

FCC PART 15B

MEASUREMENT AND TEST REPORT

For

Feitian Technologies Co., Ltd.

Floor 17th, Tower B, Huizhi Mansion, No.9 Xueqing Road, Haidian District, Beijing, China

FCC ID: ZD3FTE391

Report Type:		Product Type:				
Original Report		ePass FIDO® Security Key				
Test Engineer:	Lee Li	Lee. Li				
Report Number:	RKSA1905280:	52-00A				
Report Date:	2019-06-13					
Reviewed By:	Ray Wang EMC Leader	Ray wang				
Prepared By:	Bay Area Compliance Laboratories Corp. (Kunshan) No.248 Chenghu Road, Kunshan, Jiangsu province, China					
	Tel: +86-0512-8 Fax: +86-0512- <u>www.baclcorp.c</u>	86175000 -88934268 <u>com.cn</u>				

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Bay Area Compliance Laboratories Corp. (Kunshan)

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
OBJECTIVE	3
RELATED SUBMITTAL(S)/GRANT(S)	3
Test Methodology	3
Test Facility	3
SYSTEM TEST CONFIGURATION	4
JUSTIFICATION	4
EUT EXERCISE SOFTWARE	4
SPECIAL ACCESSORIES	4
EQUIPMENT MODIFICATIONS	4
SUPPORT EQUIPMENT LIST AND DETAILS	4
BLOCK DIAGRAM OF RADIATED TEST SETUP	5
SUMMARY OF TEST RESULTS	6
FCC §15.107 -CONDUCTED EMISSIONS	7
APPLICABLE STANDARD	7
Measurement Uncertainty	7
EUT SETUP	7
EMI TEST RECEIVER SETUP	8
Test Procedure	8
TEST EQUIPMENT LIST AND DETAILS	8
CORRECTED FACTOR & OVER LIMIT CALCULATION	8
TEST DATA	9
FCC §15.109 - RADIATED EMISSIONS	11
APPLICABLE STANDARD	11
Measurement Uncertainty	11
EUT SETUP	11
EMI TEST RECEIVER SETUP	12
Test Procedure	12
Test Equipment List and Details	12
CORRECTED AMPLITUDE & MARGIN CALCULATION	12
TEST DATA	13

FCC Part 15B

Page 2 of 13

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant	Feitian Technologies Co., Ltd.
Test Model	Titan Security Key K39T
Series Model	K39T, ePass FIDO®
Product	ePass FIDO® Security Key
Rate Voltage	DC 5V
Dimension	43mm(L)*14 mm(W)*5.5mm(H)
Highest Operating Frequency	60MHz

* Note: The difference between tested model and series model was explained in the declaration letter.

*All measurement and test data in this report was gathered from production sample serial number: 20181123001. (Assigned by BACL, Kunshan). The EUT was received on 2018-11-23.

Objective

This report is prepared on behalf of *Feitian Technologies Co., Ltd.* in accordance with Part 2-Subpart J, and Part 15-Subparts A and B of the Federal Communication Commission's rules.

The objective of the manufacturer is to determine the compliance of EUT with FCC Part 15, Class B device.

Related Submittal(s)/Grant(s)

No related submittal(s)/Grant(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2014, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01), the FCC designation No. CN1185 under the FCC KDB 974614 D01 and CAB identifier CN0004 under the ISED requirement. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

SYSTEM TEST CONFIGURATION

Justification

The system was configured for testing in a typical fashion (as normally used by a typical user).

Test mode: Data Transmission

EUT Exercise Software

No exercise software was used to test.

Special Accessories

No special accessory was used.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number		
DELL	Notebook	GX620	D65874152		
DELL	Adapter	LA65NS0-00	DF263		
Logitech	Mouse	M-U0026	HS529HB		
BOLD	Earphone	/	/		

External I/O Cable

Cable Description	Length (m)	From/Port	То		
USB Cable	1.0	Notebook	Mouse		
Earphone Cable	0.8	Notebook	Earphone		

Block Diagram of Radiated Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§15.107	Conducted Emissions	Compliant
§15.109	Radiated Emissions	Compliant

FCC §15.107 – CONDUCTED EMISSIONS

Applicable Standard

According to FCC§15.107

Measurement Uncertainty

Input quantities to be considered for conducted disturbance measurements maybe receiver reading, attenuation of the connection between LISN and receiver, LISN voltage division factor, LISN VDF frequency interpolation and receiver related input quantities, etc.

	Item	Measurement Uncertainty	$U_{ m cispr}$	
AMN	150kHz~30MHz	3.19 dB	3.4 dB	

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.4-2014. The related limit was specified in FCC Part 15.107 Class B.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K03-102454-Qd	2018-06-25	2019-06-24
Rohde & Schwarz	LISN	ENV216	3560655016	2018-11-30	2019-11-29
Audix	Test Software	e3	V9		
MICRO-COAX	Coaxial Cable	Cable-6	006	2018-09-08	2019-09-07

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Corrected Factor & Over Limit Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

The "**Over Limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit of 7dB means the emission is 7 dB below the limit. The equation for Over Limit calculation is as follows:

Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

Report No.: RKSA190528052-00A

Test Data

Environmental Conditions

Temperature:	25°C
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Lee Li on 2019-06-13.

<i>Line</i> 80	Level	l (dBu\	v)		-							Date:	2019-06	6-13 Tim	e: 09:18	:23
70.0		_														
60.0																-
50.0																-
40.0	H	A4,									_				A.	
30.0	V		Milita I.					الا له. دالا	mit	۴ ₄	, A	m.	den.	ملمحل يتسجيل	₩.	-
20.0			- WHAN	141	₩₩₩	n Not	₽wµ₽.	MAN	γ		\^* 9 	Ŵ	<u>`</u> ₩	pro-		
10.0				11	111	- "	, n.				•					м Реак
0	0.15	0.2		0.5		1	Freque	2 ncy (MH	z)	5	;		10	:	20	30

Test mode:	Data	Transmission
Line:		

		Read			Limit	0ver	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	
1	0.175	15.50	16.10	31.60	54.72	-23.12	Average
2	0.175	23.70	16.10	39.80	64.72	-24.92	QP
3	0.233	9.80	16.09	25.89	52.35	-26.46	Average
4	0.233	16.90	16.09	32.99	62.35	-29.36	QP
5	0.391	13.00	16.01	29.01	48.03	-19.02	Average
6	0.391	13.90	16.01	29.91	58.03	-28.12	QP
7	4.292	9.61	15.70	25.31	46.00	-20.69	Average
8	4.292	15.31	15.70	31.01	56.00	-24.99	QP
9	6.454	4.19	15.74	19.93	50.00	-30.07	Average
10	6.454	10.09	15.74	25.83	60.00	-34.17	QP
11	20.814	10.30	16.08	26.38	50.00	-23.62	Average
12	20.814	15.60	16.08	31.68	60.00	-28.32	OP

Bay Area Compliance Laboratories Corp. (Kunshan)

Report No.: RKSA190528052-00A

		Read			Limit	0ver		
	Freq	Level	Factor	Level	Line	Limit	Remark	
	MHz	dBuV	dB	dBuV	dBuV	dB		-
1	0.159	13.60	16.09	29.69	55.52	-25.83	Average	
2	0.159	25.10	16.09	41.19	65.52	-24.33	QP	
3	0.262	4.80	16.09	20.89	51.38	-30.49	Average	
4	0.262	13.90	16.09	29.99	61.38	-31.39	QP	
5	0.433	8.10	16.01	24.11	47.20	-23.09	Average	
6	0.433	9.10	16.01	25.11	57.20	-32.09	QP	
7	2.144	9.30	15.96	25.26	46.00	-20.74	Average	
8	2.144	12.10	15.96	28.06	56.00	-27.94	QP	
9	4.338	2.51	15.70	18.21	46.00	-27.79	Average	
10	4.338	9.51	15.70	25.21	56.00	-30.79	QP	
11	18.721	6.49	16.07	22.56	50.00	-27.44	Average	
12	18.721	10.99	16.07	27.06	60.00	-32.94	QP	

Note:

1) Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB) 2) Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

FCC §15.109 - RADIATED EMISSIONS

Applicable Standard

FCC §15.109

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

	Item	Measurement Uncertainty	$m{U}_{ ext{cispr}}$
Radiated Emission	30MHz~1GHz	6.11dB	6.3 dB

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

EUT Setup

Below 1GHz:

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.4-2014. The specification used was the FCC Part 15.109 Class B limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

FCC Part 15B

EMI Test Receiver Setup

The system was investigated from 30 MHz to 1 GHz.

During the radiated emission test, the EMI test receiver was set with the following configurations:

Frequency Range RBW		Video B/W	IF B/W	Detector	
30MHz – 1000 MHz	120 kHz	300 kHz	120kHz	QP	

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Quasi-peak detector mode from 30 MHz to 1 GHz.

Test Equipment List and Details

Manufacturer Description		Model	Serial Number	Calibration Date	Calibration Due Date
Sonoma Instrument	Amplifier	310N	185700	2018-08-14	2019-08-13
Rohde & Schwarz	EMI Test Receiver	ESCI	ESCI 100195		2019-11-29
Sunol Sciences Broadband Antenna		JB3	A060217	2016-12-26	2019-12-25
Champrotek Chamber		Chamber A	T-KSEMC049	-	-
R&S	Auto test Software	EMC32	100361	-	-
MICRO-COAX	Coaxial Cable	Cable-8	008	2018-08-15	2019-08-14
MICRO-COAX	Coaxial Cable	Cable-9	009	2018-08-15	2019-08-14
MICRO-COAX	Coaxial Cable	Cable-10	010	2018-08-15	2019-08-14

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Data

Environmental Conditions

Temperature:	20.2 °C
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Lee Li on 2019-06-11.

Test mode: Data Transmission

30MHz~1GHz

Frequency (MHz)	Max Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
30.485000	29.52	40.00	10.48	100.0	V	218.0	-4.3
99.840000	22.58	43.50	20.92	100.0	V	171.0	-14.9
133.183750	23.71	43.50	19.79	200.0	Н	202.0	-11.7
203.387500	27.02	43.50	16.48	200.0	Н	83.0	-12.3
233.215000	32.66	46.00	13.34	200.0	Н	115.0	-12.2
299.902500	29.07	46.00	16.93	100.0	Н	104.0	-10.5

*****END OF REPORT*****