

RF TEST REPORT

Product Name: Smart Doorbell

Model Name: M1, 830, M2, M3, M4, M5, DB01, DB02, DB03, DB04, DB05

FCC ID: ZCB-M1

Issued For : Shenzhen Smart-eye Digital Electronics Co.,Ltd

2F, Block 1, Shangrong Industrial Zone, No.2 Baolong Road 5, Longgang, Shenzhen, China

Issued By : Shenzhen LGT Test Service Co., Ltd. Room 205, Building 13, Zone B, Zhenxiong Industrial Park, No.177, Renmin West Road, Jinsha, Kengzi Street, Pingshan District, Shenzhen, Guangdong, China

Report Number:	LGT24F023RF02
Sample Received Date:	Jun. 05, 2024
Date of Test:	Jun. 05, 2024 – Jul. 04, 2024
Date of Issue:	Jul. 04, 2024

The test report is effective only with both signature and specialized stamp. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report only apply to the tested sample.

TEST REPORT CERTIFICATION

Applicant:	Shenzhen Smart-eye Digital Electronics Co.,Ltd	
Address:	2F, Block 1, Shangrong Industrial Zone, No.2 Baolong Road 5, Longgang, Shenzhen, China	
Manufacturer:	Shenzhen Smart-eye Digital Electronics Co.,Ltd	
Address:	2F, Block 1, Shangrong Industrial Zone, No.2 Baolong Road 5, Longgang, Shenzhen, China	
Product Name:	Smart Doorbell	
Trademark:	N/A	
Model Name:	M1, 830, M2, M3, M4, M5, DB01, DB02, DB03, DB04, DB05	
Sample Status:	Normal	

APPLICABLE STANDARDS		
STANDARD	TEST RESULTS	
FCC Part 15.247, Subpart C ANSI C63.10-2013	PASS	

Prepared by:

Zane Shan

Zane Shan Engineer

Approved by:

reali

Vita Li Technical Director

Page

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	10
2.3 TEST SOFTWARE AND POWER LEVEL	10
2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	11
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	12
3. EMC EMISSION TEST	13
3.1 CONDUCTED EMISSION MEASUREMENT	13
3.2 RADIATED EMISSION MEASUREMENT	17
4. CONDUCTED SPURIOUS & BAND EDGE EMISSION	28
4.1 LIMIT	28
4.2 TEST PROCEDURE	28
4.3 DEVIATION FROM STANDARD	28
4.4 TEST SETUP	28
4.5 EUT OPERATION CONDITIONS	28
4.6 TEST RESULTS	28
5. POWER SPECTRAL DENSITY TEST	29
5.1 LIMIT	29
5.2 TEST PROCEDURE	29
5.3 DEVIATION FROM STANDARD	29
5.4 TEST SETUP	29
5.5 EUT OPERATION CONDITIONS	29
5.6 TEST RESULTS	29
6. BANDWIDTH TEST	30
6.1 LIMIT	30
6.2 TEST PROCEDURE	30
6.3 DEVIATION FROM STANDARD	30
6.4 TEST SETUP	30
6.5 EUT OPERATION CONDITIONS	30
6.6 TEST RESULTS	30

Table of Contents

Page

7. PEAK OUTPUT POWER TEST	31
7.1 LIMIT	31
7.2 TEST PROCEDURE	31
7.3 DEVIATION FROM STANDARD	31
7.4 TEST SETUP	31
7.5 EUT OPERATION CONDITIONS	31
7.6 TEST RESULTS	31
8. ANTENNA REQUIREMENT	32
8.1 STANDARD REQUIREMENT	32
8.2 EUT ANTENNA	32
APPENDIX I - TEST RESULTS	33
DUTY CYCLE	33
MAXIMUM PEAK CONDUCTED OUTPUT POWER	37
-6DB BANDWIDTH	38
OCCUPIED CHANNEL BANDWIDTH	42
MAXIMUM POWER SPECTRAL DENSITY LEVEL	46
BAND EDGE	50
CONDUCTED RF SPURIOUS EMISSION	55
APPENDIX II - MEASUREMENT PHOTOS	62
APPENDIX III - PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	63

Revision History

Rev.	Issue Date	Revisions
00	Jul. 04, 2024	Initial Issue

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part 15.247,Subpart C			
Standard Section	Test Item Judgment Remark		Remark
15.207	Conducted Emission PASS		
15.247 (a)(2)	6dB Bandwidth	PASS	
15.247 (b)(3)	Output Power	PASS	
15.209	Radiated Spurious Emission	PASS	
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS	
15.247 (e)	Power Spectral Density	PASS	
15.205	Restricted Band Edge Emission	PASS	
Part 15.247(d)/ Part 15.209(a)	Band Edge Emission PASS		
15.203	Antenna Requirement PASS		

NOTE:

- (1) 'N/A' denotes test is not applicable in this Test Report.
- (2) All tests are according to ANSI C63.10-2013.

1.1 TEST FACTORY

Company Name:	Shenzhen LGT Test Service Co., Ltd.	
Address: Room 205, Building 13, Zone B, Zhenxiong Industrial Park, N Renmin West Road, Jinsha, Kengzi Street, Pingshan District Shenzhen, Guangdong, China		
	A2LA Certificate No.: 6727.01	
Accreditation Certificate	FCC Registration No.: 746540	
	CAB ID: CN0136	

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF Output Power, Conducted	±0.71dB
2	Power Spectral Density, Conducted	±1.57 dB
3	Unwanted Emission, Conducted	±0.63dB
4	Conducted emission ±2.80dB	
5	All Emissions, Radiated (0.009-30MHz)	±2.16dB
6	All Emissions, Radiated (30MHz-1GHz) ±4.40dB	
7	All Emissions, Radiated (1GHz-18GHz)	±5.49dB

Note: The measurement uncertainty is not included in the test result.

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name:	Smart Doorbell		
Trademark:	N/A		
Model Name:	M1		
Series Model:	830, M2, M3, M4, M5, DB01, DB02, DB03, DB04, DB05		
Model Difference:	Only the model names are inconsistent.		
Product Description:	Operation Frequency:	802.11b/g/n(20MHz): 2412~2462MHz	
	Modulation Type:	802.11b(DSSS):CCK,DQPSK,DBPSK 802.11g(OFDM):BPSK,QPSK,16-QAM,64-QAM 802.11n(OFDM):BPSK,QPSK,16-QAM,64-QAM	
	Number of Channel:	802.11b/g/n: 11CH	
	Antenna Designation:	Metal	
	Antenna Gain(dBi):	3.05	
Channel List:	Please refer to the Note 3.		
Rating:	Input: DC 5V 2A		
Battery:	Capacity: 5200mAh Rated Voltage: 3.7V		
Hardware Version:	103		
Software Version:	V1.0		
Connecting I/O Port(s):	Please refer to the Note 1.		

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.
- 2. The antenna information refers to the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer.

	•	١		
		ç	l	

	Operation Frequency of channel				
	802.11b/g/n(20MHz)				
C	hannel	Frequency			
	01	2412			
	02	2417			
	03	2422			
	04	2427			
	05	2432			
	06	2437			
	07	2442			
	08	2447			
	09	2452			
	10	2457			
	11	2462			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, themiddle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below: Carrier Frequency Channel

2.4GHz Test Frequency:

For 802.11b/g/n(HT20)				
Channel	Freq.(MHz)			
01	2412			
06	2437			
11	2462			

2.2 DESCRIPTION OF THE TEST MODES

Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Worst Mode	Description	Data Rate
Mode 1	TX IEEE 802.11b CH1	1 Mbps
Mode 2	TX IEEE 802.11b CH6	1 Mbps
Mode 3	TX IEEE 802.11 b CH11	1 Mbps
Mode 4	TX IEEE 802.11g CH1	6 Mbps
Mode 5	TX IEEE 802.11g CH6	6 Mbps
Mode 6	TX IEEE 802.11g CH11	6 Mbps
Mode 7	TX IEEE 802.11n HT20 CH1	MCS 0
Mode 8	TX IEEE 802.11n HT20 CH6	MCS 0
Mode 9	TX IEEE 802.11n HT20 CH11	MCS 0

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

AC Conducted Emission

	Test Case
AC Conducted Emission	Mode 10: Keeping TX + WLAN Link

2.3 TEST SOFTWARE AND POWER LEVEL

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Test software Version	Test program: 2.4G WIFI				
	Mode Or Modulation type	Power setting			
DDTU	b	14			
DRTU	g	10			
	n20	9			

2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Accessories Equipment

Description	Manufacturer	Model	S/N	Rating
USB-A to USB-C Cable	N/A	N/A	N/A	0.8m

Auxiliary Equipment

Description	Manufacturer	Model	S/N	Rating
Laptop	Lenovo	HKF-16	N/A	N/A

Note:

(1) For detachable type I/O cable should be specified the length in cm in ^CLength₂ column.

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Conducted Emission					
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until
EMI Test Receiver	R&S	ESU8	100372	2024.03.09	2025.03.08
LISN	COM-POWER	LI-115	02032	2024.03.09	2025.03.08
LISN	SCHWARZBECK	NNLK 8122	00160	2024.03.09	2025.03.08
Transient Limiter	CYBERTEK	EM5010A	E2250100049	2024.03.09	2025.03.08
Temperature & Humidity	KTJ	TA218B	N.A	2024.03.09	2025.03.08
Testing Software		EMC-	I_V1.4.0.3_SKET		

Radiated Test equipment						
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until	
EMI Test Receiver	R&S	ESU8	100372	2024.03.09	2025.03.08	
Active loop Antenna	ETS	6502	00049544	2023.10.13	2025.10.12	
Spectrum Analyzer	Keysight	N9010B	MY60242508	2023.08.14	2024.08.13	
Bilog Antenna(30M-1G)	SCHWARZBECK	VULB 9168	2705	2022.12.12	2025.12.11	
Horn Antenna(1-18G)	SCHWARZBECK	3115	10SL0060	2022.06.02	2025.06.01	
Horn Antenna(18-40G)	A-INFO	LB-180400-KF	J211060273	2022.06.08	2025.06.07	
Pre-amplifier(30M-1G)	EMtrace	RP01A	02019	2024.03.09	2025.03.08	
Pre-amplifier(1-26.5G)	Agilent	8449B	3008A4722	2024.03.09	2025.03.08	
Pre-amplifier(18-40G)	com-mw	LNPA_18-40-01	18050003	2024.03.09	2025.03.08	
Wireless Communications Test Set	R&S	CMW 500	137737	2024.03.09	2025.03.08	
Antenna Tower	SAEMC	BK-4AT-BS-D	SK2021093008	N.A	N.A	
Temperature & Humidity	JINGCHUANG	BT-3	N.A	2024.03.11	2025.03.10	
Testing Software		EMC-I_V1.4.0.3_SKET				

RF Conducted Test equipment							
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until		
Signal Analyzer	Keysight	N9010B	MY60242508	2023.08.14	2024.08.13		
Signal Analyzer	Keysight	N9020A	MY50530994	2024.03.09	2025.03.08		
RF Automatic Test system	MW	MW100-RFCB	MW220322LG-033	2024.03.09	2025.03.08		
MXG Vector Signal Generator	Keysight	N5182B	MY59100717	2024.03.09	2025.03.08		
Temperature& Humidity test chamber	AISRY	LX-1000L	171200018	2024.03.09	2025.03.08		
Attenuator	eastsheep	90db	N.A	2024.03.09	2025.03.08		
Temperature & Humidity	JINGCHUANG	BT-3	N.A	2024.03.11	2025.03.10		
Digital multimeter	MASTECH	MS8261	MBGBC83053	2024.03.09	2025.03.08		
Testing Software		MTS83	310_V2.0.0.0_MW				

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

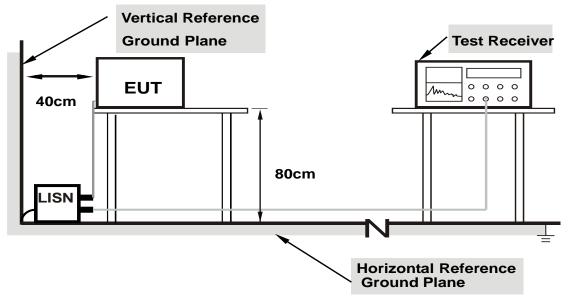
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

	Conducted Emissionlimit (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following table is the setting of the receiver

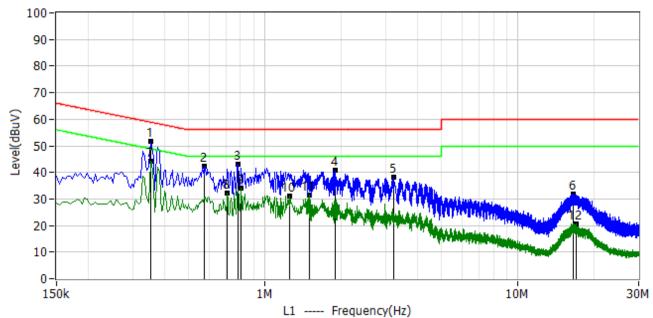
Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- 3.1.3 TEST SETUP

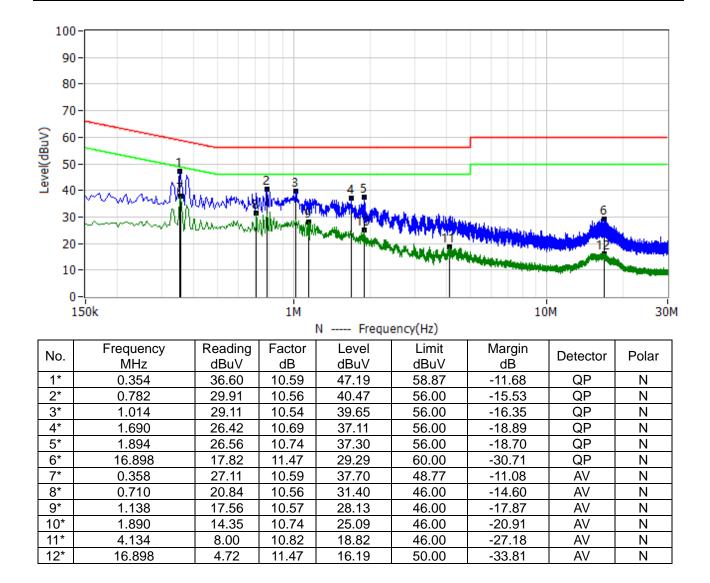
Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.


3.1.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.5 TEST RESULT


Project: LGT24F023	Test Engineer: LiuH
EUT: Smart Doorbell	Temperature: 24.8°C
M/N: M1	Humidity: 54%RH
Test Voltage: AC 120V/60Hz	Test Data: 2024-06-11
Test Mode: TX 802.11b 2412	
Note:	

No.	Frequency MHz	Reading dBuV	Factor dB	Level dBuV	Limit dBuV	Margin dB	Detector	Polar
1*	0.354	41.01	10.57	51.58	58.87	-7.29	QP	L1
2*	0.578	31.58	10.57	42.15	56.00	-13.85	QP	L1
3*	0.782	32.60	10.60	43.20	56.00	-12.80	QP	L1
4*	1.890	29.75	10.96	40.71	56.00	-15.29	QP	L1
5*	3.218	26.98	11.18	38.16	56.00	-17.84	QP	L1
6*	16.602	20.54	11.47	32.01	60.00	-27.99	QP	L1
7*	0.354	33.45	10.57	44.02	48.87	-4.85	AV	L1
8*	0.710	21.80	10.57	32.37	46.00	-13.63	AV	L1
9*	0.806	23.53	10.61	34.14	46.00	-11.86	AV	L1
10*	1.254	20.20	10.77	30.97	46.00	-15.03	AV	L1
11*	1.494	20.53	10.84	31.37	46.00	-14.63	AV	L1
12*	17.062	8.98	11.49	20.47	50.00	-29.53	AV	L1

Project: LGT24F023	Test Engineer: LiuH	
EUT: Smart Doorbell	Temperature: 24.8°C	
M/N: M1	Humidity: 54%RH	
Test Voltage: AC 120V/60Hz	Test Data: 2024-06-11	
Test Mode: TX 802.11b 2412		
Note:		

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies	Field Strength Measurement Distan	
(MHz)	(micorvolts/meter) (meters)	
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1000MHz-25GHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	
Above 1000	74		

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
FREQUENCT (IVIHZ)	FREQUENCT (MHZ)	· · · · ·	FREQUENCI (GHZ)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

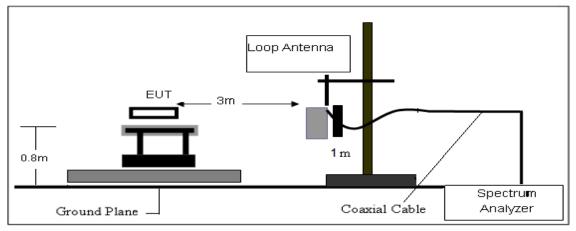
For Radiated Emission

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP/AV
Start Frequency	9 KHz/150KHz(Peak/QP/AV)
Stop Frequency	150KHz/30MHz(Peak/QP/AV)
	200Hz (From 9kHz to 0.15MHz)/
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);
band)	200Hz (From 9kHz to 0.15MHz)/
	9KHz (From 0.15MHz to 30MHz)

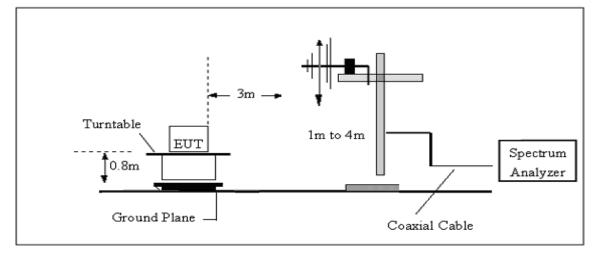
Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP
Start Frequency	30 MHz(Peak/QP)
Stop Frequency	1000 MHz (Peak/QP)
RB / VB (emission in restricted	
band)	120 KHz / 300 KHz

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak		
Start Frequency	1000 MHz(Peak/AV)		
Stop Frequency	10th carrier hamonic(Peak/AV)		
RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)		
band)	1 MHz/1/T MHz(AVG)		
For Restricted band			
Spectrum Parameter	Setting		
Detector	Peak		
Start/Stop Fraguanay	Lower Band Edge: 2310 to 2430 MHz		
Start/Stop Frequency	Upper Band Edge: 2445 to 2500 MHz		
	1 MHz / 3 MHz(Peak)		
RB / VB	1 MHz/1/T MHz(AVG)		

Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

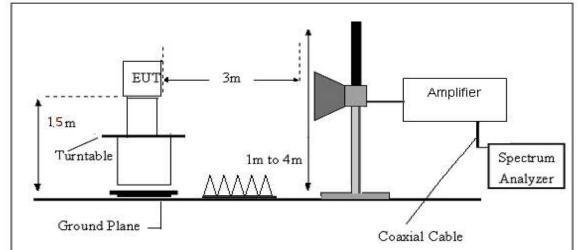

3.2.2 TEST PROCEDURE

- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

3.2.3 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.4 EUT OPERATING CONDITIONS

Please refer to section 3.1.4 of this report.

3.2.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AGWhere FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain AF = Antenna Factor For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

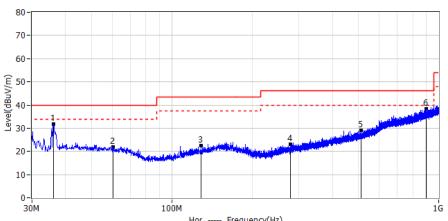
3.2.6 TEST RESULT

Results of Radiated Emissions (9 KHz~30MHz)

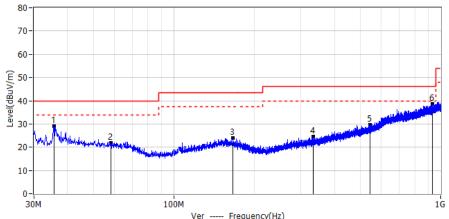
No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Remark
1*	-	-	-	-	-	-	-	See Note

Note:

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and the permissible value has no need to be reported.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

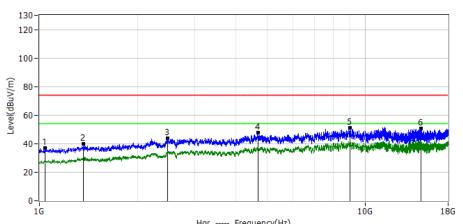
Limit line = specific limits (dBuV) + distance extrapolation factor.



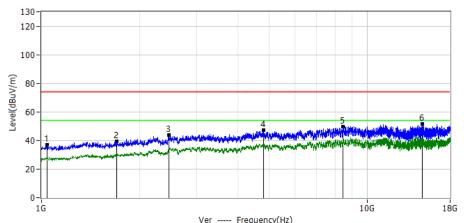
Results of Radiated Emissions (30MHz~1000MHz)

Project: LGT24F023	Test Engineer: Xiangdong Ma
EUT: Smart Doorbell	Temperature: 25°C
M/N: M1	Humidity: 47%RH
Test Voltage: Battery: DC 3.7V	Test Data: 2024-06-20
Test Mode: TX 802.11b 2412	
Note:	

				Hor Frequency	/(HZ)			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
INO.	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Delector	
1*	36.063	12.93	18.72	31.65	40.00	-8.35	QP	Hor
2*	60.313	3.33	18.62	21.95	40.00	-18.05	QP	Hor
3*	128.576	3.97	18.38	22.35	43.50	-21.15	QP	Hor
4*	278.684	3.48	19.49	22.97	46.00	-23.03	QP	Hor
5*	511.363	4.01	25.15	29.16	46.00	-16.84	QP	Hor
6*	900.575	5.22	33.24	38.46	46.00	-7.54	QP	Hor

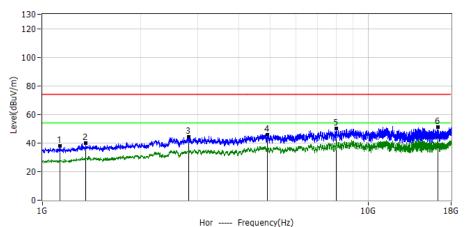


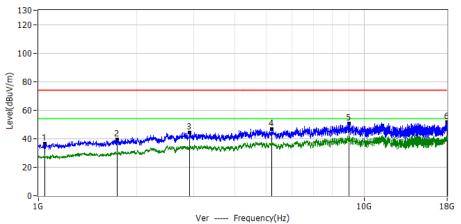
				ver Frequency	(HZ)			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
INO.	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Delector	
1*	35.578	10.39	18.64	29.03	40.00	-10.97	QP	Ver
2*	58.373	3.11	18.76	21.87	40.00	-18.13	QP	Ver
3*	166.285	4.07	19.80	23.87	43.50	-19.63	QP	Ver
4*	333.974	3.71	20.88	24.59	46.00	-21.41	QP	Ver
5*	543.494	3.71	26.01	29.72	46.00	-16.28	QP	Ver
6*	929.190	5.17	33.47	38.64	46.00	-7.36	QP	Ver



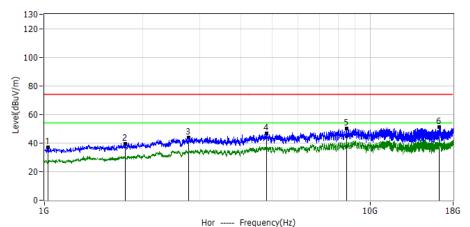
Results of Radiated Emissions (Above 1000MHz)

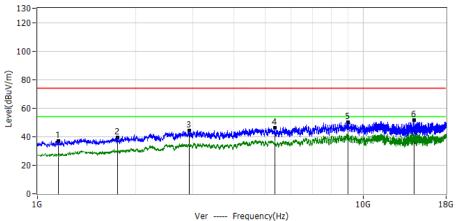
Project: LGT24F023	Test Engineer: Xiangdong Ma	
EUT: Smart Doorbell	Temperature: 25°C	
M/N: M1	Humidity: 47%RH	
Test Voltage: Battery: DC 3.7V	Test Data: 2024-06-28	
Test Mode: 802.11b 2412		
Note: Worst Case		


				Hor Frequenc	y(Hz)			
No	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
No.	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Delector	
1*	1042.5000	61.57	-24.38	37.19	74.00	-36.81	PK	Hor
2*	1363.4000	61.77	-21.75	40.02	74.00	-33.98	PK	Hor
3*	2479.0000	55.31	-11.52	43.79	74.00	-30.21	PK	Hor
4*	4684.7000	54.28	-6.69	47.59	74.00	-26.41	PK	Hor
5*	9009.1000	54.76	-3.67	51.09	74.00	-22.91	PK	Hor
6*	14818.9000	50.16	0.53	50.69	74.00	-23.31	PK	Hor


				ver Frequenc	.y(nz)			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
NO.	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Delector	Fulai
1*	1042.5000	61.17	-24.38	36.79	74.00	-37.21	PK	Ver
2*	1699.1000	58.68	-19.37	39.31	74.00	-34.69	PK	Ver
3*	2462.0000	55.28	-11.70	43.58	74.00	-30.42	PK	Ver
4*	4812.2000	54.14	-6.81	47.33	74.00	-26.67	PK	Ver
5*	8452.4000	54.41	-4.67	49.74	74.00	-24.26	PK	Ver
6*	14816.7000	51.01	0.54	51.55	74.00	-22.45	PK	Ver

Project: LGT24F023	Test Engineer: Xiangdong Ma
EUT: Smart Doorbell	Temperature: 25°C
M/N: M1	Humidity: 47%RH
Test Voltage: Battery: DC 3.7V	Test Data: 2024-06-28
Test Mode: 802.11b 2437	
Note: Worst Case	


				Hol Flequello	y(112)			
No.	Frequency MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*						-	51/	
1*	1131.7000	61.41	-23.60	37.81	74.00	-36.19	PK	Hor
2*	1359.1000	61.53	-21.78	39.75	74.00	-34.25	PK	Hor
3*	2808.4000	53.92	-9.74	44.18	74.00	-29.82	PK	Hor
4*	4903.6000	52.84	-6.90	45.94	74.00	-28.06	PK	Hor
5*	7999.7000	55.58	-5.50	50.08	74.00	-23.92	PK	Hor
6*	16372.2000	50.23	0.75	50.98	74.00	-23.02	PK	Hor

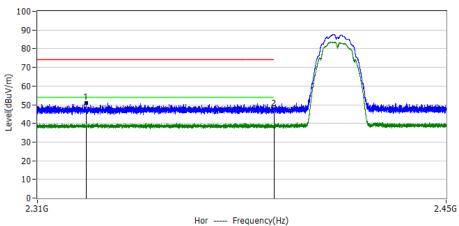

				rei inequeine	10			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
INO.	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Delector	Folai
1*	1044.6000	61.10	-24.36	36.74	74.00	-37.26	PK	Ver
2*	1748.0000	58.48	-18.91	39.57	74.00	-34.43	PK	Ver
3*	2912.5000	53.74	-9.21	44.53	74.00	-29.47	PK	Ver
4*	5201.1000	54.29	-7.68	46.61	74.00	-27.39	PK	Ver
5*	8987.9000	54.25	-3.69	50.56	74.00	-23.44	PK	Ver
6*	17957.5000	49.49	2.00	51.49	74.00	-22.51	PK	Ver

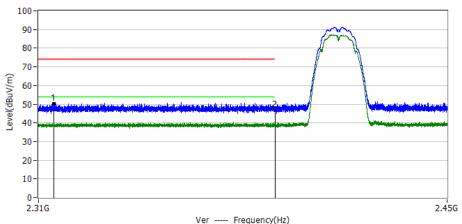
Project: LGT24F023	Test Engineer: Xiangdong Ma
EUT: Smart Doorbell	Temperature: 25°C
M/N: M1	Humidity: 47%RH
Test Voltage: Battery: DC 3.7V	Test Data: 2024-06-28
Test Mode: 802.11b 2462	
Note: Worst Case	

				nor rrequenc	7(112)			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
INO.	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Delector	Foldi
1*	1023.4000	61.39	-24.55	36.84	74.00	-37.16	PK	Hor
2*	1773.5000	58.22	-18.67	39.55	74.00	-34.45	PK	Hor
3*	2770.1000	53.60	-9.94	43.66	74.00	-30.34	PK	Hor
4*	4816.5000	53.75	-6.82	46.93	74.00	-27.07	PK	Hor
5*	8454.5000	54.76	-4.67	50.09	74.00	-23.91	PK	Hor
6*	16274.5000	50.33	0.62	50.95	74.00	-23.05	PK	Hor

				re	10			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
INO.	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Delector	Polal
1*	1161.5000	60.48	-23.34	37.14	74.00	-36.86	PK	Ver
2*	1765.0000	58.11	-18.75	39.36	74.00	-34.64	PK	Ver
3*	2927.4000	53.37	-9.14	44.23	74.00	-29.77	PK	Ver
4*	5362.6000	54.65	-8.24	46.41	74.00	-27.59	PK	Ver
5*	9007.0000	53.96	-3.67	50.29	74.00	-23.71	PK	Ver
6*	14374.7000	50.82	0.72	51.54	74.00	-22.46	PK	Ver

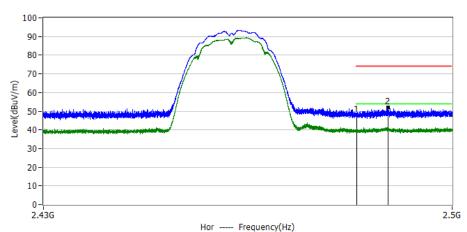
Remark:

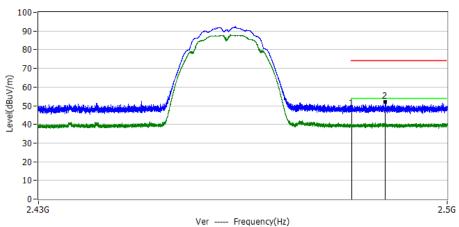

In frequency ranges 18~25GHz no any other harmonic emissions detected which are tested to compliance with the limit. No recording in the test report. No any other emissions level which are attenuated less than 20dB below the limit. No recording in the test report.


3.2.7 TEST RESULTS(Band edge Requirements)

Note: All the modes have been tested, found worst case at 802.11b, recorded the worst case results in this report.

Project: LGT24F023	Test Engineer: Xiangdong Ma
EUT: Smart Doorbell	Temperature: 25°C
M/N: M1	Humidity: 47%RH
Test Voltage: Battery	Test Data: 2024-06-28
Test Mode: 802.11b 2412	
Note:	


No.	Frequency MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	2326.2000	16.67	34.16	50.83	74.00	-23.17	PK	Hor
2*	2390.0000	13.60	34.10	47.70	74.00	-26.30	PK	Hor


	Ver riequency(nz)								
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar	
INO.	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Delector	FUIdi	
1*	2315.2000	15.96	34.17	50.13	74.00	-23.87	PK	Ver	
2*	2390.0000	12.70	34.10	46.80	74.00	-27.20	PK	Ver	

Project: LGT24F023	Test Engineer: LiuH
EUT: Smart Doorbell	Temperature: 25.9°C
M/N: M1	Humidity: 48%RH
Test Voltage: Battery	Test Data: 2024-07-17
Project: LGT24F023	
EUT: Smart Doorbell	

				iner inequence	/(/			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	Polar
INO.	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Delector	Foial
1*	2483.5000	13.66	34.44	48.10	74.00	-25.90	PK	Hor
2*	2488.9000	17.55	34.45	52.00	74.00	-22.00	PK	Hor

No.	Frequency MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	2483.5000	13.86	34.44	48.30	74.00	-25.70	PK	Ver
2*	2489.3000	17.48	34.45	51.93	74.00	-22.07	PK	Ver

Note:

1. Average measurement was not performed if peak level lower than average limit. No any other emissions level which are attenuated less than 20dB below the limit. The amplitude of spurious emissions from intentional radiators and emissions from unintentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this Part. Hence there no other emissions have been reported.

4. CONDUCTED SPURIOUS & BAND EDGE EMISSION

4.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

4.2 TEST PROCEDURE

Spectrum Parameter	Setting		
Detector	Peak		
Start/Stop Frequency	30 MHz to 10th carrier harmonic		
RB / VB (emission in restricted band)	100 KHz/300 KHz		
Trace-Mode:	Max hold		

For Band edge

Spectrum Parameter	Setting	
Detector	Peak	
Stort/Stop Eroguopou	Lower Band Edge: 2300 to 2432 MHz	
Start/Stop Frequency	Upper Band Edge: 2442 to 2500 MHz	
RB / VB (emission in restricted band)	100 KHz/300 KHz	
Trace-Mode:	Max hold	

4.3 DEVIATION FROM STANDARD No deviation.

4.4 TEST SETUP

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

4.5 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

4.6 TEST RESULTS

For the measurement records, refer to the appendix I.

Note: Not recorded emission from 9 KHz to 30 MHz as emission level at least 20dBc lower than emission limit.

5. POWER SPECTRAL DENSITY TEST

5.1 LIMIT

FCC Part15.247 , Subpart C									
Section	Test Item	Limit	Frequency Range (MHz)	Result					
15.247(e)	Power Spectral Density	≤8 dBm (RBW ≥3KHz)	2400-2483.5	PASS					

5.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.3 DEVIATION FROM STANDARD No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report.

5.6 TEST RESULTS

For the measurement records, refer to the appendix I.

6. BANDWIDTH TEST

6.1 LIMIT

FCC Part15.247,Subpart C								
Section	Test Item	Limit	Frequency Range (MHz)	Result				
15.247(a)(2)	Bandwidth	≥500KHz (6dB bandwidth)	2400-2483.5	PASS				

6.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

6.3 DEVIATION FROM STANDARD No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

6.6 TEST RESULTS

For the measurement records, refer to the appendix I.

7. PEAK OUTPUT POWER TEST

7.1 LIMIT

FCC Part15.247,Subpart C								
Section	Test Item	Limit	Frequency Range (MHz)	Result				
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS				

7.2 TEST PROCEDURE

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

 $RBW \ge DTS$ bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

a) Set the RBW \geq DTS bandwidth.

b) Set VBW \geq [3 × RBW].

c) Set span \geq [3 × RBW].

d) Sweep time = auto couple.

e) Detector = peak.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use peak marker function to determine the peak amplitude level.

Integrated band power method:

The following procedure can be used when the maximum available RBW of the instrument is less than the

DTS bandwidth:

a) Set the RBW = 1 MHz.

b) Set the VBW \geq [3 × RBW].

c) Set the span \geq [1.5 \times DTS bandwidth].

d) Detector = peak.

e) Sweep time = auto couple.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector). If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS channel bandwidth.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

EUT	Power
	Sensor

7.5 EUT OPERATION CONDITIONS

Please refer to section 3.1.4 of this report.

7.6 TEST RESULTS

For the measurement records, refer to the appendix I.

8. ANTENNA REQUIREMENT

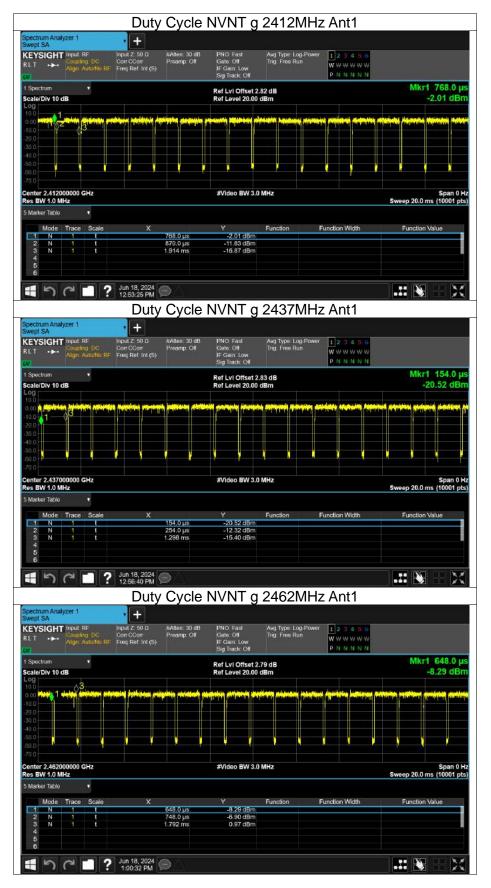
8.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device.

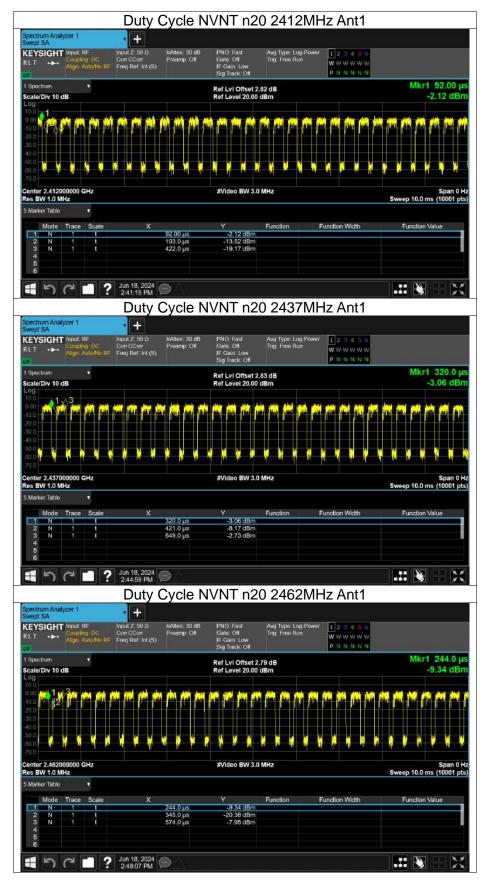
8.2 EUT ANTENNA

The EUT antenna is Metal Antenna. It comply with the standard requirement.

APPENDIX I - TEST RESULTS

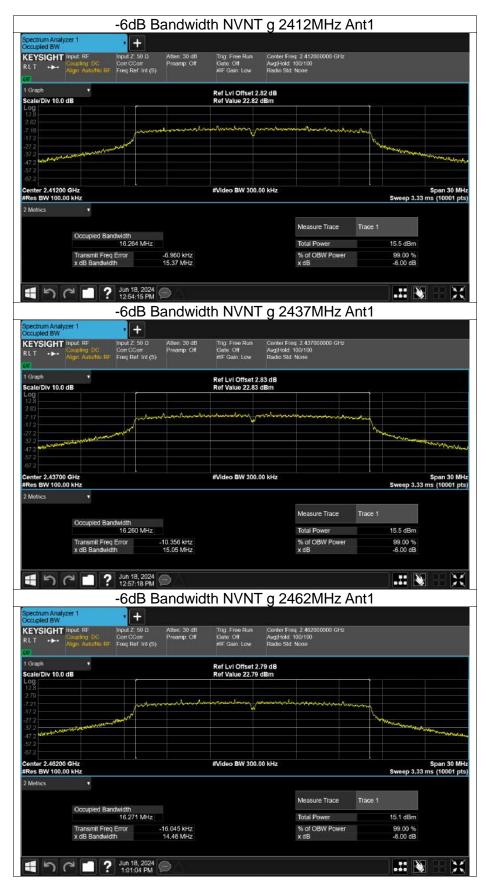

Duty Cycle

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	b	2412	Ant1	98.41	0	0.16
NVNT	b	2437	Ant1	98.48	0	0.16
NVNT	b	2462	Ant1	98.48	0	0.16
NVNT	g	2412	Ant1	91.1	0.4	0.96
NVNT	g	2437	Ant1	91.26	0.4	0.96
NVNT	g	2462	Ant1	91.26	0.4	0.96
NVNT	n20	2412	Ant1	69.39	1.59	4.37
NVNT	n20	2437	Ant1	69.3	1.59	4.39
NVNT	n20	2462	Ant1	69.39	1.59	4.37



Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	Ant1	15.02	30	Pass
NVNT	b	2437	Ant1	14.99	30	Pass
NVNT	b	2462	Ant1	14.51	30	Pass
NVNT	g	2412	Ant1	13.92	30	Pass
NVNT	g	2437	Ant1	13.91	30	Pass
NVNT	g	2462	Ant1	13.59	30	Pass
NVNT	n20	2412	Ant1	12.43	30	Pass
NVNT	n20	2437	Ant1	12.48	30	Pass
NVNT	n20	2462	Ant1	11.94	30	Pass

Maximum Peak Conducted Output Power

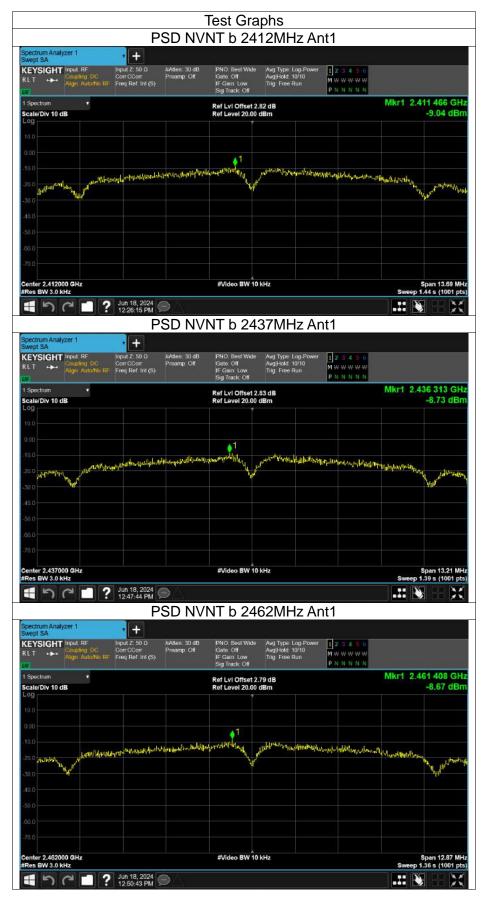

-6dB Bandwidth

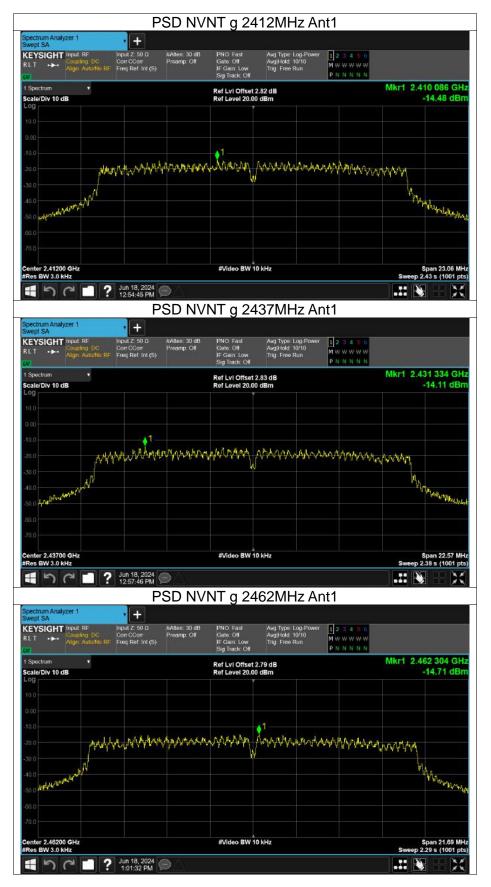
Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	b	2412	Ant1	9.126	0.5	Pass
NVNT	b	2437	Ant1	8.805	0.5	Pass
NVNT	b	2462	Ant1	8.578	0.5	Pass
NVNT	g	2412	Ant1	15.372	0.5	Pass
NVNT	g	2437	Ant1	15.049	0.5	Pass
NVNT	g	2462	Ant1	14.463	0.5	Pass
NVNT	n20	2412	Ant1	15.114	0.5	Pass
NVNT	n20	2437	Ant1	15.085	0.5	Pass
NVNT	n20	2462	Ant1	15.376	0.5	Pass

-6dB Bandwidt	h NVNT n20	2412MHz Ant	:1
Spectrum Analyzer 1			
KEYSIGHT Input. RF Input. Z: 50.0 Atten: 30.dB RLT Coupling: DC Corr CCorr Preamp: Off RLT Align: AutorNo RF Freq Ref. Int (S) Preamp: Off	Gate: Off Avg Hol	Freq: 2 412000000 GHz d: 100/100 10: None	
1 Graph 🔹	Ref LvI Offset 2.82 dB		11
Scale/Div 10.0 dB	Ref Value 22.82 dBm		
2.82 7.18	man man	manterenterrow	
-1/.2	¥		
-27.2 37.2 47.2 protection of the second			Marin Marine M
57.2 67.2			
Center 2.41200 GHz #Res BW 100.00 kHz	#Video BW 300.00 kHz		Span 30 MHz Sweep 3.33 ms (10001 pts)
2 Metrics •			
Occupied Bandwidth 17.470 MHz		Measure Trace Trace	14.2 dBm
Transmit Freq Error -7.732 kHz		% of OBW Power	99.00 % -6.00 dB
x dB Bandwidth 15.11 MHz		×dB	-6.00 (18)
■ つ C ■ ? Jun 18, 2024			
-6dB Bandwidt	h NVNT n20	2437MHz An	1
Spectrum Analyzer 1 • •			
KEYSIGHT Input: RF Input: Z: 50:0 Atten: 30:dB RLT ↔ Coupling: DC Corr CCorr Preamp: Off Align: Auto:No RF Freq Ref. Int (S) Freq Ref. Int (S) Preamp: Off	Gate Off Avg Hol	Freq: 2.437000000 GHz d: 100/100 td: None	
Log	Wir ddin cow Haulo 3	N. PEALC	
1 Graph + Scale/Div 10.0 dB	Ref LvI Offset 2.83 dB Ref Value 22.83 dBm		S
Log 12.8 2.83			
-7.17 -17.2	man marine and a second	momenter	
-27.2 -37.2			Martin and a second statements
-47.2			
Center 2.43700 GHz #Res BW 100.00 kHz	#Video BW 300.00 kHz		Span 30 MHz Sweep 3.33 ms (10001 pts)
2 Metrics •			Sweep 5.55 ms (10001 prs)
Occupied Bandwidth		Measure Trace Trace	at
17.447 MHz		Total Power	14.3 dBm
Transmit Freq Error -14.964 kHz x dB Bandwidth 15.09 MHz		% of OBW Power x dB	99.00 % -6.00 dB
まっぺ∎? Jun 18, 2024 ℗			.:: 🛯 — 🗙
-6dB Bandwidt	h NVNT n20	2462MHz Ani	
Spectrum Analyzer 1			
KEYSIGHT Input RF Input Z: 50 0 Atten: 30 dB RLT Coupling DC Corr Corr Preamp: Off Align: AutorNo RF Freq Ref. Int (S) Preamp: Off	Gate Off Avg Hol	Freq: 2.462000000 GHz d: 100/100	
Align: AutoNo RF Freq Ref. Int (S)	#IF Gain Low Radio S	tit. None	
1 Graph + Scale/Div 10.0 dB	Ref Lvi Offset 2.79 dB Ref Value 22.79 dBm		
Log 128 279			
-7.21 -17.2	more marked	for a second and the second se	
-27.2 -37.2 -47.2 meneral Manager Manager Martin			www.combinesteresteresteresteresteresterestereste
-47.2			
Center 2.46200 GHz #Res BW 100.00 kHz	#Video BW 300.00 kHz		Span 30 MHz Sweep 3.33 ms (10001 pts)
2 Metrics			
Occupied Bandwidth		Measure Trace Trace	i1
17.446 MHz Transmit Freg Error -16.516 kHz		Total Power % of OBW Power	13.8 dBm 99.00 %
x dB Bandwidth 15.38 MHz		% of OBW Power x dB	-6.00 dB
まっでこ ? Jun 18, 2024			

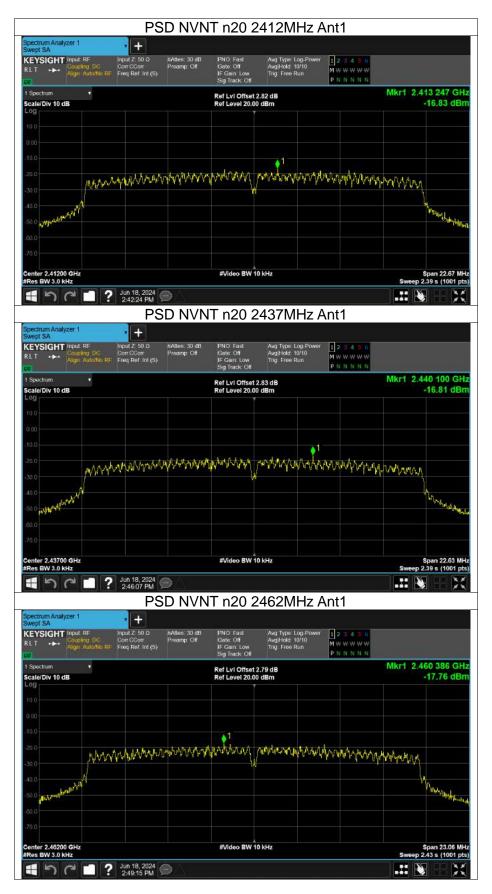
Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	b	2412	Ant1	14.078
NVNT	b	2437	Ant1	14.03
NVNT	b	2462	Ant1	14.037
NVNT	g	2412	Ant1	16.283
NVNT	g	2437	Ant1	16.294
NVNT	g	2462	Ant1	16.297
NVNT	n20	2412	Ant1	17.465
NVNT	n20	2437	Ant1	17.468
NVNT	n20	2462	Ant1	17.433



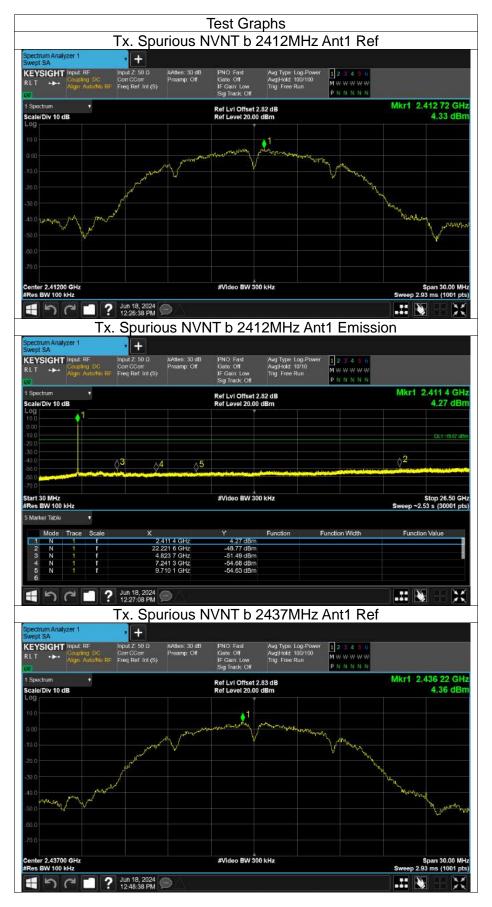


Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	b	2412	Ant1	-9.04	8	Pass
NVNT	b	2437	Ant1	-8.73	8	Pass
NVNT	b	2462	Ant1	-8.67	8	Pass
NVNT	g	2412	Ant1	-14.48	8	Pass
NVNT	g	2437	Ant1	-14.11	8	Pass
NVNT	g	2462	Ant1	-14.71	8	Pass
NVNT	n20	2412	Ant1	-16.83	8	Pass
NVNT	n20	2437	Ant1	-16.81	8	Pass
NVNT	n20	2462	Ant1	-17.77	8	Pass



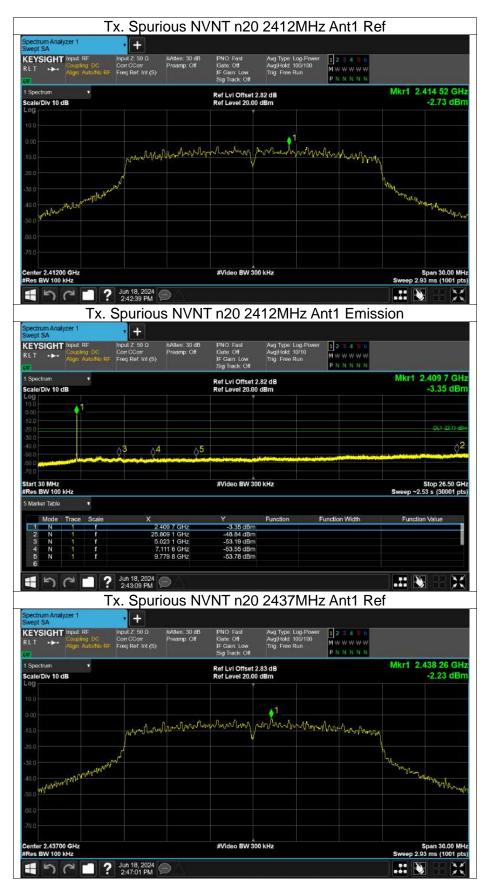
Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	Ant1	-43.03	-20	Pass
NVNT	b	2462	Ant1	-57.8	-20	Pass
NVNT	g	2412	Ant1	-33.54	-20	Pass
NVNT	g	2462	Ant1	-51.49	-20	Pass
NVNT	n20	2412	Ant1	-34.29	-20	Pass
NVNT	n20	2462	Ant1	-47.95	-20	Pass



Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	Ant1	-53.1	-20	Pass
NVNT	b	2437	Ant1	-52.52	-20	Pass
NVNT	b	2462	Ant1	-52.78	-20	Pass
NVNT	g	2412	Ant1	-47.78	-20	Pass
NVNT	g	2437	Ant1	-47.14	-20	Pass
NVNT	g	2462	Ant1	-46.6	-20	Pass
NVNT	n20	2412	Ant1	-46.11	-20	Pass
NVNT	n20	2437	Ant1	-46.2	-20	Pass
NVNT	n20	2462	Ant1	-46.11	-20	Pass



APPENDIX II - MEASUREMENT PHOTOS

Note: Please see the attached RF_Test Setup photos for FCC Part 15C_2.4GHz Wi-Fi.

APPENDIX III - PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS

Note: Please see the attached M1_External Photos and M1_Internal Photos.
