3500 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client CTTL

Beijing

Certificate No. D3500V2-1016_Jun23

CALIBRATION CERTIFICATE D3500V2 - SN:1016 Object QA CAL-22.v7 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 3-10 GHz June 21, 2023 Calibration date:

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
Power sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24
Reference 20 dB Attenuator	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24
Type-N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24
Reference Probe EX3DV4	SN: 3503	07-Mar-23 (No. EX3-3503_Mar23)	Mar-24
DAE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Krešimir Franjić	Laboratory Technician	**
Approved by:	Sven Kühn	Technical Manager	11

Issued: June 22, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Page 2 of 8

Measurement Conditions

DASY system conf	figuration, as far	as not	given on	page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, $dy = 4.0$ mm, $dz = 1.4$ mm	Graded Ratio = 1.4 (Z direction)
Frequency	3400 MHz ± 1 MHz 3500 MHz ± 1 MHz 3600 MHz ± 1 MHz	

Head TSL parameters at 3400 MHz

The following parameters and calculations were applied.

<u> </u>	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	38.0	2.81 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	2.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3400 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.79 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	67.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.4 W/kg ± 19.5 % (k=2)

Head TSL parameters at 3500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.9	2.91 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	2.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.71 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	66.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.2 W/kg ± 19.5 % (k=2)

Certificate No: D3500V2-1016_Jun23

Page 3 of 8

3700 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Certificate No. D3700V2-1004 Jun23

nis calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. Il calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Il calibration Equipment used (M&TE critical for calibration) In # Cal Date (Certificate No.) Scheduled Calibration Scheduled Calibration Scheduled Calibration Nar-24 Sover sensor NRP-Z91 SN: 103244 30-Mar-23 (No. 217-03804) Mar-24 Sover sensor NRP-Z91 SN: 103245 30-Mar-23 (No. 217-03805) Mar-24 Sover sensor NRP-Z91 SN: 103245 30-Mar-23 (No. 217-03805) Mar-24 Sover sensor NRP-Z91 SN: 103245 30-Mar-23 (No. 217-03805) Mar-24 Sover sensor NRP-Z91 SN: 103245 30-Mar-23 (No. 217-03805) Mar-24 Sover sensor NRP-Z91 SN: 103245 30-Mar-23 (No. 217-03805) Mar-24 Sover sensor Probe EX3DV4 SN: 3503 07-Mar-23 (No. 217-03810) Mar-24 Sover sensor Probe EX3DV4 SN: 3503 07-Mar-23 (No. EX3-3503_Mar-23) Mar-24 Sover sensor HP 8481A SN: GB39512475 30-Oct-14 (in house check Oct-22) In house check: Oct-2 Sover sensor HP 8481A SN: WS37292783 07-Oct-15 (in house check Oct-22) In house check: Oct-2 Sover sensor HP 8481A SN: WY341093315 07-Oct-15 (in house check Oct-22) In house check: Oct-2 Sover sensor HP 8481A SN: MY341093315 07-Oct-15 (in house check Oct-22) In house check: Oct-2 Sover sensor HP 8481A SN: WY341093315 07-Oct-15 (in house check Oct-22) In house check: Oct-2 Sover sensor HP 8481A SN: WY341093315 07-Oct-15 (in house check Oct-22) In house check: Oct-2 Sover sensor HP 8481A SN: WY341093315 07-Oct-15 (in house check Oct-22) In house check: Oct-2 Sover sensor HP 8481A SN: WY341093315 07-Oct-15 (in house check Oct-22) In house check: Oct-2 Sover sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-22) In house check: Oct-2 Sover sensor HP 8481A SN: WY341093477 31-Mar-14 (in house check Oct-22) In house check:
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Prower meter NRP2 SN: 104778 30-Mar-23 (No. 217-03804) Mar-24 Prower sensor NRP-Z91 SN: 103244 30-Mar-23 (No. 217-03804) Mar-24 Reference 20 dB Attenuator SN: BH9394 (20k) SN: BH9394 (20k) SN: 30-Mar-23 (No. 217-03809) Mar-24 Reference Probe EX3DV4 SN: 3503 07-Mar-23 (No. 217-03810) Mar-24 SN: 3503 O7-Mar-23 (No. 217-03810) Mar-24 SN: 601 19-Dec-22 (No. DAE4-601_Dec22) Dec-23 Secondary Standards ID # Check Date (in house) Scheduled Check Prower meter E4419B SN: GB39512475 SN: GB39512475 SN: GB39512475 SN: US37292783 O7-Oct-15 (in house check Oct-22) In house check: Oct-2 Fregenerator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct-2 In house check: Oct-2 In house check: Oct-2 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-2
Secondary Standards ID # Check Date (in house) Scheduled Check Oct-22 In house check: Oct-22 Secondary Standards Sil : 1037292783 Sil : 103744 Sil : 103745 Sil : 103845 Sil : 1
Calibration
Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP2 SN: 104778 30-Mar-23 (No. 217-03804/03805) Mar-24 Power sensor NRP-Z91 SN: 103244 30-Mar-23 (No. 217-03804) Mar-24 Power sensor NRP-Z91 SN: 103245 30-Mar-23 (No. 217-03805) Mar-24 Reference 20 dB Attenuator SN: BH9394 (20k) 30-Mar-23 (No. 217-03809) Mar-24 Prope-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03810) Mar-24 Reference Probe EX3DV4 SN: 3503 07-Mar-23 (No. EX3-3503_Mar23) Mar-24 DAE4 SN: 601 19-Dec-22 (No. DAE4-601_Dec22) Dec-23 Power meter E4419B SN: GB39512475 30-Oct-14 (in house) Scheduled Check Power meter E4419B SN: US37292783 07-Oct-15 (in house check Oct-22) In house check: Oct-2 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-22) In house check: Oct-2 Power sensor HP 8481A SN: US37292783 107-Oct-15 (in house check Oct-22) In house check: Oct-2 Ref generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct-2 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-2 In house check: Oct-2 In house check: Oct-2
Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP2 SN: 104778 30-Mar-23 (No. 217-03804/03805) Mar-24 Power sensor NRP-Z91 SN: 103244 30-Mar-23 (No. 217-03804) Mar-24 Power sensor NRP-Z91 SN: 103245 30-Mar-23 (No. 217-03805) Mar-24 Reference 20 dB Attenuator SN: BH9394 (20k) 30-Mar-23 (No. 217-03809) Mar-24 Prope-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03810) Mar-24 Prope-N mismatch combination SN: 3503 07-Mar-23 (No. EX3-3503_Mar23) Mar-24 DAE4 SN: 601 19-Dec-22 (No. DAE4-601_Dec22) Dec-23 Recondary Standards ID # Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-22) In house check: Oct-2 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-22) In house check: Oct-2 Power sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct-2 Ref generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct-2 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-2
Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Prower meter NRP2 SN: 104778 30-Mar-23 (No. 217-03804/03805) Mar-24 Prower sensor NRP-Z91 SN: 103244 30-Mar-23 (No. 217-03804) Mar-24 Prower sensor NRP-Z91 SN: 103245 30-Mar-23 (No. 217-03805) Mar-24 Prower sensor NRP-Z91 SN: 103245 30-Mar-23 (No. 217-03809) Mar-24 Prower sensor NRP-Z91 SN: 310982 / 06327 30-Mar-23 (No. 217-03809) Mar-24 Prower mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03810) Mar-24 Prower Sensor Probe EX3DV4 SN: 3503 07-Mar-23 (No. EX3-3503_Mar23) Mar-24 Prower sensor HP 8481A SN: GB39512475 30-Oct-14 (in house Prower sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-22) In house check: Oct-2 Prower sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct-2 Prower sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct-2 Prower sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct-2 Prower sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct-2 Prower sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct-2 Prower sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct-2 Prower sensor HP 8481A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-2 Prower sensor HP 8481A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-2 Prower sensor HP 8481A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-2 Prower sensor HP 8481A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-2 Prower sensor HP 8481A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-2 Prower sensor HP 8481A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-2 Prower sensor HP 8481A SN:
Secondary Standards ID # Check Date (in house) Scheduled Check Oct-22 In house check: Oct-22 Secondary Standards Sil : 1037292783 Sil : 103744 Sil : 103745 Sil : 103845 Sil : 1
Power meter NRP2 SN: 104778 30-Mar-23 (No. 217-03804/03805) Mar-24 Power sensor NRP-Z91 SN: 103244 30-Mar-23 (No. 217-03804) Power sensor NRP-Z91 SN: 103245 Solution
Power sensor NRP-Z91 SN: 103244 30-Mar-23 (No. 217-03804) Mar-24 Reference 20 dB Attenuator SN: BH9394 (20k) 30-Mar-23 (No. 217-03805) Mar-24 Reference Probe EX3DV4 SN: 310982 / 06327 30-Mar-23 (No. 217-03809) Mar-24 Reference Probe EX3DV4 SN: 3503 07-Mar-23 (No. EX3-3503 Mar-23) Mar-24 DAE4 SN: 601 19-Dec-22 (No. DAE4-601_Dec22) Dec-23 Secondary Standards ID# Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-22) In house check: Oct-2 Power sensor HP 8481A SN: W1337292783 07-Oct-15 (in house check Oct-22) In house check: Oct-2 RF generator R&S SMT-06 SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-2
Power sensor NRP-291 SN: 103245 30-Mar-23 (No. 217-03805) Mar-24 Reference 20 dB Attenuator SN: BH9394 (20k) 30-Mar-23 (No. 217-03809) Mar-24 Type-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03810) Mar-24 Reference Probe EX3DV4 SN: 3503 07-Mar-23 (No. EX3-3503_Mar23) Mar-24 DAE4 SN: 601 19-Dec-22 (No. DAE4-601_Dec22) Dec-23 Secondary Standards ID# Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-22) In house check: Oct-2 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-22) In house check: Oct-2 Power sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct-2 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct-2 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-2
No. 217-03809 Mar-24
Signature Sign
No. 2303 No. 2303 No. 2303 No. 2303 No. 2303 No. 24
DAE4
D# Check Date (in house) Scheduled Check
Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-22) In house check: Oct-2 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-22) In house check: Oct-2 Power sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct-2 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct-2 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-2
Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-22) In house check: Oct-2 Power sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct-2 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct-2 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-2
Power sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct-2 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct-2 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-2
RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct-2 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-2
Network Analyzer Agilient E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-2
Name Constitution Constitution of Constitution
Name Function Signature
Calibrated by: Krešimir Franjić Laboratory Technician
Approved by: Sven Kühn Technical Manager

Certificate No: D3700V2-1004_Jun23

Page 1 of 7

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

Certificate No: D3700V2-1004_Jun23

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

AST System configuration, as far as no	3	
DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	+
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3700 MHz ± 1 MHz 3800 MHz ± 1 MHz	

Head TSL parameters at 3700 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.7	3.12 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.6 ± 6 %	3.08 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3700 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	67.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 3800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.6	3.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.5 ± 6 %	3.16 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	64.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.6 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 3700 MHz

Impedance, transformed to feed point	49.6Ω - $6.3 j\Omega$	
Return Loss	- 24.0 dB	

Antenna Parameters with Head TSL at 3800 MHz

Impedance, transformed to feed point	56.7 Ω - 4.6 jΩ	
Return Loss	- 22.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.139 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Certificate No: D3700V2-1004_Jun23

Manufactured by	SPEAG
manada ay	

DASY5 Validation Report for Head TSL

Date: 21.06.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1004

Communication System: UID 0 - CW; Frequency: 3700 MHz, Frequency: 3800 MHz Medium parameters used: f = 3700 MHz; $\sigma = 3.08$ S/m; $\varepsilon_r = 37.6$; $\rho = 1000$ kg/m³ Medium parameters used: f = 3800 MHz; $\sigma = 3.16$ S/m; $\varepsilon_r = 37.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.73, 7.73, 7.73) @ 3700 MHz, ConvF(7.73, 7.73, 7.73) @ 3800 MHz; Calibrated: 07.03.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.84 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 19.0 W/kg

SAR(1 g) = 6.76 W/kg; SAR(10 g) = 2.47 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 74.2%

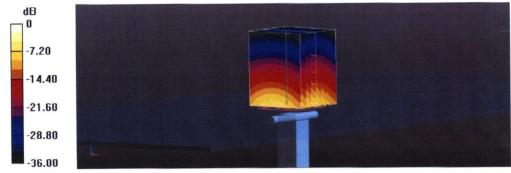
Maximum value of SAR (measured) = 13.3 W/kg

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3800MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

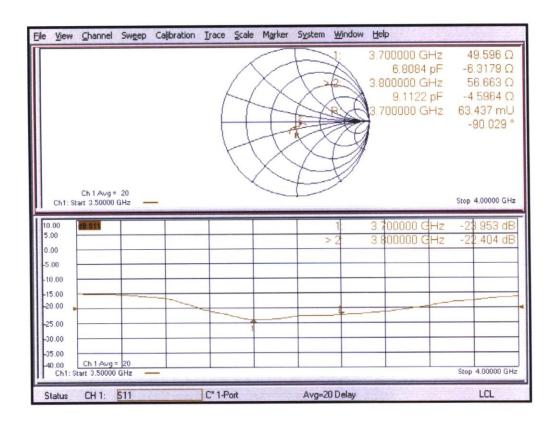
Reference Value = 67.41 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 17.5 W/kg


SAR(1 g) = 6.44 W/kg; SAR(10 g) = 2.36 W/kg

Smallest distance from peaks to all points 3 dB below = 8.4 mm

Ratio of SAR at M2 to SAR at M1 = 75.1%


Maximum value of SAR (measured) = 12.6 W/kg

Certificate No: D3700V2-1004 Jun23 Page 5 of 7

0 dB = 13.3 W/kg = 11.25 dBW/kg

Impedance Measurement Plot for Head TSL

3900 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client CTTL

Beijing

Certificate No. D3900V2-1024_Jun23

CALIBRATION CERTIFICATE D3900V2 - SN:1024 Object

QA CAL-22.v7 Calibration procedure(s)

Calibration Procedure for SAR Validation Sources between 3-10 GHz

June 21, 2023 Calibration date:

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
Power sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24
Reference 20 dB Attenuator	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24
Type-N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24
Reference Probe EX3DV4	SN: 3503	07-Mar-23 (No. EX3-3503_Mar23)	Mar-24
DAE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature /
Calibrated by:	Krešimir Franjić	Laboratory Technician	The second second
Approved by:	Sven Kühn	Technical Manager	C 2

Issued: June 22, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3900 MHz ± 1 MHz 4000 MHz ± 1 MHz 4100 MHz ± 1 MHz	

Head TSL parameters at 3900 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.5	3.32 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.4 ± 6 %	3.25 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 3900 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.97 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	69.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 19.5 % (k=2)

Head TSL parameters at 4000 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.4	3.43 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.3 ± 6 %	3.33 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 4000 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.84 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	68.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 19.5 % (k=2)

Head TSL parameters at 4100 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.2	3.53 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.1 ± 6 %	3.42 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 4100 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.83 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	68.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 3900 MHz

Impedance, transformed to feed point	46.3 Ω - 5.4 jΩ	2
Return Loss	- 23.4 dB	

Antenna Parameters with Head TSL at 4000 MHz

Impedance, transformed to feed point	51.8 Ω - 2.7 jΩ
Return Loss	- 29.8 dB

Antenna Parameters with Head TSL at 4100 MHz

Impedance, transformed to feed point	59.2 Ω - 0.8 jΩ	
Return Loss	- 21.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.107 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 21.06.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN:1024

Communication System: UID 0 - CW; Frequency: 3900 MHz, Frequency: 4000 MHz, Frequency: 4100

MHz

Medium parameters used: f=3900 MHz; $\sigma=3.25$ S/m; $\epsilon_r=37.4$; $\rho=1000$ kg/m³ Medium parameters used: f=4000 MHz; $\sigma=3.33$ S/m; $\epsilon_r=37.3$; $\rho=1000$ kg/m³ Medium parameters used: f=4100 MHz; $\sigma=3.42$ S/m; $\epsilon_r=37.1$; $\rho=1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.39, 7.39, 7.39) @ 3900 MHz, ConvF(7.39, 7.39, 7.39) @ 4000 MHz, ConvF(7.26, 7.26, 7.26) @ 4100 MHz; Calibrated: 07.03.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3900MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 71.68 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 19.7 W/kg

SAR(1 g) = 6.97 W/kg; SAR(10 g) = 2.42 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 74.3%

Maximum value of SAR (measured) = 14.0 W/kg

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4000MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.34 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 19.6 W/kg

SAR(1 g) = 6.84 W/kg; SAR(10 g) = 2.38 W/kg

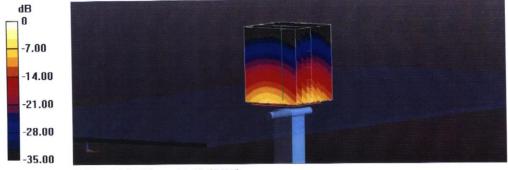
Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 73.7%

Maximum value of SAR (measured) = 13.9 W/kg

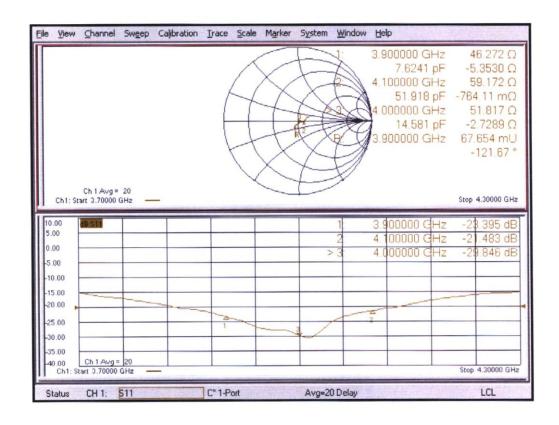
Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4100MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 69.41 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 19.2 W/kg

SAR(1 g) = 6.83 W/kg; SAR(10 g) = 2.38 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm


Ratio of SAR at M2 to SAR at M1 = 74.2%

Maximum value of SAR (measured) = 13.9 W/kg

0 dB = 14.0 W/kg = 11.47 dBW/kg

Impedance Measurement Plot for Head TSL

4200 MHz Dipole Calibration Certificate

Calibration Laboratory of

Schmid & Partner

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No. D4200V2-1010_Jun23

Issued: June 22, 2023

	ERTIFICATE		
bject	D4200V2 - SN:10	10	
talibration procedure(s)	QA CAL-22.v7 Calibration Proce	dure for SAR Validation Sources	between 3-10 GHz
Calibration date:	June 21, 2023		
All calibrations have been conducted	ed in the closed laborator	obability are given on the following pages and ϕ y facility: environment temperature (22 \pm 3)°C	
Calibration Equipment used (M&TE	critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
	011 400045		
Power sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24
	SN: 103245 SN: BH9394 (20k)	30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809)	Mar-24 Mar-24
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination			Mar-24 Mar-24 Mar-24
Reference 20 dB Attenuator Type-N mismatch combination	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24 Mar-24 Mar-24 Mar-24
Reference 20 dB Attenuator	SN: BH9394 (20k) SN: 310982 / 06327	30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810)	Mar-24 Mar-24 Mar-24
Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503	30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23)	Mar-24 Mar-24 Mar-24 Mar-24
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601	30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22)	Mar-24 Mar-24 Mar-24 Mar-24 Dec-23
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601	30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (In house)	Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475	30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783	30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (In house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315	30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID# SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22)	Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID# SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477	30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (In house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22)	Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID# SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name	30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22)	Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID# SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name	30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22)	Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check In house check: Oct-2 In house check: Oct-2 In house check: Oct-2 In house check: Oct-2

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY eyetem configuration, as far as not given on page 1.

ASY system configuration, as far as no		V52.10.4
DASY Version	DASY52	V32.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	4200 MHz ± 1 MHz 4300 MHz ± 1 MHz 4400 MHz ± 1 MHz	

Head TSL parameters at 4200 MHz

The following parameters and calculations were applied.

ne following parameters and calculations were appro-	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.1	3.63 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.0 ± 6 %	3.51 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 4200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.66 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	66.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

Head TSL parameters at 4300 MHz

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.0	3.73 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.9 ± 6 %	3.60 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		(

SAR result with Head TSL at 4300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.85 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	68.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.3 W/kg ± 19.5 % (k=2)

Head TSL parameters at 4400 MHz The following parameters and calculations were applied.

he following parameters and calculations were appli	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.9	3.84 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.7 ± 6 %	3.70 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 4400 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.61 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	66.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.4 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 4200 MHz

Impedance, transformed to feed point	45.6 Ω - 6.2 jΩ	
Return Loss	- 22.0 dB	

Antenna Parameters with Head TSL at 4300 MHz

Impedance, transformed to feed point	50.4 Ω - 2.9 jΩ	
Return Loss	- 30.9 dB	

Antenna Parameters with Head TSL at 4400 MHz

Impedance, transformed to feed point	51.5 Ω - 3.5 jΩ	
Return Loss	- 28.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.111 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 21.06.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 4200 MHz; Type: D4200V2; Serial: D4200V2 - SN:1010

Communication System: UID 0 - CW; Frequency: 4200 MHz, Frequency: 4300 MHz, Frequency: 4400

MHz

Medium parameters used: f = 4200 MHz; $\sigma = 3.51$ S/m; $\epsilon_r = 37$; $\rho = 1000$ kg/m³ Medium parameters used: f = 4300 MHz; $\sigma = 3.6$ S/m; $\epsilon_r = 36.9$; $\rho = 1000$ kg/m³ Medium parameters used: f = 4400 MHz; $\sigma = 3.7$ S/m; $\epsilon_r = 36.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.02, 7.02, 7.02) @ 4200 MHz, ConvF(7.02, 7.02, 7.02) @ 4300 MHz, ConvF(6.82, 6.82, 6.82) @ 4400 MHz; Calibrated: 07.03.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4200MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.56 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 18.0 W/kg

SAR(1 g) = 6.66 W/kg; SAR(10 g) = 2.26 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 76.6%

Maximum value of SAR (measured) = 13.3 W/kg

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4300MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.98 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 18.8 W/kg

SAR(1 g) = 6.85 W/kg; SAR(10 g) = 2.34 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 75.8%

Maximum value of SAR (measured) = 13.8 W/kg

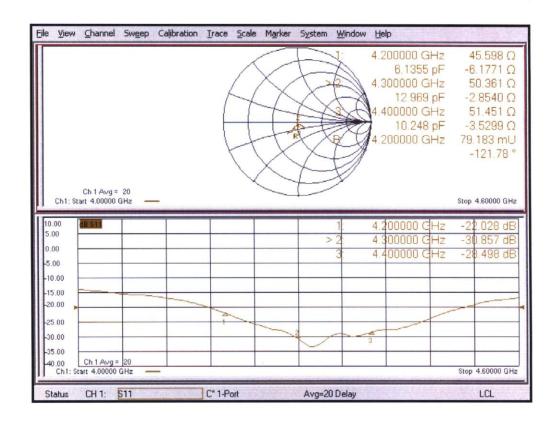
Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4400MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.52 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 19.2 W/kg

SAR(1 g) = 6.61 W/kg; SAR(10 g) = 2.24 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm


Ratio of SAR at M2 to SAR at M1 = 74%

Maximum value of SAR (measured) = 13.5 W/kg

0 dB = 13.8 W/kg = 11.39 dBW/kg

Impedance Measurement Plot for Head TSL

