

SAR TEST REPORT

No. I23Z70209-SEM01

For

Samsung Electronics Co., Ltd.

Tablet with Bluetooth, WLAN

Model Name: SM-X210

with

Hardware Version: REV1.0

Software Version: X210.001

FCC ID: 2APXWODPR133

Issued Date: 2023-9-4

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: cttl terminals@caict.ac.cn, website: www.caict.ac.cn

©Copyright. All rights reserved by CTTL.

REPORT HISTORY

Report Number	Revision	Issue Date	Description
I23Z70209-SEM01	Rev.0	2023-8-29	Initial creation of test report
I23Z70209-SEM01	Rev.1	2023-9-4	 Remove measurement procedure for WCDMA and LTE on Section9. Change setup photo for front 10mm.

TABLE OF CONTENT

1 1	TEST LABORATORY	5
1.1 I	INTRODUCTION & ACCREDITATION	5
1.2	TESTING LOCATION	5
1.3	Testing Environment	6
1.4	Project Data	6
1.5	SIGNATURE	6
2 \$	STATEMENT OF COMPLIANCE	7
3 (CLIENT INFORMATION	8
3.1	Applicant Information	
3.2	MANUFACTURER INFORMATION	
4 E	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	9
4.1	About EUT	9
4.2	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	9
4.3	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	9
5	TEST METHODOLOGY	10
5.1	Applicable Limit Regulations	10
5.2	APPLICABLE MEASUREMENT STANDARDS	10
6 \$	SPECIFIC ABSORPTION RATE (SAR)	11
6.1	INTRODUCTION	11
6.2	SAR DEFINITION	11
7	TISSUE SIMULATING LIQUIDS	12
7.1	TARGETS FOR TISSUE SIMULATING LIQUID	12
7.2	DIELECTRIC PERFORMANCE	12
8 9	SYSTEM VERIFICATION	13
8.1	System Setup	13
8.2	System Verification	14
9 I	MEASUREMENT PROCEDURES	15
9.1	TESTS TO BE PERFORMED	15
9.2	GENERAL MEASUREMENT PROCEDURE	17
9.3	BLUETOOTH & WI-FI MEASUREMENT PROCEDURES FOR SAR	18
9.4	Power Drift	18
10	AREA SCAN BASED 1-G SAR	19
10.1		
10.2	2 FAST SAR ALGORITHMS	19
11	CONDUCTED OUTPUT POWER	
~~	minute All minutes managed by OTTI	

11.1	WI-FI AND BT MEASUREMENT RESULT	20
12	SIMULTANEOUS TX SAR CONSIDERATIONS	30
12.1	INTRODUCTION	
12.2	TRANSMIT ANTENNA SEPARATION DISTANCES	30
13	EVALUATION OF SIMULTANEOUS	30
14	SAR TEST RESULT	31
14.1	SAR EVALUATION FOR WIFI	32
14.2	SAR EVALUATION FOR BT	34
15	SAR MEASUREMENT VARIABILITY	35
16	MEASUREMENT UNCERTAINTY	36
16.1	Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)	36
16.2	MEASUREMENT UNCERTAINTY FOR NORMAL SAR TESTS (3~6GHz)	
16.3 16.4	MEASUREMENT UNCERTAINTY FOR FAST SAR TESTS (300MHz~3GHz) MEASUREMENT UNCERTAINTY FOR FAST SAR TESTS (3~6GHz)	
	MAIN TEST INSTRUMENTS.	
17		
ANNE		
ANNE		
ANNE	X C SAR MEASUREMENT SETUP	49
ANNE	X D POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	55
ANNE	X E EQUIVALENT MEDIA RECIPES	58
ANNE	X F SYSTEM VALIDATION	59
ANNE	X G PROBE CALIBRATION CERTIFICATE	60
ANNE	X H DIPOLE CALIBRATION CERTIFICATE	82
ANNE	X I SENSOR TRIGGERING DATA SUMMARY	101
ANNE	X J ACCREDITATION CERTIFICATE	105

1 Test Laboratory

1.1 Introduction & Accreditation

Telecommunication Technology Labs, CAICT is an ISO/IEC 17025:2017 accredited test laboratory under American Association for Laboratory Accreditation (A2LA) with lab code 7049.01, and is also an FCC accredited test laboratory (CN1349), and ISED accredited test laboratory (CAB identifier:CN0066). The detail accreditation scope can be found on A2LA website.

1.2 Testing Location

Company Name:	CTTL
Address:	No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

1.3 Testing Environment

Ŭ	
Temperature:	18°C~25 °C,
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω
Ambient noise & Reflection:	< 0.012 W/kg

1.4 Project Data

Project Leader:	Qi Dianyuan
Test Engineer:	Yao Juming
Testing Start Date:	August 5, 2023
Testing End Date:	August 11, 2023

1.5 Signature

W 44

Yao Juming (Prepared this test report)

Qi Dianyuan (Reviewed this test report)

5 rets Fis

Lu Bingsong Deputy Director of the laboratory (Approved this test report)

2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Samsung Electronics Co., Ltd. Tablet with Bluetooth, WLAN SM-X210 are as follows:

Mode	Body 1g SAR(W/Kg)	Equipment Class	1g SAR Limits (W/kg)
WLAN 2.4GHz	0.55	DTS	
WLAN 5GHz	1.04	NII	1.6
BT	0.49	DSS	

Table 2.1: Highest Reported SAR (1g)

The SAR values found for the Tablet are below the maximum recommended levels of 1.6 W/kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance from 0mm/10mm/17mm between this device and the body of the user. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report. The highest reported SAR value is obtained at the case of **(Table 2.1)**, and the values are: **1.04 W/kg (1g)**.

	Position	WiFi5G	ВТ	Sum
Highest reported SAR value for Body	Rear 0mm	1.04	0.46	1.50

Table 2.2: The sum of reported SAR values for WiFi5G + BT

According to the above tables, the highest sum of reported SAR values is **1.50 W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 13.

3 Client Information

3.1 Applicant Information

Company Name:	Samsung Electronics. Co., Ltd.
Address/Post:	19 Chapin Rd.,Building D Pine Brook, NJ 07058
Contact Person:	Jenni Chun
Contact Email:	j1.chun@samsung.com
Telephone:	+1-201-937-4203

3.2 Manufacturer Information

Company Name:	Samsung Electronics. Co., Ltd.	
Address/Post:	Samsung R5, Maetan dong 129, Samsung ro	
	Youngtong gu, Suwon city 443 742, Korea	
Contact Person:	Sunghoon Cho	
Contact Email:	ggobi.cho@samsung.com	
Telephone:	+82-10-2722-4159	

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1	About EUT	
-----	-----------	--

Description:	Tablet with Bluetooth, WLAN
Model name:	SM-X210
Operating mode(s):	BT, Wi-Fi(2.4G&5G)
	2412 – 2462 MHz (Wi-Fi 2.4G)
	2402 – 2480 MHz (Bluetooth)
Tested Tx Frequency:	5180-5240 MHz (U-NII-1)
Tested TX Frequency.	5260-5320 MHz (U-NII-2A)
	5500-5720 MHz (U-NII-2C)
	5745-5825 MHz (U-NII-3)
GPRS/EGPRS Multislot Class:	1
Device type:	Tablet
Antenna type:	Embedded
Hotspot mode:	
Product dimension	Long 257.11mm ;Wide 168.66mm ; Height 6.94mm

4.2 Internal Identification of EUT used during the test

EUT ID*	IMEI/SN	HW Version	SW Version
EUT1	70209UT06a	REV1.0	X210.001
EUT2	70209UT07a	REV1.0	X210.001
EUT3	70209UT01a	REV1.0	X210.001

*EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test SAR with the EUT1-2 and conducted power with the EUT3.

4.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	WT-S-W11	/	SCUD (Fujian) Electronics CO.,LTD

*AE ID: is used to identify the test sample in the lab internally.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IEEE 1528–2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

KDB447498 D01 General RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB616217 D04 SAR for laptop and tablets v01r02 SAR Evaluation Considerations for Laptop, Notebook, Notebook and Tablet Computers.

KDB648474 D04 Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets.

KDB248227 D01 802.11 Wi-Fi SAR v02r02: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS

KDB865664 D01SAR measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz.

KDB865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid

Frequency(MHz)	Liquid	Conductivity(± 5%	Permittivity(ε)	± 5% Range	
	Туре	σ)	Range	T Children (C)	± 070 Range	
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2	
5250	Head	4.71	4.47~4.95	35.93	34.13~37.73	
5600	Head	5.07	4.82~5.32	35.53	33.8~37.3	
5750	Head	5.22	4.96~5.48	35.36	33.59~37.13	

7.2 Dielectric Performance

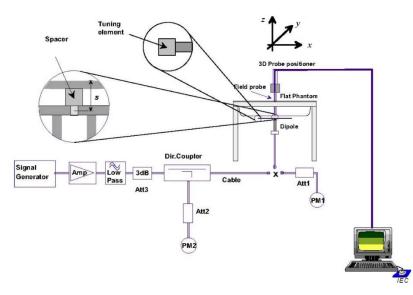
Table 7.2: Dielectric Performance of Tissue Simulating Liquid

Measurement Date yyyy/mm/dd	Frequency	Туре	Permittivity ٤	Drift (%)	Conductivity σ (S/m)	Drift (%)
2023/8/5	2450MHz	Head	38.971	-0.58	1.763	-2.06
2023/8/9	5250MHz	Head	35.61	-0.89	4.72	0.21
2023/8/10	5600MHz	Head	36.515	2.77	5.002	-1.34
2023/8/11	5750MHz	Head	35.866	1.43	5.232	0.23

Note: The liquid temperature is 22.0°C

Picture 7-1 Liquid depth in the Flat Phantom

Page 12 of 105



8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

The system verification results are required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. The details are presented in annex B.

Measurement Date	Target value (W/kg)			ed value /kg)	Deviation						
(yyyy-mm-	Frequency	10 g	1 g	10 g	1 g	10 g	1 g				
dd)		Average	Average	Average	Average	Average	Average				
2023/8/5	2450MHz	24.5	52.4	24.44	52.92	-0.24%	0.99%				
2023/8/9	5250MHz	22.8	79.6	23.5	82.3	3.07%	3.39%				
2023/8/10	5600MHz	23.8	83.6	23.2	81.8	-2.52%	-2.15%				
2023/8/11	5750MHz	22.7	80.5	22.6	79.1	-0.44%	-1.74%				

Table 8.1: System Verification of Body

9 Measurement Procedures

9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in picture 9.1.

Step 1: The tests described in 9.2 shall be performed at the channel that is closest to the center of

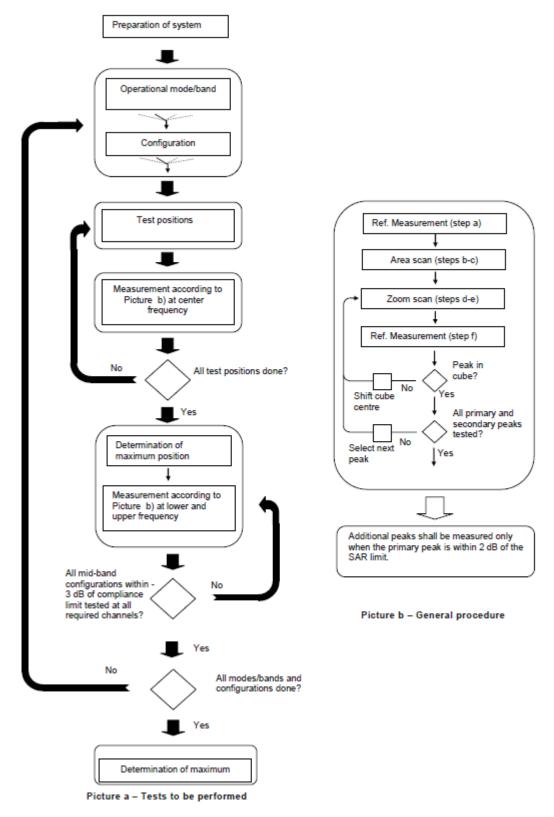
the transmit frequency band (f_c) for:

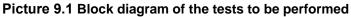
a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in annex D),

b) all configurations for each device position in a), e.g., antenna extended and retracted, and

c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., N_c > 3), then all


frequencies, configurations and modes shall be tested for all of the above test conditions.


Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

			\leq 3 GHz	> 3 GHz		
Maximum distance from (geometric center of pro		•	$5 \pm 1 \text{ mm}$	½·δ·ln(2) ± 0.5 mm		
Maximum probe angle f normal at the measurem	-	-	30°±1°	20°±1°		
			$\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ $2 - 3 \text{ GHz:} \leq 12 \text{ mm}$	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$		
Maximum area scan spa	atial resolutio	on: Δx _{Area} , Δy _{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.			
Maximum zoom scan sp	patial resolut	ion: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^4$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^4$		
	uniform g	nid: ∆z _{Zoom} (n)	≤ 5 mm	$\begin{array}{l} 3-4 \; \mathrm{GHz:} \leq 4 \; \mathrm{mm} \\ 4-5 \; \mathrm{GHz:} \leq 3 \; \mathrm{mm} \\ 5-6 \; \mathrm{GHz:} \leq 2 \; \mathrm{mm} \end{array}$		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
surrace	grid	∆z _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$			
Minimum zoom scan	x, y, z	1	≥ 30 mm	$3 - 4 \text{ GHz} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz} \ge 22 \text{ mm}$		

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.3 Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.4 Power Drift

To control the output power stability during the SAR test, DASY5 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in section 14 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Area Scan Based 1-g SAR

10.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit

algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

10.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz) and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively. The paper describing the algorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

11 Conducted Output Power

There are two sets of tune-up power, Normal power and Low power, for Wi-Fi2.4G and Wi-Fi5G by proximity sensor. The detail of proximity sensor is presented in annex I.

-

11.1 Wi-Fi and BT Measurement result

The maximum output power of BT is 9.89dBm. The maximum tune up of BT is 10.5 dBm.

WiFi 2.4G - Normal power:

	802.11b									
Channel\data rate	1Mbps	2Mbps	5.5Mbps	11Mbps	Tune up					
11(2462MHz)	19.18	19.55	19.42	19.31	20.00					
6(2437(MHz)	19.04	19.45	/	/	20.00					
1(2412MHz)	18.94	19.32	/	/	20.00					
802.11g										
Channel\data rate	6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps	Tune up	
11(2462MHz)	18.02	17.05	16.93	17.68	16.85	16.52	16.44	15.84	19.00	
6(2437(MHz)	17.93	/	/	/	/	/	/	/	19.00	
1(2412MHz)	16.65	/	/	/	/	/	/	/	18.00	
				802.11n-2	20MHz					
Channel\data rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	Tune up	
11(2462MHz)	17.88	16.64	17.52	17.42	16.54	16.43	16.39	15.84	19.00	
6(2437(MHz)	17.71	/	/	/	/	/	/	/	19.00	
1(2412MHz)	16.53	/	/	/	/	/	/	/	18.00	

WiFi 2.4G - Low power:

	802.11b									
Channel\data rate	1Mbps	2Mbps	5.5Mbps	11Mbps	Tune up					
11(2462MHz)	10.32	10.49	10.42	10.31	11.00					
6(2437(MHz)	10.17	10.23	/	/	11.00					
1(2412MHz)	9.78	9.97	/	/	11.00					
802.11g										
Channel\data rate	6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps	Tune up	
11(2462MHz)	9.73	9.93	9.81	10.45	10.27	9.97	9.85	9.79	11.00	
6(2437(MHz)	9.58	/	/	10.23	/	/	/	/	11.00	
1(2412MHz)	9.32	/	/	10.11	/	/	/	/	11.00	
				802.11n-2	20MHz					
Channel\data rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	Tune up	
11(2462MHz)	9.58	9.51	10.36	10.26	10.01	9.88	9.83	9.74	11.00	
6(2437(MHz)	9.41	/	10.20	/	/	/	/	/	11.00	
1(2412MHz)	9.13	/	9.87	/	/	/	/	/	11.00	

Tune up for WiFi 5G:

Mode	Rate	Channel	Freq.	Output Powe (dB		Reduced Power(dBm)		
Mode	Rale	Channel	(MHz)	Setting Power	Maximum	Setting Power	Maximum	
		36	5180	16	18	4.5	6.5	
		40-44	5200-5220	17	18.5	4.5	6.5	
		48-56	5240-5280	17	18	4.5	6.5	
	6Mbp.c	60-64	5300-5320	17	18.5	4.5	6.5	
	6Mbps	100	5500	15	17	4.5	6.5	
		104-136	5520-5680	17	19	4.5	6.5	
		140	5700	12	14	4.5	6.5	
		144-165	5720-5825	17	19	4.5	6.5	
802.11a 20M		36	5180	16	17.5	4.5	6.5	
		40-44	5200-5220	16.5	18	4.5	6.5	
		48-56	5240-5280	16.5	17.5	4.5	6.5	
	OMbrag	60-64	5300-5320	16.5	18	4.5	6.5	
	9Mbps	100	5500	15	16.5	4.5	6.5	
		104-136	5520-5680	16.5	18.5	4.5	6.5	
		140	5700	12	13.5	4.5	6.5	
		144-165	5720-5825	16.5	18.5	4.5	6.5	
	12Mbps	36	5180-5320	16	17.5	5	6.5	

©Copyright. All rights reserved by CTTL.

Page 21 of 105

No.I23Z70209-SEM01

		40-44	5200-5220	16.5	18	5	6.5
		48-56	5240-5280	16.5	17.5	5	6.5
		60-64	5300-5320	16.5	18	5	6.5
		100	5500	15	16.5	5	6.5
		104-136	5520-5680	16.5	18.5	5	6.5
		140	5700	12	13.5	5	6.5
		144-165	5720-5825	16.5	18.5	5	6.5
		36-64	5180-5320	16	17.5	5	6.5
		100	5500	15	16.5	5	6.5
	18Mbps	104-136	5520-5680	16	18	5	6.5
		140	5700	12	13.5	5	6.5
		144-165	5720-5825	16	18	5	6.5
-		36-64	5180-5320	16	18	5	6.5
		100	5500	15	16.5	5	6.5
	24Mbps	104-136	5520-5680	16	18	5	6.5
		140	5700	12	13.5	5	6.5
		144-165	5720-5825	16	18	5	6.5
		36-64	5180-5320	15.5	17	5.5	6.5
		100	5500	15	16.5	5.5	6.5
	36Mbps	104-136	5520-5680	15.5	17	5.5	6.5
		140	5700	12	13.5	5.5	6.5
		144-165	5720-5825	15.5	17	5.5	6.5
		36-64	5180-5320	15.5	17	5.5	6.5
		100	5500	15	16.5	5.5	6.5
	48Mbps	104-136	5520-5680	15.5	17	5.5	6.5
		140	5700	12	13.5	5.5	6.5
		144-165	5720-5825	15.5	17	5.5	6.5
		36-64	5180-5320	15	16.5	5.5	6.5
		104-136	5520-5680	15	17	5.5	6.5
	54Mbps	140	5700	12	13.5	5.5	6.5
		144-165	5720-5825	15	16.5	5.5	6.5
		36	5180	16	17.5	4.5	6.5
		40-44	5200-5220	17	18.4	4.5	6.5
		48-56	5240-5280	17	17.9	4.5	6.5
000 11 000	MCCO	60-64	5300-5320	17	18.4	4.5	6.5
802.11n 20M	MCSO	100	5500	15	16.5	4.5	6.5
		104-136	5520-5680	17	18.5	4.5	6.5
		140	5700	12	13.5	4.5	6.5
		144-165	5720-5825	17	18.5	4.5	6.5

No.I23Z70209-SEM01

	36	5180	16	17.5	4.5	6.5
	40-44	5200-5220	16.5	18	4.5	6.5
	48-56	5240-5280	16.5	17.5	4.5	6.5
	60-64	5300-5320	16.5	18	4.5	6.5
MCS1	100	5500	15	16.5	4.5	6.5
	104-136	5520-5680	16.5	18.5	4.5	6.5
	140	5700	12	13.5	4.5	6.5
	144-165	5720-5825	16.5	18.5	4.5	6.5
	36	5180	16	17.5	5	6.5
	40-44	5200-5220	16.5	18	5	6.5
MCS2	48-56	5240-5280	16.5	17.5	5	6.5
	60-64	5300-5320	16.5	18	5	6.5
	100	5500	15	16.5	5	6.5
	104-136	5520-5680	16.5	18.5	5	6.5
	140	5700	12	13.5	5	6.5
	144-165	5720-5825	16.5	18.5	5	6.5
	36-64	5180-5320	16	17.5	5	6.5
	100	5500	15	16.5	5	6.5
MCS3	104-136	5520-5680	16	18	5	6.5
	140	5700	12	13.5	5	6.5
	144-165	5720-5825	16	18	5	6.5
	36-64	5180-5320	16	17.5	5	6.5
	100	5500	15	16.5	5	6.5
MCS4	104-136	5520-5680	16	18	5	6.5
	140	5700	12	13.5	5	6.5
	144-165	5720-5825	16	18	5	6.5
	36-64	5180-5320	15.5	17.5	5.5	6.5
	100	5500	15	16.5	5.5	6.5
MCS5	104-136	5520-5680	15.5	17.5	5.5	6.5
	140	5700	12	13.5	5.5	6.5
	144-165	5720-5825	15.5	17.5	5.5	6.5
	36-64	5180-5320	15.5	17.5	5.5	6.5
	100	5500	15	16.5	5.5	6.5
MCS6	104-136	5520-5680	15.5	17.5	5.5	6.5
	140	5700	12	13.5	5.5	6.5
	144-165	5720-5825	15.5	17.5	5.5	6.5
	36-64	5180-5320	15	17	5.5	6.5
MCC7	100-136	5500-5680	15	17	5.5	6.5
MCS7	140	5700	12	13.5	5.5	6.5
	144-165	5720-5825	15	17	5.5	6.5

©Copyright. All rights reserved by CTTL.

Page 23 of 105

<u>CAICT</u>

No.I23Z70209-SEM01

		38	5190	13	15	4.5	6.5
		62	5310	14	16	4.5	6.5
	MCSO	42-58	5210-5290	16	18	4.5	6.5
	MCSU	100-144	5500-5720	16	18	4.5	6.5
		149-165	5745-5825	16	18	4.5	6.5
		38	5190	13	15	4.5	6.5
		62	5310	13	16	4.5	6.5
	MCS1	42-58	5210-5290	15.5	17.5	4.5	6.5
	MOOT	100-144	5500-5720	15.5	17.5	4.5	6.5
		149-165	5745-5825	15.5	17.5	4.5	6.5
		38	5190	13	15	5	6.5
		62	5310	14	16	5	6.5
	MCS2	42-58	5210-5290	15.5	17.5	5	6.5
		100-144	5500-5720	15.5	17.5	5	6.5
		149-165	5745-5825	15.5	17.5	5	6.5
		38	5190	13	15	5	6.5
		62	5310	14	16	5	6.5
	MCS3	42-58	5210-5290	15	17	5	6.5
		100-144	5500-5720	15	17	5	6.5
802.11n 40M		149-165	5745-5825	15	17	5	6.5
		38	5190	13	15	5	6.5
	MCS4	62	5310	14	16	5	6.5
		42-58	5210-5290	15	17	5	6.5
		100-144	5500-5720	15	17	5	6.5
		149-165	5745-5825	15	17	5	6.5
		38	5190	13	15	5.5	6.5
		62	5310	14	16	5.5	6.5
	MCS5	42-58	5210-5290	14.5	16.5	5.5	6.5
		100-144	5500-5720	14.5	16.5	5.5	6.5
		149-165	5745-5825	14.5	16.5	5.5	6.5
		38	5190	13	15	5.5	6.5
		62	5310	14	16	5.5	6.5
	MCS6	42-58	5210-5290	14.5	16.5	5.5	6.5
		100-144	5500-5720	14.5	16.5	5.5	6.5
		149-165	5745-5825	14.5	16.5	5.5	6.5
		38	5190	13	15	5.5	6.5
	MCS7	42-62	5210-5310	14	16	5.5	6.5
	MCOL	100-144	5500-5720	14	16	5.5	6.5
		149-165	5745-5825	14	16	5.5	6.5
802.11ac 20M	MCSO	36	5180	16	17.5	4.5	6.5
552. 11d0 20M	11000	40-44	5200-5220	17	18.4	4.5	6.5

©Copyright. All rights reserved by CTTL.

Page 24 of 105

No.I23Z70209-SEM01

	48-56	5240-5280	17	17.9	4.5	6.5
	60-64	5300-5320	17	18.4	4.5	6.5
	100	5700	15	16.5	4.5	6.5
	104-136	5500-5680	17	18.5	4.5	6.5
	140	5700	12	13.5	4.5	6.5
	144-165	5720-5825	17	18.5	4.5	6.5
	36	5180	16	17.5	4.5	6.5
	40-44	5200-5220	16.5	18	4.5	6.5
	48-56	5240-5280	16.5	17.5	4.5	6.5
MOOT	60-64	5300-5320	16.5	18	4.5	6.5
MCS1	100	5700	15	16.5	4.5	6.5
	104-136	5500-5680	16.5	18.5	4.5	6.5
	140	5700	12	13.5	4.5	6.5
	144-165	5720-5825	16.5	18.5	4.5	6.5
	36	5180	16	17.5	5	6.5
	40-44	5200-5220	16.5	18	5	6.5
	48-56	5240-5280	16.5	17.5	5	6.5
	60-64	5300-5320	16.5	18	5	6.5
MCS2	100	5700	15	16.5	5	6.5
	104-136	5500-5680	16.5	18.5	5	6.5
	140	5700	12	13.5	5	6.5
	144-165	5720-5825	16.5	18.5	5	6.5
	36-64	5180-5320	16	17.5	5	6.5
	100	5500	15	16.5	5	6.5
MCS3	104-136	5520-5680	16	18	5	6.5
	140	5700	12	13.5	5	6.5
	144-165	5745-5825	16	18	5	6.5
	36-64	5180-5320	16	17.5	5	6.5
	100	5500	15	16.5	5	6.5
MCS4	104-136	5520-5680	16	18	5	6.5
	140	5700	12	13.5	5	6.5
	144-165	5745-5825	16	18	5	6.5
	36-64	5180-5320	15.5	17.5	5.5	6.5
	100	5500	15	16.5	5.5	6.5
MCS5	104-136	5520-5680	16	18	5.5	6.5
	140	5700	12	13.5	5.5	6.5
	144-165	5745-5825	15.5	17.5	5.5	6.5
	36-64	5180-5320	15.5	17.5	5.5	6.5
MCCC	100	5500	15	16.5	5.5	6.5
MCS6	104-136	5520-5680	16	18	5.5	6.5
	140	5700	12	13.5	5.5	6.5

©Copyright. All rights reserved by CTTL.

Page 25 of 105

CAICT No.I23Z70209-SEM01

						5210205	
		144-165	5745-5825	15.5	17.5	5.5	6.5
		36-64	5180-5320	15	17	5.5	6.5
	MCC7	100-136	5500-5680	15	17	5.5	6.5
	MCS7	140	5700	12	13.5	5.5	6.5
		144-165	5720-5825	15	17	5.5	6.5
		36-64	5180-5320	14.5	16.5	5.5	6.5
	MCCO	100-136	5500-5680	14.5	16.5	5.5	6.5
	MCS8	140	5700	12	13.5	5.5	6.5
		144-165	5745-5825	14.5	16.5	5.5	6.5
		38	5190	13	15	4.5	6.5
		62	5310	14	16	4.5	6.5
	MCSO	42-58	5210-5290	16	18	4.5	6.5
		100-144	5500-5720	16	18	4.5	6.5
		149-165	5745-5825	16	18	4.5	6.5
		38	5190	13	15	4.5	6.5
		62	5310	14	16	4.5	6.5
	MCS1	42-58	5210-5290	15.5	17.5	4.5	6.5
		100-144	5500-5720	15.5	17.5	4.5	6.5
		149-165	5745-5825	15.5	17.5	4.5	6.5
		38	5190	13	15	5	6.5
	MCS2	62	5310	14	16	5	6.5
		42-58	5210-5290	15.5	17.5	5	6.5
		100-144	5500-5720	15.5	17.5	5	6.5
		149-165	5745-5825	15.5	17.5	5	6.5
000 11 404		38	5190	13	15	5	6.5
802.11ac 40M		62	5310	14	16	5	6.5
	MCS3	42-58	5210-5290	15	17	5	6.5
		100-144	5500-5720	15	17	5	6.5
		149-165	5745-5825	15	17	5	6.5
		38	5190	13	15	5	6.5
		62	5310	14	16	5	6.5
	MCS4	42-58	5210-5290	15	17	5	6.5
		100-144	5500-5720	15	17	5	6.5
		149-165	5745-5825	15	17	5	6.5
		38	5190	13	15	5.5	6.5
		62	5310	14	16	5.5	6.5
	MCS5	42-58	5210-5290	14.5	16.5	5.5	6.5
		100-144	5500-5720	14.5	16.5	5.5	6.5
		149-165	5745-5825	14.5	16.5	5.5	6.5
	MOOG	38	5190	13	15	5.5	6.5
	MCS6	62	5310	14	16	5.5	6.5
			•			20 - 6 4 0 5	

©Copyright. All rights reserved by CTTL.

Page 26 of 105

CAICT

No.I23Z70209-SEM01

		49 59	5210-5290	445	40.5		<u> </u>
		42-58 100-144		14.5	16.5	5.5	6.5
			5500-5720	14.5	16.5	5.5	6.5
		149-165 38	5745-5825	14.5	16.5	5.5	6.5
			5180-5320	13	15	5.5	6.5
	MCS7	42-64	5210-5320	14	16	5.5	6.5
		100-144	5500-5720	14	16	5.5	6.5
		149-165	5745-5825	14	16	5.5	6.5
	MOCO	36-64	5180-5320	12	14	5.5	6.5
	MCS8	100-144	5500-5720	12	14	5.5	6.5
		149-165	5745-5825	12	14	5.5	6.5
		36-64	5180-5320	11	13	5.5	6.5
	MCS9	100-144	5500-5720	11	13	5.5	6.5
		149-165	5745-5825	11	13	5.5	6.5
		42	5210	12	14	4.5	6.5
		58	5290	14	16	4.5	6.5
	MCSO	46-54	5230-5270	16	18	4.5	6.5
	Mebo	106	5530	15	17	4.5	6.5
		110-144	5550-5720	16	18	4.5	6.5
		149-165	5745-5825	16	18	4.5	6.5
		42	5210	12	14	4.5	6.5
	MCS1	58	5290	14	16	4.5	6.5
		46-54	5230-5270	15	17	4.5	6.5
		100-144	5500-5720	15	17	4.5	6.5
		149-165	5745-5825	15	17	4.5	6.5
		42	5210	12	14	4.5	6.5
		58	5290	14	16	4.5	6.5
909 11 a 90M	MCS2	46-54	5230-5270	15	17	4.5	6.5
802.11ac 80M		100-144	5500-5720	15	17	4.5	6.5
		149-165	5745-5825	15	17	4.5	6.5
		42	5210	12	14	5	6.5
	MCCO	46-58	5230-5290	14	16	5	6.5
	MCS3	100-144	5500-5720	14	16	5	6.5
		149-165	5745-5825	14	16	5	6.5
		42	5210	12	14	5	6.5
	MCC 4	46-58	5230-5290	14	16	5	6.5
	MCS4	100-144	5500-5720	14	16	5	6.5
		149-165	5745-5825	14	16	5	6.5
		42	5210	12	14	5	6.5
	MOOF	46-58	5230-5290	13.5	15.5	5	6.5
	MCS5	100-144	5500-5720	13.5	15.5	5	6.5
		149-165	5745-5825	13.5	15.5	5	6.5

©Copyright. All rights reserved by CTTL.

Page 27 of 105

No.I23Z70209-SEM01

1			1			
	42	5210	12	14	5.5	6.5
MCS6	46-58	5230-5290	13	15	5.5	6.5
MCSU	100-144	5500-5720	13	15	5.5	6.5
	149-165	5745-5825	13	15	5.5	6.5
	36-64	5180-5320	12	14	5.5	6.5
MCS7	100-144	5500-5720	12	14	5.5	6.5
	149-165	5745-5825	12	14	5.5	6.5
	36-64	5180-5320	11	13	5.5	6.5
MCS8	100-144	5500-5720	11	13	5.5	6.5
	149-165	5745-5825	11	13	5.5	6.5
	36-64	5180-5320	10.5	12.5	5.5	6.5
MCS9	100-144	5500-5720	10.5	12.5	5.5	6.5
	149-165	5745-5825	10.5	12.5	5.5	6.5

WiFi 5G - Normal power:

	-		1	802.11a(dE	Bm)				
Channel\data rate	6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps	Tune up
36(5180 MHz)	15.74	\	١	١	١	١	١	١	18.50
40(5200 MHz)	16.96	16.38	16.33	16.16	16.04	15.13	15.05	14.49	18.50
44(5220 MHz)	16.66	١	١	١	١	١	١	١	18.50
48(5240 MHz)	16.12	١	١	١	١	١	١	١	18.00
52(5260 MHz)	16.03	١	١	١	١	١	١	١	18.00
56(5280 MHz)	16.07	١	١	١	١	١	١	١	18.00
60(5300 MHz)	16.52	١	١	١	١	١	١	١	18.50
64(5320 MHz)	17.08	16.57	16.56	16.13	16.16	15.29	15.25	14.64	18.50
100(5500 MHz)	15.03	١	١	١	١	١	١	١	19.00
104(5520 MHz)	17.28	١	١	١	١	١	١	١	19.00
108(5540 MHz)	17.39	١	١	١	١	١	١	١	19.00
112(5560 MHz)	17.37	١	١	١	١	١	١	١	19.00
116(5580 MHz)	17.38	١	١	١	١	١	١	١	19.00
120(5600 MHz)	17.35	١	١	١	١	١	١	١	19.00
124(5620 MHz)	17.59	١	١	١	١	١	١	١	19.00
128(5640 MHz)	17.85	17.17	17.12	16.75	16.69	15.69	15.64	15.08	19.00
132(5660 MHz)	17.61	١	١	١	١	١	١	١	19.00
136(5680 MHz)	17.58	١	١	١	١	١	١	١	19.00
140(5700 MHz)	12.49	١	١	١	١	١	١	١	14.00
144(5720 MHz)	17.52	١	١	١	١	١	١	١	19.00
149(5745 MHz)	17.84	١	١	١	١	١	١	١	19.00
153(5765 MHz)	18.11	١	١	١	١	١	١	١	19.00
157(5785 MHz)	18.65	١	١	١	١	١	١	١	19.00
161(5805 MHz)	18.78	17.69	17.63	17.11	17.19	16.52	16.48	15.91	19.00
165(5825 MHz)	18.55	١	١	١	١	١	١	١	19.00

WiFi 5G – Low power:

	802.11ac(dBm)-80MHz													
Channel\data rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	MCS8	MCS9	Tune up			
42(5210 MHz)	4.31	4.19	4.05	3.84	3.12	2.93	2.88	2.84	2.71	2.12	5.50			
58(5290 MHz)	4.21	4.09	3.99	3.62	2.94	2.72	2.69	2.64	2.52	2.43	5.50			
106(5530 MHz)	4.65	/	/	/	/	/	/	/	/	/	5.50			
122(5610 MHz)	4.56	/	/	/	/	/	/	/	/	/	5.50			
138(5690 MHz)	4.69	4.52	4.39	4.25	3.47	3.27	3.24	3.19	3.05	2.45	5.50			
155(5775 MHz)	5.32	5.22	5.09	4.89	4.15	3.95	3.92	3.87	3.75	3.66	5.50			

12 Simultaneous TX SAR Considerations

12.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may transmit simultaneously with each other. For this device, the BT and WIFI5G can transmit simultaneously.

12.2 Transmit Antenna Separation Distances

Please find the picture of antenna locations in the file < The Photos of SAR test - I23Z70209>.

13 Evaluation of Simultaneous

Table		Tepolica OAN Va		. 61
	Position	WiFi5G	вт	Sum
Highest reported SAR value for Body	Rear 0mm	1.04	0.46	1.50

Table 13.1: The sum of reported SAR values for WiFi5G + BT

Conclusion:

According to the above tables, the sum of reported SAR values is<1.6W/kg. So the simultaneous transmission SAR with volume scans is not required.

14 SAR Test Result

It is determined by user manual for the distance between the EUT and the phantom bottom. It is performed for all SAR measurements with area scan based 1-g SAR estimation (Fast SAR). A zoom scan measurement is added when the estimated 1-g SAR is the highest measured SAR in each exposure configuration, wireless mode and frequency band combination or more than 1.2W/kg.

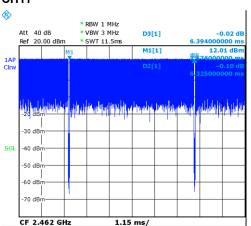
The calculated SAR is obtained by the following formula:

Reported SAR = Measured SAR × $10^{(P_{Target} - P_{Measured})/10}$

Where P_{Target} is the power of manufacturing upper limit;

P_{Measured} is the measured power in chapter 11.

14.1 SAR Evaluation for WIFI

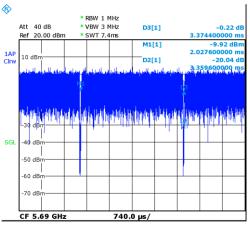

The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

When the same transmission mode configurations have the same maximum output power on the same channel for the 802.11 a/g/n/ac/ax modes, the channel in the lower order/sequence 802.11 mode (i.e. a, g, n ac then ax) is selected.

SAR Test reduction was applied from KDB 248227 guidance, when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band. Additional output power measurements were not deemed necessary.

Duty factor plot

CH128 * RBW 1 MHz * VBW 3 MHz D3[1] 1.1 Ref 20.00 dBm * SWT 3.9ms D3[1] 2.0650000 MI[1] 2.2450000 MI[1] 2.255 AP High model and the second sec


CF 5.64 GHz

390.0 µs/

CH138

Table 14.1-1: SAR Values WLAN2.4G

Test Position	Phantom position L/R/F	Frequency Band	Channel Number	Frequency (MHz)	iency (MHz) Test setup/Position Fig		EUT Measured Power (dBm)	Tune up (dBm)	Measured SAR 1g (W/kg)	Calculated SAR 1g (W/kg)	Duty Cycle	Scaled SAR 1g (W/kg)	Power Drift
			802.11b	2M				-					
Body	F	WIFI2.4G	11	2462	Front 10mm	1	19.55	20	0.492	0.55	98.92%	0.55	-0.06
Body	F	WIFI2.4G	11	2462	Rear 17mm	/	19.55	20	0.329	0.36	98.92%	0.37	-0.09
Body	F	WIFI2.4G	11	2462	Top 17mm	/	19.55	20	0.423	0.47	98.92%	0.47	-0.1
			802.11b	1M									
Body	F	WIFI2.4G	11	2462	Front 0mm	/	10.49	11	0.274	0.31	98.92%	0.31	0.14
Body	F	WIFI2.4G	11	2462	Rear 0mm	/	10.49	11	0.438	0.49	98.92%	0.50	-0.05
Body	F	WIFI2.4G	11	2462	Top 0mm	/	10.49	11	0.383	0.43	98.92%	0.44	0.17

Note: The distance between the EUT and the phantom bottom is 10mm/17mm because of sensor (See detail in annex

I). The distance for other results is 0mm.

Test Position	Phantom position L/R/F	Frequency Band	Channel Number	Frequency (MHz)	Test setup/Position	Note/ Fig No.	EUT Measured Power (dBm)	Tune up (dBm)	Measured SAR 1g (W/kg)	Calculated SAR 1g (W/kg)	Duty Cycle	Scaled SAR 1g (W/kg)	Power Drift
			802.11a	6M									
Body	F	WIFI5G	64	5320	Front 10mm	/	17.08	18.5	0.377	0.52	0.9815	0.53	0.18
Body	F	WIFI5G	64	5320	Rear 17mm	/	17.08	18.5	0.260	0.36	0.9815	0.37	0.15
Body	F	WIFI5G	64	5320	Top 17mm	/	17.08	18.5	0.281	0.39	0.9815	0.40	0.09
			802.11a	6M									
Body	F	WIFI5G	128	5640	Front 10mm	/	17.85	19	0.398	0.52	0.9815	0.53	-0.04
Body	F	WIFI5G	128	5640	Rear 17mm	/	17.85	19	0.460	0.60	0.9815	0.61	-0.14
Body	F	WIFI5G	128	5640	Top 17mm	/	17.85	19	0.373	0.49	0.9815	0.50	-0.17
			802.11a	6M						-			
Body	F	WIFI5G	161	5805	Front 10mm	/	18.78	19	0.452	0.48	0.9815	0.48	-0.04
Body	F	WIFI5G	161	5805	Rear 17mm	/	18.78	19	0.467	0.49	0.9815	0.50	0.18
Body	F	WIFI5G	161	5805	Top 17mm	/	18.78	19	0.634	0.67	0.9815	0.68	-0.12
		80	2.11ac-80	M MCS0									
Body	F	WIFI5G	58	5290	Front 0mm	/	4.21	5.5	0.243	0.33	99.56%	0.33	-0.16
Body	F	WIFI5G	58	5290	Rear 0mm	/	4.21	5.5	0.489	0.66	99.56%	0.66	0.11
Body	F	WIFI5G	58	5290	Top 0mm	/	4.21	5.5	0.234	0.31	99.56%	0.32	0.07
		80	2.11ac-80	M MCS0									
Body	F	WIFI5G	138	5690	Front 0mm	/	4.69	5.5	0.255	0.31	99.56%	0.31	0.07
Body	F	WIFI5G	138	5690	Rear 0mm	2	4.69	5.5	0.858	1.03	99.56%	1.04	-0.11
Body	F	WIFI5G	106	5530	Rear 0mm	/	4.65	5.5	0.447	0.54	99.56%	0.55	0.01
Body	F	WIFI5G	138	5690	Top 0mm	/	4.69	5.5	0.388	0.47	99.56%	0.47	-0.07

Table 14.1-2: SAR Values WLAN5G

Note: The distance between the EUT and the phantom bottom is 10mm/17mm because of sensor (See detail in annex I). The distance for other results is 0mm.

14.2 SAR Evaluation For BT

Table 14.2-1: SAR Values BT

Test Position	Phantom position L/R/F	Frequency Band	Channel Number	Frequency (MHz)	Test setup/Position	Note/ Fig No.	EUT Measured Power (dBm)	Tune up (dBm)	Measured SAR 1g (W/kg)	Calculated SAR 1g (W/kg)	Measured SAR 10g (W/kg)	Calculated SAR 10g (W/kg)	Power Drift
	DH5												
Body	F	BT	78	2480	Front 0mm	/	9.89	10.5	0.335	0.39	0.121	0.14	-0.09
Body	F	BT	78	2480	Rear 0mm	/	9.89	10.5	0.402	0.46	0.143	0.16	0.01
Body	F	BT	78	2480	Top 0mm	3	9.89	10.5	0.429	0.49	0.133	0.15	0.09

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required. 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Mode	СН	Frequency	Test Position	Original SAR (W/kg)	First Repeated SAR(W/kg)	The Ratio
Wi-Fi 5G 802.11ac-80M	155	5775MHz	Rear 0mm	0.869	0.843	1.03

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

10.1	T measurement uncertainty for Normal SAR fests (300minz~3Gnz)									
No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Meas	surement system				•	•	•	•		
1	Probe calibration	В	6.0	Ν	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	Ν	1	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	œ
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	œ
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
			Test	sample related	1					
14	Test sample positioning	А	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phant	tom and set-uj	р					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
19	Liquid conductivity (meas.)	А	2.06	Ν	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
21	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	1.0	0.8	521

©Copyright. All rights reserved by CTTL.

		1							1	
(Combined standard uncertainty	<i>u</i> _c =	$= \sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					9.55	9.43	257
-	nded uncertainty idence interval of	l	$u_e = 2u_c$					19.1	18.9	
16.2	Measurement U	ncerta	ainty for No	ormal SAR	Tests	s (3~6	GHz)			
No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Meas	surement system									
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
12	Probepositioningwithrespecttophantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	œ
		•	Test	sample related	l	•	•			
14	Test sample positioning	А	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-uj	р					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
19	Liquid conductivity (meas.)	А	2.06	N	1	0.64	0.43	1.32	0.89	43

-		1			1	1	1			
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
21	Liquid permittivity (meas.)	А	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	<i>u</i> _c =	$=\sqrt{\sum_{i=1}^{21}c_i^2u_i^2}$					10.7	10.6	257
Expa	nded uncertainty									
-	idence interval of	1	$u_e = 2u_c$					21.4	21.1	
95 %			e i							
	Measurement Un	certa	inty for Fas	t SAR Test	s (30	0MH7	∕~3GF			
No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
1.0.	Enter Description	Type	value	Distribution	D11.	1g	10g	Unc.	Unc.	of
			value	Distribution		Ig	iug		(10g)	freedo
								(1g)	(10g)	
М										m
-	surement system	D	()) T	1	1	1	6.0	()	
1	Probe calibration	B	6.0	N	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	œ
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	~
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	œ
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	œ
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
14	Fast SAR z- Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	œ
			Test s	sample related	1					
15	Test sample positioning	А	3.3	Ν	1	1	1	3.3	3.3	71
16	Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞

©Copyright. All rights reserved by CTTL.

			Phan	tom and set-u	р					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
20	Liquid conductivity (meas.)	А	2.06	Ν	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	œ
22	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	u' _c =	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.4	10.3	257
-	nded uncertainty fidence interval of o)	l	$u_e = 2u_c$					20.8	20.6	

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Meas	surement system									
1	Probe calibration	В	6.55	Ν	1	1	1	6.55	6.55	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	œ
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	œ
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	œ
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	œ
14	Fast SAR z- Approximation	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	8

©Copyright. All rights reserved by CTTL.

Page 39 of 105

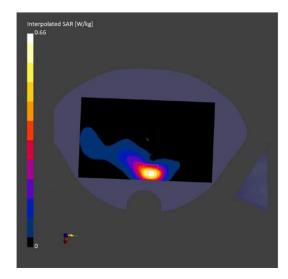
			Test	sample related	1					
15	Test sample positioning	А	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phant	tom and set-uj	þ					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid conductivity (meas.)	А	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
22	Liquid permittivity (meas.)	A	1.6	Ν	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	<i>u</i> _c =	$= \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					13.5	13.4	257
-	inded uncertainty fidence interval of	1	$u_e = 2u_c$					27.0	26.8	

17 MAIN TEST INSTRUMENTS

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	E5071C	MY46110673	January 10, 2023	One year
02	Power sensor	NRP110T	101139	January 13, 2023	One year
03	Power sensor	NRP110T	101159	January 13, 2023	One year
04	Signal Generator	E4438C	MY49071430	January 19, 2023	One year
05	Amplifier	60S1G4	0331848	No Calibration	Requested
07	E-field Probe	SPEAG EX3DV4	7727	June 5, 2023	One year
08	DAE	SPEAG DAE4	1745	August 31, 2022	One year
09	Dipole Validation Kit	SPEAG D2450V2	1090	November 15,2022	One year
10	Dipole Validation Kit	SPEAG D5GHzV2	1060	June 16,2023	One year

END OF REPORT BODY

No.I23Z70209-SEM01


ANNEX A Graph Results

WLAN 2.4G Body

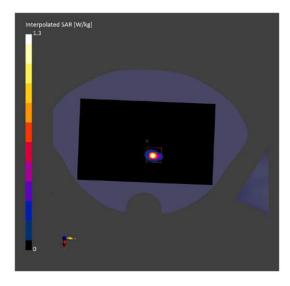
Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm		Duty Cycle	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat,	FRONT,	WLAN	1:1	2462.000,	8.08	1.768	38.961
HSL	10.00	2.4GHz		11			
lardware Setu	up						
Phantom		TSL, Measured	Date	Probe, Calibrati	ion Date	DAE, Calibratio	on Date
THIS CANALIO O		HBBL-600-1000	0	EX3DV4 - SN772	7 2022-06-05	DAE4 Sn1745,	2022-08-31
- 2114	30deg probe tilt)	HBBL-600-1000	0	2/30/4 - 31/72	1,2025-00-05	0/14 0/11/40,1	2022-00-51
- 2114	30deg probe tilt)	HPPF-900-7000	U			<i>DALE SHI (45)</i> .	2022-00-51
	30deg probe tilt)	Area Scan	Zoom Scan	Measureme		Area Scan	Zoom Scan
- 2114			-				
- 2114 Scan Setup	nm]	Area Scan	Zoom Scan	Measureme	nt Results	Area Scan	Zoom Scan
- 2114 Scan Setup Grid Extents [m	nm] n]	Area Scan 120.0 x 200.0	Zoom Scan 30.0 x 30.0 x 30.0	Date	nt Results	Area Scan 2023-08-05	Zoom Scan 2023-08-05
- 2114 Scan Setup Grid Extents [m Grid Steps [mm	nm] n]	Area Scan 120.0 × 200.0 10.0 × 10.0	Zoom Scan 30.0 x 30.0 x 30.0 5.0 x 5.0 x 1.5	Measureme Date psSAR1g [W/k	nt Results g] ^{/kg]}	Area Scan 2023-08-05 0.497	Zoom Scan 2023-08-05 0.492
- 2114 Scan Setup Grid Extents [m Grid Steps [mm Sensor Surface	nm] n]	Area Scan 120.0 × 200.0 10.0 × 10.0	Zoom Scan 30.0 x 30.0 x 30.0 5.0 x 5.0 x 1.5	Measureme Date psSAR1g [W/k psSAR10g [W/	nt Results g] ^{(k} g] B]	Area Scan 2023-08-05 0.497 0.235	Zoom Scan 2023-08-05 0.492 0.229
- 2114 Scan Setup Grid Extents [m Grid Steps [mm Sensor Surface [mm]	nm] n]	Area Scan 120.0 x 200.0 10.0 x 10.0 3.0	Zoom Scan 30.0 x 30.0 x 30.0 5.0 x 5.0 x 1.5 1.4	Measureme Date psSAR1g [W/k psSAR10g [W/ Power Drift [d	nt Results g] (kg] B]	Area Scan 2023-08-05 0.497 0.235 0.12	Zoom Scan 2023-08-05 0.492 0.229 -0.06
- 2114 Scan Setup Grid Extents [m Grid Steps [mm Sensor Surface [mm] Graded Grid	nm] n]	Area Scan 120.0 x 200.0 10.0 x 10.0 3.0 N/A	Zoom Scan 30.0 x 30.0 x 30.0 5.0 x 5.0 x 1.5 1.4 Yes	Measureme psSAR1g [W/k psSAR1g [W/k Power Drift [d Power Scaling	nt Results g] [kg] B] [dB]	Area Scan 2023-08-05 0.497 0.235 0.12	Zoom Scan 2023-08-05 0.492 0.229 -0.06
- 2114 Scan Setup Grid Extents [m Grid Steps [mm] Graded Grid Graded Grid Grading Ratio	nm] n]	Area Scan 120.0 x 200.0 10.0 x 10.0 3.0 N/A N/A	Zoom Scan 30.0 x 30.0 x 30.0 5.0 x 5.0 x 1.5 1.4 Yes 1.5	Measureme psSAR1g [W/k psSAR10g [W/ Power Drift [d Power Scaling Scaling Factor	nt Results g] [kg] B] [dB]	Area Scan 2023-08-05 0.497 0.235 0.12 Disabled	Zoom Scan 2023-08-05 0.492 -0.06 Disabled

3.0	1.4	psSAR10g [W/kg]	0.235	0.229
		Power Drift [dB]	0.12	-0.06
N/A	Yes	Power Scaling	Disabled	Disabled
N/A	1.5	Scaling Factor [dB]		
N/A	N/A	TSL Correction	No correction	No correction
VMS + 6p	VMS + 6p	M2/M1 [%]		82.0
Measured	Measured	Dist 3dB Peak [mm]		8.1

WLAN 5G Body

Exposure Conditions


Phantom Section, TSL	Position, Test Distance [mm]	Band	Duty Cycle	Frequency [MHz], Channel Numbe	Conversion Factor er	TSL Conductivity [S/m]	TSL Permittivity
Flat,	BACK,	WLAN	1:1	5690.000,	5.25	5.111	36.337
HSL	0.00	5GHz		138			

Hardware Setup

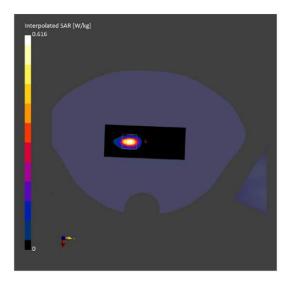
Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V8.0 (30deg probe tilt)	HBBL-600-10000	EX3DV4 - SN7727, 2023-06-05	DAE4 Sn1745, 2022-08-31
- 2114			

Sc an Seti

Scan Setup			Measurement Results		
	Area Scan	Zoom Scan		Area Scan	Zoom Scan
Grid Extents [mm]	120.0 x 200.0	22.0 x 22.0 x 22.0	Date	2023-08-10	2023-08-10
Grid Steps [mm]	10.0 x 10.0	2.5 x 2.5 x 1.2	psSAR1g [W/kg]	0.666	0.858
Sensor Surface	3.0	1.4	psSAR10g [W/kg]	0.132	0.138
[mm]			Power Drift [dB]	0.06	-0.11
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled
Grading Ratio	N/A	1.2	Scaling Factor [dB]		
MAIA	Y	N/A	TSL Correction	No correction	No correction
Surface Detection	VMS + 6p	VMS + 6p	M2/M1 [%]		60.0
Scan Method	Measured	Measured	Dist 3dB Peak [mm]		3.7

BT Body

Exposure Conditions


Phantom Section, TSL	Position, Test Distance [mm]	Band	Duty Cycle	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat,	EDGE TOP,	ISM 2.4	1:1	2480.000,	8.08	1.783	38.903
HSL	0.00	GHz Band		78			

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V8.0 (30deg probe tilt) - 2114	HBBL-600-10000	EX3DV4 - SN7727, 2023-06-05	DAE4 Sn1745, 2022-08-31

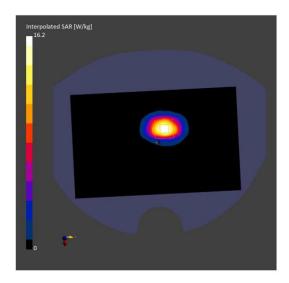
C

Scan Setup			Measurement Results		
	Area Scan	Zoom Scan		Area Scan	Zoom Scan
Grid Extents [mm]	48.0 x 120.0	30.0 x 30.0 x 30.0	Date	2023-08-05	2023-08-05
Grid Steps [mm]	8.0 x 10.0	2.9 x 2.9 x 1.2	psSAR1g [W/kg]	0.409	0.429
Sensor Surface	3.0	1.4	psSAR10g [W/kg]	0.139	0.133
[mm]			Power Drift [dB]	-0.11	0.09
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled
Grading Ratio	N/A	1.2	Scaling Factor [dB]		
MAIA	N/A	N/A	TSL Correction	No correction	No correction
Surface Detection	VMS + 6p	VMS + 6p	M2/M1 [%]		69.2
Scan Method	Measured	Measured	Dist 3dB Peak [mm]		4.1

ANNEX B System Verification Results

2450MHz

Exposure Conditions


Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat,	BACK,	CD2450	CW,	2450.000,	8.08	1.763	38.971
HSL	5.00		0	50			

Hardware Setup

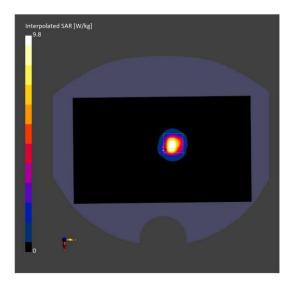
Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V8.0 (30deg probe tilt)	HBBL-600-10000	EX3DV4 - SN7727, 2023-06-05	DAE4 Sn1745, 2022-08-31
- 2114			

Scan Setup

Scan Setup			Measurement Results		
	Area Scan	Zoom Scan		Area Scan	Zoom Scan
Grid Extents [mm]	120.0 x 192.0	30.0 x 30.0 x 30.0	Date	2023-08-05	2023-08-05
Grid Steps [mm]	12.0 x 12.0	5.0 x 5.0 x 1.5	psSAR1g [W/kg]	13.11	13.23
Sensor Surface	3.0	1.4	psSAR10g [W/kg]	6.05	6.11
[mm]			Power Drift [dB]	0.10	-0.07
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled
Grading Ratio	N/A	1.5	Scaling Factor [dB]		
MAIA	N/A	N/A	TSL Correction	No correction	No correction
Surface Detection	VMS + 6p	VMS + 6p	M2/M1 [%]		79.6
Scan Method	Measured	Measured	Dist 3dB Peak [mm]		9.0

5250MHz

Exposure Conditions


Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Numbe	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat,	BACK,	D5GHz	CW,	5250.000,	5.77	4.72	35.61
HSL	5.00		0	25			

Hardware Setup

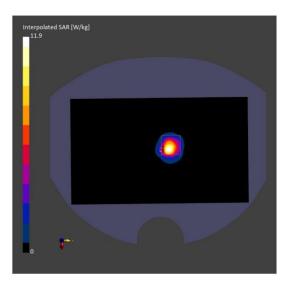
Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V8.0 (30deg probe tilt) - 2114	HBBL-600-10000	EX3DV4 - SN7727, 2023-06-05	DAE4 Sn1745, 2022-08-31

Scan Setup

Scan Setup			Measurement Results		
	Area Scan	Zoom Scan		Area Scan	Zoom Scan
Grid Extents [mm]	120.0 x 200.0	22.0 x 22.0 x 22.0	Date	2023-08-09	2023-08-09
Grid Steps [mm]	10.0 x 10.0	4.0 x 4.0 x 1.4	psSAR1g [W/kg]	8.25	8.23
Sensor Surface	3.0	1.4	psSAR10g [W/kg]	2.37	2.35
[mm]			Power Drift [dB]	0.13	-0.11
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled
Grading Ratio	N/A	1.4	Scaling Factor [dB]		
MAIA	N/A	N/A	TSL Correction	No correction	No correction
Surface Detection	VMS + 6p	VMS + 6p	M2/M1 [%]		65.3
Scan Method	Measured	Measured	Dist 3dB Peak [mm]		6.5

5600MHz

Exposure Conditions


Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Numbe	Conversion Factor er	TSL Conductivity [S/m]	TSL Permittivity
Flat,	BACK,	D5GHz	CW,	5600.000,	5.25	5.002	36.515
HSL	5.00		0	60			

Hardware Setup

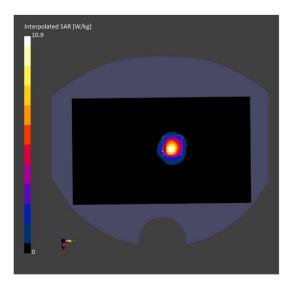
Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V8.0 (30deg probe tilt) - 2114	HBBL-600-10000	EX3DV4 - SN7727, 2023-06-05	DAE4 Sn1745, 2022-08-31

Scan Setun

Scan Setup			Measurement Results		
	Area Scan	Zoom Scan		Area Scan	Zoom Scan
Grid Extents [mm]	120.0 x 200.0	22.0 x 22.0 x 22.0	Date	2023-08-10	2023-08-10
Grid Steps [mm]	10.0 x 10.0	4.0 x 4.0 x 1.4	psSAR1g [W/kg]	8.29	8.24
Sensor Surface	3.0	1.4	psSAR10g [W/kg]	2.38	2.34
[mm]			Power Drift [dB]	0.11	-0.08
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled
Grading Ratio	N/A	1.4	Scaling Factor [dB]		
MAIA	N/A	N/A	TSL Correction	No correction	No correction
Surface Detection	VMS + 6p	VMS + 6p	M2/M1 [%]		62.3
Scan Method	Measured	Measured	Dist 3dB Peak [mm]		6.5

5750MHz

Exposure Conditions

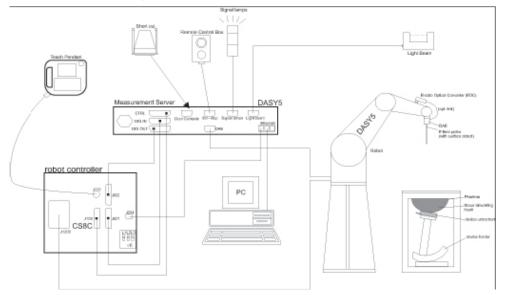

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat <i>,</i> HSL	BACK, 5.00	D5GHz	CW, 0	5750.000, 75	5.33	5.232	35.866

Hardware Setup

Phantom	TSL, Measured Date	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V8.0 (30deg probe tilt)	HBBL-600-10000	EX3DV4 - SN7727, 2023-06-05	DAE4 Sn1745, 2022-08-31
- 2114			

Scan Setup

Scan Setup			Measurement Results		
	Area Scan	Zoom Scan		Area Scan	Zoom Scan
Grid Extents [mm]	120.0 x 200.0	22.0 x 22.0 x 22.0	Date	2023-08-11	2023-08-11
Grid Steps [mm]	10.0 x 10.0	4.0 x 4.0 x 1.4	psSAR1g [W/kg]	7.23	7.91
Sensor Surface	3.0	1.4	psSAR10g [W/kg]	2.15	2.26
[mm]			Power Drift [dB]	-0.11	0.13
Graded Grid	N/A	Yes	Power Scaling	Disabled	Disabled
Grading Ratio	N/A	1.4	Scaling Factor [dB]		
MAIA	N/A	N/A	TSL Correction	No correction	No correction
Surface Detection	VMS + 6p	VMS + 6p	M2/M1 [%]		61.5
Scan Method	Measured	Measured	Dist 3dB Peak [mm]		6.6



ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2 Dasy4 or DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

ES3DV3, EX3DV4
10MHz — 6.0GHz(EX3DV4)
10MHz — 4GHz(ES3DV3)
In head and body simulating tissue at
Frequencies from 835 up to 5800MHz
± 0.2 dB(30 MHz to 6 GHz) for EX3DV4
± 0.2 dB(30 MHz to 4 GHz) for ES3DV3
10 mW/kg — 100W/kg
330 mm
20 mm
12 mm
2.5 mm (3.9 mm for ES3DV3)
1 mm (2.0mm for ES3DV3)
SAR Dosimetry Testing
Compliance tests of mobile phones
Dosimetry in strong gradient fields

Picture C.2 Near-field Probe

Picture C.3 E-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 $\Delta t = Exposure time (30 seconds),$

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where: σ = Simulated tissue conductivity, ρ = Tissue density (kg/m³).

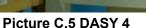
C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.


PictureC.4: DAE

C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY4: RX90XL; DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- > Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.6 DASY 5

C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (dasy4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128MB), RAM (DASY4: 64 MB, DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and

©Copyright. All rights reserved by CTTL.

disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture C.7 Server for DASY 4

C.4.4 Device Holder for Phantom

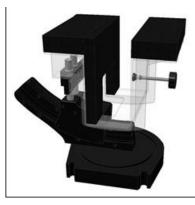
The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss

POM material having the following dielectric

parameters: relative permittivity $\ell = 3$ and loss


tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.9-1: Device Holder ©Copyright. All rights reserved by CTTL.

Picture C.9-2: Laptop Extension Kit Page 53 of 105

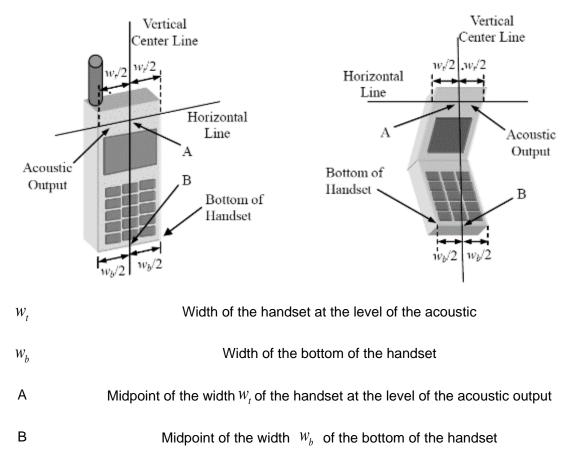
C.4.5 Phantom

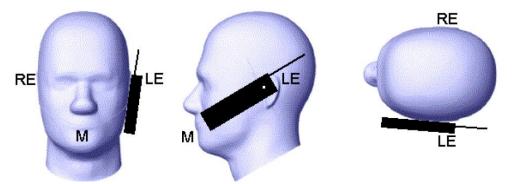
The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness:2 ± 0. 2 mmFilling Volume:Approx. 25 litersDimensions:810 x 1000 x 500 mm (H x L x W)Available:Special

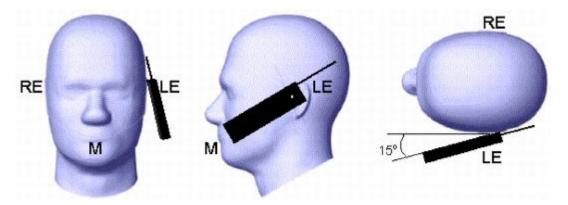
Picture C.10: SAM Twin Phantom



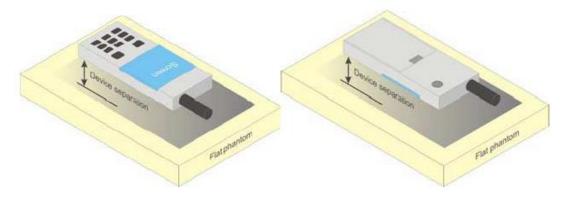

ANNEX D Position of the wireless device in relation to the phantom

D.1 General considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.


Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset

Picture D.2 Cheek position of the wireless device on the left side of SAM

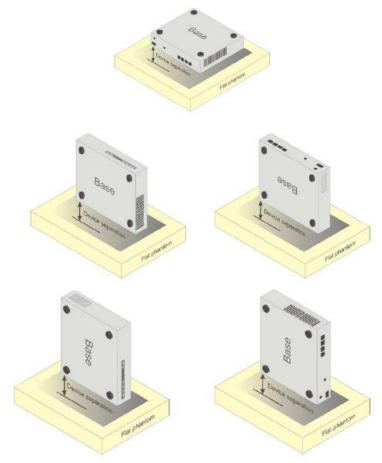


Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.

Picture D.4 Test positions for body-worn devices


D.3 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

D.4 DUT Setup Photos

Picture D.6

ANNEX E Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

							71	
Frequency	835	835	1900	1900	2450	2450	5800	5800
(MHz)	Head	Body	Head	Body	Head	Body	Head	Body
Ingredients (% by	/ weight)							
Water	41.45	52.5	55.242	69.91	58.79	72.60	65.53	65.53
Sugar	56.0	45.0	١	١	١	١	١	١
Salt	1.45	1.4	0.306	0.13	0.06	0.18	١	١
Preventol	0.1	0.1	١	\	\	١	\	١
Cellulose	1.0	1.0	١	\	\	١	\	١
Glycol	1	\	44.452	29.96	41.15	27.22	1	١
Monobutyl	, ,	Ň	77.702	23.30	41.15	21.22	Ň	۲.
Diethylenglycol	N	N	N	N	N	λ.	17.24	17.24
monohexylether	``	Ň	Ň	Ň	Ň	N N	17.27	17.27
Triton X-100	١	١	١	١	١	١	17.24	17.24
Dielectric	ε=41.5	c=55.0	c=10.0	c=52.2	c=20.2	c=52.7	c=25.2	c=19.2
Parameters		ε=55.2	ε=40.0	ε=53.3	ε=39.2	ε=52.7	ε=35.3	ε=48.2
Target Value	σ=0.90	σ=0.97	σ=1.40	σ=1.52	σ=1.80	σ=1.95	σ=5.27	σ=6.00

Table E.1: Composition of the Tissue Equivalent Matter

Note: There are a little adjustment respectively for 750, 1750, 2600, 5200, 5300 and 5600 based on the recipe of closest frequency in table E.1.

ANNEX F System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

	10.51	e i i i eystein vana		
Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)
7727	H650-7000M	July.8,2023	750 MHz	OK
7727	H650-7000M	July.8,2023	900 MHz	OK
7727	H650-7000M	July.8,2023	1450 MHz	OK
7727	H650-7000M	July.8,2023	1750 MHz	OK
7727	H650-7000M	July.9,2023	1900 MHz	OK
7727	H650-7000M	July.9,2023	2100 MHz	OK
7727	H650-7000M	July.9,2023	2300 MHz	OK
7727	H650-7000M	July.11,2023	2450 MHz	OK
7727	H650-7000M	July.11,2023	2600 MHz	OK
7727	H650-7000M	July.11,2023	3500 MHz	OK
7727	H650-7000M	July.11,2023	3700 MHz	OK
7727	H650-7000M	July.11,2023	3900 MHz	OK
7727	H650-7000M	July.12,2023	5250 MHz	OK
7727	H650-7000M	July.12,2023	5600 MHz	OK
7727	H650-7000M	July.12,2023	5800 MHz	OK

Table F.1: System Validation for 7727


ANNEX G Probe Calibration Certificate

Probe 7727 Calibration Certificate

E-mail: emf@caict.ac.cn Client CTTL CALIBRATION C Object Calibration Procedure(s)		Certificate No:	J23Z60233
CALIBRATION C	ERTIFICATE EX3DV4 - 8		J23260233
Object	EX3DV4 - S	SN : 7727	
		SN : 7727	0.000 2020
Calibration Procedure(s)	FF-Z11-004		
		H-02	CONSIGNAL SA
	Calibration	Procedures for Dosimetric E-field Probes	
Calibration date:	June 05, 20	023	
	and the second se	national standards, which realize the physical ur bability are given on the following pages and an	the second second second second second second
	ucted in the closed labor	atory facility: environment temperature(22±3)°C ar	nd humidity<70%.
	ID# Cal	Date(Calibrated by, Certificate No.) Schedule	ed Calibration
	ID # Cal 101919	Date(Calibrated by, Certificate No.) Schedule 14-Jun-22(CTTL, No.J22X04181)	ed Calibration Jun-23
Primary Standards	(APR 1)		
Primary Standards Power Meter NRP2	101919	14-Jun-22(CTTL, No.J22X04181)	Jun-23
Primary Standards Power Meter NRP2 Power sensor NRP-Z91	101919 101547	14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181)	Jun-23 Jun-23
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	101919 101547 101548	14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181)	Jun-23 Jun-23 Jun-23
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator	101919 101547 101548 18N50W-10dB	14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 19-Jan-23(CTTL, No.J23X00212)	Jun-23 Jun-23 Jun-23 Jan-25 Jan-25
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator	101919 101547 101548 18N50W-10dB 18N50W-20dB	14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211)	Jun-23 Jun-23 Jun-23 Jan-25 Jan-25
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator OCP DAK-3.5	101919 101547 101548 18N50W-10dB 18N50W-20dB SN 1040	14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_J	Jun-23 Jun-23 Jun-23 Jan-25 Jan-25 an23) Jan-24
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator OCP DAK-3.5 Reference Probe EX3DV4	101919 101547 101548 18N50W-10dB 18N50W-20dB SN 1040 SN 7517	14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_J 27-Jan-23(SPEAG, No.EX-7517_Jan23)	Jun-23 Jun-23 Jun-23 Jan-25 Jan-25 an23) Jan-24 Jan-24
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator OCP DAK-3.5 Reference Probe EX3DV4 DAE4	101919 101547 101548 18N50W-10dB 18N50W-20dB SN 1040 SN 7517 SN 1555	14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_J 27-Jan-23(SPEAG, No.EX-7517_Jan23) 25-Aug-22(SPEAG, No.DAE4-1555_Aug22)	Jun-23 Jun-23 Jun-23 Jan-25 Jan-25 an23) Jan-24 Jan-24 Aug-23
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator OCP DAK-3.5 Reference Probe EX3DV4 DAE4 Secondary Standards	101919 101547 101548 18N50W-10dB 18N50W-20dB SN 1040 SN 7517 SN 1555 ID #	14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_J 27-Jan-23(SPEAG, No.CP-DAK3.5-1040_J 25-Aug-22(SPEAG, No.DAE4-1555_Aug22) Cal Date(Calibrated by, Certificate No.)	Jun-23 Jun-23 Jun-23 Jan-25 Jan-25 an23) Jan-24 Jan-24 Jan-24 Aug-23 Scheduled Calibration
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator OCP DAK-3.5 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A	101919 101547 101548 18N50W-10dB 18N50W-20dB SN 1040 SN 7517 SN 1555 ID # 6201052605	14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_J 27-Jan-23(SPEAG, No.CP-DAK3.5-1040_J 27-Jan-23(SPEAG, No.DAE4-1555_Aug22) 25-Aug-22(SPEAG, No.DAE4-1555_Aug22) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04182)	Jun-23 Jun-23 Jun-23 Jan-25 Jan-25 an23) Jan-24 Jan-24 Aug-23 Scheduled Calibration Jun-23
Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator OCP DAK-3.5 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C	101919 101547 101548 18N50W-10dB 18N50W-20dB SN 1040 SN 7517 SN 1555 ID # 6201052605 MY46110673	14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_J 27-Jan-23(SPEAG, No.CP-DAK3.5-1040_J 27-Jan-23(SPEAG, No.DAE4-1555_Aug22) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04182) 10-Jan-23(CTTL, No.J23X00104)	Jun-23 Jun-23 Jun-23 Jan-25 Jan-25 an23) Jan-24 Jan-24 Aug-23 Scheduled Calibration Jun-23 Jan-24
Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference 10dBAttenuator Reference 20dBAttenuator OCP DAK-3.5 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C Reference 10dBAttenuator Reference 20dBAttenuator	101919 101547 101548 18N50W-10dB 18N50W-20dB SN 1040 SN 7517 SN 1555 ID # 6201052605 MY46110673 BT0520 BT0267	14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(CTTL, No.J23X00211) 18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_J 27-Jan-23(SPEAG, No.OCP-DAK3.5-1040_J 25-Aug-22(SPEAG, No.DAE4-1555_Aug22) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04182) 10-Jan-23(CTTL, No.J23X00104) 11-May-23(CTTL, No.J23X04061)	Jun-23 Jun-23 Jun-23 Jan-25 Jan-25 an23) Jan-24 Jan-24 Aug-23 Scheduled Calibration Jun-23 Jan-24 May-25 May-25
Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference 10dBAttenuator Reference 20dBAttenuator OCP DAK-3.5 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C Reference 10dBAttenuator Reference 20dBAttenuator	101919 101547 101548 18N50W-10dB 18N50W-20dB SN 1040 SN 7517 SN 1555 ID # 6201052605 MY46110673 BT0520 BT0267	14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(SPEAG, No.OCP-DAK3.5-1040_J 27-Jan-23(SPEAG, No.OCP-DAK3.5-1040_J 25-Aug-22(SPEAG, No.DAE4-1555_Aug22) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04182) 10-Jan-23(CTTL, No.J23X00104) 11-May-23(CTTL, No.J23X04061) 11-May-23(CTTL, No.J23X04062)	Jun-23 Jun-23 Jun-23 Jan-25 Jan-25 an23) Jan-24 Jan-24 Aug-23 Scheduled Calibration Jun-23 Jan-24 May-25 May-25
Primary Standards Power Meter NRP2 Power sensor NRP-291 Power sensor NRP-291 Reference 10dBAttenuator Reference 20dBAttenuator OCP DAK-3.5 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C Reference 10dBAttenuator Reference 20dBAttenuator	101919 101547 101548 18N50W-10dB 18N50W-20dB SN 1040 SN 7517 SN 1555 ID # 6201052605 MY46110673 BT0520 BT0267	14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 19-Jan-23(CTTL, No.J22X04181) 19-Jan-23(CTTL, No.J23X00212) 19-Jan-23(SPEAG, No.OCP-DAK3.5-1040_J 27-Jan-23(SPEAG, No.OCP-DAK3.5-1040_J 25-Aug-22(SPEAG, No.DAE4-1555_Aug22) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04182) 10-Jan-23(CTTL, No.J23X00104) 11-May-23(CTTL, No.J23X04061) 11-May-23(CTTL, No.J23X04062) unction Signatu	Jun-23 Jun-23 Jun-23 Jan-25 Jan-25 an23) Jan-24 Jan-24 Aug-23 Scheduled Calibration Jun-23 Jan-24 May-25 May-25

©Copyright. All rights reserved by CTTL.

Page 61 of 105

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7727

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.47	0.48	0.38	±10.0%
DCP(mV) ⁸	102.0	105.2	100.5	

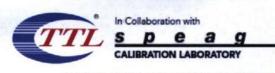
Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max Dev.	Max Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	168.3	±2.5%	±4.7%
		Y	0.0	0.0	1.0		172.7		
	and the second s	Z	0.0	0.0	1.0	2	145.7		
10352-AAA	Pulse Waveform (200Hz, 10%)	X	1.45	60.00	5.24		60	±3.6%	±9.6%
		Y	1.58	60.61	5.86	10.00	60		
		Z	1.36	60.00	5.66		60		
10353-AAA	Pulse Waveform (200Hz, 20%)	X	46.00	72.00	7.00		80	±2.2%	±9.6%
		Y	0.80	60.00	4.25	6.99	80		
		Z	6.00	68.00	7.00		80	1	
10354-AAA	Pulse Waveform (200Hz, 40%)	X	0.00	69.85	39.37		95	±3.0%	±9.6%
		Y	0.07	160.00	18.62	3.98	95		
		Z	0.00	159.90	19.34		95		
10355-AAA	Pulse Waveform (200Hz, 60%)	X	0.00	113.74	99.96	2.22	120	±3.3%	±9.6%
		Y	0.00	64.51	42.10		120		
		Z	0.51	85.10	0.67	a belatters	120	1	
10387-AAA	QPSK Waveform, 1 MHz	X	0.89	160.00	87.59		150	±3.1%	±9.6%
		Y	20.00	142.19	41.78	1.00	150		
		Z	20.00	154.70	47.89		150	1	
10388-AAA	QPSK Waveform, 10 MHz	X	20.00	134.83	42.45		150	±2.4%	±9.6%
		Y	11.01	103.50	28.52	0.00	150		
		Z	20.00	115.38	32.38		150	1	
10396-AAA	64-QAM Waveform, 100 kHz	X	2.75	83.44	29.81		150	±1.4%	±9.6%
		Y	1.92	69.46	20.49	3.01	150	1	
		Z	1.88	69.78	21.20		150		
10414-AAA	WLAN CCDF, 64-QAM, 40MHz	X	5.32	75.63	21.26		150	±3.3%	±9.6%
		Y	4.17	69.30	17.33	0.00	150		
		Z	4.31	70.05	17.92	1000000	150	1	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No:J23Z60233


Page 3 of 22

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5).

 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

CAICT No.I23Z70209-SEM01

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7727

Sensor Model Parameters

	C1 fF	C2 fF	α V-1	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V-2	T5 V-1	Т6
X	7.64	55.26	34.90	0.92	0.00	4.90	0.00	0.01	1.01
Y	7.95	57.30	33.78	2.12	0.00	4.90	0.02	0.03	1.01
z	7.87	57.93	35.18	1.93	0.00	4.90	0.00	0.00	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	156.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:J23Z60233

Page 4 of 22

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

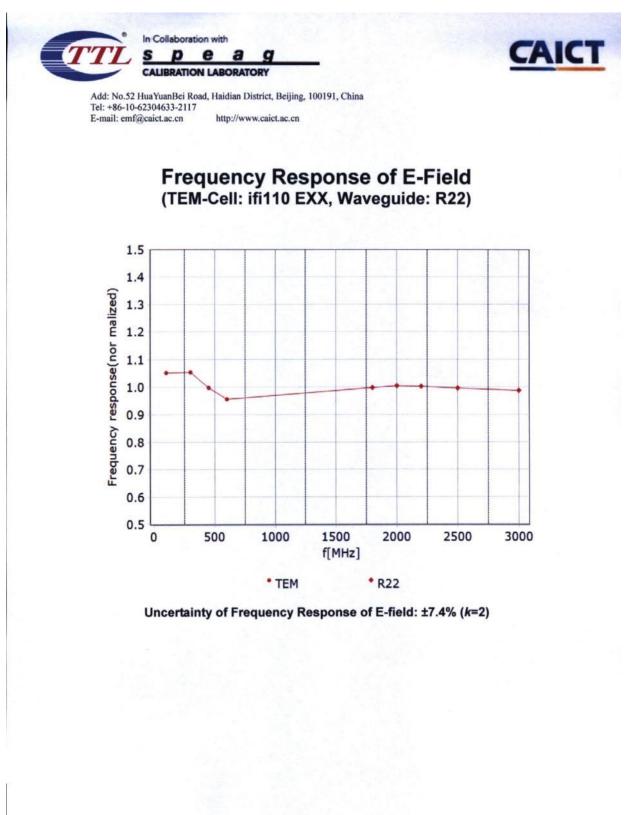
DASY/EASY – Parameters of Probe: EX3DV4 – SN:7727

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.31	10.31	10.31	0.15	1.35	±12.7%
900	41.5	0.97	9.97	9.97	9.97	0.16	1.35	±12.7%
1450	40.5	1.20	8.97	8.97	8.97	0.12	1.33	±12.7%
1750	40.1	1.37	8.65	8.65	8.65	0.20	1.09	±12.7%
1900	40.0	1.40	8.47	8.47	8.47	0.24	1.05	±12.7%
2100	39.8	1.49	8.45	8.45	8.45	0.22	1.11	±12.7%
2300	39.5	1.67	8.30	8.30	8.30	0.61	0.66	±12.7%
2450	39.2	1.80	8.08	8.08	8.08	0.55	0.72	±12.7%
2600	39.0	1.96	7.90	7.90	7.90	0.41	0.86	±12.7%
3300	38.2	2.71	7.44	7.44	7.44	0.38	1.02	±13.9%
3500	37.9	2.91	7.23	7.23	7.23	0.42	1.00	±13.9%
3700	37.7	3.12	7.02	7.02	7.02	0.41	1.00	±13.9%
3900	37.5	3.32	6.91	6.91	6.91	0.35	1.35	±13.9%
4100	37.2	3.53	6.82	6.82	6.82	0.30	1.38	±13.9%
4200	37.1	3.63	6.72	6.72	6.72	0.30	1.50	±13.9%
4400	36.9	3.84	6.62	6.62	6.62	0.30	1.50	±13.9%
4600	36.7	4.04	6.54	6.54	6.54	0.40	1.30	±13.9%
4800	36.4	4.25	6.55	6.55	6.55	0.30	1.80	±13.9%
4950	36.3	4.40	6.20	6.20	6.20	0.40	1.38	±13.9%
5250	35.9	4.71	5.77	5.77	5.77	0.40	1.45	±13.9%
5600	35.5	5.07	5.25	5.25	5.25	0.45	1.40	±13.9%
5750	35.4	5.22	5.33	5.33	5.33	0.40	1.50	±13.9%

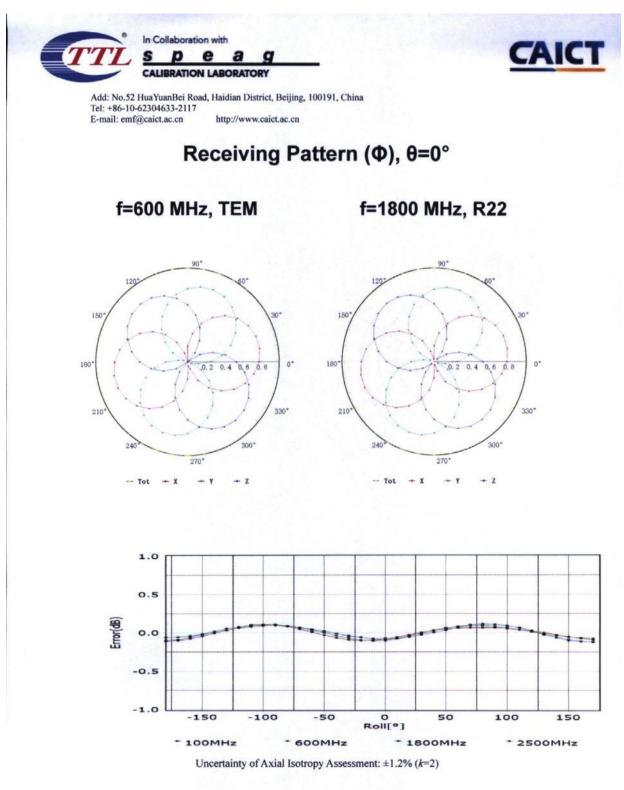
^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

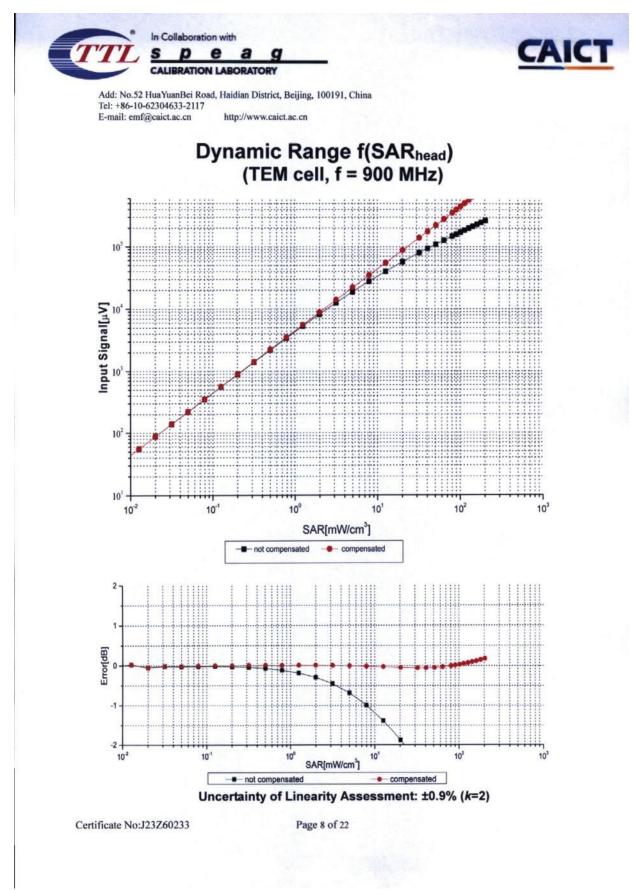
Certificate No:J23Z60233

Page 5 of 22


Certificate No:J23Z60233

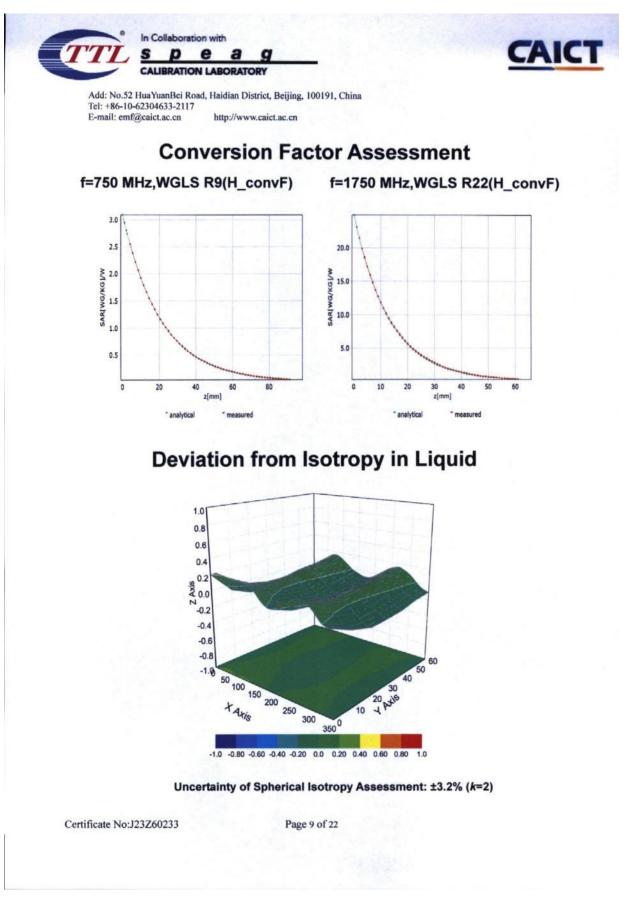
Page 6 of 22

Page 65 of 105



Certificate No:J23Z60233

Page 7 of 22



Page 67 of 105

Page 68 of 105

	TI	CALIBRATION LABORATORY			
		No.52 Hua YuanBei Road, Haidian District, Beijing, 100191, China			
		+86-10-62304633-2117 ail: emf@caiet.ac.cn http://www.caiet.ac.cn			
App	pendix	: Modulation Calibration Parameters			
UID	Rev	Communication System Name	Group	PAR (dB)	Unc (k=2
0		CW	CW	0.00	± 4.7
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	± 9.6
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN WLAN	1.87	±9.6
10013	DAC	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps) GSM-FDD (TDMA, GMSK)	GSM	9.46	± 9.6 ± 9.6
10021	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	± 9.6
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.6
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9.6
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	± 9.6
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	±9.6
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2) IEEE 802.15.1 Bluetooth (GFSK, DH1)	GSM Bluetooth	7.78	± 9.6
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	±9.6
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	± 9.6
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	± 9.6
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	± 9.6 ± 9.6
10037 10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3) IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	± 9.6
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	± 9.6
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)	AMPS	7.78	± 9.6
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	± 9.6
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	± 9.6
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT TD-SCDMA	10.79	± 9.6
10056 10058	DAC	UMTS-TDD (TD-SCDMA, 1.28 Mcps) EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	± 9.6
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	± 9.6
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	± 9.6
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	± 9.6
10062	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	± 9.6
10063	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN WLAN	8.63	± 9.6 ± 9.6
10064	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps) IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.09	± 9.6
10066	CAD		WLAN	9.38	± 9.6
10067	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	± 9.6
10068	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	± 9.6
10069	CAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	± 9.6
10071 10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps) IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN WLAN	9.83	± 9.6 ± 9.6
10072	CAB	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.02	± 9.6
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 16 Mbps)	WLAN	10.30	± 9.6
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	± 9.6
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	± 9.6
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	± 9.6
10081 10082	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000 AMPS	3.97	±9.6
10082	DAC	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate) GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	4.77	± 9.6 ± 9.6
10097	CAC	UMTS-FDD (HSDPA)	WCDMA	3.98	± 9.6
10098	DAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	± 9.6
10099	CAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6
10100	CAC	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	± 9.6
10101	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6

©Copyright. All rights reserved by CTTL.

	TT	In Collaboration with		CA	10
	TT.				1 C
-	-	CALIBRATION LABORATORY			
	Add:	No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China			
		+86-10-62304633-2117			
	E-ma	il: emf@caict.ac.cn http://www.caict.ac.cn			
10102	CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6
10102		LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	± 9.6
10104		LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	± 9.6
10105		LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	± 9.6
10108	CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK) LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD LTE-FDD	5.80	± 9.6 ± 9.6
10110		LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	± 9.6
10111	CAG		LTE-FDD	6.44	± 9.6
10112		LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	± 9.6
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6
10114 10115	CAG	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN WLAN	8.10	± 9.6 ± 9.6
10115	CAG		WLAN	8.15	± 9.6
10117	CAG	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	± 9.6
10118	CAD	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	± 9.6
10119	CAD	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	± 9.6
10140	CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD LTE-FDD	6.49 6.53	± 9.6
10141	CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6
10143	CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	± 9.6
10144	CAC	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	± 9.6
10145	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	± 9.6
10146	CAC	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD LTE-FDD	6.41	± 9.6 ± 9.6
10147	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6
10151	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	± 9.6
10152	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD LTE-TDD	9.92	± 9.6 ± 9.6
10153 10154	CAE	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	10.05	± 9.6
10155	CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6
10156	CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	± 9.6
10157	CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6
10158	CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD LTE-FDD	6.56	± 9.6
10161	CAG		LTE-FDD	6.43	± 9.6
10162		LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	± 9.6
10166	CAG		LTE-FDD	5.46	± 9.6
10167	CAG		LTE-FDD	6.21	± 9.6
10168	CAG		LTE-FDD LTE-FDD	5.73	± 9.6
10170		LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6
10171	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	± 9.6
10172	CAE		LTE-TDD	9.21	± 9.6
10173	CAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD LTE-TDD	9.48	± 9.6 ± 9.6
10175	CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.72	± 9.6
10176	CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6
10177	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	± 9.6
10178	CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6
10179 10180	AAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD LTE-FDD	6.50	± 9.6 ± 9.6
10180	CAG		LTE-FDD	5.72	± 9.6
10182		LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6
10183	CAG		LTE-FDD	6.50	± 9.6
10184		LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6
10185	CAI	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD LTE-FDD	6.51	± 9.6

Certificate No:J23Z60233

Page 11 of 22

	TI	CALIBRATION LABORATORY					
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn							
10187	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	± 9.6		
10188	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6		
10189	CAE	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6		
10193	AAD	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN WLAN	8.09	± 9.6		
10195	CAE	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	± 9.6		
10196	CAE	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	± 9.6		
10197	AAE	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN WLAN	8.13	±9.6		
10198	CAF	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.27	± 9.6		
10220	AAF	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	± 9.6		
10221	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	± 9.6		
10222	CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	±9.6		
10223	CAD	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM) IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN WLAN	8.48	±9.6		
10224	CAD	UMTS-FDD (HSPA+)	WCDMA	5.97	± 9.6		
10226	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	±9.6		
10227	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	± 9.6		
10228	CAD	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD LTE-TDD	9.22 9.48	±9.6		
10229	DAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6		
10231	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	± 9.6		
10232	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6		
10233	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	±9.6		
10234	CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK) LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD LTE-TDD	9.21 9.48	± 9.6		
10236	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6		
10237	CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TDD	9.21	± 9.6		
10238	CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6		
10239	CAB	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD LTE-TDD	9.21	± 9.6		
10240	CAB	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	± 9.6		
10242	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	± 9.6		
10243	CAD	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	± 9.6		
10244 10245	CAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD LTE-TDD	10.06	± 9.6		
10245	CAG	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	± 9.6		
10247	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	± 9.6		
10248	CAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	± 9.6		
10249 10250	CAG		LTE-TDD LTE-TDD	9.29	± 9.6		
10250	CAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	± 9.6		
10252	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	± 9.6		
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	± 9.6		
10254	CAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	±9.6		
10255 10256	CAB	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK) LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD LTE-TDD	9.20	± 9.6		
10257	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	± 9.6		
10258	CAD	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	± 9.6		
10259	CAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	±9.6		
10260	CAG	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD LTE-TDD	9.97	± 9.6		
10262	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, (LFSR)	LTE-TDD	9.83	±9.6		
10263	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	± 9.6		
10264	CAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	± 9.6		
10265	CAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD LTE-TDD	9.92	±9.6		
10260	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 04-QAM)	LTE-TDD	9.30	± 9.6		
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6		

©Copyright. All rights reserved by CTTL.

	TT	CALIBRATION LABORATORY		CA	
100	Add	No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China			
		+86-10-62304633-2117 ail: emf@caict.ac.cn http://www.caict.ac.cn			
10269	CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	± 9.6
10270	CAB	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	± 9.6
10274 10275	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10) UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	4.87	±9.6
10275	CAD	PHS (QPSK)	WCDMA PHS	3.96	± 9.6
10278	CAD	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	± 9.6
10279	CAG	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	± 9.6
10290	CAG	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	± 9.6
10291 10292	CAG	CDMA2000, RC3, SO55, Full Rate CDMA2000, RC3, SO32, Full Rate	CDMA2000 CDMA2000	3.46	± 9.6
10292	CAG	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	± 9.6
10295	CAG	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	± 9.6
10297	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	± 9.6
10298	CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD LTE-FDD	5.72 6.39	± 9.6
10299	CAF	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6
10301	CAC	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WIMAX	12.03	± 9.6
10302	CAB	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL)	WiMAX	12.57	± 9.6
10303	CAB	IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	12.52	± 9.0
10304	CAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC)	WiMAX WiMAX	11.86	± 9.0
10305	CAA	IEEE 802.16e WIMAX (31.15, 10ms, 10MHz, 64QAM, PUSC)	WIMAX	14.67	± 9.0
10307	AAB	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC)	WIMAX	14.49	± 9.0
10308	AAB	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	WIMAX	14.46	
10309	AAB	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3)	WIMAX	14.58	± 9.0
10310	AAB	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	WIMAX LTE-FDD	14.57 6.06	± 9.0
10313	AAD	iDEN 1:3	IDEN	10.51	± 9.0
10314	AAD	IDEN 1:6	IDEN	13.48	± 9.0
10315	AAD	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc)	WLAN	1.71	± 9.0
10316	AAD	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc) IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc)	WLAN WLAN	8.36	± 9.0
10317 10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	± 9.
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	± 9.
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	± 9.
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	±9.
10356 10387	AAA	Pulse Waveform (200Hz, 80%) QPSK Waveform, 1 MHz	Generic Generic	0.97	±9.
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	± 9.
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	± 9.
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	± 9.
10400	AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc)	WLAN WLAN	8.37 8.60	± 9.0
10401 10402	AAA	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc)	WLAN	8.53	± 9.
10402	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	± 9.
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	± 9.
10406	AAD	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	± 9.
10410	AAA	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9) WLAN CCDF, 64-QAM, 40MHz	LTE-TDD Generic	7.82	± 9.0
10414	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc)	WLAN	1.54	±9.
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	± 9.
10417	AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc)	WLAN	8.23	± 9.0
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long)	WLAN	8.14	± 9.
10419 10422	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN WLAN	8.19	± 9.0
10422	AAA	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	± 9.
10424	AAE	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	± 9.
10425	AAE	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	± 9.