dDm)	Path	Antenna	Peak	Limit	Polarization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	ERP(dBm)	(dBm)	Polarization
1655.00	-46.14	0.80	8.10	-40.99	-13.00	Н
8418.75	-52.29	1.80	11.30	-44.94	-13.00	V
9110.12	-52.12	2.10	11.60	-44.77	-13.00	Н
9300.12	-50.83	2.00	11.60	-43.38	-13.00	Н
9473.62	-51.50	2.10	11.60	-44.15	-13.00	V
9713.88	-50.87	2.20	11.20	-44.02	-13.00	Н

WCDMA BAND V Mode Channel 4357/871.4MHz(16QAM)

WCDMA BAND V Mode Channel 4408/881.6MHz(16QAM)

Eroguopov (MHz)	D (dDm)	Path	Antenna	Peak	Limit	Delorization
Frequency(MHz)	P _{Mea} (dBm)	loss	Gain(dBi)	ERP(dBm)	(dBm)	Polarization
8342.62	-51.96	1.80	11.30	-44.61	-13.00	Н
9103.50	-51.22	2.20	11.60	-43.97	-13.00	Н
9303.00	-50.76	2.00	11.60	-43.31	-13.00	Н
9477.62	-51.23	2.10	11.60	-43.88	-13.00	V
9749.75	-50.96	2.20	11.20	-44.11	-13.00	Н
9800.50	-51.63	2.30	11.20	-44.88	-13.00	Н

WCDMA BAND V Mode Channel 4458/891.6MHz(16QAM)

Frequency(MHz)	P _{Mea} (dBm)	Path	Antenna	Peak	Limit	Polarization
	r _{Mea} (ubiii)	loss	Gain(dBi)	ERP(dBm)	(dBm)	FUIAIIZALIUII
8426.25	-52.33	1.80	11.30	-44.98	-13.00	Н
9100.25	-50.94	2.20	11.60	-43.69	-13.00	Н
9227.00	-50.57	2.10	11.60	-43.22	-13.00	Н
9478.38	-51.52	2.10	11.60	-44.17	-13.00	V
9739.62	-50.79	2.20	11.20	-43.94	-13.00	Н
9805.75	-50.94	2.30	11.20	-44.19	-13.00	Н

Note: The maximum value of expanded measurement uncertainty for this test item is U = 2.87dB(30MHz-3GHz)/3.35dB(3GHz-18GHz)/2.68dB(18GHz-40GHz), k = 2

A.3 FREQUENCY STABILITY

Reference

FCC: CFR Part 2.1055, 22.355, 24.235, 27.54

A.3.1 Method of Measurement

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30° C.
- 3. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on mid channel of each band, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10[°]C increments from -30[°]C to +50[°]C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at +50 $^{\circ}$ C.
- 7. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10°C increments from +50°C to -30°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5° during the measurement procedure.

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of the lower, higher and nominal voltage. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress.

A.3.2 Measurement results WCDMA Band II

Frequency Error vs Voltage

Temperature(°C)	Voltage(V)	FL(MHz)	FH(MHz)	Offset(Hz)	
20				Olisel(HZ)	Frequency error(ppm)
50				-2.37	0.0025
40				-0.58	0.0006
30				-0.82	0.0009
10	3.80	1850.070	1909.930	-0.39	0.0004
0				-3.32	0.0035
-10				-0.85	0.0009
-20				-0.77	0.0008
-30				-2.71	0.0029

Frequency Error vs Voltage

Voltage(V)	Temperature(°C)	FL(MHz)	FH(MHz)	Offset(Hz)	Frequency error(ppm)
3.60	20	1850.070	1909.930	-2.26	0.0024
4.35	20	1000.070	1909.930	0.21	0.0002


WCDMA Band IV

Frequency Error vs Voltage-QPSK

Temperature(°C)	Voltage(V)	FL(MHz)	FH(MHz)	Offset(Hz)	Frequency error(ppm)
20					
50				1.02	0.0012
40				0.19	0.0002
30				-1.65	0.0019
10	3.80	1710.080	1754.910	-2.93	0.0034
0				-3.78	0.0044
-10				-2.75	0.0032
-20				-2.81	0.0032
-30				-3.32	0.0038

Frequency Error vs Voltage

Voltage(V)	Temperature(°C)	FL(MHz)	FH(MHz)	Offset(Hz)	Frequency error(ppm)
3.60	20	20 1710.080		-2.56	0.0030
4.35	20	1710.000	1754.910	-3.05	0.0035

WCDMA Band V

Frequency Error vs Voltage-QPSK

Temperature(°C)	Voltage(V)	FL(MHz)	FH(MHz)	Offset(Hz)	
20				Olisel(Hz)	Frequency error(ppm)
50				-0.57	0.0014
40				1.79	0.0043
30				2.78	0.0067
10	3.80	824.070	848.910	0.23	0.0005
0				3.05	0.0073
-10				4.08	0.0097
-20				3.17	0.0076
-30				2.36	0.0056

Frequency Error vs Voltage

Vol	tage(V)	Temperature(℃)	FL(MHz)	FH(MHz)	Offset(Hz)	Frequency error(ppm)
;	3.60	20	924 070	949 010	1.84	0.0044
	4.35	20	824.070	848.910	2.89	0.0069

Expanded measurement uncertainty is 10Hz, k = 2

A.4 OCCUPIED BANDWIDTH

Reference

FCC: CFR Part 2.1049, 22.917, 24.238, 27.53(g).

A.4.1 Occupied Bandwidth Results

Occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the US Cellular/PCS frequency bands. The table below lists the measured 99% BW. Spectrum analyzer plots are included on the following pages.

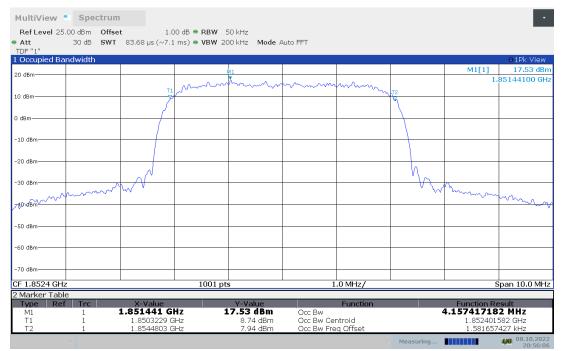
a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (i.e., two to five times the OBW).

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.

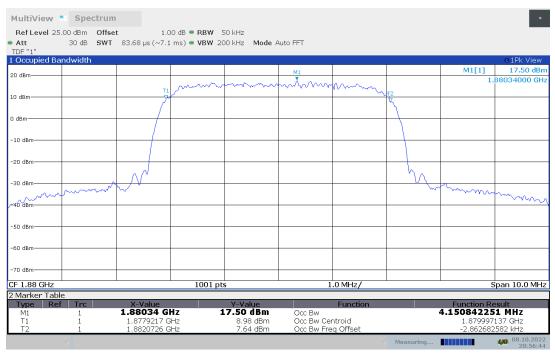
c) Set the reference level of the instrument as required to keep the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope must be at least 10log (OBW / RBW) below the reference level.

e) Set the detection mode to peak, and the trace mode to max hold.

d) Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.



WCDMA Band II (99% BW)-QPSK


Frequency(MHz)	Occupied Bandwidth (99% BW)(MHz)
1852.4	4.157
1880.0	4.151
1907.6	4.150

WCDMA Band II

Channel 9262-Occupied Bandwidth (99% BW)

Channel 9400-Occupied Bandwidth (99% BW)

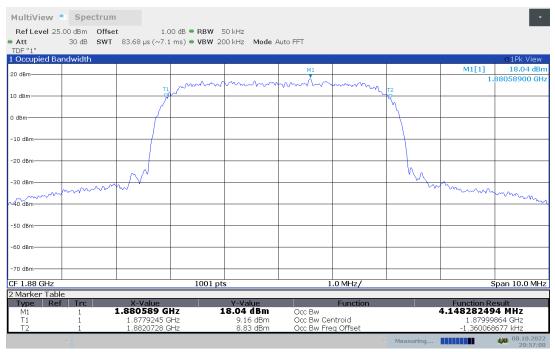
Channel 9538-Occupied Bandwidth (99% BW)

No.I22N01939-RF UMTS

TDF "1" I Occupied E	3andwidth								o1Pk View
) dBm					M1			M1[1]	18.51 dB
		_	mm	mmm	mon	mm		1.	.90821900 GI
I dBm		T1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	T2		
							$\left \right\rangle$		
dBm	_	+ (-							
10 dBm									
20 dBm							6		
30 dBm							V Ym	n.m.	
30 dBm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								mun
10 dBm									
50 dBm									-
60 dBm									
70 dBm									
- 1.9076 G			1001 pt	S	1	.0 MHz/		5	Span 10.0 M⊢
Marker Ta Type R	ble ef Trc	X-Value		Y-Value		Function		Function R	ocult
M1		1.908219 G		18.51 dBm	Occ Bw			4.15018059	92 MHz
T1	1	1.9055169 G 1.9096671 G		9.04 dBm 9.18 dBm	Occ Bw Ce Occ Bw Fre			1.907591 -8.019364	



WCDMA Band II (99% BW)-16QAM


Frequency(MHz)	Occupied Bandwidth (99% BW)(MHz)
1852.4	4.158
1880.0	4.148
1907.6	4.152

WCDMA Band II

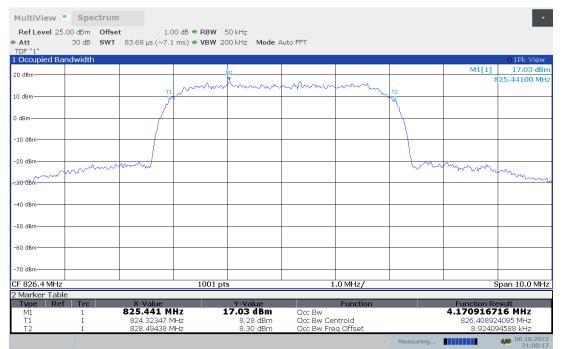
Channel 9262-Occupied Bandwidth (99% BW)

Channel 9400-Occupied Bandwidth (99% BW)

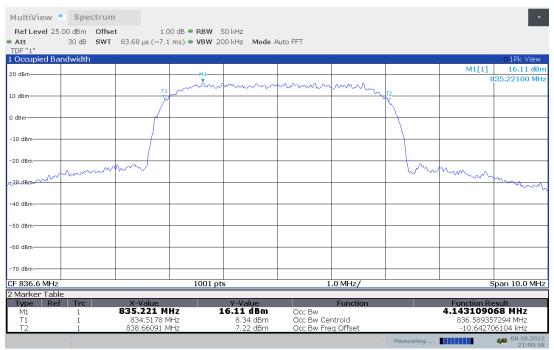
Channel 9538-Occupied Bandwidth (99% BW)

No.I22N01939-RF UMTS

20 dBm 1 M11 M111 17.3' 10 dBm 1 1.9066310 1.9066310 10 dBm 1 1.90766312 1.901763
0 dBm T Manual Ma Manual Manual Manu
dBm
D d8m
0 dBm
D dBm
0 dBm
0 dBm
0 dBm
1 dbm 1
0 dBm Image: Constraint of the constra
0 dBm Image: Constraint of the sector of
0 dBm Image: Sector of the s
0 dBm
0 dBm
0 dBm
F 1.9076 GHz 1001 pts 1.0 MHz/ Span 10.0
Marker Table
2 Marker Table Function Type Ref Trc X-Value Function Function Result M1 1 1.906631 GHz 17.39 dBm Occ Bw 4.151596847 MHz



WCDMA Band V(99% BW)-QPSK


Frequency(MHz)	Occupied Bandwidth (99% BW)(MHz)
826.4	4.153
836.6	4.159
846.6	4.161

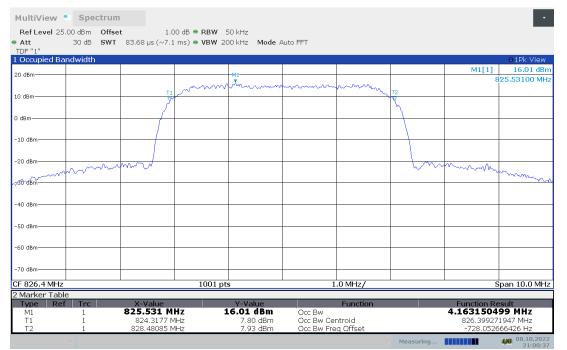
WCDMA Band V

Channel 4132-Occupied Bandwidth (99% BW)

Channel 4183-Occupied Bandwidth (99% BW)

Channel 4233-Occupied Bandwidth (99% BW)

MultiView	Cha											
Ref Level 25					0 dB 🖷 RBW - 5							
Att	30 dB	SWT	83.68 µs (~7.1	ms) 🖷 VBW 20	00 kHz Mode	Auto FFT					
TDF "1" 1 Occupied Ba												•1Pk View
T Occupied Ba	andwidth	I									141513	
20 dBm-						41					M1[1]	17.15 dBm
					mm	man mont	mmana	~			8	45.64100 MHz
10 dBm				T1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			month	T2			
10 000				7					R.			
				1					$ \langle \cdot \rangle$			
0 dBm				ľ								
			/						$ \rangle$			
-10 dBm												
-20 dBm												
-20 dBm	mon	m	m m							home	mm	
-80'dBm											mon	m
												mount
-40 dBm												
-50 dBm												
-60 dBm												
-70 dBm												
CF 846.6 MHz					1001 pt	S	1	.0 MHz/			S	pan 10.0 MHz
2 Marker Tab												
Type Re	f Trc		X-Valu			Y-Value		Function			Function Re	esult
M1	1		845.641			.7.15 dBm	Occ Bw				4.1332452	
T1 T2	1		844.518 848.651			7.67 dBm 7.32 dBm	Occ Bw Ce Occ Bw Fre				846.58524 -14.75601	
12	1		040.031	07 19	11 12	7.52 UDITI	OLC DW FIE					
									Me	asuring		08.10.2022 21:01:39



WCDMA Band V(99% BW)-16QAM


Frequency(MHz)	Occupied Bandwidth (99% BW)(MHz)
826.4	4.144
836.6	4.139
846.6	4.139

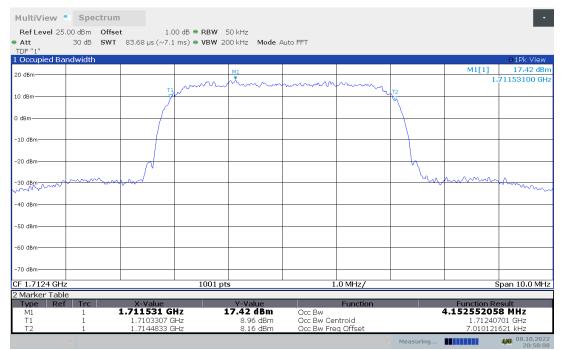
WCDMA Band V

Channel 4132-Occupied Bandwidth (99% BW)

Channel 4183-Occupied Bandwidth (99% BW)

Channel 4233-Occupied Bandwidth (99% BW)

M-102 C	0										
MultiView	spec	strum									Ť
Ref Level 25	.00 dBm	Offset	: 1.0	00 dB 🖷 RBW - 5	50 kHz						
Att	30 dB	SWT	83.68 µs (~7.1	. ms) 🗢 VBW 20	00 kHz – Mode /	Auto FFT					
TDF "1"											
1 Occupied Ba	indwidth					1	1				●1Pk View
20 dBm					41.					M1[1]	16.79 dBm
				0.0.	Kana and an an	A 00				8	45.64100 MHz
			T1	mm		han	monthing	-			
10 dBm			7	~				4√			
								$ \mathcal{N} $			
0 dBm								+			
								$ \rangle$			
-10 dBm											
10 0.011								1 1			
-20 dBm		0000	marial								
-20 dBm	prom	~~ I	V						Man	man	m
~30'dBm										1. WV W	m
											" han
10.10											
-40 dBm											
-50 dBm											
-60 dBm											
oo abiii											
-70 dBm											
CF 846.6 MHz				1001 pt	S	1	.0 MHz/			S	pan 10.0 MHz
2 Marker Tabl	e										
Type Ref			X-Value		Y-Value		Function			Function Re	sult
M1	1		845.641 M	Hz 1	.6.79 dBm	Occ Bw	- anodon			4.1244026	13 MHz
T1	ĩ		844.52752 №		8.64 dBm	Occ Bw Ce	ntroid			846.58971	
T2	1		848.65192 N	1Hz	6.86 dBm	Occ Bw Fre	eq Offset			-10.28315	i2627 kHz
	~							Mo	suring		08.10.2022
								mee	sanng		21:01:59



WCDMA Band IV(99% BW)-QPSK

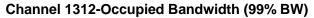
Frequency(MHz)	Occupied Bandwidth (99% BW)(MHz)
1712.4	4.171
1732.4	4.143
1752.6	4.133

WCDMA Band IV

Channel 1312-Occupied Bandwidth (99% BW)

Channel 1412-Occupied Bandwidth (99% BW)

Channel 1513-Occupied Bandwidth (99% BW)


Ref Level 2	5.00 dBm Offse	et 1.0	0 dB = RBW 5	50 kHz					
Att		83.68 µs (~7.1			Auto FFT				
TDF "1" Occupied B	on duriette								o 1Pk View
. Occupied B	andwidun							M1[1]	17.05 dBn
0 dBm				M1					75173100 GH
		т1	m	m	mm	mm		-	
0 dBm		1 V	مم				T2		+
		1					Γ\		
dBm									+
10 dBm									+
20 dBm		A							+
							[∨] \		
30 dBm	A. Martin	$1 \sim 10^{-10}$					- more		hampen
1									1 mm
40 dBm									+
50 dBm									
60 dBm									
70 dBm									+
F 1.7526 GF	lz		1001 pt	5	1	.0 MHz/			Span 10.0 MH
Marker Tal	ole								
Type Re		X-Value		Y-Value		Function		Function R	esult
M1 T1	1	1.751731 G 1.7505235 G		.7.05 dBm 8.19 dBm	Occ Bw Occ Bw Cer	otroid		4.160998 1.752604	
T2	1	1.7546845 G		7.26 dBm	Occ Bw Cel			4.047347	

WCDMA Band IV(99% BW)-16QAM

Frequency(MHz)	Occupied Bandwidth (99% BW)(MHz)
1712.4	4.163
1732.4	4.161
1752.6	4.124

WCDMA Band IV

Channel 1412-Occupied Bandwidth (99% BW)

Channel 1513-Occupied Bandwidth (99% BW)

Att DF "1"	30.48 SWT			50 kHz					
	00 00 000	83.68 µs (~7.1	ms) 🖷 VBW 2	00 kHz Mode A	Auto FFT				
Occupied Ba	ndwidth								o1Pk View
								M1[1]	16.91 dBr
) dBm				X				1	.75164100 GH
		т1	mm	mun	mmm	mm	. T2		
I dBm		7					7		
							1		
dBm				-	-				
.0 dBm							+		+
0 dBm				-					+
		/ ×							
0 dBm	mma	~~~^		-			how	man	m
10 dBm									wwww
0 dBm									
i0 dBm									
i0 dBm									
0 dBm									
- 1.7526 GHz			1001 pt	.s	1	.0 MHz/			Span 10.0 MH
Marker Table		X-Value		Y-Value		Com ations		E. matin E	
Type Ref M1		1.751641 G	Hz	Y-Value 16.91 dBm	Occ Bw	Function		Function R 4.1385149	
T1	1	1.7505248 G		8.05 dBm	OCC BW Cel	ntroid			4053 GHz

Note: Expanded measurement uncertainty is U = 3428Hz, k = 2

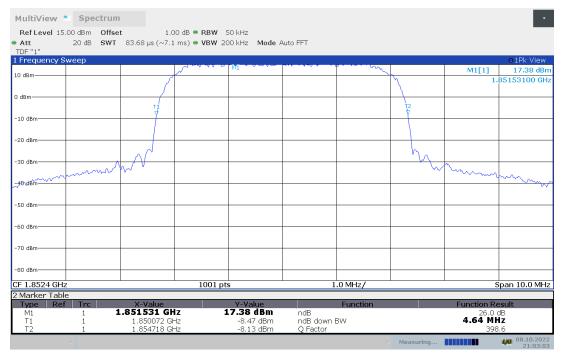
A.5 EMISSION BANDWIDTH

Reference

FCC: CFR Part 2.1049, 22.917, 24.238, 27.53(g).

A.5.1Emission Bandwidth Results

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power.


Similar to conducted emissions; Emission bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies. Table below lists the measured -26dBc BW. Spectrum analyzer plots are included on the following pages.

WCDMA Band II (-26dBc BW)-QPSK

Frequency(MHz)	Emission Bandwidth (-26dBc BW)(MHz)
1852.4	4.64
1880.0	4.66
1907.6	4.66

WCDMA Band II

Channel 9262-Emission Bandwidth (-26dBc BW)

Channel 9400-Emission Bandwidth (-26dBc BW)

No.I22N01939-RF UMTS

Att		et 1.0	00 dB 🖷 RBW	50 kHz					
	20 dB SWT	- 83.68 μs (~7.1	l ms) 🗢 VBW 2	00 kHz Mode A	uto FFT				
DF "1" Frequency S									●1Pk View
requency s	weep		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	M	· · · · · · · · · · · · · · · · · · ·			M1[1]	17.47 dB
dBm		/	and a second			Ň			.87911100 G
		1 5						1.	.87911100 G
l8m									
		T1					12		
I dBm		4							
i dBm									
dBm									1
		N N					5		
I dBm	. (wh_/'V		++				<u> </u>	
and the second	· ······	\sim						mount	mm
) dBm									why
I dBm									
abiii									
dBm									
dBm				+ +					
						[
I dBm				++					
1.88 GHz			1001 pt			.0 MHz/		L (Span 10.0 MH
			1001 p	.5	1				span 10.0 Mi
larker Tabl		X-Value		Y-Value	_	Function		Function Re	ooult
уре кег М1		1.879111 GH	17	17.47 dBm	ndB	Function		26.0	
T1	1	1.877672 Gł		-8.73 dBm	ndB down I	BW		4.66 MI	ΪZ

Channel 9538-Emission Bandwidth (-26dBc BW)

MultiView	Spec	trum								•
Ref Level 15 Att TDF "1"				00 dB • RBW 1 ms) • VBW 2	50 kHz 200 kHz Mode	Auto FFT				
1 Frequency S	weep									o1Pk View
						NT1			M1[1]	17.94 dBm
10 dBm			/						1	90821900 GHz
0 dBm										
			넣					L ²		
-10 dBm										
-20 dBm										
			~~~					L ho		
00 d0			~/ V~					hn	m	
-30 dBm	have	w	$\sim$							mommu
-40 dBm										
-50 dBm										
-60 dBm										
oo ubiii										
-70 dBm										
-80 dBm										
CF 1.9076 GH	7			1001 p	te	1				Span 10.0 MHz
2 Marker Tabl				1001 p			.10 101127			5pun 10.0 Minz
Type Ref			X-Value		Y-Value		Function		Function R	esult
M1	1	1	.908219 GI	Hz	17.94 dBm	ndB	i ancaon		26.0	
T1	1	_	1.905272 G		-8.22 dBm	ndB down I	BW		4.66 MI	z
T2	1		1.909928 G		-7.69 dBm	Q Factor			409	
	~						~	Measuring		08.10.2022



### WCDMA Band II (-26dBc BW)-16QAM

Frequency(MHz)	Emission Bandwidth (-26dBc BW)(MHz)
1852.4	4.63
1880.0	4.64
1907.6	4.64

### WCDMA Band II





# Channel 9400-Emission Bandwidth (-26dBc BW)



Channel 9538-Emission Bandwidth (-26dBc BW)

# No.I22N01939-RF UMTS



Ref Level 1	5.00 dBm Of	ifset 1.0	00 dB 🗢 RBW	50 kHz					
Att	20 dB 😽	NT 83.68 µs (~7.1	l ms) 🖷 VBW 2	00 kHz Mode A	uto FFT				
FDF "1"									
Frequency	Sweep			11					●1Pk View
0 dBm		4	J~~	611		h		M1[1]	17.83 dBr
							5	1.	90664100 GH
dBm									
abiii		т1					T2		
10 db		4					7		
LO dBm									
20 dBm							hΛ		
		$\sim$					'V\	o	
30 dBm	man	2 m m J						<u>~~~,~,~,.</u>	fmmmm.
~~~~~									· ·
40 dBm									
50 dBm									
60 dBm									
70 dBm									
80 dBm									
F 1.9076 G			1001 pt	S	1	.0 MHz/			Span 10.0 MH
Marker Ta		V Vale		V Value		C		E	
Type R M1	ef Trc	X-Value 1.906641 GH	17	Y-Value 17.83 dBm	ndB	Function		Function Re 26.0	
T1	1	1.905272 G		-8.04 dBm	ndB down l	BW		4.64 MI	iz
T2	1	1.909918 G		-7.47 dBm	Q Factor			410	14

WCDMA Band V(-26dBc BW)-QPSK

Frequency(MHz)	Emission Bandwidth (-26dBc BW)(MHz)
826.4	4.66
836.6	4.67
846.6	4.66

WCDMA Band V

Channel 4183-Emission Bandwidth (-26dBc BW)

Channel 4233-Emission Bandwidth (-26dBc BW)

Ref Level 13	5.00 dBm Offs	et 1.0	00 dB 🗢 RBW 👘	50 kHz					
Att	20 dB SW 1	Γ 83.68 µs (~7.:	1 ms) 🖷 VBW 2	00 kHz Mode A	auto FFT				
DF "1"									
Frequency :	Sweep				The second second	0.00			●1Pk View
) dBm					and a more that the m	m		M1[1]	17.09 dBr
		N	/			Ĭ	1	8	847.20900 MH
dBm									
ubiii		T					112		
a dan		- ₹							
LO dBm									
20 dBm		mont							
and							~~~~~~	m	h
30 dBm									- www
+0 dBm									+
50 dBm									
i0 dBm									+
70 dBm									+
30 dBm									+
- 846.6 MHz			1001 pt			.0 MHz/		L	Cres 10.0 MU
			1001 pt	3	1				Span 10.0 MH
Marker Tab Type Re		X-Value		Y-Value		Function		Function R	esult
M1	1	847.209 MH	z :	L7.09 dBm	ndB	- ancion-		26.0	dB
T1		844.272 MH	1-	-8.42 dBm	ndB down I	7147		4.66 MI	

WCDMA Band V(-26dBc BW)-16QAM

Frequency(MHz)	Emission Bandwidth (-26dBc BW)(MHz)
826.4	4.64
836.6	4.67
846.6	4.66

WCDMA Band V

Channel 4183-Emission Bandwidth (-26dBc BW)

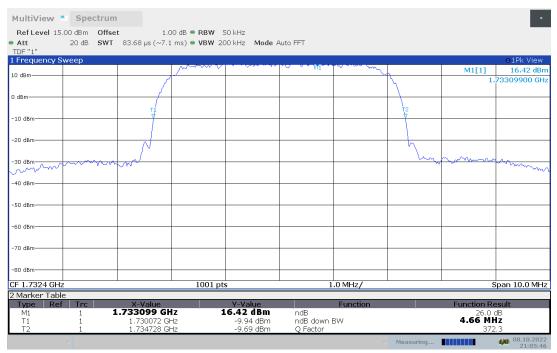
Channel 4233-Emission Bandwidth (-26dBc BW)

No.I22N01939-RF UMTS

		et 1.0							
Att	20 dB SWT	83.68 µs (~7.1	1 ms) 🖷 VBW 2	00 kHz Mode /	Auto FFT				
DF "1" Frequency	Sween								●1Pk View
			~~~~~~~	111	man and a man	mm		M1[1]	16,99 dBr
) dBm		1	C.			- ×			45.64100 MH
							$\mathbb{N}$		
dBm		1					1		
		Ţ					T2		
0 dBm							1		-
0 dBm	mun	mont					+ +		
a a men	human	10 .					han	m	
0 dBm									mon
									~
0 dBm									
50 dBm									-
i0 dBm									
70 dBm									-
30 dBm		-							
F 846.6 MH:	Z		1001 pt	S	1	.0 MHz/		9	J Span 10.0 MH
Marker Tab	le					•			<u>.</u>
Type Re		X-Value		Y-Value		Function		Function Re	
M1 T1	1	845.641 MH 844.272 MF		16.99 dBm -9.13 dBm	ndB ndB down B	7147		26.0 4.66 MH	dB
T2	1	844.272 MF 848.928 MF		-9.13 dBm -9.04 dBm	Q Factor	⇒vv		<b>4.00 M</b> 181	



### WCDMA Band IV(-26dBc BW)-QPSK


Frequency(MHz)	Emission Bandwidth (-26dBc BW)(MHz)
1712.4	4.63
1732.4	4.66
1752.6	4.64

### WCDMA Band IV





# Channel 1412-Emission Bandwidth (-26dBc BW)



Channel 1513-Emission Bandwidth (-26dBc BW)

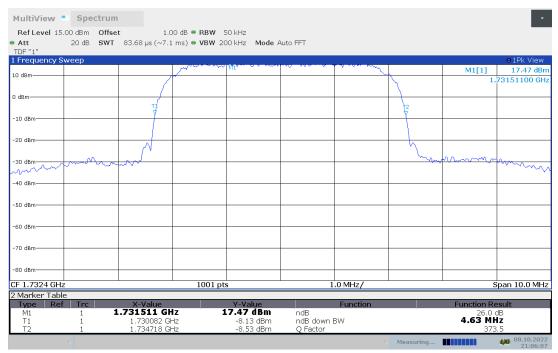




MultiView									*
RefLevel 1 Att		fset 1.0 /T 83.68 µs (~7.1			uto FFT				
TDF "1"	2000 36	1 00.00 µs (***.1	. ms) - 000 20	JO KIIZ MODE P	atorri				
Frequency	Sweep								●1Pk View
.0 dBm			June 1	" " "		mundy		M1[1]	16.00 dBn
o abiii		1					T.	1.	75338900 GHz
dBm							$  \rangle$		
i dBm		ľ							
		Ţ					†2 ₩		
10 dBm		1							
20 dBm		N							
	mon.								
-30 dBm	American and a second s	~~~~					m	$\sim\sim\sim\sim\sim\sim\sim\sim\sim\sim$	mon
									- with
40 dBm									
50 dBm									
60 dBm									
70 dBm									
80 dBm									
E 1 7504 0			1001						10.0.1
F 1.7526 G Marker Ta			1001 pt	8	1	.0 MHz/			Span 10.0 MHz
Type R		X-Value		Y-Value		Function		Function R	esult
M1	1	1.753389 GH	Iz :	16.00 dBm	ndB	1 GHOLOH		26.0	dB
Τ1	1	1.750272 G		-10.22 dBm	ndB down l	BW		4.64 MI	lz
T2	1	1.754918 G	Hz	-9.61 dBm	Q Factor			377	
							Measuring		08.10.2022 21:06:27




### WCDMA Band IV(-26dBc BW)-16QAM


Frequency(MHz)	Emission Bandwidth (-26dBc BW)(MHz)
1712.4	4.63
1732.4	4.63
1752.6	4.63

### WCDMA Band IV





# Channel 1412-Emission Bandwidth (-26dBc BW)



Channel 1513-Emission Bandwidth (-26dBc BW)





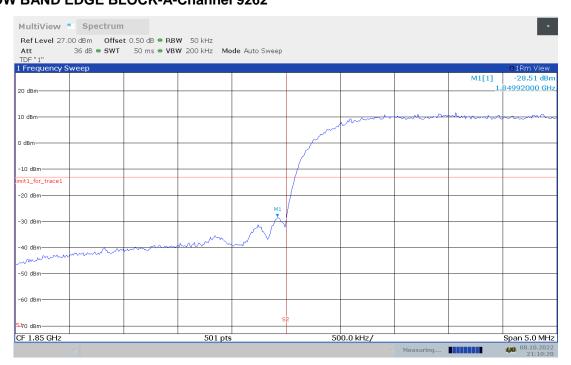
Ref Level 15	5.00 dBm Off	set 1.0	00 dB 🗢 RBW	50 kHz					
Att	20 dB 🛛 SW	<b>Τ</b> 83.68 μs (~7.1	l ms) 🖷 VBW 2	00 kHz Mode A	uto FFT				
DF "1"	_								
Frequency	Sweep		a American				1		●1Pk View
) dBm				112 V		- vary	-	M1[1]	17.21 dB
								1.	75171100 GF
dBm									
		т							
0.40		₹					T2 ▼		
0 dBm									
0 dBm		N							
	mm						$  \cdot \rangle$		
0 dBm	pm -	~~~~~					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mon
V									
IO dBm									
0 dBm									
i0 dBm									
0 dBm									
0 dBm									
o ubiii									
⁻ 1.7526 GH	İz		1001 pt	S	1	.0 MHz/	· · ·	5	Span 10.0 M⊢
Marker Tab									
Type Re		X-Value 1.751711 GH	1-	Y-Value 17.21 dBm		Function		Function Re	
M1 T1	1	1.751/11 GF		-8.44 dBm	ndB ndB down I	B1A/		26.0 d 4.63 MH	36 47
T2	1	1.754918 G		-9.34 dBm	Q Factor	_ • • •		377	

Note: Expanded measurement uncertainty is U = 3428Hz, k = 2



# A.6 BAND EDGE COMPLIANCE

### Reference


FCC: CFR Part 2.1051, 22.917, 24.238, 27.53(h).

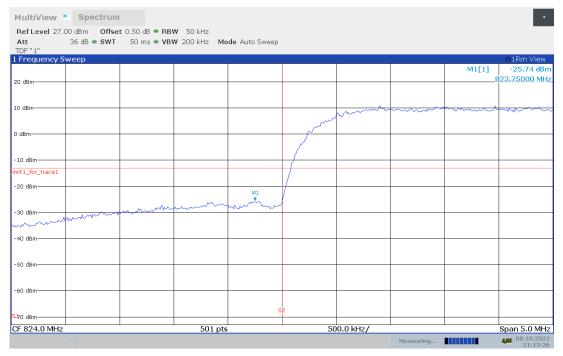
### A.6.1 Measurement limit

On any frequency outside frequency band of the US Cellular/PCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log (P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm. A relaxation of the reference bandwidth is often provided for measurements within a specified frequency range at the edge of the authorized frequency block/band. This is often implemented by permitting the use of a narrower RBW (typically limited to a minimum RBW of 1% of the OBW) for measuring the out-of-band emissions without a requirement to integrate the result over the full reference bandwidth.

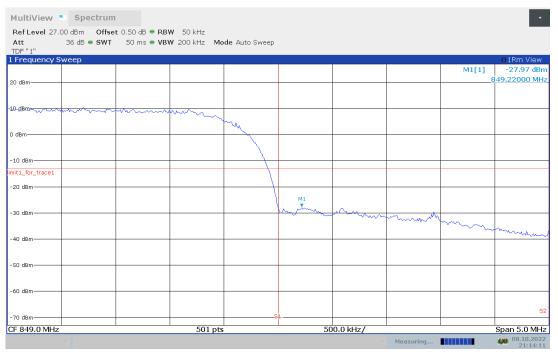
#### A.6.2 Measurement result

Only worst case result is given below WCDMA Band II LOW BAND EDGE BLOCK-A-Channel 9262



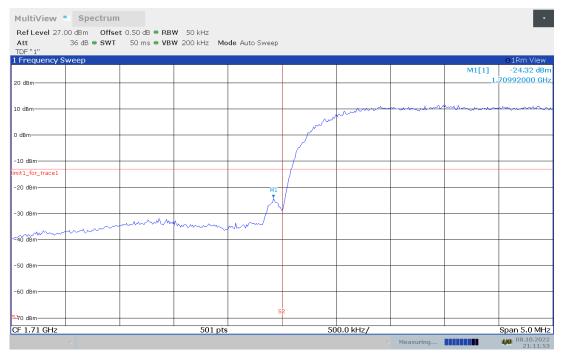



# HIGH BAND EDGE BLOCK-C–Channel 9538


MultiView	Spectrum	1							•
	00 dBm Offse								
Att TDF "1"	36 dB 🖷 SWT	50 ms 🖷 VBN	N 200 kHz Mo	de Auto Sweep					
1 Frequency S	Sweep	1					r.		●1Rm View
								M1[1]	-26.09 dBm
20 dBm								1.	91000000 GHz
10 dBm	m	mon	markown						
				m -					
0 dBm				<u> </u>					
-10 dBm									
limit1_for_trace1									
				\					
-20 dBm					1				
				1					
-30 dBm					An				
					the second	mm	man	mm	. I
-40 dBm									. mon
-50 dBm									
-60 dBm									
-60 uBm									
				_					52
-70 dBm				S	1				
CF 1.91 GHz			501 pts		50	0.0 kHz/			Span 5.0 MHz
							Measuring		<b>40</b> 08.10.2022 21:11:06



# WCDMA Band V LOW BAND EDGE BLOCK-A-Channel 4132




# HIGH BAND EDGE BLOCK-C–Channel 4233






# WCDMA Band IV LOW BAND EDGE BLOCK-A -Channel 1312



# HIGH BAND EDGE BLOCK-C-Channel 1513



Note: Expanded measurement uncertainty is U = 0.49 dB(100KHz-2GHz)/1.21 dB (2GHz-26.5GHz), k = 1.96



# A.7 CONDUCTED SPURIOUS EMISSION

# Reference

FCC: CFR Part 2.1051, 22.917, 24.238, 27.53(h).

# A.7.1 Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- Determine frequency range for measurements: From CFR 2.1051 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 9 GHz, data taken from 10 MHz to 25 GHz.
- 2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

### WCDMA Band II Transmitter

Channel	Frequency (MHz)
9262	1852.4
9400	1880.0
9538	1907.6

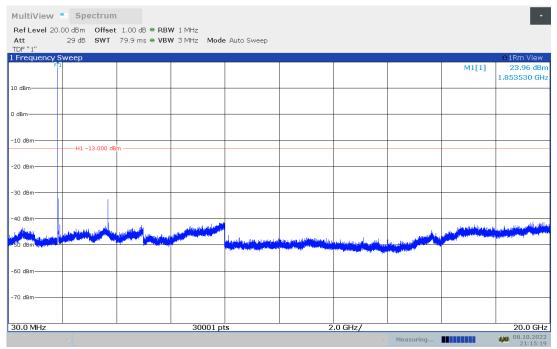
### WCDMA Band V Transmitter

Channel	Frequency (MHz)
4132	826.4
4183	836.6
4233	846.6

#### WCDMA Band IV Transmitter

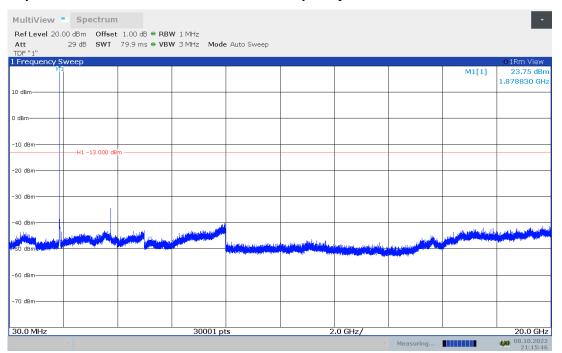
Channel	Frequency (MHz)
1312	1712.4
1412	1732.4
1513	1752.6

# A.7.2 Measurement Limit


Part 24.238, Part 22.917 and Part 27.53(h) specify that the power of any emission outside of the authorized

operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

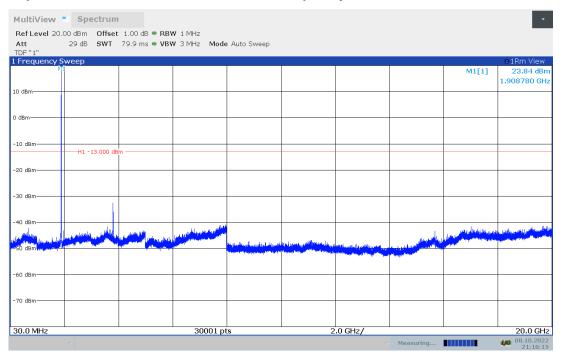



A.7.3 Measurement result Only worst case result is given below WCDMA Band II Channel 9262: 30MHz –19.1GHz Spurious emission limit –13dBm. NOTE: peak above the limit line is the carrier frequency.



# Channel 9400: 30MHz –19.1GHz

Spurious emission limit –13dBm.



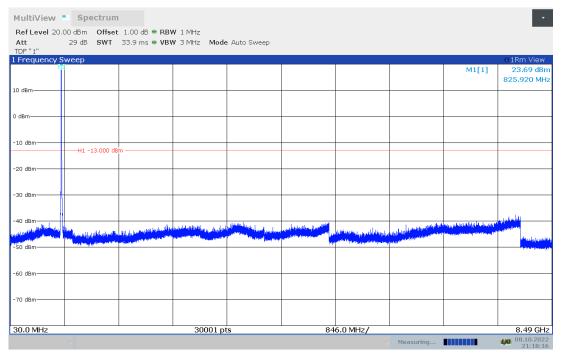





# Channel 9538: 30MHz –19.1GHz

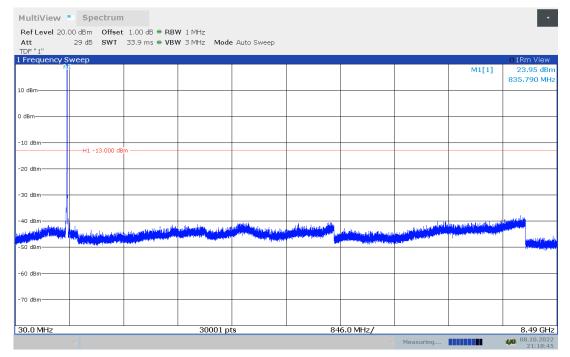
Spurious emission limit -13dBm.






### WCDMA Band V

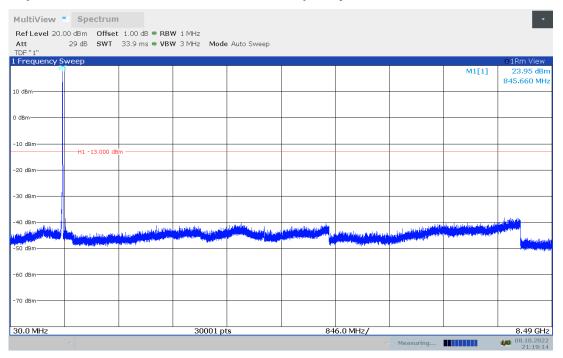
Channel 4132: 30MHz –8.49GHz


Spurious emission limit –13dBm.

# NOTE: peak above the limit line is the carrier frequency.



# Channel 4183: 30MHz -8.49GHz

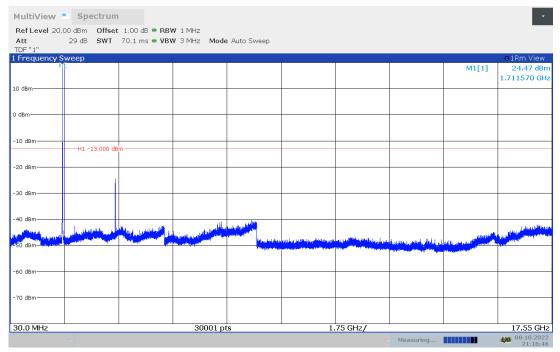

Spurious emission limit –13dBm.





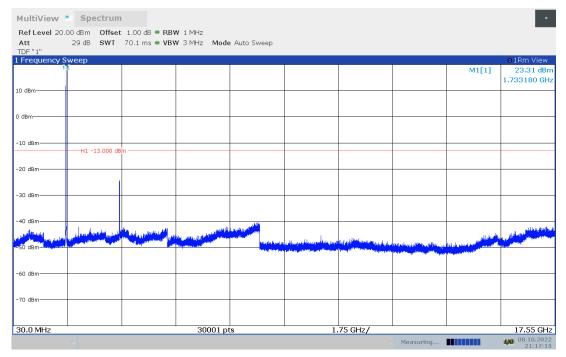
# Channel 4233: 30MHz -8.49GHz

Spurious emission limit -13dBm.






# WCDMA Band IV

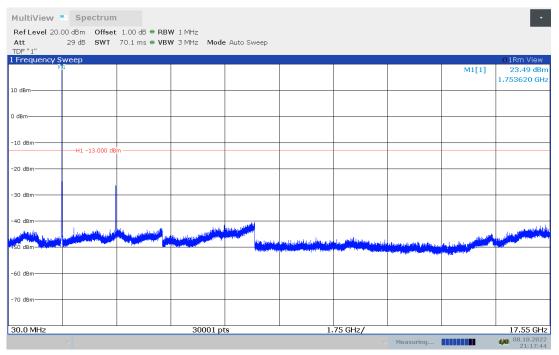

# Channel 1312: 30MHz –17.55GHz

Spurious emission limit –13dBm.



# Channel 1412: 30MHz –17.55GHz

Spurious emission limit –13dBm.






# Channel 1513: 30MHz -17.55GHz

Spurious emission limit –13dBm.

# NOTE: peak above the limit line is the carrier frequency.



Note: Expanded measurement uncertainty is U = 0.49 dB(100KHz-2GHz)/1.21 dB (2GHz-26.5GHz), k = 1.96



# A.8 PEAK-TO-AVERAGE POWER RATIO

# Reference

FCC: CFR Part 24.232, 27.50(d), KDB971168 D01.

The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission.

a)Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;

b) Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;

c) Set the number of counts to a value that stabilizes the measured CCDF curve;

d) Set the measurement interval to 1 ms

e)Record the maximum PAPR level associated with a probability of 0.1%

A.8.1 Measurement limit

not exceed 13 dB

A.8.2 Measurement results

Only worst case result is given below

### WCDMA Band II (PAPR)-QPSK

Frequency(MHz)	Peak-To-Average Power Ratio(PAPR)(dB)
1880.0	3.00

# WCDMA Band II

# Channel 9400- Peak-To-Average Power Ratio(PAPR)-QPSK





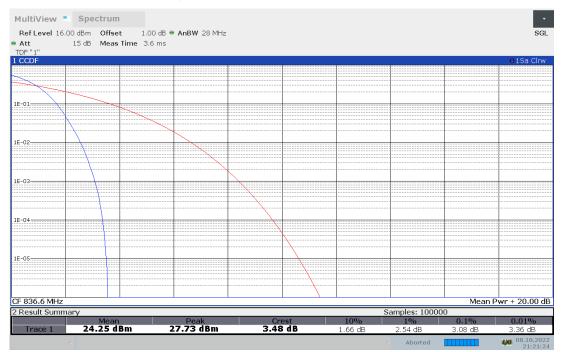
## WCDMA Band II (PAPR)-16QAM

Frequency(MHz)	Peak-To-Average Power Ratio(PAPR)(dB)
1880.0	5.74

# WCDMA Band II

# Channel 9400- Peak-To-Average Power Ratio(PAPR)-16QAM





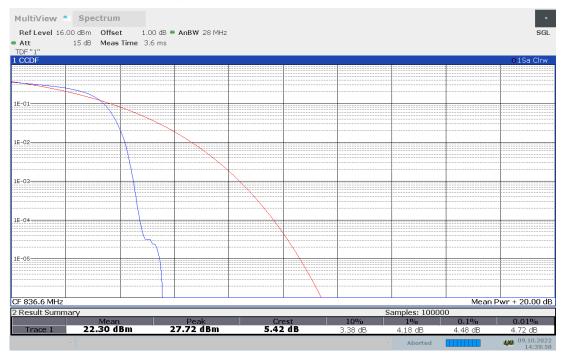

# WCDMA Band V (PAPR)-QPSK

Frequency(MHz)	Peak-To-Average Power Ratio(PAPR)(dB)
836.6	3.08

# WCDMA Band V

# Channel 4183- Peak-To-Average Power Ratio(PAPR)-QPSK





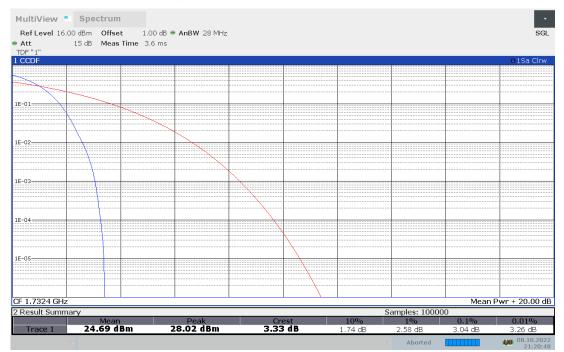

## WCDMA Band V (PAPR)-16QAM

Frequency(MHz)	Peak-To-Average Power Ratio(PAPR)(dB)
836.6	5.74

# WCDMA Band V

# Channel 4183- Peak-To-Average Power Ratio(PAPR)-16QAM






# WCDMA Band IV (PAPR)-QPSK

Frequency(MHz)	Peak-To-Average Power Ratio(PAPR)(dB)
1732.4	3.04

# WCDMA Band IV

# Channel 1412- Peak-To-Average Power Ratio(PAPR)-QPSK





## WCDMA Band IV (PAPR)-16QAM

Frequency(MHz)	Peak-To-Average Power Ratio(PAPR)(dB)
1732.4	4.64

# WCDMA Band IV

# Channel 1412- Peak-To-Average Power Ratio(PAPR)-16QAM



Note: Expanded measurement uncertainty is U = 0.48 dB, k = 2

***END OF REPORT***