

SAR TEST REPORT

No. I23Z70138-SEM01

For

Samsung Electronics Co., Ltd.

Tablet with Bluetooth, WLAN

Model Name: SM-X110

with

Hardware Version: REV1.0

Software Version: X110.001

FCC ID: ZCASMX110

Issued Date: 2023-8-14

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: cttl_terminals@caict.ac.cn, website: www.caict.ac.cn

©Copyright. All rights reserved by CTTL.

REPORT HISTORY

Report Number	Revision	Issue Date	Description	
I23Z70138-SEM01	Rev.0	2023-8-9	Initial creation of test report	
I23Z70138-SEM01	Rev.1	2023-8-11	Update information and delete 2/3/4G on page26/27/85 Add spot check with full power in Annex J	
I23Z70138-SEM01	Rev.2	2023-8-14 Update information on page 9, 19/27/29/53/56		
I23Z70138-SEM01	Rev.3	2023-8-14	Update information on page 6/9	

TABLE OF CONTENT

1 TEST LABORATORY	5
1.1 Testing Location	5
1.2 Testing Environment	5
1.3 Project Data	
1.4 Signature	5
2 STATEMENT OF COMPLIANCE	6
3 CLIENT INFORMATION	7
3.1 APPLICANT INFORMATION	
3.2 MANUFACTURER INFORMATION	7
4 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)8
4.1 About EUT	-
4.2 INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	
4.3 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	
5 TEST METHODOLOGY	9
5.1 APPLICABLE LIMIT REGULATIONS	
5.2 APPLICABLE MEASUREMENT STANDARDS	9
6 SPECIFIC ABSORPTION RATE (SAR)	10
6.1 INTRODUCTION	
6.2 SAR DEFINITION	
7 TISSUE SIMULATING LIQUIDS	11
7.1 TARGETS FOR TISSUE SIMULATING LIQUID	
7.2 DIELECTRIC PERFORMANCE	
8 SYSTEM VERIFICATION	12
8.1 System Setup	
8.2 System Verification	
9 MEASUREMENT PROCEDURES	14
9.1 Tests to be performed	
9.2 GENERAL MEASUREMENT PROCEDURE	
9.3 BLUETOOTH & WI-FI MEASUREMENT PROCEDURES FOR SAR 9.4 POWER DRIFT	
10 AREA SCAN BASED 1-G SAR	
10.1 REQUIREMENT OF KDB	
10.2 FAST SAR ALGORITHMS	
11 CONDUCTED OUTPUT POWER	19
11.1 WI-FI AND BT MEASUREMENT RESULT ©Copyright. All rights reserved by CTTL.	
Souperion and inglies reserved by OTTE.	raye sorris

CAICT No.I23Z70138-SEM01

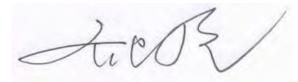
12 SIMULT	TANEOUS TX SAR CONSIDERATIONS	22
	SMIT ANTENNA SEPARATION DISTANCES	
12.2 SAR N	MEASUREMENT POSITIONS	22
13 EVALU	ATION OF SIMULTANEOUS	23
14 SAR TE	EST RESULT	24
14.1 SAR F	RESULTS FOR WLAN	26
	RESULTS FOR BT	
14.4 SAR F	RESULTS FOR PHABLET	27
15 SAR M	EASUREMENT VARIABILITY	29
16 MEASU	IREMENT UNCERTAINTY	30
16.1 Meas	UREMENT UNCERTAINTY FOR NORMAL SAR TESTS (300MHz~3GHz)	30
16.2 MEAS	UREMENT UNCERTAINTY FOR NORMAL SAR TESTS (3~6GHz)	31
	UREMENT UNCERTAINTY FOR FAST SAR TESTS (300MHz~3GHz)	
	UREMENT UNCERTAINTY FOR FAST SAR TESTS (3~6GHZ)	
17 MAIN T	EST INSTRUMENTS	35
ANNEX A	GRAPH RESULTS	36
ANNEX B	SYSTEM VERIFICATION RESULTS	38
ANNEX C	SAR MEASUREMENT SETUP	42
ANNEX D	POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	48
ANNEX E	EQUIVALENT MEDIA RECIPES	50
ANNEX F	SYSTEM VALIDATION	51
ANNEX G	PROBE CALIBRATION CERTIFICATE	52
ANNEX H	DIPOLE CALIBRATION CERTIFICATE	61
ANNEX I	SAR SENSOR TRIGGERING DATA SUMMARY	79
ANNEX J	VARIANT PRODUCT TEST	82
ANNEX H	ACCREDITATION CERTIFICATE	115

1 Test Laboratory

1.1 Testing Location

Company Name:	CTTL
Address:	No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China
	100191.

1.2 Testing Environment


Temperature:	18°C~25°C,
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω
Ambient noise & Reflection:	< 0.012 W/kg

1.3 Project Data

Project Leader:	Qi Dianyuan
Test Engineer:	WangTian
Testing Start Date:	July 1, 2023
Testing End Date:	August 9, 2023

1.4 Signature

WangTian (Prepared this test report)

Qi Dianyuan (Reviewed this test report)

5 20th

Lu Bingsong Deputy Director of the laboratory (Approved this test report)

2 Statement of Compliance

This EUT is a variant product and the report of original sample is No.I23Z70136-SEM01. We share all the 5Gwifi power and 2.4Gwifi full power test results of original sample, we do spot check in the same power and test all the 2.4Gwifi low power test results on annex J.

The maximum results of Specific Absorption Rate (SAR) found during testing for Samsung Electronics Co., Ltd. Tablet with Bluetooth, WLAN SM-X110 are as follows:

	Highest Reported SAR	
Mode	(1g)	
	1g SAR Body	
WLAN 2.4 GHz	0.91	
WLAN 5 GHz	0.60	
BT	0.27	

Table 2.1: Highest Reported SAR (1g)

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report. The highest reported SAR value is obtained at the case of **(Table 2.1)**, and the values are: **Body: 0.91 W/kg (1g)**

Table 2.2. The Sull of SAR Values for WEAN+DT				
	Position	WLAN	BT	Sum
Highest SAR value	Rear 0mm	0.60 (WIFI5G)	0.27	0.87

Table 2.2: The sum of SAR values for WLAN+BT

According to the above tables, the highest sum of reported SAR values is **0.87 W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 14.

Conclusion:

According to the above tables, the sum of reported SAR values is<1.6W/kg. So the simultaneous transmission SAR with volume scans is not required.

3 Client Information

3.1 Applicant Information

Company Name:	Samsung Electronics Co., Ltd.	
Address/Post:	19 Chapin Rd.,Building D Pine BrookNJ07058	
Contact Person:	Jenni Chun	
Contact Email:	j1.chun@samsung.com	
Telephone:	+1-201-937-4203	
Fax		

3.2 Manufacturer Information

Company Name:	Samsung Electronics Co., Ltd.		
Address/Post:	Samsung R5, Maetan dong 129, Samsung ro		
	Youngtong gu, Suwon city 443 742, Korea		
Contact Person:	JP KIM		
Contact Email:	jp426.kim@samsung.com		
Telephone:	+82-10-4376-0326		
Fax			

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Description:	Tablet with Bluetooth, WLAN	
Model name:	SM-X110	
Tested Band:	BT, Wi-Fi(2.4G/5G)	
	2412 – 2462 MHz (Wi-Fi 2.4G)	
	5180 – 5240 MHz (Wi-Fi 5.2G)	
	5260 – 5320 MHz (Wi-Fi 5.3G)	
Tx Frequency:	5500 – 5720 MHz (Wi-Fi 5.5G)	
	5745 – 5825 MHz (Wi-Fi 5.8G)	
	2400 – 2483.5 MHz (Bluetooth)	
Test device production information:	Production unit	
Device type:	Portable device	
Antenna type:	Integrated antenna	

4.2 Internal Identification of EUT used during the test

EUT	IMEI	HW Version	SW Version	
ID*				
EUT1	I23Z70138-01A	REV1.0	X110.001	
EUT2	I23Z70138-02A	REV1.0	X110.001	

*EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test SAR with the EUT1-2.

4.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	HQ-3565S	/	SCUD(Fujian) Electronics Co., LTD.

*AE ID: is used to identify the test sample in the lab internally.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1992:IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IEEE 1528–2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

KDB447498 D01: General RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB248227 D01 802.11 Wi-Fi SAR v02r02: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS

KDB616217 D04 SAR for laptop and tablets v01r02 SAR Evaluation Considerations for Laptop, Notebook, Notebook and Tablet Computers.

KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz.

KDB865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid

Frequency(MHz)	Liquid Type	Conductivity(σ)	± 5% Range	Permittivity(ε)	± 5% Range
2450	Head	1.80	1.71~1.89	39.20	37.30~41.10
5250	Head	4.71	4.47~4.95	35.93	34.13~37.73
5600	Head	5.07	4.82~5.32	35.53	33.8~37.3
5750	Head	5.22	4.96~5.48	35.36	33.59~37.13

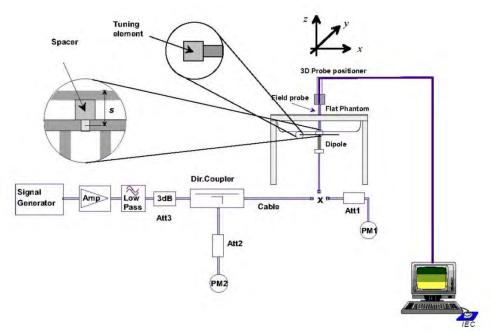
7.2 Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid

Measurement Date (yyyy-mm-dd)	Туре	Frequency	Permittivity ε	Drift (%)	Conductivity σ (S/m)	Drift (%)
2023/7/11	Head	2450 MHz	39.92	1.84	1.845	2.50
2023/7/15	Head	5250 MHz	34.99	-2.62	4.521	-4.01
2023/7/16	Head	5600 MHz	34.4	-3.18	4.867	-4.00
2023/7/17	Head	5750 MHz	34.06	-3.68	5.04	-3.45

Note: The liquid temperature is 22.0° C

Picture 7-1 Liquid depth in the Flat Phantom



8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8-1 System Setup for System Evaluation

Picture 8-2 Photo of Dipole Setup

©Copyright. All rights reserved by CTTL.

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

Measurement		Target val	ue (W/kg)	Measured	value(W/kg)	Devi	ation
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2023/7/11	2450 MHz	24.9	52.7	25.4	53.2	2.01%	0.95%
2023/7/15	5250 MHz	22.8	79.6	23.4	77.9	2.63%	-2.14%
2023/7/16	5600 MHz	23.8	83.6	23.7	83.6	-0.42%	0.00%
2023/7/17	5750 MHz	22.7	80.5	23.0	82.0	1.32%	1.86%

9 Measurement Procedures

9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in picture 9.1.

Step 1: The tests described in 9.2 shall be performed at the channel that is closest to the centre of

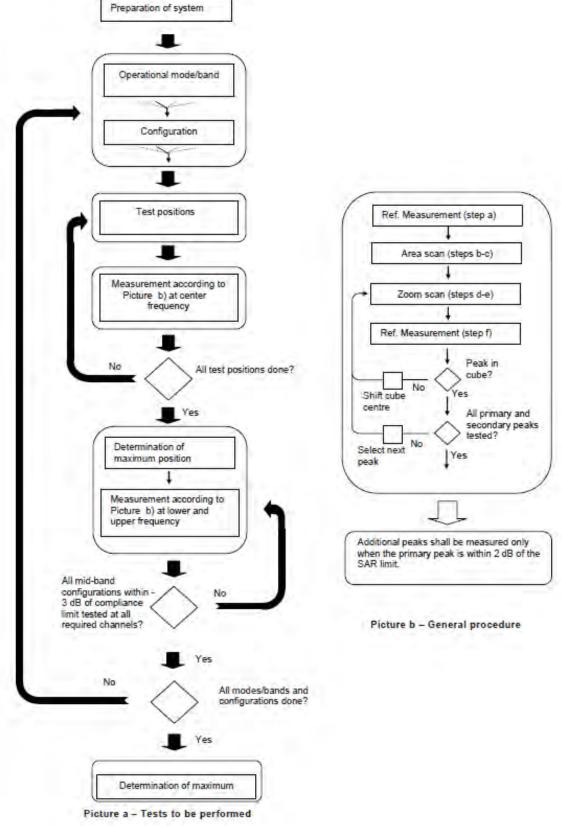
the transmit frequency band (f_c) for:

a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in annex D),

b) all configurations for each device position in a), e.g., antenna extended and retracted, and

c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., $N_c > 3$), then all


frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1,perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEC/IEEE 62209-1528. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

			≤3 GHz	> 3 GHz	
Maximum distance from closest measurement point geometric center of probe sensors) to phantom surface Maximum probe angle from probe axis to phantom surface Maximum probe angle from probe axis to phantom surface Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area} Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom} uniform grid: Δz_{Zoom} (n)		5 ± 1 mm	$\frac{1}{2}$ $\frac{1}$		
			30°±1°	20°±1°	
			$ \leq 2 \text{ GHz} \leq 15 \text{ mm} \qquad 3 - 4 \text{ GHz} \leq 2 - 3 \text{ GHz} \leq 12 \text{ mm} \qquad 4 - 6 \text{ GHz} \leq 2 $		
Maximum area scan sp:	atial resoluti	on: Δx _{Area} , Δy _{Area}	When the x or y dimension of t measurement plane orientation measurement resolution must b dimension of the test device wi point on the test device.	, is smaller than the above, th $e \leq$ the corresponding x or y	
Maximum zoom scan spatial resolution: Δx_{Zoom} . Δy_{Zoom}			$\leq 2 \text{ GHz} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^4$	3 – 4 GHz: ≤ 5 mm [*] 4 – 6 GHz: ≤ 4 mm [*]	
1	uniform grid: Δz _{Zoom} (n)		≤5 mm	$3 - 4 \text{ GHz} \le 4 \text{ mm}$ $4 - 5 \text{ GHz} \le 3 \text{ mm}$ $5 - 6 \text{ GHz} \le 2 \text{ mm}$	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zcom}(1)$: between 1^{st} two points closest to phantom surface	≤4 mm	$3 = 4 \text{ GHz}: \le 3 \text{ mm}$ $4 = 5 \text{ GHz}: \le 2.5 \text{ mm}$ $5 = 6 \text{ GHz}: \le 2 \text{ mm}$	
	grid	∆z _{Zoom} (n>1): between subsequent points	\leq 1.5· $\Delta z_{Zoom}(n-1)$		
Minimum zoom scan volume	x, y, z		≥ 30 mm	$3 - 4 \text{ GHz} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz} \ge 22 \text{ mm}$	

GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.3 Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.4 Power Drift

To control the output power stability during the SAR test, DASY5 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in section14 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Area Scan Based 1-g SAR

10.1 Requirement of KDB

According to the KDB447498 D01, when the implementation is based the specific polynomial fit algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-gSAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

10.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz)and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm mare 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively. The paper describing the algorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

11 Conducted Output Power

Table11.1: Summary of Receiver detection mechanism

Main Antenna	Sensor off	Sensor on
Main Antenna	DSI0	DSI1

11.1 Wi-Fi and BT Measurement result

The maximum output power of BT antenna is 5.38dBm. The maximum tune up of BT antenna is 7dBm.

The average conducted power for Wi-Fi 2.4G-DSI0

FCC			
802.11b(dB	lm)	power setting	Tune up
Channel\data rate	1Mbps		
11(2462MHz)	17.24	17.00	18.00
6(2437MHz)	16.71	17.00	18.00
1(2412MHz)	16.67	17.00	18.00
802.11g(dB	lm)		
Channel\data rate	6Mbps		
11(2462MHz)	16.44	16.50	17.50
6(2437MHz)	16.14	16.50	17.50
1(2412MHz)	16.03	16.50	17.50
802.11n(dBm)-	20MHz		
Channel\data rate	MCS0		
11(2462MHz)	16.06	16.00	17.00
6(2437MHz)	16.04	16.50	17.50
1(2412MHz)	15.08	15.50	16.50

The average conducted power for Wi-Fi 5G-DSI0

5GHz			
802.11n(dBm)-	20MHz		
Channel\data rate	MCS0		
36(5180 MHz)	15.87	16.50	17.50
40(5200 MHz)	15.78	16.50	17.50
44(5220 MHz)	15.68	16.50	17.50
48(5240 MHz)	15.58	16.50	17.50
52(5260 MHz)	16.01	16.50	17.50
56(5280 MHz)	16.11	16.50	17.50
60(5300 MHz)	16.47	16.50	17.50
64(5320 MHz)	16.49	16.50	17.50
802.11n(dBm)-	40MHz		
Channel\data rate	MCS0		
102(5510 MHz)	13.47	14.00	15.00
110(5550 MHz)	13.72	14.00	15.00
118(5590 MHz)	13.91	14.00	15.00
126(5630 MHz)	14.03	14.00	15.00
134(5670 MHz)	13.58	14.00	15.00
142(5710 MHz)	13.94	14.00	15.00
802.11a(dB	im)		
Channel\data rate	6Mbps		
149(5745 MHz)	13.21	13.50	14.50
153(5765 MHz)	13.18	13.50	14.50
157(5785 MHz)	13.23	13.50	14.50
161(5805 MHz)	12.97	13.50	14.50
165(5825 MHz)	13.24	13.50	14.50

The average conducted power for Wi-Fi 5G- DSI1

5GHz			
802.11a(dBr			
Channel\data rate	6Mbps	power setting	Tune up
36(5180 MHz)	4.21	5	6.00
40(5200 MHz)	4.19	5	6.00
44(5220 MHz)	4.31	5	6.00
48(5240 MHz)	4.32	5	6.00
52(5260 MHz)	4.98	5	6.00
56(5280 MHz)	5.12	5	6.00
60(5300 MHz)	5.50	5	6.00
64(5320 MHz)	5.26	5	6.00
100(5500 MHz)	4.28	5	6.00
104(5520 MHz)	4.13	5	6.00
108(5540 MHz)	4.75	5	6.00
112(5560 MHz)	4.57	5	6.00
116(5580 MHz)	4.82	5	6.00
120(5600 MHz)	4.76	5	6.00
124(5620 MHz)	4.82	5	6.00
128(5640 MHz)	4.72	5	6.00
132(5660 MHz)	4.45	5	6.00
136(5680 MHz)	4.56	5	6.00
140(5700 MHz)	4.72	5	6.00
144(5720 MHz)	4.53	5	6.00
149(5745 MHz)	4.87	5	6.00
153(5765 MHz)	4.37	5	6.00
157(5785 MHz)	4.58	5	6.00
161(5805 MHz)	4.54	5	6.00
165(5825 MHz)	4.42	5	6.00

12 Simultaneous TX SAR Considerations

12.1 Transmit Antenna Separation Distances

The detail for transmit antenna separation distances is described in the additional document: Appendix to test report No.I23Z70138-SEM01 The photos of SAR test

12.2 SAR Measurement Positions

According to the KDB941225 D06 Hot Spot SAR, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR.

SAR measurement positions						
Mode Front Rear Left edge Right edge Top edge Bottom edge						Bottom edge
ANT6	< 25mm	> 25mm				

13 Evaluation of Simultaneous

Reported SAR 10g (W/kg)									
S	State 1 2 1+2								
В	ody	BT	WiFi 5G	172					
Front	10mm		0.25	0.25					
Front	0mm	0.13	0.28	0.41					
Rear	15mm		0.25	0.25					
Rear	0mm	0.27	0.60	0.87					
Left	0mm	0.00	0.05	0.05					
Right	0mm	0.00	0.14	0.14					
Тор	17mm		0.39	0.39					
Тор	0mm	0.08	0.38	0.46					

Conclusion:

According to the above tables, the sum of reported SAR values is<1.6W/kg. So the simultaneous transmission SAR with volume scans is not required.

14 SAR Test Result

Note:

KDB 447498 D01 General RF Exposure Guidance:

For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor

For BT/WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

 \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz

 $\,\leqslant\,$ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz

 $\le\,$ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is $\,\ge\,$ 200 MHz KDB 648474 D04 Handset SAR:

With headset attached, when the reported SAR for body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

KDB 248227 D01 SAR meas for 802.11:

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

To determine the initial test position, Area Scans were performed to determine the position with the Maximum Value of SAR (measured). The position that produced the highest Maximum Value of SAR is considered the worst case position; thus used as the initial test position.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the initial test position(s) by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The initial test position(s) is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the reported SAR for the initial test position is:

 \leq 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.

> 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the initial ©Copyright. All rights reserved by CTTL.
Page 24 of 115

test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the reported SAR is \leq 0.8 W/kg or all required test positions are tested.

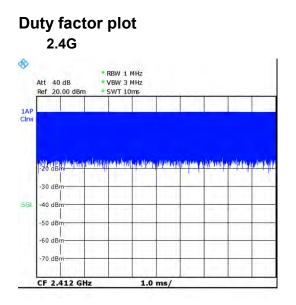
For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
When it is unclear, all equivalent conditions must be tested.

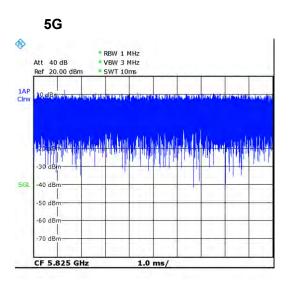
For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is \leq 1.2 W/kg or all required test channels are considered.

•The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.

When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is \leq 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.

When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤ 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR.




14.1 SAR results for WLAN

The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

When the same transmission mode configurations have the same maximum output power on the same channel for the 802.11 a/g/n/ac/ax modes, the channel in the lower order/sequence 802.11 mode (i.e. a, g, n ac then ax) is selected.

SAR Test reduction was applied from KDB 248227 guidance, when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band. Additional output power measurements were not deemed necessary.

WLAN 2.4G

Frequency Band	Channel Number	Frequency (MHz)	Mode/RB	Test Position	Distance	Fig	EUT Measured Power (dBm)	Tune up (dBm)	Measured SAR 1g (W/kg)	Reported SAR 1g (W/kg)	Measured SAR 10g (W/kg)	Reported SAR 10g (W/kg)	Power Drift
WLAN 2.4G	11	2462	11b	Front	10mm		17.24	18.00	0.157	0.19	0.084	0.10	-0.18
WLAN 2.4G	11	2462	11b	Rear	15mm		17.24	18.00	0.166	0.20	0.087	0.10	0.1
WLAN 2.4G	6	2437	11b	Rear	15mm		16.71	18.00	0.153	0.21	0.080	0.11	0.12
WLAN 2.4G	1	2412	11b	Rear	15mm		16.67	18.00	0.17	0.23	0.089	0.12	0.04
WLAN 2.4G	11	2462	11b	Left	0mm		17.24	18.00	0.039	0.05	0.019	0.02	0.08
WLAN 2.4G	11	2462	11b	Right	0mm		17.24	18.00	0.14	0.17	0.064	0.08	-0.17
WLAN 2.4G	11	2462	11b	Тор	17mm		17.24	18.00	0.081	0.10	0.044	0.05	-0.03

WLAN 5G

Frequency Band	Channel Number	Frequency (MHz)	Mode/RB	Test Position	Distance	Fig	EUT Measured Power (dBm)	Tune up (dBm)	Measured SAR 1g (W/kg)	Reported SAR 1g (W/kg)	Measured SAR 10g (W/kg)	Reported SAR 10g (W/kg)	Power Drift
WLAN 5G	36	5180	11N 20M	Front	10mm		15.87	17.50	0.17	0.25	0.064	0.09	0.12
WLAN 5G	36	5180	11N 20M	Rear	15mm		15.87	17.50	0.172	0.25	0.070	0.10	0.03
WLAN 5G	36	5180	11N 20M	Left	0mm		15.87	17.50	0.035	0.05	0.016	0.02	0.18
WLAN 5G	36	5180	11N 20M	Right	0mm		15.87	17.50	0.051	0.07	0.018	0.03	0.16
WLAN 5G	36	5180	11N 20M	Top	17mm		15.87	17.50	0.267	0.39	0.109	0.16	0.02
WLAN 5G	64	5320	11N 20M	Front	10mm		16.49	17.50	0.193	0.24	0.075	0.09	-0.1
WLAN 5G	64	5320	11N 20M	Rear	15mm		16.49	17.50	0.184	0.23	0.071	0.09	0.07
WLAN 5G	64	5320	11N 20M	Left	0mm		16.49	17.50	0.037	0.05	0.013	0.02	0.18
WLAN 5G	64	5320	11N 20M	Right	0mm		16.49	17.50	0.059	0.07	0.021	0.03	-0.1
WLAN 5G	64	5320	11N 20M	Тор	17mm		16.49	17.50	0.253	0.32	0.104	0.13	0.01
WLAN 5G	126	5630	11a	Front	10mm		14.03	15.00	0.174	0.22	0.062	0.08	-0.15
WLAN 5G	126	5630	11a	Rear	15mm		14.03	15.00	0.135	0.17	0.051	0.06	0.19
WLAN 5G	126	5630	11a	Left	0mm		14.03	15.00	< 0.01	< 0.01	< 0.01	< 0.01	١.
WLAN 5G	126	5630	11a	Right	0mm		14.03	15.00	0.088	0.11	0.027	0.03	0.07
WLAN 5G	126	5630	11a	Тор	17mm		14.03	15.00	0.219	0.27	0.085	0.11	0.05
WLAN 5G	165	5825	11a	Front	10mm		13.24	14.50	0.127	0.17	0.039	0.05	-0.18
WLAN 5G	165	5825	11a	Rear	15mm		13.24	14.50	0.101	0.13	0.029	0.04	0.03
WLAN 5G	165	5825	11a	Left	0mm		13.24	14.50	0.032	0.04	0.007	0.01	-0.15
WLAN 5G	165	5825	11a	Right	0mm		13.24	14.50	0.103	0.14	0.023	0.03	-0.15
WLAN 5G	165	5825	11a	Тор	17mm		13.24	14.50	0.16	0.21	0.051	0.07	-0.01
WLAN 5G	48	5240	11a	Front	0mm		4.32	6.00	0.142	0.21	0.032	0.05	-0.18
WLAN 5G	48	5240	11a	Rear	0mm		4.32	6.00	0.303	0.45	0.058	0.09	-0.13
WLAN 5G	48	5240	11a	Тор	0mm		4.32	6.00	0.256	0.38	0.049	0.07	-0.13
WLAN 5G	60	5300	11a	Front	0mm		5.26	6.00	0.197	0.23	0.04	0.05	0
WLAN 5G	60	5300	11a	Rear	0mm		5.26	6.00	0.22	0.26	0.052	0.06	-0.04
WLAN 5G	60	5300	11a	Тор	0mm		5.26	6.00	0.133	0.16	0.034	0.04	-0.15
WLAN 5G	124	5620	11a	Front	0mm		4.82	6.00	0.212	0.28	0.046	0.06	-0.09
WLAN 5G	124	5620	11a	Rear	0mm	F.2	4.82	6.00	0.456	0.60	0.0825	0.11	-0.09
WLAN 5G	124	5620	11a	Тор	0mm		4.82	6.00	0.189	0.25	0.048	0.06	0.05
WLAN 5G	149	5745	11a	Front	0mm		4.87	6.00	0.147	0.19	0.033	0.04	0.13
WLAN 5G	149	5745	11a	Rear	0mm		4.87	6.00	0.253	0.33	0.05	0.06	0
WLAN 5G	149	5745	11a	Top	0mm		4.87	6.00	0.102	0.13	0.028	0.04	-0.12

14.3 SAR results for BT

Frequency Band	Channel Number	Frequency (MHz)	Mode/RB	Test Position	Distance	Fig	EUT Measured Power (dBm)	Tune up (dBm)	Measured SAR 1g (W/kg)	Reported SAR 1g (W/kg)	Measured SAR 10g (W/kg)	Reported SAR 10g (W/kg)	Power Drift
BT	0	2402		Front	0mm		5.38	7.00	0.091	0.13	0.040	0.06	0.13
BT	78	2480		Rear	0mm	F.3	5.15	7.00	0.175	0.27	0.067	0.10	0.15
BT	39	2441		Rear	0mm		5.12	7.00	0.119	0.18	0.047	0.07	-0.17
BT	0	2402		Rear	0mm		5.38	7.00	0.138	0.20	0.055	0.08	0.14
BT	0	2402		Left	0mm		5.38	7.00	< 0.01	<0.01	< 0.01	< 0.01	1
BT	0	2402		Right	0mm		5.38	7.00	< 0.01	<0.01	< 0.01	< 0.01	١
BT	0	2402		Тор	0mm		5.38	7.00	0.056	0.08	0.024	0.03	0.08

14.4 SAR results for Phablet

According to the KDB648474 D04, for smart phones, with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm, that can provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets and support voice calls next to the ear, unless it is confirmed otherwise through KDB inquiries, the following phablet procedures should be applied to evaluate SAR compliance for each applicable wireless modes and frequency band. Devices marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance.

- 1. The normally required head and body-worn accessory SAR test procedures for handsets, including hotspot mode, must be applied.
- The UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge, in direct contact with a flat phantom, for 10-g extremity SAR according to the body-equivalent tissue dielectric parameters in KDB Publication 865664 D01 to address interactive hand use exposure
 ©Copyright. All rights reserved by CTTL.

conditions. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg; however, when power reduction applies to hotspot mode the measured SAR must be scaled to the maximum output power, including tolerance, allowed for phablet modes to compare with the 1.2 W/kg SAR test reduction threshold. The normal tablet procedures in KDB Publication 616217 are required when the overall diagonal dimension of the device is > 20.0 cm. Hotspot mode SAR is not required when normal tablet procedures are applied. Extremity 10-g SAR is also not required for the front (top) surface of larger form factor full size tablets. The more conservative normal tablet SAR results can be used to support phablet mode 10-g extremity SAR.

3. The simultaneous transmission operating configurations applicable to voice and data transmissions for both phone and mini-tablet modes must be taken into consideration separately for 1-g and 10-g SAR to determine the simultaneous transmission SAR test exclusion and measurement requirements for the relevant wireless modes and exposure conditions

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required. 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once. 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

10.1	weasurement on	001 (ui				(000	··· •	U ,		
No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedom
Meas	surement system									
1	Probe calibration	В	6.0	Ν	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	N	1	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	œ
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	œ
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
			Test	sample related	d	•			•	
14	Test sample positioning	А	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	А	3.4	Ν	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phan	tom and set-u	р					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	œ
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	œ
19	Liquid conductivity (meas.)	А	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	œ
21	Liquid permittivity (meas.)	А	1.6	N	1	0.6	0.49	1.0	0.8	521

C	Combined standard uncertainty	<i>u</i> _c =	$=\sqrt{\sum_{i=1}^{21}c_i^2u_i^2}$					9.55	9.43	257
(conf 95 %	/		$u_e = 2u_c$					19.1	18.9	
16.2	Measurement Un	certai	nty for Nor	mal SAR To	ests ((3~6G	Hz)			
No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedom
Meas	surement system									
1	Probe calibration	В	6.55	Ν	1	1	1	6.55	6.55	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	8
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	œ
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	œ
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
			Test	sample related	1					
14	Test sample positioning	А	3.3	Ν	1	1	1	3.3	3.3	71
15	Device holder uncertainty	А	3.4	Ν	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phan	tom and set-u	p					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
19	Liquid conductivity (meas.)	А	2.06	Ν	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
	vright All rights reserved							31 of '		

©Copyright. All rights reserved by CTTL.

Page 31 of 115

CAICT No.I23Z70138-SEM01

21	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	1.0	0.8	521
C	Combined standard uncertainty	$u_{c}^{'} =$	$\sqrt{\sum_{i=1}^{21}c_i^2u_i^2}$					10.7	10.6	257
-	nded uncertainty idence interval of)	I	$u_e = 2u_c$					21.4	21.1	
16.3	Measurement Un	certai	nty for Fas	t SAR Test	s (300	MHz	~3GH	z)		
No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedom
Meas	surement system									
1	Probe calibration	В	6.0	Ν	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
14	Fast SAR z- Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
			Test	sample related	1					
15	Test sample positioning	А	3.3	Ν	1	1	1	3.3	3.3	71
16	Device holder uncertainty	А	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-u	р					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
0000		LU OTT								

©Copyright. All rights reserved by CTTL.

Page 32 of 115

CAICT No.I23Z70138-SEM01

Liquid conductivity (meas.)	А	2.06	Ν	1	0.64	0.43	1.32	0.89	43
Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty	<i>u</i> _c =	$=\sqrt{\sum_{i=1}^{22}c_i^2u_i^2}$					10.4	10.3	257
idence interval of							20.8	20.6	
						-	r	1]
Error Description	Туре	2	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
		value	Distribution		1g	10g			of
							(1g)	(10g)	freedom
•									
									∞
									∞
-									8
•									∞
									∞
					1	1			∞
-			-		1	1			∞
Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	œ
RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞
Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
Probepositioningwithrespecttophantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8
Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
Fast SAR z- Approximation	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	8
		Test	sample related	1					
Test sample positioning	А	3.3	N	1	1	1	3.3	3.3	71
Device holder uncertainty	А	3.4	Ν	1	1	1	3.4	3.4	5
	(meas.)Liquidpermittivity(target)Liquidpermittivity(meas.)Combined standard uncertaintyanded uncertaintyidenceintervalofidenceintervalofbaseProbe calibrationIsotropyBoundary effectLinearityDetection limitReadout electronicsResponse timeIntegration timeRFambientconditions-noiseRFambientconditions-reflectionProbepositionedmech. Restrictions:Probepositioningwithrespecttophantom shellPost-processingFastSARZ-ApproximationSourioningpositioningDetectioning	(meas.)ALiquid permittivity (target)BLiquid permittivity (meas.)ACombined standard uncertainty u'_c =Ided uncertainty idence interval of) u'_c = Measurement Urretainty idence interval of)Type Measurement Urretainty idence interval of)BBoundary effect IsotropyBBoundary effect Integration limit Readout electronics BBNegense time Integration time conditions-noiseBRF ambient conditions-reflectionBRF nobe 	(meas.)A2.06Liquid permittivity (target)B5.0Liquid permittivity (meas.)A1.6Combined standard uncertainty $u'_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ Inded uncertainty idence interval of) $u_c = 2u_c$ Inded uncertainty idence interval of) $u_c = 2u_c$ Measurement Uncertainty valueTypeUncertainty valueError DescriptionTypeUncertainty valueSurement systemB4.7Probe calibrationB6.55IsotropyB4.7Boundary effectB2.0LinearityB4.7Detection limitB0.3Response timeB0.8Integration timeB2.6RF ambient conditions-noiseB0RFambient conditions-reflectionB0.8Probe positioned mech. RestrictionsB0.8Probe positioning with respect to phantom shellB1.0Past SAR z- ApproximationB14.0Device holderA3.3	(meas.)A2.06NLiquid permittivity (target)B5.0RLiquid permittivity (meas.)A1.6Ncombined standard uncertainty $u_e^- = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ Image: Combined standard uncertaintynded uncertainty idence interval of) $u_e^- = 2u_e^-$ Image: Combined standard uncertaintyMeasurement Uncertainty idence interval of)Uncertainty valueProbably DistributionMeasurement SystemUncertainty valueProbably DistributionSurement systemB6.55NIsotropyB4.7RBoundary effectB2.0RLinearityB4.7RDetection limitB0.3RResponse timeB0.8RIntegration timeB0.8RResponse timeB0.8RRef ambient conditions-reflectionB0.8RProbe positioned mech. RestrictionsB0.8RProbe positioned mech. RestrictionsB0.8RProbe positioning with respect to phantom shellB1.0RProbe positioning positioningB14.0RProse positioning positioningA3.3N	(meas.)A2.06N1Liquid permittivity (target)B5.0R $\sqrt{3}$ Liquid permittivity (meas.)A1.6N1Combined standard uncertainty $u'_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ Image: Complete transmitted tr	(meas.)A2.06N10.64Liquid permittivity (target)B5.0R $\sqrt{3}$ 0.6Liquid permittivity (meas.)A1.6N10.6Combined standard uncertainty $u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ Image: Combined standard uncertainty $u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ Image: Combined standard uncertainty $u_c = 2u_c$ Image: Combined standard uncertaintyImage: Combined s	(meas.) A 2.06 N 1 0.64 0.43 Liquid permittivity (target) B 5.0 R $\sqrt{3}$ 0.6 0.49 Liquid permittivity (meas.) A 1.6 N 1 0.6 0.49 combined standard uncertainty $u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ Image: Combined standard 0.6 0.49 nded uncertainty idence interval of $u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ Image: Combined standard 0.6 0.49 Measurement Uncertainty idence interval of $u_c = 2u_c$ Image: Combined standard Image: Co	(meas.) A 2.06 N I 0.64 0.43 1.32 Liquid permittivity (target) B 5.0 R $\sqrt{3}$ 0.6 0.49 1.7 Liquid permittivity (meas.) A 1.6 N 1 0.6 0.49 1.0 Combined standard uncertainty $u'_x = \sqrt{\frac{2}{z_1}} c_i^2 u_i^2$ Image: Combined standard uncertainty	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

©Copyright. All rights reserved by CTTL.

17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	œ
17	Diffe of output power	D				1	1	2.9	2.9	
			Phan	tom and set-u	· · · · · ·					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
20	Liquid conductivity (meas.)	А	2.06	Ν	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	u' _c =	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					13.5	13.4	257
-	nded uncertainty fidence interval of	ı	$u_e = 2u_c$					27.0	26.8	

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial	Calibration Date	Valid Period
			Number		
01	Network analyzer	E5071C	MY46110673	January 10, 2023	One year
02	Power sensor	NRP110T	101139	January 13, 2023	One year
03	Power sensor	NRP110T	101159	January 13, 2023	One year
04	Signal Generator	E4438C	MY49071430	January 19, 2023	One year
05	Amplifier	60S1G4	0331848	No Calibration	Requested
06	BTS	CMW500	159890	January 12, 2023	One year
07	E-field Probe	SPEAG EX3DV4	7548	August 1, 2022	One year
08	DAE	SPEAG DAE4	1525	September 15, 2022	One year
09	Dipole Validation Kit	SPEAG D2450V2	853	July 20,2022	One year
10	Dipole Validation Kit	SPEAG D5GHzV2	1060	June 19,2023	One year

END OF REPORT BODY

ANNEX A Graph Results

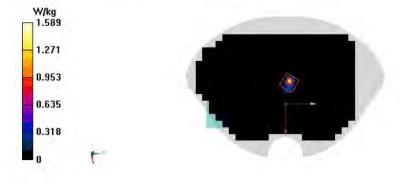
WLAN5G Body

Date: 7/16/2023

Electronics: DAE4 Sn1525

Medium: H650-7000M

Medium parameters used: f = 5620 MHz; = 5.115 S/m; $_r = 34.88$; $= 1000 \text{ kg/m}^3$


Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

Communication System: WIFI 5G (0) Frequency: 5620 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7548 ConvF(4.57, 4.57, 4.57)

Area Scan (161x241x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.59 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 6.143 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 3.36 W/kg SAR(1 g) = 0.456 W/kg; SAR(10 g) = 0.082 W/kg Maximum value of SAR (measured) = 1.45 W/kg

BT Body

Date: 7/11/2023

Electronics: DAE4 Sn1525

Medium: H650-7000M

Medium parameters used: f = 2480 MHz; = 1.906 S/m; $_r = 41.434$; = 1000 kg/m³

Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C

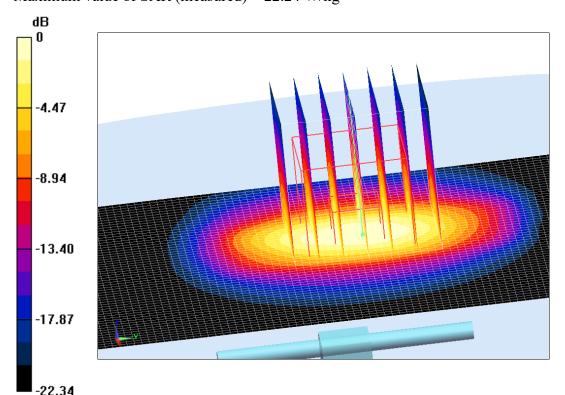
Communication System: BT (0) Frequency: 2480 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7548 ConvF(7.32, 7.32, 7.32)

Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.352 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.141 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 0.493 W/kg SAR(1 g) = 0.175 W/kg; SAR(10 g) = 0.067 W/kg Maximum value of SAR (measured) = 0.290 W/kg W/kg 0.352 0.282 0.211 0.141 0.070 0


ANNEX B System Verification Results

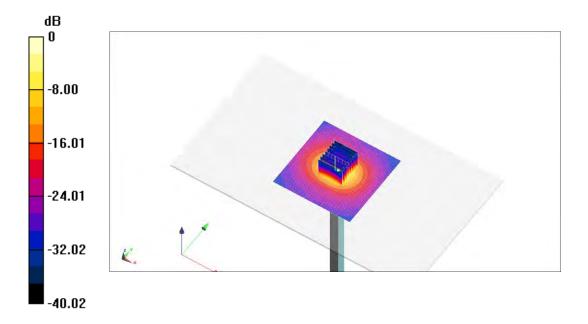
2450MHz

Date: 7/11/2023 Electronics: DAE4 Sn1525 Medium: H650-7000 MHz Medium parameters used: f = 2450MHz; σ =1.845 mho/m; ϵ_r = 39.92; ρ = 1000 kg/m³ Ambient Temperature: 22.2°C Liquid Temperature: 22°C Communication System: CW Frequency: 2450MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7548 ConvF(7.32, 7.32, 7.32)

Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 21.76 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value =118.71 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 26.12 W/kg SAR(1 g) = 13.3W/kg; SAR(10 g) = 6.35 W/kg Maximum value of SAR (measured) = 22.24 W/kg

0 dB = 22.24 W/kg = 13.47 dB W/kg



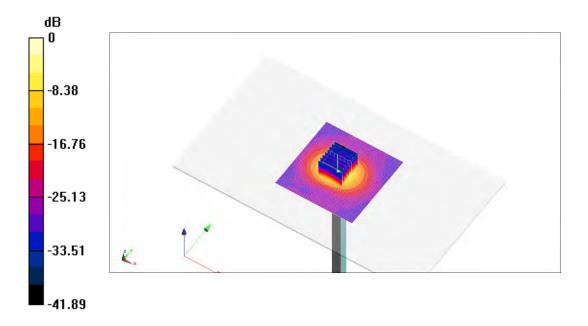
5250 MHz

Date: 7/15/2023 Electronics: DAE4 Sn1525 Medium: H650-7000 MHz Medium parameters used: f = 5250 MHz; σ =4.521 mho/m; ϵ_r = 34.99; ρ = 1000 kg/m³ Ambient Temperature: 22.2°C Liquid Temperature: 22°C Communication System: CW Frequency: 5250 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7548 ConvF(4.98, 4.98, 4.98)

Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.42 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value =80.05 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 27.96 W/kg SAR(1 g) = 7.79W/kg; SAR(10 g) = 2.34 W/kg Maximum value of SAR (measured) = 18.75 W/kg

0 dB = 18.75 W/kg = 12.73 dB W/kg



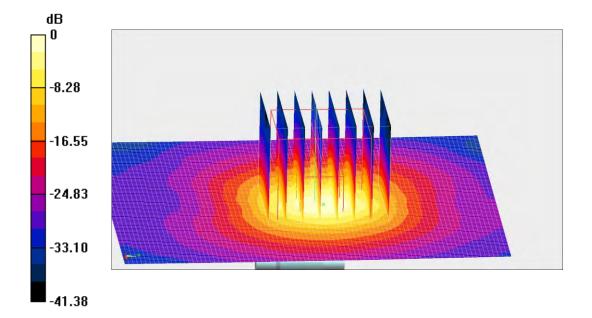
5600 MHz

Date: 7/16/2023 Electronics: DAE4 Sn1525 Medium: H650-7000 MHz Medium parameters used: f = 5600 MHz; σ =4.867 mho/m; ϵ_r = 34.4; ρ = 1000 kg/m³ Ambient Temperature: 22.2°C Liquid Temperature: 22°C Communication System: CW Frequency: 5600 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7548 ConvF(4.57, 4.57, 4.57)

Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 19.73 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value =77.78 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 31.26 W/kg SAR(1 g) = 8.36W/kg; SAR(10 g) = 2.37 W/kg Maximum value of SAR (measured) = 20.26 W/kg

 $0 \ dB = 20.26 \ W/kg = 13.07 \ dB \ W/kg$



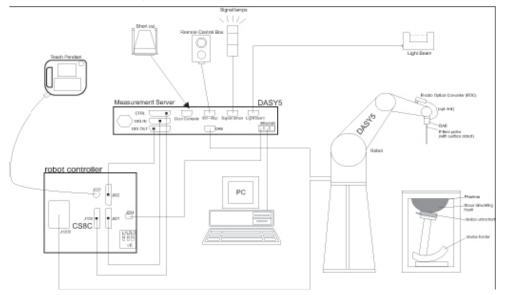
5750 MHz

Date: 7/17/2023 Electronics: DAE4 Sn1525 Medium: H650-7000 MHz Medium parameters used: f = 5750 MHz; σ =5.04 mho/m; ε_r = 34.06; ρ = 1000 kg/m³ Ambient Temperature: 22.2°C Liquid Temperature: 22°C Communication System: CW Frequency: 5750 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7548 ConvF(4.64, 4.64, 4.64)

Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 19.61 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value =76.37 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 32.46 W/kg SAR(1 g) = 8.2W/kg; SAR(10 g) = 2.3 W/kg Maximum value of SAR (measured) = 19.72 W/kg

0 dB = 19.72 W/kg = 12.95 dB W/kg



ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy5 or DASY6 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (StäubliTX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 or DASY6 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2 Dasy5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 or DASY6 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

•	
Model:	ES3DV3, EX3DV4
Frequency	10MHz — 6.0GHz(EX3DV4)
Range:	10MHz — 4GHz(ES3DV3)
Calibration:	In head and body simulating tissue at
	Frequencies from 835 up to 5800MHz
Linearity:	± 0.2 dB(30 MHz to 6 GHz) for EX3DV4
± 0.2 dB(30 MHz	to 4 GHz) for ES3DV3
DynamicRange:	10 mW/kg — 100W/kg
Probe Length:	330 mm
Probe Tip	
Length:	20 mm
Body Diameter:	12 mm
Tip Diameter:	2.5 mm (3.9 mm for ES3DV3)
Tip-Center:	1 mm (2.0mm for ES3DV3)
Application:SAF	R Dosimetry Testing
	Compliance tests ofmobile phones
	Dosimetry in strong gradient fields
Picture C.3E-fie	d Probe

Picture C.2Near-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or

No.I23Z70138-SEM01

other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2 Robot

- The SPEAG DASY system uses the high precision robots (DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:
- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- > Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- > Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 5

C.4.3 Measurement Server

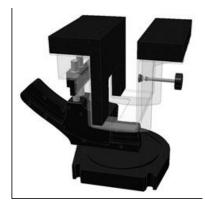
The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128MB), RAM DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture C.6 Server for DASY 5

C.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.


The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\ell = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C7-1: Device Holder

Picture C.7-2: Laptop Extension Kit

C.4.5 Phantom

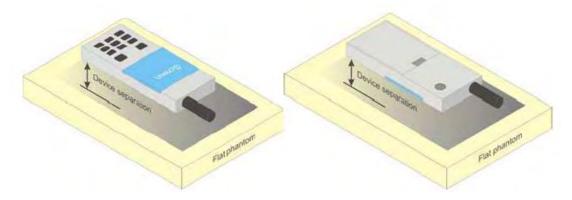
The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness:	2±0. 2 mm
Filling Volume:	Approx. 25 liters
Dimensions:	810 x 1000 x 500 mm (H x L x W)
Available:	Special

©Copyright. All rights reserved by CTTL.

Picture C.8: SAM Twin Phantom

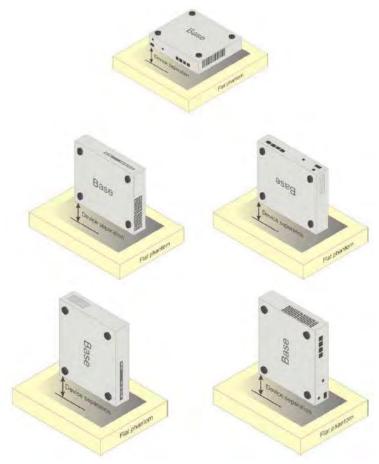


ANNEX D Position of the wireless device in relation to the phantom

D.1 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.

Picture D.4Test positions for body-worn devices


D.2 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

D.4 DUT Setup Photos

Picture D.6

ANNEX E Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

		. composit		110000	Equitato	in matter		
Frequency	835Head	835Body	1900	1900	2450	2450	5800	5800
(MHz)	osoneau			Body	Head	Body	Head	Body
Ingredients (% by	/ weight)							
Water	41.45	52.5	55.242	69.91	58.79	72.60	65.53	65.53
Sugar	56.0	45.0	١	١	\	١	\	١
Salt	1.45	1.4	0.306	0.13	0.06	0.18	١	١
Preventol	0.1	0.1	١	١	١	١	/	١
Cellulose	1.0	1.0	١	١	١	١	/	١
Glycol	1	1	44.452	29.96	41.15	27.22	1	1
Monobutyl	۸	١	44.452	29.90	41.15	21.22	1	١
Diethylenglycol	1		1	N	1	1	17.24	17.24
monohexylether	۸	١	١	١	1	١	17.24	17.24
Triton X-100	١	/	١	١	١	١	17.24	17.24
Dielectric	ε=41.5	ε=55.2	ε=40.0	ε=53.3	ε=39.2	c=50.7	c=25.2	ε=48.2
Parameters						ε=52.7	ε=35.3	
Target Value	σ=0.90	σ=0.97	σ=1.40	σ=1.52	σ=1.80	σ=1.95	σ=5.27	σ=6.00

TableE.1: Composition of the Tissue Equivalent Matter

Note: There are a little adjustment respectively for 750, 1750, 2600, 5200, 5300 and 5600 based on the recipe of closest frequency in table E.1.

ANNEX F System Validation

The SAR system must be validated against its performance specifications before it is deployed.

When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)
7548	Head 2450MHz	August.3,2022	2450 MHz	OK
7548	Head 5250MHz	August.4,2022	5250 MHz	OK
7548	Head 5600MHz	August.4,2022	5600 MHz	OK
7548	Head 5750MHz	August.4,2022	5750 MHz	OK

Table F.1: System Validation for 7548

ANNEX G Probe Calibration Certificate

Probe 7548 Calibration Certificate

Add: No.52 HuaYuanBei Road, Tel: +86-10-62304633-2117 E-mail: emf@caiet.ac.cn	LABORATORY Haidian District, Beijin, http://www.caict.ac.cn	a 100191 (hina 11/0) N	CALIBRATION CNAS L0570
Client CTTL	RTIFICATE	Certificate NO. 24	22-00200
Object	EX3DV4 - S	N : 7548	
Calibration Procedure(s)	FF-Z11-004	02	
	Calibration F	Procedures for Dosimetric E-field Probes	
Calibration date:	August 01, 2	2022	
pages and are part of the cert	incate.		
All calibrations have been on numidity<70%.	conducted in the o	closed laboratory facility: environment terr libration)	nperature(22±3)°C and
	conducted in the o	libration)	nperature(22±3)°C and Scheduled Calibration
All calibrations have been on numidity<70%. Calibration Equipment used (N	conducted in the o M&TE critical for ca	libration)	
All calibrations have been on numidity<70%. Calibration Equipment used (M Primary Standards	M&TE critical for ca	libration) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
All calibrations have been on numidity<70%. Calibration Equipment used (M Primary Standards Power Meter NRP2	M&TE critical for ca	libration) Cal Date(Calibrated by, Certificate No.) 5 14-Jun-22(CTTL, No.J22X04181)	Scheduled Calibration Jun-23
All calibrations have been on numidity<70%. Calibration Equipment used (More Primary Standards Power Meter NRP2 Power sensor NRP-Z91	M&TE critical for ca ID # 101919 101547	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181)	Scheduled Calibration Jun-23 Jun-23
All calibrations have been on numidity<70%. Calibration Equipment used (N Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	M&TE critical for ca ID # 101919 101547 101548 18N50W-10dB	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 20-Jan-21(CTTL, No.J21X00486)	Scheduled Calibration Jun-23 Jun-23 Jun-23
All calibrations have been on numidity<70%. Calibration Equipment used (N Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator	M&TE critical for ca ID # 101919 101547 101548 18N50W-10dB	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 20-Jan-21(CTTL, No.J21X00486)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Jan-23 Jan-23 Jan-23
All calibrations have been on numidity<70%. Calibration Equipment used (M Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator	M&TE critical for ca ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Jan-23 Jan-23) May-23
All calibrations have been on numidity<70%. Calibration Equipment used (M Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4	M&TE critical for ca ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846	libration) Cal Date(Calibrated by, Certificate No.) S 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 20-May-22(SPEAG, No.EX3-3846_May22 20-Jan-22(SPEAG, No.DAE4-771_Jan22)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Jan-23 Jan-23) May-23
All calibrations have been of numidity<70%. Calibration Equipment used (N Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4	M&TE critical for ca ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 771 ID #	libration) Cal Date(Calibrated by, Certificate No.) S 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 20-Jan-21(CTTL, No.J22X04181) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 20-May-22(SPEAG, No.EX3-3846_May22 20-Jan-22(SPEAG, No.DAE4-771_Jan22) Cal Date(Calibrated by, Certificate No.) S 14-Jun-22(CTTL, No.J22X04182)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Jan-23 Jan-23) May-23 Jan-23
All calibrations have been on numidity<70%. Calibration Equipment used (No Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards	M&TE critical for ca ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 771 ID #	libration) Cal Date(Calibrated by, Certificate No.) S 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 20-May-22(SPEAG, No.EX3-3846_May22 20-Jan-22(SPEAG, No.DAE4-771_Jan22) Cal Date(Calibrated by, Certificate No.) S	Scheduled Calibration Jun-23 Jun-23 Jan-23 Jan-23) May-23 Jan-23 Jan-23
All calibrations have been on numidity<70%. Calibration Equipment used (M Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C	M&TE critical for ca ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 771 ID # 6201052605	libration) Cal Date(Calibrated by, Certificate No.) S 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 20-May-22(SPEAG, No.EX3-3846_May22 20-Jan-22(SPEAG, No.DAE4-771_Jan22) Cal Date(Calibrated by, Certificate No.) S 14-Jun-22(CTTL, No.J22X04182)	Scheduled Calibration Jun-23 Jun-23 Jan-23 Jan-23 Jan-23) May-23 Jan-23 icheduled Calibration Jun-23
All calibrations have been on numidity<70%. Calibration Equipment used (M Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C N	M&TE critical for ca ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 771 ID # 6201052605 MY46110673	Iibration) Cal Date(Calibrated by, Certificate No.) S 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 20-May-22(SPEAG, No.EX3-3846_May22) 20-Jan-22(SPEAG, No.DAE4-771_Jan22) S Cal Date(Calibrated by, Certificate No.) S 14-Jun-22(CTTL, No.J22X04182) 14-Jan-22(CTTL, No.J22X00406)	Scheduled Calibration Jun-23 Jun-23 Jan-23 Jan-23 Jan-23) May-23 Jan-23 icheduled Calibration Jun-23 Jan-23
All calibrations have been on numidity<70%. Calibration Equipment used (M Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C N Calibrated by:	M&TE critical for ca ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 771 ID # 6201052605 MY46110673 ame	Ibbration) Cal Date(Calibrated by, Certificate No.) S 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 20-May-22(SPEAG, No.EX3-3846_May22 20-Jan-22(SPEAG, No.DAE4-771_Jan22) S Cal Date(Calibrated by, Certificate No.) S 14-Jun-22(CTTL, No.J22X00406) S	Scheduled Calibration Jun-23 Jun-23 Jan-23 Jan-23 Jan-23) May-23 Jan-23 icheduled Calibration Jun-23 Jan-23

Certificate No: Z22-60260

Page 1 of 9

TTT	In Collaboration with	CAIC
IIL	CALIBRATION LABORATORY	
		A man a state and faire
	IuaYuanBei Road, Haidian District, I 2304633-2117	3eijing, 100191, China
E-mail: emf@		.ac.cn
L'annier M		
Glossary:	tissue simulating liquid	
TSL NORMx,y,z	sensitivity in free space	
ConvF	sensitivity in TSL / NORM	x.v.z
DCP	diode compression point	
CF	crest factor (1/duty_cycle)	of the RF signal
A,B,C,D	modulation dependent line	
Polarization Φ	Φ rotation around probe a	
Polarization θ		that is in the plane normal to probe axis (at measurement cen
Connector Angle	θ=0 is normal to probe axi	is system to align probe sensor X to the robot coordinate syste
		the Following Standards:
		nded Practice for Determining the Peak Spatial-Averaged
		Human Head from Wireless Communications Devices:
	Fechniques", June 2013	
		or the assessment of Specific Absorption Rate (SAR) from
July 2016		ed next to the ear (frequency range of 300 MHz to 6 GHz)",
c) IEC 62209-2, " devices used i		Specific Absorption Rate (SAR) for wireless communication iman body (frequency range of 30 MHz to 6 GHz)", March
2010	SAR Massurament Require	monte for 100 MHz to 6 CHz"
	ed and Interpretation of	ements for 100 MHz to 6 GHz"
		ation θ =0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
		a i.e., the uncertainties of NORMx,y,z does not effect the
	ertainty inside TSL (see bel	
		response (see Frequency Response Chart). This
		oftware versions later than 4.2. The uncertainty of the
	sponse is included in the sta	
		on parameters assessed based on the data of power sweep
		depend on frequency nor media.
· PAR: PAR is	the Peak to Average Ratio	that is not calibrated but determined based on the signal
characteristic		
		numerical linearization parameters assessed based on the
		tion signal. The parameters do not depend on frequency nor
		ange expressed in RMS voltage across the diode.
		Assessed in flat phantom using E-field (or Temperature
Transfer Star	idard for f > 900MHz Th	side waveguide using analytical field distributions based on
applied for bo	undary componention (alph	he same setups are used for assessment of the parameters ha, depth) of which typical uncertainty valued are given.
These param	eters are used in DASVA s	oftware to improve probe accuracy close to the boundary.
The sensitivit	v in TSL corresponds to NC	DRMx,y,z* ConvF whereby the uncertainty corresponds to
that given for	ConvF. A frequency depen	dent ConvF is used in DASY version 4.4 and higher which
allows extend	ling the validity from±50MH	z to±100MHz.
 Spherical isol 	tropy (3D deviation from isc	ptropy): in a field of low gradients realized using a flat
phantom exp	osed by a patch antenna.	
 Sensor Offse 	t: The sensor offset corresp	oonds to the offset of virtual measurement center from the
	probe axis). No tolerance re	
 Connector Art 	igle: The angle is assessed tv required).	using the information gained by determining the NORMx
(no uncertain	,	
(no uncertain Certificate No:Z2		Page 2 of 9

Page 53 of 115

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7548

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.62	0.70	0.63	±10.0%
DCP(mV) ^B	101.7	102.0	102.0	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Unc ^E (<i>k</i> =2)
0	CW	X	0.0	0.0	1.0	0.00	193.2	±2.2%
		Y	0.0	0.0	1.0		208.5	
		Z	0.0	0.0	1.0		192.2	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:Z22-60260

Page 3 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7548

Calibration Parameter Determined in Head Tissue Simulating Media

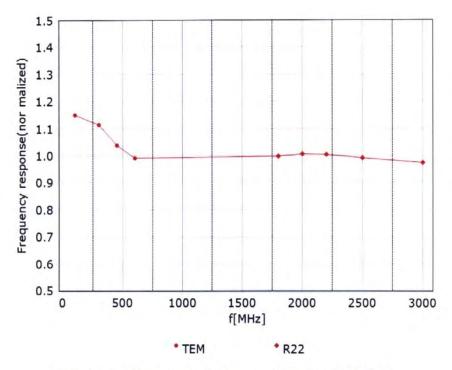
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (<i>k</i> =2)
750	41.9	0.89	10.30	10.30	10.30	0.16	1.29	±12.1%
900	41.5	0.97	9.81	9.81	9.81	0.16	1.32	±12.1%
1450	40.5	1.20	8.56	8.56	8.56	0.20	0.91	±12.19
1750	40.1	1.37	8.13	8.13	8.13	0.22	1.00	±12.19
1900	40.0	1.40	7.80	7.80	7.80	0.25	1.00	±12.19
2100	39.8	1.49	7.95	7.95	7.95	0.19	1.24	±12.19
2300	39.5	1.67	7.61	7.61	7.61	0.46	0.72	±12.19
2450	39.2	1.80	7.32	7.32	7.32	0.50	0.72	±12.19
2600	39.0	1.96	7.12	7.12	7.12	0.56	0.68	±12.19
3300	38.2	2.71	6.75	6.75	6.75	0.40	0.90	±13.3
3500	37.9	2.91	6.61	6.61	6.61	0.38	1.02	±13.3
3700	37.7	3.12	6.41	6.41	6.41	0.35	1.07	±13.3
3900	37.5	3.32	6.30	6.30	6.30	0.30	1.50	±13.3
4100	37.2	3.53	6.22	6.22	6.22	0.30	1.38	±13.3
4200	37.1	3.63	6.10	6.10	6.10	0.35	1.35	±13.3
4400	36.9	3.84	6.00	6.00	6.00	0.35	1.35	±13.3
4600	36.7	4.04	5.92	5.92	5.92	0.40	1.30	±13.3
4800	36.4	4.25	5.88	5.88	5.88	0.40	1.38	±13.3
4950	36.3	4.40	5.68	5.68	5.68	0.40	1.40	±13.39
5250	35.9	4.71	4.98	4.98	4.98	0.45	1.35	±13.39
5600	35.5	5.07	4.57	4.57	4.57	0.45	1.40	±13.39
5750	35.4	5.22	4.64	4.64	4.64	0.40	1.60	±13.39

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:Z22-60260

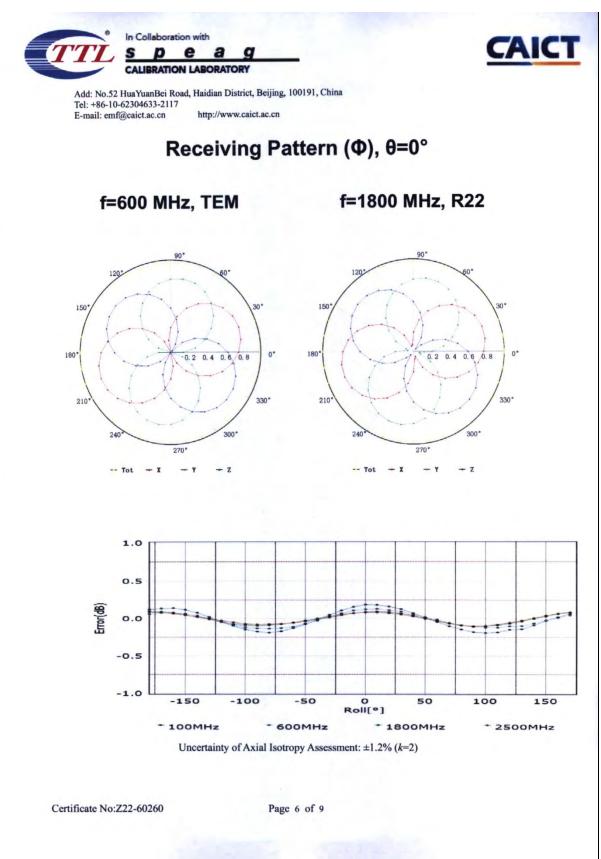
Page 4 of 9



CAICT

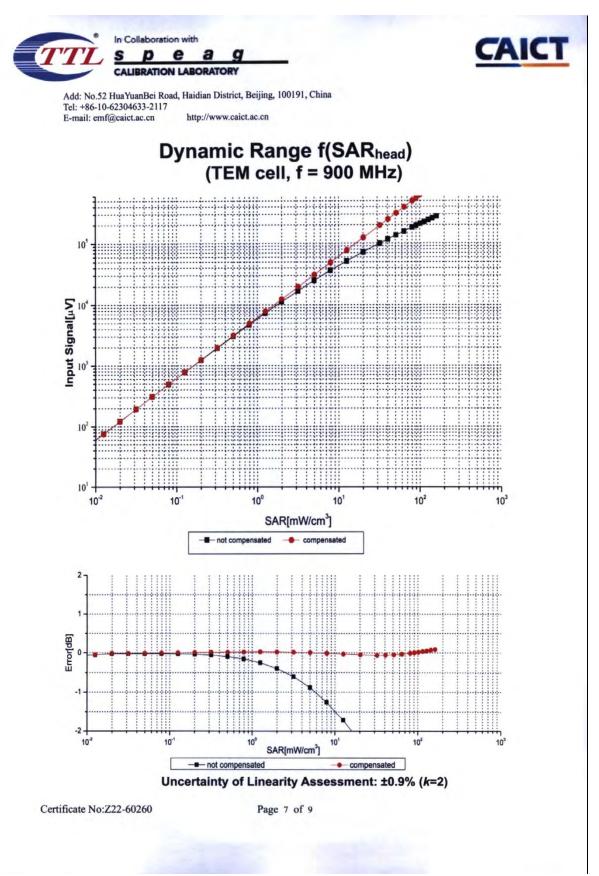
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

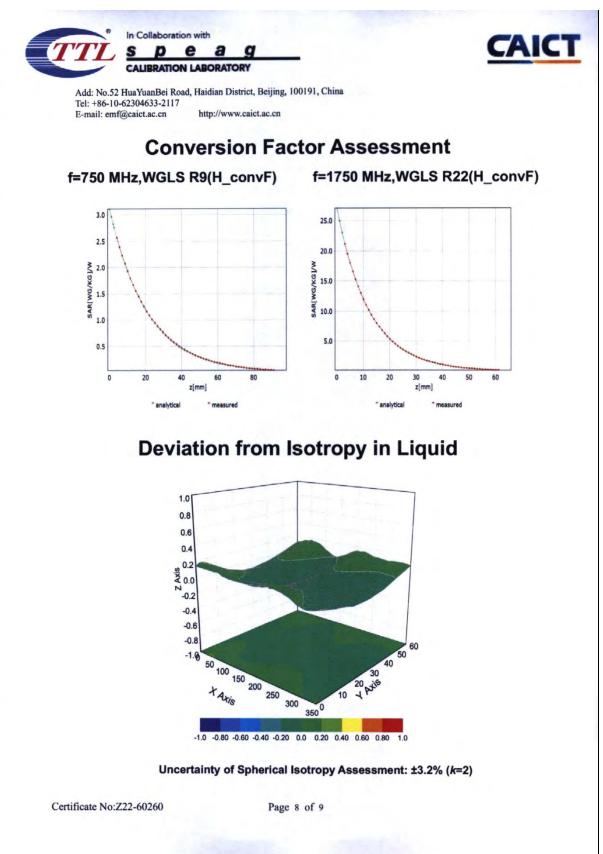

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:Z22-60260

Page 5 of 9



Page 57 of 115


CAICT No.I23Z70138-SEM01

Page 58 of 115

Page 59 of 115

CAICT No.I23Z70138-SEM01

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7548

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	146.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:Z22-60260

Page 9 of 9

ANNEX H Dipole Calibration Certificate

2450 MHz Dipole Calibration Certificate

chmid & Partner Engineering AG ughausstrasse 43, 8004 Zurich,	Of Switzerland	BC MRA	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
ccredited by the Swiss Accreditation he Swiss Accreditation Service i	is one of the signatories	s to the EA	creditation No.: SCS 0108
ultilateral Agreement for the rec lient CTTL (Auden)	ognition of calibration		: D2450V2-853_Jul22
CALIBRATION C	ERTIFICATE		We all the second states
Dbject	D2450V2 - SN:85	53	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	edure for SAR Validation Sources	between 0.7-3 GHz
Calibration date:	July 20, 2022		
The measurements and the uncert	ainties with confidence pr	onal standards, which realize the physical uni robability are given on the following pages an ry facility: environment temperature (22 ± 3)°C	d are part of the certificate.
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE	ainties with confidence pr	robability are given on the following pages an ry facility: environment temperature (22 ± 3) °C	d are part of the certificate. C and humidity < 70%.
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards	ainties with confidence p ad in the closed laborator E critical for calibration)	robability are given on the following pages an	d are part of the certificate.
The measurements and the uncertain All calibrations have been conducter Calibration Equipment used (M&TE Primary Standards Power meter NRP	ainties with confidence pr ad in the closed laborator E critical for calibration)	robability are given on the following pages an ry facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration
The measurements and the uncertain NI calibrations have been conducter Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91	ainties with confidence pr ad in the closed laborator E critical for calibration) ID # SN: 104778	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	ainties with confidence pr ad in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03524)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23
The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination	ainties with confidence pre- ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	cobability are given on the following pages an ry facility: environment temperature (22 ± 3)*C Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Apr-23
The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ainties with confidence pre- ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 81H9394 (20k) SN: 310982 / 06327 SN: 7349	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22
The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ainties with confidence pre- ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	cobability are given on the following pages an ry facility: environment temperature (22 ± 3)*C Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Apr-23
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	ainties with confidence pre- ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID #	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22
The measurements and the uncertain All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	ainties with confidence pr ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03526) 04-Apr-22 (No. 217-03526) 04-Apr-22 (No. 217-03526) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20)	d are part of the certificate. 2 and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22
The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	ainties with confidence pr ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03526) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	d are part of the certificate. 2 and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22
The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	ainties with confidence pr ad in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: 103245 SN: 103245 SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ainties with confidence pre- ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103245 SN: 03244 SN: 103245 SN: 03245 SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: WY41093315 SN: 100972	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22
The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ainties with confidence pr ad in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: 103245 SN: 103245 SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ainties with confidence pre- ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103994 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: 6B39512475 SN: US37292783 SN: WY41093315 SN: 100972 SN: US41080477 Name	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22
The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	ainties with confidence pre- ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103245 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: WS41093315 SN: 100972 SN: US41080477	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by:	ainties with confidence pre- ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103245 SN: 103245 SN: BH3994 (20k) SN: 310982 / 06327 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name Aidonia Georgiadou	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22
The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E44198 Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by:	ainties with confidence pre- ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103994 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: 6B39512475 SN: US37292783 SN: WY41093315 SN: 100972 SN: US41080477 Name	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22
The measurements and the uncert	ainties with confidence pre- ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103245 SN: 103245 SN: BH3994 (20k) SN: 310982 / 06327 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name Aidonia Georgiadou	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-853 Jul22

Page 2 of 6

Measurement Conditions

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.7 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.29 W/kg

Certificate No: D2450V2-853_Jul22

Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.3 Ω + 4.7 jΩ
Return Loss	- 24.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.162 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: D2450V2-853_Jul22

Page 4 of 6

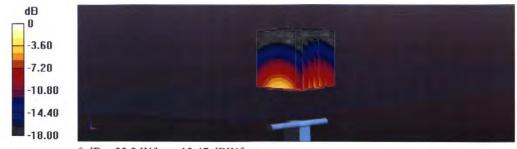
©Copyright. All rights reserved by CTTL.

DASY5 Validation Report for Head TSL

Date: 20.07.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:853


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.85 S/m; ϵ_r = 37.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

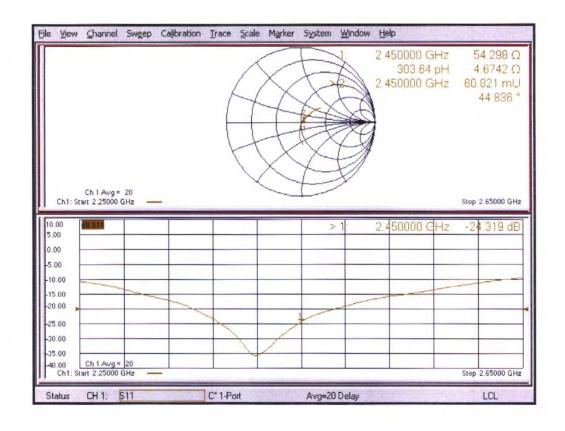
DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 116.2 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.29 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.6% Maximum value of SAR (measured) = 22.2 W/kg

0 dB = 22.2 W/kg = 13.47 dBW/kg


Certificate No: D2450V2-853_Jul22

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-853_Jul22

Page 6 of 6

5 GHz Dipole Calibration Certificate

ccredited by the Swiss Accreditatio	Switzerland	Standard S	Service suisse d etalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108
ne Swiss Accreditation Service is ultilateral Agreement for the rec	s one of the signatories		
ient CTTL Beijing		Certificate No	D5GHzV2-1060_Jun23
ALIBRATION CI	ERTIFICATE		
bject	D5GHzV2 - SN:10	060	the second second
alibration procedure(s)	QA CAL-22.v7		
	Calibration Proce	dure for SAR Validation Source	es between 3-10 GHz
alibration date:	June 19, 2023		
he measurements and the uncerta	ainties with confidence pr	onal standards, which realize the physical u obability are given on the following pages a y facility: environment temperature (22 ± 3)	and are part of the certificate.
he measurements and the uncerta	ainties with confidence pr	obability are given on the following pages a	and are part of the certificate.)°C and humidity < 70%.
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards	ainties with confidence pr ad in the closed laborator critical for calibration)	obability are given on the following pages a y facility: environment temperature (22 ± 3) Cal Date (Certificate No.)	and are part of the certificate. 9°C and humidity < 70%. Scheduled Calibration
The measurements and the uncertain NI calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2	ainties with confidence pr ad in the closed laborator critical for calibration) ID # SN: 104778	obability are given on the following pages a y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805)	and are part of the certificate. 9°C and humidity < 70%. Scheduled Calibration Mar-24
The measurements and the uncertain NI calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91	ainties with confidence pr od in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244	obability are given on the following pages a y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804)	and are part of the certificate. PC and humidity < 70%. Scheduled Calibration Mar-24 Mar-24
The measurements and the uncertain NI calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	ainties with confidence pr ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	obability are given on the following pages a y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805)	and are part of the certificate. PC and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24
The measurements and the uncertain NI calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	ainties with confidence pr ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BIH9394 (20k)	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805)	and are part of the certificate. PC and humidity < 70%. Scheduled Calibration Mar-24 Mar-24
The measurements and the uncertain All calibrations have been conducted Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination	ainties with confidence pr ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	obability are given on the following pages a y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805)	and are part of the certificate. 9°C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24
The measurements and the uncertain All calibrations have been conducted Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4	ainties with confidence pr ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810)	and are part of the certificate. 9°C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4	ainties with confidence pr ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503	obability are given on the following pages a y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house)	and are part of the certificate. 9°C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check
The measurements and the uncertain All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	ainties with confidence pr ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475	obability are given on the following pages a y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03801) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22)	and are part of the certificate. 9°C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check In house check: Oct-24
The measurements and the uncerta NI calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	ainties with confidence pr ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783	Obability are given on the following pages a y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03803) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	and are part of the certificate. 9°C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	ainties with confidence pr ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315	Obability are given on the following pages a y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	and are part of the certificate. 9°C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24
The measurements and the uncertain All calibrations have been conducted Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ainties with confidence pr ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	Obability are given on the following pages a y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03803) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	and are part of the certificate. 9°C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24
The measurements and the uncertain All calibrations have been conducted Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ainties with confidence pr ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22)	and are part of the certificate. 9°C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24
The measurements and the uncertain All calibrations have been conducted Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A Ref generator R&S SMT-06 Network Analyzer Agilent E8358A	ainties with confidence pr ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: US37292783 SN: 100972 SN: US41080477	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22)	and are part of the certificate. 9°C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	ainties with confidence pr ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 81H3394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: WY41093315 SN: US37292783 SN: US41080477 Name	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22) Subscience Check Oct-22)	and are part of the certificate. 9°C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1060_Jun23

Page 2 of 12

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5250 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	4.53 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.92 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.9 W/kg ± 19.9 % (k=2)
OAD and any 10 and (10 a) of Head TCI	condition	
	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.27 W/kg

Certificate No: D5GHzV2-1060_Jun23

Page 3 of 12

Conductivity

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

 Temperature
 Permittivity

			a de la composición de
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	4.60 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.98 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.6 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.29 W/kg

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	4.67 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.4 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jun23

Page 4 of 12

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	4.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.56 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.5 W/kg ± 19.9 % (k=2)
	diate	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.42 W/kg

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	4.97 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jun23

Page 5 of 12

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.1 ± 6 %	5.08 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.07 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.0 ± 6 %	5.11 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jun23

Page 6 of 12

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	48.6 Ω - 5.3 jΩ	
Return Loss	- 25.1 dB	

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	47.7 Ω - 4.1 jΩ		
Return Loss	- 26.2 dB		

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	46.9 Ω - 2.2 jΩ			
Return Loss	- 28.0 dB			

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	50.6 Ω - 4.0 jΩ				
Return Loss	- 28.0 dB				

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	53.6 Ω + 1.2 jΩ	
Return Loss	- 28.6 dB	

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	51.4 Ω - 0.3 jΩ			
Return Loss	- 37.3 dB			

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	51.2 Ω - 2.2 jΩ			
Return Loss	- 32.0 dB			

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns	-
		-

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: D5GHzV2-1060_Jun23

Page 7 of 12

DASY5 Validation Report for Head TSL

Date: 19.06.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 4.53 S/m; ϵ_r = 35.5; ρ = 1000 kg/m³, Medium parameters used: f = 5250 MHz; σ = 4.60 S/m; ϵ_r = 35.5; ρ = 1000 kg/m³, Medium parameters used: f = 5300 MHz; σ = 4.67 S/m; ϵ_r = 35.5; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 4.89 S/m; ϵ_r = 35.4; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.97 S/m; ϵ_r = 35.3; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.08 S/m; ϵ_r = 35.1; ρ = 1000 kg/m³. Medium parameters used: f = 5800 MHz; σ = 5.11 S/m; ϵ_r = 35.0; ρ = 1000 kg/m³. Medium parameters used: f = 5800 MHz; σ = 5.11 S/m; ϵ_r = 35.0; ρ = 1000 kg/m³.

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 07.03.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

```
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 76.08 V/m; Power Drift = -0.08 dB
Peak SAR (extrapolated) = 27.3 W/kg
SAR(1 g) = 7.92 W/kg; SAR(10 g) = 2.27 W/kg
Smallest distance from peaks to all points 3 dB below = 6.9 mm
Ratio of SAR at M2 to SAR at M1 = 70.9%
Maximum value of SAR (measured) = 18.0 W/kg
```

```
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.90 V/m; Power Drift = 0.04 dB
```

```
Peak SAR (extrapolated) = 26.7 \text{ W/kg}
SAR(1 g) = 7.98 \text{ W/kg}; SAR(10 g) = 2.29 \text{ W/kg}
Smallest distance from peaks to all points 3 dB below = 7.2 \text{ mm}
Ratio of SAR at M2 to SAR at M1 = 71.8\%
Maximum value of SAR (measured) = 18.0 \text{ W/kg}
```

Certificate No: D5GHzV2-1060_Jun23

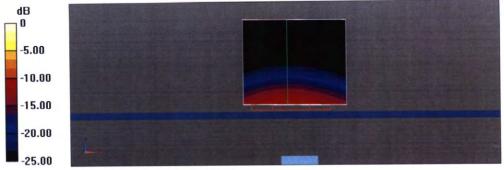
Page 8 of 12

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.02 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 28.5 W/kg SAR(1 g) = 8.24 W/kg; SAR(10 g) = 2.35 W/kg Smallest distance from peaks to all points 3 dB below = 6.8 mm Ratio of SAR at M2 to SAR at M1 = 70.8% Maximum value of SAR (measured) = 18.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.86 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 32.2 W/kg SAR(1 g) = 8.56 W/kg; SAR(10 g) = 2.42 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.3% Maximum value of SAR (measured) = 20.1 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.37 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 30.3 W/kg SAR(1 g) = 8.38 W/kg; SAR(10 g) = 2.38 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.5% Maximum value of SAR (measured) = 19.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.46 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.6% Maximum value of SAR (measured) = 19.3 W/kg

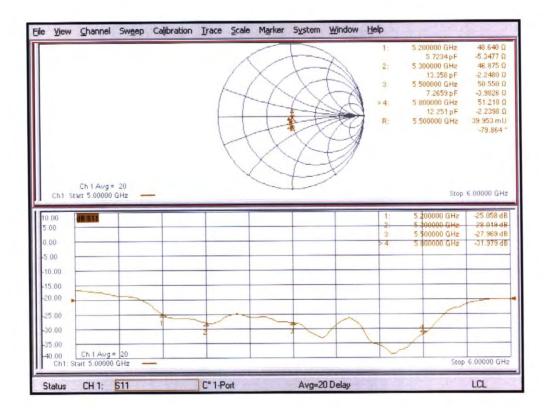

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.09 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 8.22 W/kg; SAR(10 g) = 2.32 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.5% Maximum value of SAR (measured) = 19.6 W/kg

Certificate No: D5GHzV2-1060_Jun23

Page 9 of 12

0 dB = 20.1 W/kg = 13.03 dBW/kg

Certificate No: D5GHzV2-1060_Jun23


Page 10 of 12

©Copyright. All rights reserved by CTTL.

Page 76 of 115

Impedance Measurement Plot for Head TSL (5200, 5300, 5500, 5800 MHz)

Certificate No: D5GHzV2-1060_Jun23

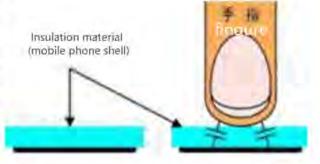
Page 11 of 12

Elle View Channel Sweep Calibration Irace Scale Marker System Window Help 5.250000 GHz 7.3099 pF 5.600000 GHz 33.776 pH 5.750000 GHz 105.66 pF 5.500000 GHz 47 659 Ω -4 1472 Ω 53 643 Ω 1.1884 Ω 51 361 Ω -261.95 mΩ 39.953 mU -79.864 * >1: 2 3: R Ch 1 Avg = 20 Ch1: Start 5.00000 GHz Stop 6.00000 GHz -26.245 dB 28.643 dB -37.284 dB GHz 10.00 5 \$00000 GHz .00 5.750000 GHz 0.00 5.00 10.00 -15.00 -20.00 -25.00 30.00 -35.00 40.00 Ch 1 Avg = 20 Ch1: Start 5.00000 GHz LE Stop 6.00000 GHz C* 1-Port Avg=20 Delay LCL CH 1: 511 Status

Impedance Measurement Plot for Head TSL (5250, 5600, 5750 MHz)

Certificate No: D5GHzV2-1060_Jun23

Page 12 of 12



ANNEX I SAR Sensor Triggering Data Summary

The human body is equivalent to a large capacitor. When human tissue approaches the antenna, it will form an antenna-human body (capacitor)-earth path with the antenna. The SAR sensor is placed in the mobile phone to detect the change of the capacitance value when the human body is close or far away. When the human body is close, the capacitance value becomes larger, and when the human body is far away, the capacitance value

becomes smaller. After the capacitance value exceeds the threshold set in the SAR sensor, the event is reported and an interrupt is issued, and the software function is combined to reduce the power to reduce the SAR. While the capacitance value lower than the threshold set in the SAR sensor, the event is reported and another interrupt is issued, the software function is combined to boost the power to normal value.

ANT	Side	Distance (mm)
	Back (mm)	16
Grip sensor wifi	Front(mm)	11
(ANT6-WIFI)	Top(mm	18
	Right (mm)	0

Per FCC KDB Publication 616217 D04v01r02, this device was tested by the manufacturer to determine the proximity sensor triggering distances for the rear and bottom edge of the device. The measured output power within \pm 5mm of the triggering points (or until touching the phantom) is included for rear and each applicable edge.

To ensure all production units are compliant it is necessary to test SAR at a distance 1mm less than the smallest distance from the device and SAR phantom (determined from these triggering tests according to the KDB 616217 D04v01r02) with the device at maximum output power without power reduction. These SAR tests are included in addition to the SAR tests for the device touching the SAR phantom, with reduced power.

ANT6:

Front

Moving device toward the phantom:

			senso	r near or	far(KDB 6	616217 6.2	2.6)				
Distance [mm]	16	15	14	13	12	11	10	9	8	7	6
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	6	7	8	9	10	11	12	13	14	15	16
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

Rear

Moving device toward the phantom:

			senso	or near or	far(KDB 6	516217 6.2	2.6)				
Distance [mm]	21	20	19	18	17	16	15	14	13	12	11
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near
Maxing day		from th				•			•	•	

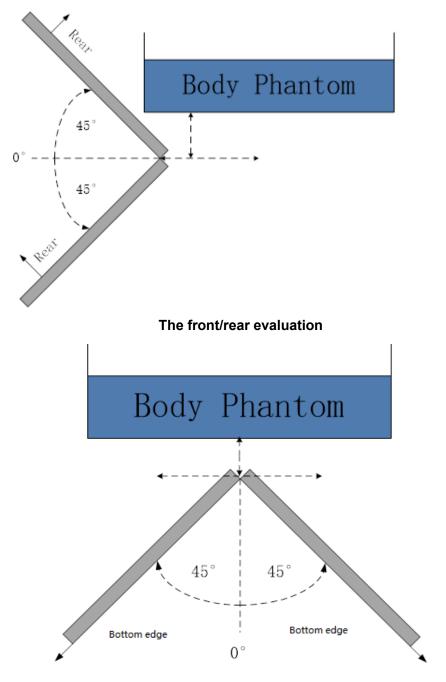
Moving device away from the phantom:

			senso	r near or	far(KDB 6	16217 6.2	2.6)				
Distance [mm]	11	12	13	14	15	16	17	18	19	20	21
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

Top Edge

Moving device toward the phantom:

			senso	or near or	far(KDB 6	516217 6.2	2.6)				
Distance [mm]	23	22	21	20	19	18	17	16	15	14	13
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near
		. f ue as the	مام ماه								•


Moving device away from the phantom:

			senso	r near or	far(KDB 6	616217 6.2	2.6)				
Distance [mm]	13	14	15	16	17	18	19	20	21	22	23
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

Per FCC KDB Publication 616217 D04v01r02, the influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is ±45° or more from the vertical position at 0°.

The top/bottom edge evaluation

Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the $\pm 45^{\circ}$ range at the smallest sensor triggering test distance declared by manufacturer.

©Copyright. All rights reserved by CTTL.

ANNEX J Variant Product Test

J.1 Dielectric Performance and System Validation

Table J.1-1: Dielectric Performance of Head Tissue Simulating Liquid

Measurement Date (yyyy-mm-dd)	Туре	Frequency	Permittivity ε	Drift (%)	Conductivity σ (S/m)	Drift (%)
2023/7/11	Head	2450 MHz	39.92	1.84	1.845	2.50
2023/7/15	Head	5250 MHz	34.99	-2.62	4.521	-4.01

Measurement		Target val	ue (W/kg)	Measured	value(W/kg)	Devi	ation
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2023/7/11	2450 MHz	24.9	52.7	25.4	53.2	2.01%	0.95%
2023/7/15	5250 MHz	22.8	79.6	23.4	77.9	2.63%	-2.14%

Table J.1-2: System Validation of Head

J.2 New frequency band

WIFI2.4G-sensor on

	2.4GHz			
	CE		Power setting	Tune up
802.11b	Channel\data	1Mbps		
	11(2462MHz)	11.12	11	12.00
WLAN2450	6(2437MHz)	11.06	11	12.00
	1(2412MHz)	11.07	11	12.00
802.11g	Channel\data	6Mbps		
	11(2462MHz)	11.06	11	12.00
WLAN2450	6(2437MHz)	11.01	11	12.00
	1(2412MHz)	11.03	11	12.00
802.11n-20MHz	Channel\data	MCS0		
	11(2462MHz)	11.08	11	12.00
WLAN2450	6(2437MHz)	11.00	11	12.00
	1(2412MHz)	10.99	11	12.00

J.3 SAR Test Result

WIFI2.4G

Frequency Band	Channel Number	Frequency (MHz)	Mode/RB	Test Position	Distance	Fig	EUT Measured Power (dBm)	Tune up (dBm)	Measured SAR 1g (W/kg)	Reported SAR 1g (W/kg)	Measured SAR 10g (W/kg)	Reported SAR 10g (W/kg)	Power Drift
WLAN 2.4G	6	2437	11b	Front	0mm		11.06	12.00	0.313	0.39	0.132	0.16	-0.01
WLAN 2.4G	11	2462	11b	Rear	0mm		11.12	12.00	0.443	0.54	0.196	0.24	-0.13
WLAN 2.4G	6	2437	11b	Rear	0mm		11.06	12.00	0.369	0.46	0.168	0.21	-0.12
WLAN 2.4G	1	2412	11b	Rear	0mm	F.1	11.07	12.00	0.736	0.91	0.302	0.37	0.13
WLAN 2.4G	6	2437	11b	Тор	0mm		11.06	12.00	0.197	0.24	0.084	0.10	0.02

WIFI5G Spot check

RF Exposure Condition s		Channel Number	Frequency (MHz)	Mode/RB	Test Position	Distance	Fig	EUT Measured Power (dBm)	Tune up (dBm)	Measured SAR 1g (W/kg)	Reported SAR 1g (W/kg)	Measured SAR 10g (W/kg)	Reported SAR 10g (W/kg)	Power Drift
Body	WLAN 5G	36	5180	11N 20M	Тор	17mm	F.2	15.87	17.50	0.267	0.39	0.109	0.16	0.07

J.4 List of Main Instruments

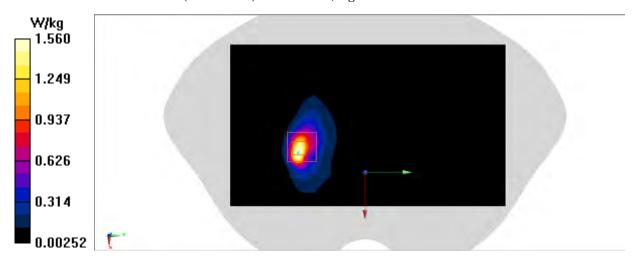
Table I.4-1: List of Main Instruments

No.	Name	Туре	Serial	Calibration Date	Valid Period
	Hamo	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Number		rand i onou
01	Network analyzer	E5071C	MY46110673	January 10, 2023	One year
02	Power sensor	NRP110T	101139	January 13, 2023	One year
03	Power sensor	NRP110T	101159	January 13, 2023	One year
04	Signal Generator	E4438C	MY49071430	January 19, 2023	One year
05	Amplifier	60S1G4	0331848	No Calibration	Requested
06	BTS	CMW500	159890	January 12, 2023	One year
07	E-field Probe	SPEAG EX3DV4	7548	August 1, 2022	One year
08	DAE	SPEAG DAE4	1525	September 15, 2022	One year
09	Dipole Validation Kit	SPEAG D2450V2	853	July 20,2022	One year
10	Dipole Validation Kit	SPEAG D5GHzV2	1060	June 19,2023	One year

©Copyright. All rights reserved by CTTL.

J.5 GRAPH RESULTS

WLAN2.4G Body

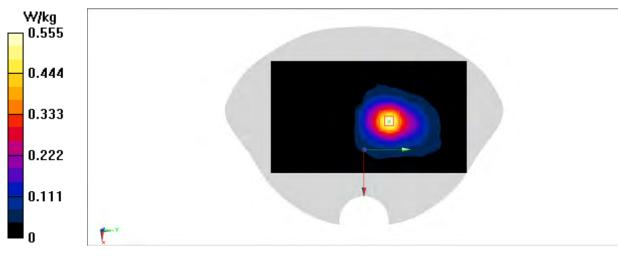

Date: 7/11/2023 Electronics: DAE4 Sn1525 Medium: H650-7000M Medium parameters used (interpolated): f = 2412.5 MHz; σ = 1.849 S/m; ϵ_r = 41.528; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: WLan 2450 (0) Frequency: 2412 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7548 ConvF(7.32, 7.32, 7.32)

Area Scan (101x171x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.76 W/kg

Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.236 V/m; Power Drift = 0.13 dB
Peak SAR (extrapolated) = 2.10 W/kg
SAR(1 g) = 0.736 W/kg; SAR(10 g) = 0.302 W/kg
Maximum value of SAR (measured) = 1.56 W/kg

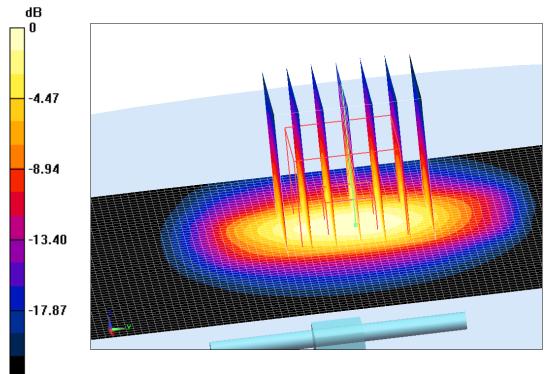


WLAN5G Body

Date/Time: 7/15/2023 Electronics: DAE4 Sn1525 Medium: H650-7000M Medium parameters used: f = 5180 MHz; σ = 4.512 S/m; ϵ_r = 35.16; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: UID 0, WLan 11a (0) Frequency: 5180 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7548 ConvF(4.98, 4.98, 4.98)

Area Scan (121x211x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.555 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 5.012 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.919 W/kg SAR(1 g) = 0.267 W/kg; SAR(10 g) = 0.109 W/kg Maximum value of SAR (measured) = 0.575 W/kg


J.6 System Validation

2450MHz

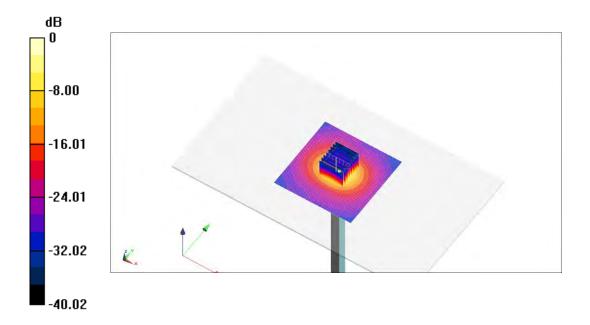
Date: 7/11/2023 Electronics: DAE4 Sn1525 Medium: H650-7000 MHz Medium parameters used: f = 2450MHz; $\sigma = 1.845$ mho/m; $\epsilon_r = 39.92$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.2°C Liquid Temperature: 22°C Communication System: CW Frequency: 2450MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7548 ConvF(7.32, 7.32, 7.32)

Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 21.76 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value =118.71 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 26.12 W/kg SAR(1 g) = 13.7W/kg; SAR(10 g) = 6.35 W/kg Maximum value of SAR (measured) = 22.24 W/kg

-22.34

0 dB = 22.24 W/kg = 13.47 dB W/kg



5250 MHz

Date: 7/15/2023 Electronics: DAE4 Sn1525 Medium: H650-7000 MHz Medium parameters used: f = 5250 MHz; σ =4.521 mho/m; ϵ_r = 34.99; ρ = 1000 kg/m³ Ambient Temperature: 22.2°C Liquid Temperature: 22°C Communication System: CW Frequency: 5250 MHz Duty Cycle: 1:1 Probe: EX3DV4 – SN7548 ConvF(4.98, 4.98, 4.98)

Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.42 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value =80.05 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 27.96 W/kg SAR(1 g) = 7.79W/kg; SAR(10 g) = 2.34 W/kg Maximum value of SAR (measured) = 18.75 W/kg

0 dB = 18.75 W/kg = 12.73 dB W/kg

J.7 Probe Calibration Certificate

Probe 7548 Calibration Certificate

Add: No.52 HuaYuanBei Road, Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn	Haidian District, Beijin http://www.caict.ac.cn	Certificate No: 2	CALIBRATION CNAS L0570
Calibration CEF	RTIFICATE		
Object	EX3DV4 - S	N : 7548	
Calibration Procedure(s)	FF-Z11-004	02	
	the second second	-uz Procedures for Dosimetric E-field Probes	
Calibration date:			
	August 01, 2	LUZZ	
ages and are part of the cont	noato.		
All calibrations have been on numidity<70%.	onducted in the	closed laboratory facility: environment te	mperature(22±3)℃ and
All calibrations have been of humidity<70%. Calibration Equipment used (N	onducted in the	libration)	
All calibrations have been of humidity<70%. Calibration Equipment used (N Primary Standards	N&TE critical for ca	libration) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
All calibrations have been of humidity<70%. Calibration Equipment used (N Primary Standards Power Meter NRP2	M&TE critical for ca	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181)	Scheduled Calibration Jun-23
All calibrations have been of humidity<70%. Calibration Equipment used (N Primary Standards Power Meter NRP2 Power sensor NRP-Z91	M&TE critical for ca ID # 101919 101547	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181)	Scheduled Calibration Jun-23 Jun-23
All calibrations have been of humidity<70%. Calibration Equipment used (M Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	M&TE critical for ca ID # 101919 101547 101548	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181)	Scheduled Calibration Jun-23 Jun-23 Jun-23
All calibrations have been of humidity<70%. Calibration Equipment used (N Primary Standards Power Meter NRP2 Power sensor NRP-Z91	M&TE critical for ca ID # 101919 101547 101548 18N50W-10dB	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 20-Jan-21(CTTL, No.J21X00486)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Jan-23
All calibrations have been on humidity<70%. Calibration Equipment used (M Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator	M&TE critical for ca ID # 101919 101547 101548	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Jan-23 Jan-23
All calibrations have been of humidity<70%. Calibration Equipment used (M Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator	A&TE critical for ca ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 20-Jan-21(CTTL, No.J21X00486)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Jan-23 Jan-23 2) May-23
All calibrations have been on humidity<70%. Calibration Equipment used (M Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4	M&TE critical for ca ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 20-May-22(SPEAG, No.EX3-3846_May22) 20-Jan-22(SPEAG, No.DAE4-771_Jan22)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Jan-23 Jan-23 2) May-23
All calibrations have been of humidity<70%. Calibration Equipment used (M Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4	M&TE critical for ca ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 771 ID #	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 20-May-22(SPEAG, No.EX3-3846_May22) 20-Jan-22(SPEAG, No.DAE4-771_Jan22)	Scheduled Calibration Jun-23 Jun-23 Jun-23 Jan-23 Jan-23 2) May-23) Jan-23
All calibrations have been of humidity<70%. Calibration Equipment used (M Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards	M&TE critical for ca ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 771 ID #	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 20-May-22(SPEAG, No.EX3-3846_May22) 20-Jan-22(SPEAG, No.DAE4-771_Jan22) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Jun-23 Jun-23 Jan-23 Jan-23 2) May-23 2) May-23 3) Jan-23
All calibrations have been of humidity<70%. Calibration Equipment used (M Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C	A&TE critical for ca ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 771 ID # 6201052605	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 20-May-22(SPEAG, No.EX3-3846_May22) 20-Jan-22(SPEAG, No.DAE4-771_Jan222) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04182)	Scheduled Calibration Jun-23 Jun-23 Jan-23 Jan-23 2) May-23 2) May-23 3) Jan-23 Scheduled Calibration Jun-23
All calibrations have been of humidity<70%. Calibration Equipment used (M Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C	A&TE critical for ca ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 771 ID # 6201052605 MY46110673	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 20-May-22(SPEAG, No.DAE4-771_Jan22 Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04182) 14-Jan-22(CTTL, No.J22X00406)	Scheduled Calibration Jun-23 Jun-23 Jan-23 Jan-23 2) May-23 2) May-23 3) Jan-23 Scheduled Calibration Jun-23 Jan-23
humidity<70%. Calibration Equipment used (N Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuator Reference 20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700A Network Analyzer E5071C Na Calibrated by: Y	A&TE critical for ca ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 3846 SN 771 ID # 6201052605 MY46110673 ame	libration) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04181) 14-Jun-22(CTTL, No.J22X04181) 20-Jan-21(CTTL, No.J21X00486) 20-Jan-21(CTTL, No.J21X00485) 20-May-22(SPEAG, No.EX3-3846_May22) 20-Jan-22(SPEAG, No.DAE4-771_Jan22) Cal Date(Calibrated by, Certificate No.) 14-Jun-22(CTTL, No.J22X04182) 14-Jan-22(CTTL, No.J22X00406) Function	Scheduled Calibration Jun-23 Jun-23 Jan-23 Jan-23 2) May-23 2) May-23 3) Jan-23 Scheduled Calibration Jun-23 Jan-23

Certificate No: Z22-60260

Page 1 of 9

TTT	In Collaboration with	CAIC
IIL	CALIBRATION LABORATORY	
		A man a state and faire
	IuaYuanBei Road, Haidian District, I 2304633-2117	3eijing, 100191, China
E-mail: emf@		.ac.cn
a constants		
Glossary:	tissue simulating liquid	
TSL NORMx,y,z	sensitivity in free space	
ConvF	sensitivity in TSL / NORM	x.v.z
DCP	diode compression point	
CF	crest factor (1/duty_cycle)	of the RF signal
A,B,C,D	modulation dependent line	
Polarization Φ	Φ rotation around probe a	
Polarization θ		that is in the plane normal to probe axis (at measurement cen
Connector Angle	θ=0 is normal to probe axi	is system to align probe sensor X to the robot coordinate syste
		the Following Standards:
		nded Practice for Determining the Peak Spatial-Averaged
		Human Head from Wireless Communications Devices:
	Fechniques", June 2013	
		or the assessment of Specific Absorption Rate (SAR) from
July 2016		ed next to the ear (frequency range of 300 MHz to 6 GHz)",
c) IEC 62209-2, " devices used i		Specific Absorption Rate (SAR) for wireless communication iman body (frequency range of 30 MHz to 6 GHz)", March
2010	SAR Massurament Require	monte for 100 MHz to 6 CHz"
	ed and Interpretation of	ements for 100 MHz to 6 GHz"
		ation θ =0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
		a i.e., the uncertainties of NORMx,y,z does not effect the
	ertainty inside TSL (see bel	
		response (see Frequency Response Chart). This
		oftware versions later than 4.2. The uncertainty of the
	sponse is included in the sta	
		on parameters assessed based on the data of power sweep
		depend on frequency nor media.
· PAR: PAR is	the Peak to Average Ratio	that is not calibrated but determined based on the signal
characteristic		
		numerical linearization parameters assessed based on the
		tion signal. The parameters do not depend on frequency nor
		ange expressed in RMS voltage across the diode.
		Assessed in flat phantom using E-field (or Temperature
Transfer Star	idard for f > 900MHz Th	side waveguide using analytical field distributions based on
applied for bo	undary componention (alph	he same setups are used for assessment of the parameters ha, depth) of which typical uncertainty valued are given.
These param	eters are used in DASVA s	oftware to improve probe accuracy close to the boundary.
The sensitivit	v in TSL corresponds to NC	DRMx,y,z* ConvF whereby the uncertainty corresponds to
that given for	ConvF. A frequency depen	dent ConvF is used in DASY version 4.4 and higher which
allows extend	ling the validity from±50MH	z to±100MHz.
 Spherical isol 	tropy (3D deviation from isc	ptropy): in a field of low gradients realized using a flat
phantom exp	osed by a patch antenna.	
 Sensor Offse 	t: The sensor offset corresp	oonds to the offset of virtual measurement center from the
	probe axis). No tolerance re	
 Connector Art 	igle: The angle is assessed tv required).	using the information gained by determining the NORMx
(no uncertain	,	
(no uncertain Certificate No:Z2		Page 2 of 9

Page 89 of 115

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7548

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.62	0.70	0.63	±10.0%
DCP(mV) ^B	101.7	102.0	102.0	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Unc ^E (<i>k</i> =2)
0	CW	X	0.0	0.0	1.0	0.00	193.2	±2.2%
		Y	0.0	0.0	1.0		208.5	
		Z	0.0	0.0	1.0		192.2	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:Z22-60260

Page 3 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7548

Calibration Parameter Determined in Head Tissue Simulating Media

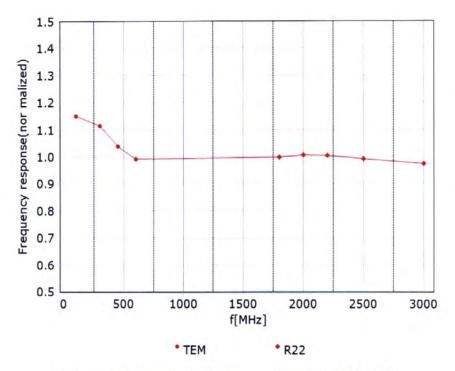
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (<i>k</i> =2)
750	41.9	0.89	10.30	10.30	10.30	0.16	1.29	±12.1%
900	41.5	0.97	9.81	9.81	9.81	0.16	1.32	±12.1%
1450	40.5	1.20	8.56	8.56	8.56	0.20	0.91	±12.19
1750	40.1	1.37	8.13	8.13	8.13	0.22	1.00	±12.19
1900	40.0	1.40	7.80	7.80	7.80	0.25	1.00	±12.19
2100	39.8	1.49	7.95	7.95	7.95	0.19	1.24	±12.19
2300	39.5	1.67	7.61	7.61	7.61	0.46	0.72	±12.19
2450	39.2	1.80	7.32	7.32	7.32	0.50	0.72	±12.19
2600	39.0	1.96	7.12	7.12	7.12	0.56	0.68	±12.19
3300	38.2	2.71	6.75	6.75	6.75	0.40	0.90	±13.3
3500	37.9	2.91	6.61	6.61	6.61	0.38	1.02	±13.3
3700	37.7	3.12	6.41	6.41	6.41	0.35	1.07	±13.3
3900	37.5	3.32	6.30	6.30	6.30	0.30	1.50	±13.3
4100	37.2	3.53	6.22	6.22	6.22	0.30	1.38	±13.3
4200	37.1	3.63	6.10	6.10	6.10	0.35	1.35	±13.3
4400	36.9	3.84	6.00	6.00	6.00	0.35	1.35	±13.3
4600	36.7	4.04	5.92	5.92	5.92	0.40	1.30	±13.3
4800	36.4	4.25	5.88	5.88	5.88	0.40	1.38	±13.3
4950	36.3	4.40	5.68	5.68	5.68	0.40	1.40	±13.39
5250	35.9	4.71	4.98	4.98	4.98	0.45	1.35	±13.39
5600	35.5	5.07	4.57	4.57	4.57	0.45	1.40	±13.39
5750	35.4	5.22	4.64	4.64	4.64	0.40	1.60	±13.39

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:Z22-60260

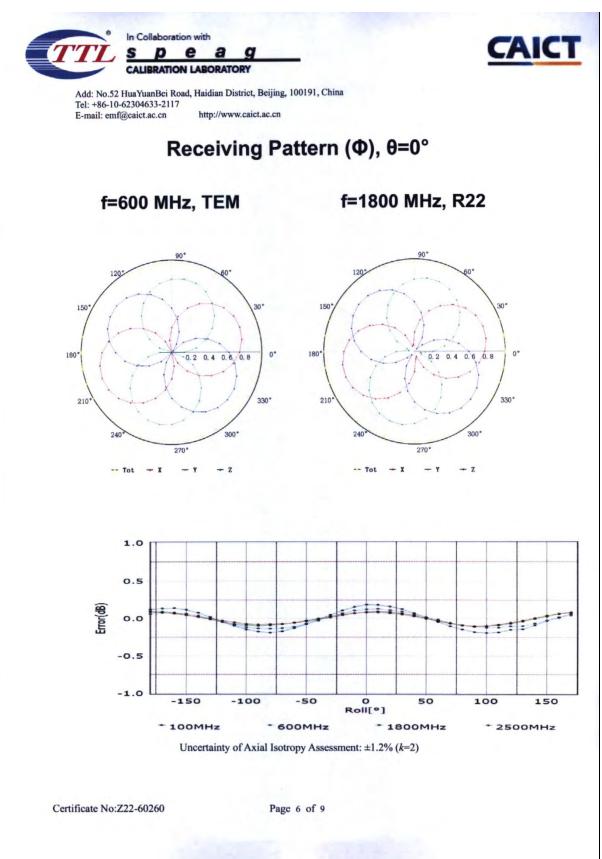
Page 4 of 9



CAICT

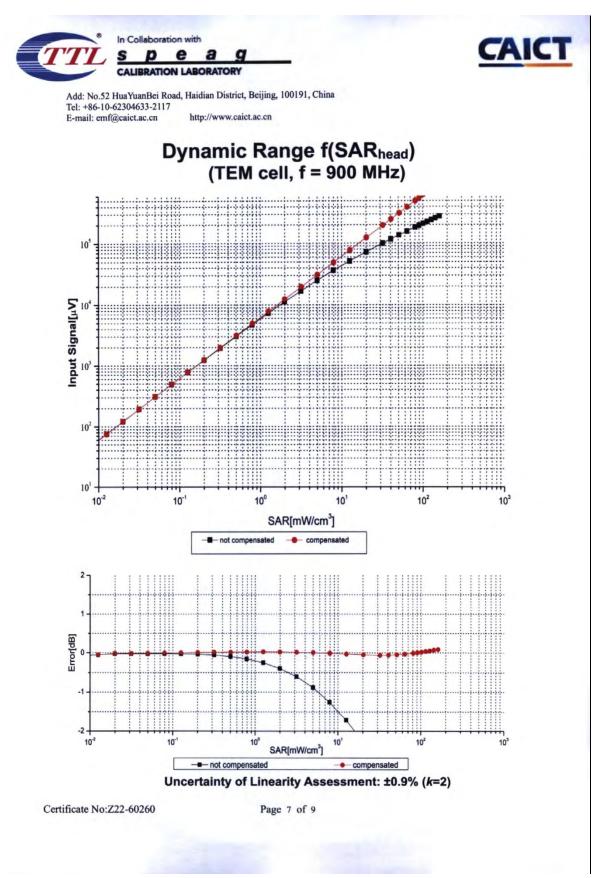
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

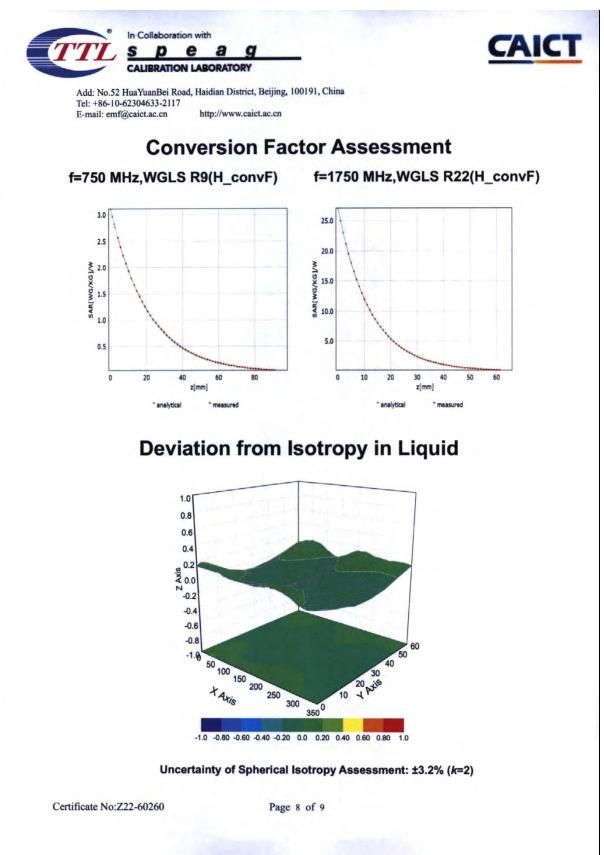

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:Z22-60260

Page 5 of 9



Page 93 of 115



CAICT No.I23Z70138-SEM01

Page 95 of 115

CAICT No.I23Z70138-SEM01

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7548

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	146.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:Z22-60260

Page 9 of 9

J.8 DIPOLE CALIBRATION CERTIFICATE

2450 MHz Dipole Calibration Certificate

	Switzerland	Summer score S	Swiss Calibration Service
ccredited by the Swiss Accreditation he Swiss Accreditation Service in Iultilateral Agreement for the rec	s one of the signatories	s to the EA	ccreditation No.: SCS 0108
lient CTTL (Auden)	ognition of calibration		o: D2450V2-853_Jul22
CALIBRATION C	ERTIFICATI		and the second
Dbject	D2450V2 - SN:85	53	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	dure for SAR Validation Sources	s between 0.7-3 GHz
Calibration date:	July 20, 2022		
he measurements and the uncerta	ainties with confidence p	onal standards, which realize the physical un robability are given on the following pages ar ry facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.
The measurements and the uncertand the uncer	ainties with confidence p ad in the closed laborator critical for calibration)	robability are given on the following pages arry facility: environment temperature $(22 \pm 3)^{e_1}$	nd are part of the certificate. C and humidity < 70%.
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards	ainties with confidence p ad in the closed laborator critical for calibration)	robability are given on the following pages ar ry facility: environment temperature (22 ± 3)*(Cal Date (Certificate No.)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration
The measurements and the uncertain NI calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP	ainties with confidence p ad in the closed laborator critical for calibration) ID # SN: 104778	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23
The measurements and the uncertain NI calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91	ainties with confidence p ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03524)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23
The measurements and the uncertain NI calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	ainties with confidence p ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23
The measurements and the uncertain NI calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	ainties with confidence p ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23
The measurements and the uncertain NI calibrations have been conducted Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	ainties with confidence p ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528)	And are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Apr-23
The measurements and the uncertain NII calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	ainties with confidence p ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23
The measurements and the uncerta NI calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	ainties with confidence p ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID #	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check
The measurements and the uncertain NI calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	ainties with confidence p ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22
The measurements and the uncertain NI calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	ainties with confidence p ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22
The measurements and the uncerta NI calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	ainties with confidence p ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	Ad are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
The measurements and the uncertain Net Calibrations have been conducted Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ainties with confidence p ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20)	Ad are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22
The measurements and the uncertain Net Calibrations have been conducted Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ainties with confidence p ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103245 SN: 03245 SN: 03245 SN: 03245 SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: W241093315 SN: 100972 SN: US41080477	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	Ad are part of the certificate. C and humidity < 70%. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22
The measurements and the uncertain NII calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	ainties with confidence p ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	Ad are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22
The measurements and the uncertain NII calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	ainties with confidence p ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103245 SN: 03245 SN: 03245 SN: 03245 SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: W241093315 SN: 100972 SN: US41080477	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	Ad are part of the certificate. C and humidity < 70%. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22
The measurements and the uncerta	ainties with confidence p ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 02-May-22 (No. DAE4-601_May22) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	Ad are part of the certificate. C and humidity < 70%. C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 May-23 Scheduled Check In house check: Oct-22 In house check: Oct-22

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura s Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-853 Jul22

Page 2 of 6

Measurement Conditions

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.9 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.7 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.29 W/kg

Certificate No: D2450V2-853_Jul22

Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.3 Ω + 4.7 jΩ
Return Loss	- 24.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.162 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: D2450V2-853_Jul22

Page 4 of 6

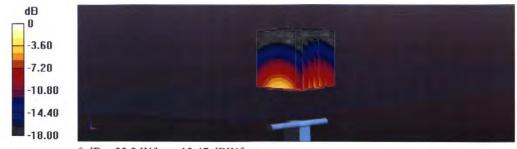
©Copyright. All rights reserved by CTTL.

DASY5 Validation Report for Head TSL

Date: 20.07.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:853


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.85 S/m; ϵ_r = 37.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

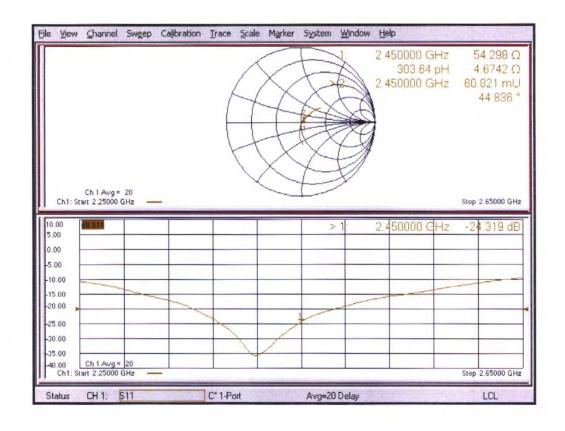
DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 116.2 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.29 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.6% Maximum value of SAR (measured) = 22.2 W/kg

0 dB = 22.2 W/kg = 13.47 dBW/kg


Certificate No: D2450V2-853_Jul22

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-853_Jul22

Page 6 of 6

5 GHz Dipole Calibration Certificate

ccredited by the Swiss Accreditation he Swiss Accreditation Service i ultilateral Agreement for the rec	s one of the signatories		Swiss Calibration Service Accreditation No.: SCS 0108
ient CTTL			D5GHzV2-1060_Jun23
Beijing	ERTIFICATE		
bject	D5GHzV2 - SN:1	060	
Calibration procedure(s)	QA CAL-22.v7 Calibration Proce	dure for SAR Validation Source	s between 3-10 GHz
Calibration date:	June 19, 2023		
The measurements and the uncerta	ainties with confidence pr ed in the closed laborator	anal standards, which realize the physical un obability are given on the following pages a y facility: environment temperature (22 ± 3)	and are part of the certificate.
The measurements and the uncertain All calibrations have been conducte Calibration Equipment used (M&TE	ainties with confidence pr ed in the closed laborator E critical for calibration)	obability are given on the following pages a y facility: environment temperature (22 ± 3) Cal Date (Certificate No.)	nd are part of the certificate. °C and humidity < 70%. Scheduled Calibration
The measurements and the uncertain II calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2	ainties with confidence pr ed in the closed laborator E critical for calibration) ID # SN: 104778	obability are given on the following pages a y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805)	nd are part of the certificate. °C and humidity < 70%. Scheduled Calibration Mar-24
The measurements and the uncertain In calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91	ainties with confidence pr ed in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244	obability are given on the following pages a y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804)	nd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Mar-24 Mar-24
The measurements and the uncertain NI calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	ainties with confidence pr ad in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	Obability are given on the following pages a y facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805)	nd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Mar-24 Mar-24 Mar-24
The measurements and the uncertain NI calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	ainties with confidence pr ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805)	nd are part of the certificate. °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24
The measurements and the uncertain All calibrations have been conducted Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination	ainties with confidence pr ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805)	nd are part of the certificate. °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24
The measurements and the uncertain All calibrations have been conducted Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4	ainties with confidence pr ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805)	nd are part of the certificate. °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24
The measurements and the uncertain All calibrations have been conducted Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	ainties with confidence pr ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503	obability are given on the following pages a y facility: environment temperature (22 ± 3)' Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03806) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house)	nd are part of the certificate. °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check
The measurements and the uncertain All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	ainties with confidence pr ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475	obability are given on the following pages a y facility: environment temperature (22 ± 3)' Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22)	nd are part of the certificate. °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check In house check: Oct-24
The measurements and the uncertain All calibrations have been conducted Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	ainties with confidence pr ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783	Obability are given on the following pages a y facility: environment temperature (22 ± 3)' Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	nd are part of the certificate. °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24
The measurements and the uncertain All calibrations have been conducted Calibration Equipment used (M&TE Parimary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	ainties with confidence pr ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 310982 / 06327 SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	nd are part of the certificate. °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24
The measurements and the uncertain All calibrations have been conducted Calibration Equipment used (M&TE Primary Standards Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ainties with confidence pr ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: US37292783 SN: MY41093315 SN: 100972	Obability are given on the following pages a y facility: environment temperature (22 ± 3)' Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	nd are part of the certificate. °C and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24
The measurements and the uncertain All calibrations have been conducted Calibration Equipment used (M&TE Primary Standards Power sensor NRP-291 Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ainties with confidence pr ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: US37292783 SN: MY41093315 SN: 100972	Obability are given on the following pages a y facility: environment temperature (22 ± 3)' Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22)	nd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 <u>Scheduled Check</u> In house check: Oct-24 In house check: Oct-24
The measurements and the uncertain All calibrations have been conducted Calibration Equipment used (M&TE Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A Power sensor HP 8481A Ref generator R&S SMT-06 Network Analyzer Agilent E8358A	ainties with confidence pr ed in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: WS41093315 SN: 100972 SN: US41080477	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22)	nd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 <u>Scheduled Check</u> In house check: Oct-24 In house check: Oct-24
The measurements and the uncerta	ainties with confidence pr ad in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 103245 SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: WY41093315 SN: US37292783 SN: US37292783 SN: US37292783 SN: US37292783 SN: US37292783 SN: US37292783 SN: US37292783 SN: US37292783 SN: US37292783	Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 07-Mar-23 (No. EX3-3503_Mar23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22) Function	nd are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Dec-23 <u>Scheduled Check</u> In house check: Oct-24 In house check: Oct-24

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1060_Jun23

Page 2 of 12

©Copyright. All rights reserved by CTTL.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5250 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	4.53 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.92 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.9 W/kg ± 19.9 % (k=2)
	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.27 W/kg

Certificate No: D5GHzV2-1060_Jun23

Page 3 of 12

Conductivity

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

 Temperature
 Permittivity

			a de la composición de
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	4.60 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.98 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.6 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.29 W/kg

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	4.67 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.4 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jun23

Page 4 of 12

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	4.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.56 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.5 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.42 W/kg

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	4.97 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jun23

Page 5 of 12

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.1 ± 6 %	5.08 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.07 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.0 ± 6 %	5.11 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jun23

Page 6 of 12

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	48.6 Ω - 5.3 jΩ	
Return Loss	- 25.1 dB	

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	47.7 Ω - 4.1 jΩ	
Return Loss	- 26.2 dB	

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	46.9 Ω - 2.2 jΩ
Return Loss	- 28.0 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	50.6 Ω - 4.0 jΩ	
Return Loss	- 28.0 dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	53.6 Ω + 1.2 jΩ	
Return Loss	- 28.6 dB	

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	51.4 Ω - 0.3 jΩ	
Return Loss	- 37.3 dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	51.2 Ω - 2.2 jΩ	
Return Loss	- 32.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns	-
		-

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: D5GHzV2-1060_Jun23

Page 7 of 12

DASY5 Validation Report for Head TSL

Date: 19.06.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.53$ S/m; $\epsilon_r = 35.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5250 MHz; $\sigma = 4.60$ S/m; $\epsilon_r = 35.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.67$ S/m; $\epsilon_r = 35.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.89$ S/m; $\epsilon_r = 35.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.97$ S/m; $\epsilon_r = 35.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.08$ S/m; $\epsilon_r = 35.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.11$ S/m; $\epsilon_r = 35.0$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 07.03.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

```
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
Reference Value = 76.08 V/m; Power Drift = -0.08 dB
Peak SAR (extrapolated) = 27.3 W/kg
SAR(1 g) = 7.92 W/kg; SAR(10 g) = 2.27 W/kg
Smallest distance from peaks to all points 3 dB below = 6.9 mm
Ratio of SAR at M2 to SAR at M1 = 70.9%
Maximum value of SAR (measured) = 18.0 W/kg
```

```
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm
```

Reference Value = 75.90 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 26.7 W/kg SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 71.8% Maximum value of SAR (measured) = 18.0 W/kg

Certificate No: D5GHzV2-1060_Jun23

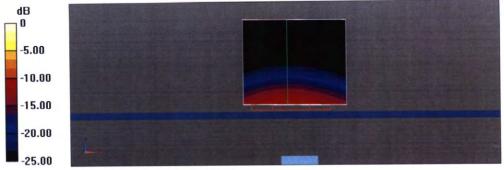
Page 8 of 12

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.02 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 28.5 W/kg SAR(1 g) = 8.24 W/kg; SAR(10 g) = 2.35 W/kg Smallest distance from peaks to all points 3 dB below = 6.8 mm Ratio of SAR at M2 to SAR at M1 = 70.8% Maximum value of SAR (measured) = 18.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.86 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 32.2 W/kg SAR(1 g) = 8.56 W/kg; SAR(10 g) = 2.42 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.3% Maximum value of SAR (measured) = 20.1 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.37 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 30.3 W/kg SAR(1 g) = 8.38 W/kg; SAR(10 g) = 2.38 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.5% Maximum value of SAR (measured) = 19.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.46 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.6% Maximum value of SAR (measured) = 19.3 W/kg

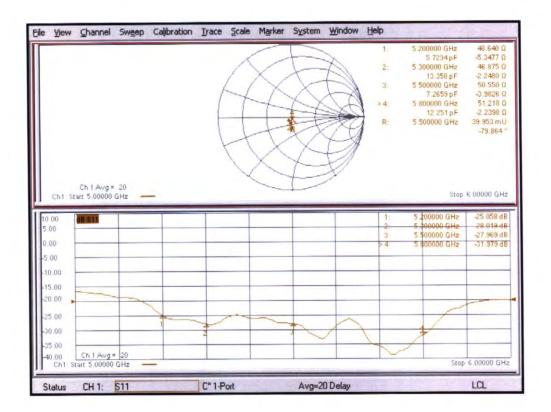

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.09 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 8.22 W/kg; SAR(10 g) = 2.32 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.5% Maximum value of SAR (measured) = 19.6 W/kg

Certificate No: D5GHzV2-1060_Jun23

Page 9 of 12

0 dB = 20.1 W/kg = 13.03 dBW/kg

Certificate No: D5GHzV2-1060_Jun23


Page 10 of 12

©Copyright. All rights reserved by CTTL.

Page 112 of 115

Impedance Measurement Plot for Head TSL (5200, 5300, 5500, 5800 MHz)

Certificate No: D5GHzV2-1060_Jun23

Page 11 of 12

Elle View Channel Sweep Calibration Irace Scale Marker System Window Help 5.250000 GHz 7.3099 pF 5.600000 GHz 33.776 pH 5.750000 GHz 105.66 pF 5.500000 GHz 47 659 Ω -4 1472 Ω 53 643 Ω 1.1884 Ω 51 361 Ω -261.95 mΩ 39.953 mU -79.864 * >1: 2 3: R Ch 1 Avg = 20 Ch1: Start 5.00000 GHz Stop 6.00000 GHz -26.245 dB 28.643 dB -37.284 dB GHz 10.00 5.\$00000 GHz .00 5.750000 GHz 0.00 5.00 10.00 -15.00 -20.00 -25.00 30.00 -35.00 40.00 Ch 1 Avg = 20 Ch1: Start 5.00000 GHz LE Stop 6.00000 GHz C* 1-Port Avg=20 Delay LCL CH 1: 511 Status

Impedance Measurement Plot for Head TSL (5250, 5600, 5750 MHz)

Certificate No: D5GHzV2-1060_Jun23

Page 12 of 12

ANNEX H Accreditation Certificate

