

FCC PART 15C TEST REPORT

BLUETOOTH LOW ENERGY (BLE) PART

No. I23Z70138-IOT06

for

Samsung Electronics Co., Ltd.

Tablet with Bluetooth, WLAN

Model Name: SM-X110

FCC ID: ZCASMX110

with

Hardware Version: REV1.0

Software Version: X110.001

Issued Date: 2023-8-8

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No.52, HuayuanNorth Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512,Fax:+86(0)10-62304633-2504

Email: cttl terminals@caict.ac.cn, website: www.chinattl.com

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I23Z70138-IOT06	Rev.0	1st edition	2023-8-8

CONTENTS

1. TI	EST LABORATORY	5
1.1.	INTRODUCTION &ACCREDITATION	5
1.2.	TESTING LOCATION	
1.3.	TESTING ENVIRONMENT	6
1.4.	Project data	6
1.5.	Signature	6
2. CI	LIENT INFORMATION	7
2.1.	APPLICANT INFORMATION	7
2.2.	MANUFACTURER INFORMATION	7
3. E0	QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	8
3.1.	ABOUT EUT	8
3.2.	INTERNAL IDENTIFICATION OF EUT	8
3.3.	INTERNAL IDENTIFICATION OF AE	8
3.4.	NORMAL ACCESSORY SETTING	8
3.5.	GENERAL DESCRIPTION	8
4. RI	EFERENCE DOCUMENTS	9
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	9
4.2.	REFERENCE DOCUMENTS FOR TESTING	9
5. TI	EST RESULTS	10
5.1.	SUMMARY OF EUT MODE	10
5.2.	SUMMARY OF TEST RESULTS	10
5.3.	STATEMENTS	10
5.4.	EXPLANATION OF RE-USE OF TEST DATA	10
6. TI	EST FACILITIES UTILIZED	11
7. M	IEASUREMENT UNCERTAINTY	12
7.1.	PEAK OUTPUT POWER - CONDUCTED	12
7.2.	Frequency Band Edges - Conducted	12
7.3.	Frequency Band Edges - Radiated	12
7.4.	Transmitter Spurious Emission - Conducted	12
7.5.	Transmitter Spurious Emission - Radiated	12
7.6.	6dB Bandwidth	12
7.7.	MAXIMUM POWER SPECTRAL DENSITY LEVEL	13
7.8.	AC POWERLINE CONDUCTED EMISSION	13
ANNE	X A: EUT PARAMETERS	14
ANNE	X B: DETAILED TEST RESULTS	15
B.1.	MEASUREMENT METHOD	15

	B.2. PEAK OUTPUT POWER	. 16
	B.3. FREQUENCY BAND EDGES - CONDUCTED.	17
	B.4. Frequency Band Edges – Radiated	. 19
	B.5. Transmitter Spurious Emission - Conducted	. 21
	B.6. Transmitter Spurious Emission - Radiated	. 30
	B.7. 6DB BANDWIDTH.	. 33
	B.8. MAXIMUM POWER SPECTRAL DENSITY LEVEL	. 36
	B.9. AC POWERLINE CONDUCTED EMISSION	. 39
A	NNEX C: ACCREDITATION CERTIFICATE	. 43

1. Test Laboratory

1.1. Introduction & Accreditation

Telecommunication Technology Labs, CAICT is an ISO/IEC 17025:2017 accredited test laboratory under NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM (NVLAP) with lab code 600118-0, and is also an FCC accredited test laboratory (CN5017), and ISED accredited test laboratory (ISED#: 24849). The detail accreditation scope can be found on NVLAP website.

1.2. Testing Location

Conducted testing Location: CTTL (huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China100191

Radiated testing Location:

CTTL (BDA)

Address: No. 18A, Kangding Street, Beijing Economic-Technology

Development Area, Beijing, 100176, P.R. China

CTTL(huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China100191

1.3. Testing Environment

Normal Temperature: $20-27^{\circ}$ C Relative Humidity: 20-50%

1.4. Project data

Testing Start Date: 2023-6-5
Testing End Date: 2023-7-28

1.5. Signature

Wu Le

(Prepared this test report)

Sun Zhenyu

(Reviewed this test report)

Hu Xiaoyu

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: Samsung Electronics Co., Ltd.

Address /Post: 19 Chapin Rd., Building D Pine Brook, NJ 07058

Contact Person: Jenni Chun

Contact Email: j1.chun@samsung.com

Telephone: +1-201-937-4203

Fax: /

2.2. Manufacturer Information

Company Name: Samsung Electronics Co., Ltd.

Address /Post: Samsung R5, Maetan dong 129, Samsung ro

Youngtong gu, Suwon city 443 742, Korea

Contact Person: JP KIM

Contact Email: jp426.kim@samsung.com

Telephone: +82-10-4376-0326

Fax: /

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description Tablet with Bluetooth, WLAN

Model Name SM-X110 FCC ID ZCASMX110

Frequency Band ISM 2400MHz~2483.5MHz

Type of Modulation(LE mode) GFSK (Bluetooth Low Energy)

Number of Channels(LE mode) 40

Power Supply 3.82V DC by Battery

Antenna gain -0.5dBi

3.2. Internal Identification of EUT

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
UT07a	/	REV1.0	X110.001	/
UT01a	/	REV1.0	X110.001	/

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID*	Name	Model	Manufacturer
AE1	Battery	HQ-3565S	SCUD(Fujian) Electronics Co., LTD.
AE2	Adapter	EP-T1510	DONGYANG
AE3	Date Cable C-C	EP-DN980BWE	Samsung Electronics Co.,Ltd
AE5	Headset	ESH61ASFWE	/

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4. Normal Accessory setting

Fully charged battery is used during the test.

3.5. General Description

The Equipment Under Test (EUT) is a model of Tablet with Bluetooth, WLAN with integrated antenna. It consists of normal options: lithium battery, charger. Manual and specifications of the EUT were provided to fulfill the test. Samples undergoing test were selected by the Client.

^{*}AE2 is not the AE for EUT, provided by the client for relevant tests.

4. Reference Documents

4.1. Documents supplied by applicant

EUT parameters, referring to Annex A for detailed information, is supplied by the client or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
	FCC CFR 47, Part 15, Subpart C:	
	15.205 Restricted bands of operation;	
FCC Part15	15.209 Radiated emission limits, general	2021
	requirements;	2021
	15.247 Operation within the bands 902–928MHz,	
	2400-2483.5 MHz, and 5725-5850 MHz.	
ANSI C63.10	American National Standard of Procedures for	luna 2012
ANSI 603.10	Compliance Testing of Unlicensed Wireless Devices	June,2013

5. Test Results

5.1. Summary of EUT Mode

Two modes are provided:

Mode	Conditions
Mode A	1Mbps
Mode B	2Mbps

^{*}For the test results, the EUT had been tested all conditions. But only the worst case(Mode B) was shown in test report except the " Peak Output Power " test was shown all conditions.

5.2. Summary of Test Results

Abbreviations used in this clause:

- P Pass, The EUT complies with the essential requirements in the standard.
- **F** Fail, The EUT does not comply with the essential requirements in the standard
- NA Not Applicable, The test was not applicable
- NP Not Performed, The test was not performed by CTTL
- R Re-use test data from basic model report

SUMMARY OF MEASUREMENT RESULTS	Sub-clause	Verdict
Peak Output Power	15.247 (b)(1)	R
Frequency Band Edges- Conducted	15.247 (d)	R
Frequency Band Edges- Radiated	15.247, 15.205, 15.209	R
Transmitter Spurious Emission - Conducted	15.247 (d)	R
Transmitter Spurious Emission - Radiated	15.247, 15.205, 15.209	R
6dB Bandwidth	15.247 (a)(2)	R
Maximum Power Spectral Density Level	15.247(e)	R
AC Powerline Conducted Emission	15.107, 15.207	R

Please refer to ANNEX A for detail.

The measurement is made according to ANSI C63.10.

5.3. Statements

CTTL has evaluated the test cases requested by the applicant /manufacturer as listed in section 5.1 of this report for the EUT specified in section 3 according to the standards or reference documents listed in section 4.2

5.4. Explanation of re-use of test data

The Equipment Under Test (EUT) model SM-X110 (FCC ID: ZCASMX110) are variant products of SM-X115 (FCC ID: ZCASMX115), according to the declaration of changes provided by the applicant and FCC KDB publication 178919 D01, all the test results are derived from test report No.I23Z70136-IOT02.

For detail differences between two models please refer the Declaration of Changes document.

6. Test Facilities Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Period	Calibration Due date
1	Vector Signal Analyzer	FSQ26	100024	R&S	1 year	2024-03-09
4	Shielding Room	S81	/	ETS-Lindgren	/	/

Radiated emission test system

No.	o. Equipment Model Serial Manufact	Manufacturer	Calibration	Calibration		
140.	Equipment	Wiodei	Number	Wandlacture	Period	Due date
1	Test Receiver	ESU26	100376	R&S	1 year	2023-09-22
2	Test Receiver	FSV40	101047	R&S	1 year	2024-06-25
3	Test Receiver	ESW44	103144	R&S	1 year	2023-10-25
4	Loop Antenna	HFH2-Z2	829324/007	R&S	1 year	2023-12-22
5	EMI Antenna	VULB9163	01177	Schwarzbeck	1 year	2023-08-03
6	EMI Antenna	3117	00119021	ETS-Lindgren	1 year	2024-06-24
7	EMI Antenna	LB-180400	21100840000	A-INFO	1 year	2024-03-02
		-25-C-KF	06	A-INFO	1 year	2024-03-02

Note: the EMI Antenna which Serial Number is 00119024 was before Calibration Due date when used.

AC Power Line Conducted Emission

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Period	Calibration Due date
1	LISN	ENV216	101459	R&S	1 year	2024-02-29
2	Test Receiver	ESCI	100766	R&S	1 year	2024-03-30

7. Measurement Uncertainty

7.1. Peak Output Power - Conducted

Measurement Uncertainty:

7.2. Frequency Band Edges - Conducted

Measurement Uncertainty:

7.3. Frequency Band Edges - Radiated

Measurement Uncertainty:

Measurement Uncertainty (k=2)	/
-------------------------------	---

7.4. Transmitter Spurious Emission - Conducted

Measurement Uncertainty:

Frequency Range	Uncertainty (k=2)	
30 MHz ~ 8 GHz	1.22dB	
8 GHz ~ 12.75 GHz	1.51dB	
12.7GHz ~ 26 GHz	1.51dB	

7.5. Transmitter Spurious Emission - Radiated

Measurement Uncertainty:

Frequency Range	Uncertainty(dBm) (k=2)	
9kHz-30MHz	4.92	
30MHz ≤ f ≤ 1GHz	5.73	
1GHz ≤ f ≤18GHz	5.58	
18GHz ≤ f ≤40GHz	3.37	

7.6. 6dB Bandwidth

Measurement Uncertainty:

Measurement Uncertainty (k=2)	61.936Hz
-------------------------------	----------

7.7. Maximum Power Spectral Density Level

Measurement Uncertainty:

7.8. AC Powerline Conducted Emission

Measurement Uncertainty:

ANNEX A: EUT parameters

Disclaimer: The antenna gain provided by the client may affect the validity of the measurement results in this report, and the client shall bear the impact and consequences arising therefrom.

ANNEX B: Detailed Test Results

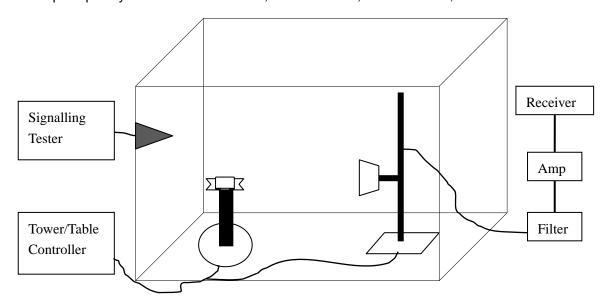
B.1. Measurement Method

B.1.1. Conducted Measurements

The measurement is made according to ANSI C63.10.

- 1). Connect the EUT to the test system correctly.
- 2). Set the EUT to the required work mode (Transmitter, receiver or transmitter & receiver).
- 3). Set the EUT to the required channel.
- 4). Set the EUT hopping mode (hopping or hopping off).
- 5). Set the spectrum analyzer to start measurement.
- 6). Record the values. Vector Signal Analyzer

B.1.2. Radiated Emission Measurements


The measurement is made according to ANSI C63.10.

The radiated emission test is performed in semi-anechoic chamber. The distance from the EUT to the reference point of measurement antenna is 3m. The test is carried out on both vertical and horizontal polarization and only maximization result of both polarizations is kept. During the test, the turntable is rotated 360° and the measurement antenna is moved from 1m to 4m to get the maximization result. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

In the case of radiated emission, the used settings are as follows,

Sweep frequency from 30 MHz to 1GHz, RBW = 100 kHz, VBW = 300 kHz;

Sweep frequency from 1 GHz to 26GHz, RBW = 1MHz, VBW = 3MHz;

B.2. Peak Output Power

B.2.1. Peak Output Power - Conducted

Method of Measurement: See ANSI C63.10-clause 11.9.1.1

- a) Set the RBW = 3 MHz.
- b) Set VBW = 10 MHz.
- c) Set span = 10 MHz.
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

Measurement Limit:

Standard	Limit (dBm)	
FCC Part 15.247(b)(3)	< 30	

Measurement Results:

For GFSK

Sample Rate	Channel No.	Frequency (MHz)	Peak Conducted Output Power (dBm)	Conclusion
	0	2402	-1.23	Р
1Mbps	19	2440	-0.39	Р
	39	2480	-0.84	Р
	0	2402	-1.19	Р
2Mbps	19	2440	-0.31	Р
	39	2480	-0.79	Р

Conclusion: PASS

B.2.2. E.I.R.P.

The radiated E.I.R.P. is listed below:

Antenna gain = -0.5dBi

For GFSK

Sample Rate	Channel No.	Frequency (MHz)	E.I.R.P. (dBm)	Conclusion
	0	2402	-1.73	Р
1Mbps	19	2440	-0.89	Р
	39	2480	-1.34	Р
	0	2402	-1.69	Р
2Mbps	19	2440	-0.81	Р
	39	2480	-1.29	Р

Note: E.I.R.P. are calculated with the antenna gain.

Conclusion: PASS

B.3. Frequency Band Edges - Conducted

Method of Measurement: See ANSI C63.10-clause 6.10.4

Connect the spectrum analyzer to the EUT using an appropriate RF cable connected to the EUT output. Configure the spectrum analyzer settings as described below.

a) Set Span = 8MHzb) Sweep Time: Autoc) Set the RBW= 100 kHzc) Set the VBW= 300 kHz

d) Detector: Peake) Trace: Max hold

Observe the stored trace and measure the amplitude delta between the peak of the fundamental and the peak of the band-edge emission. This is not an absolute field strength measurement; it is only a relative measurement to determine the amount by which the emission drops at the band edge relative to the highest fundamental emission level.

Measurement Limit:

Standard	Limit (dBc)	
FCC 47 CFR Part 15.247 (d)	< -20	

Measurement Result:

For GFSK

Channel No.	Frequency (MHz)	Hopping	Band Edge Power (dBc)		Conclusion
0	2402	Hopping OFF	Fig.1	-31.31	Р
39	2480	Hopping OFF	Fig.2	-52.15	Р

Conclusion: PASS

Test graphs as below

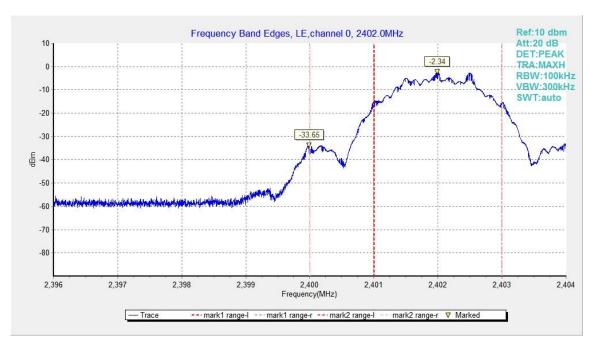


Fig.1. Frequency Band Edges: GFSK, 2402 MHz, Hopping Off

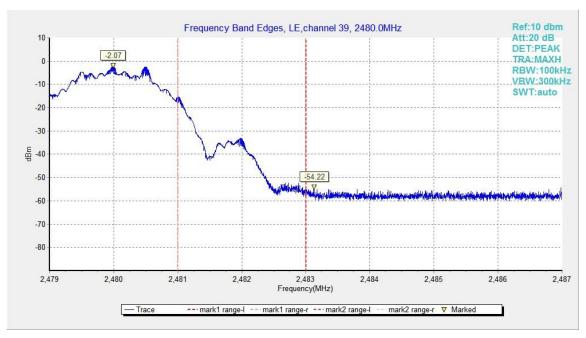


Fig.2. Frequency Band Edges: GFSK, 2480 MHz, Hopping Off

B.4. Frequency Band Edges – Radiated

Method of Measurement: See ANSI C63.10 clause 6.4 &6.5 & 6.6 Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247, 15.205, 15.209	20dB below peak output power

radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission	Field strength	Field strength	Measurement distance
(MHz)	(MHz) (uV/m)		(m)
Above 960	500	54	3

Set up:

Tabletop devices shall be placed on a nonconducting platform with nominal top surface dimensions 1 m by 1.5 m and the table height shall be 1.5 m.

The EUT and transmitting antenna shall be centered on the turntable.

Measurement Results:

EUT ID: UT07a

Mode	Channel	Frequency Range	Test Results	Conclusion
GFSK	0	2.31GHz ~2.45GHz	Fig.3	Р
GFSK	39	2.45GHz ~2.5GHz	Fig.4	Р

Conclusion: PASS

Test graphs as below

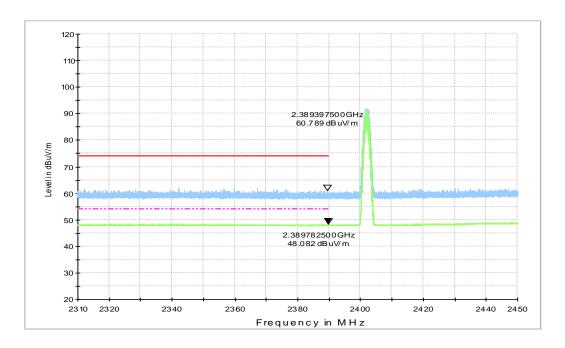


Fig.3. Frequency Band Edges: GFSK, 2402 MHz, 2.31 GHz – 2.45GHz

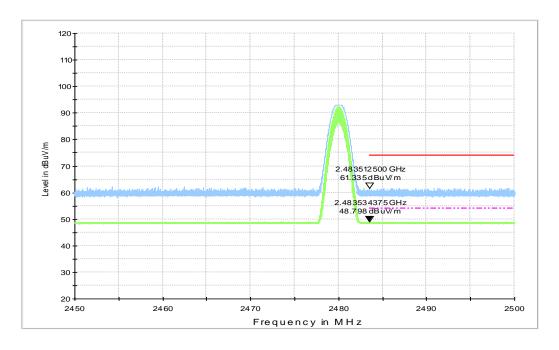


Fig.4. Frequency Band Edges: GFSK, 2480 MHz, 2.45 GHz - 2.50GHz

B.5. Transmitter Spurious Emission - Conducted

Method of Measurement: See ANSI C63.10-clause 11.11.2 and clause 11.11.3 Measurement Procedure – Reference Level

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW = 300 kHz.
- 3. Set the span to \geq 1.5 times the DTS bandwidth.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the maximum PSD level. Next, determine the power in 100 kHz band segments outside of the authorized frequency band using the following measurement:

Measurement Procedure - Unwanted Emissions

- 1. Set RBW = 100 kHz.
- 2. Set VBW = 300 kHz.
- 3. Set span to encompass the spectrum to be examined.
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize (this may take some time, depending on the extent of the span). Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified above.

Measurement Limit:

Standard	Limit		
FCC 47 CFR Part 15.247 (d)	20dB below peak output power in 100 kHz		
	bandwidth		

Measurement Results:

For GFSK

Channel No.	Frequency (MHz)	Frequency Range	Test Results	Conclusion
		Center Frequency	Fig.5	Р
		30 MHz ~ 1 GHz	Fig.6	Р
0	2402	1 GHz ~ 3 GHz	Fig.7	Р
		3 GHz ~ 10 GHz	Fig.8	Р
		10GHz ~ 26 GHz	Fig.9	Р
		Center Frequency	Fig.10	Р
	2440	30 MHz ~ 1 GHz	Fig.11	Р
19		1 GHz ~ 3 GHz	Fig.12	Р
		3 GHz ~ 10 GHz	Fig.13	Р
		10GHz ~ 26 GHz	Fig.14	Р
		Center Frequency	Fig.15	Р
		30 MHz ~ 1 GHz	Fig.16	Р
39	2480	1 GHz ~ 3GHz	Fig.17	Р
		3 GHz ~ 10 GHz	Fig.18	Р
		10 GHz ~ 26 GHz	Fig.19	Р

Conclusion: PASS
Test graphs as below

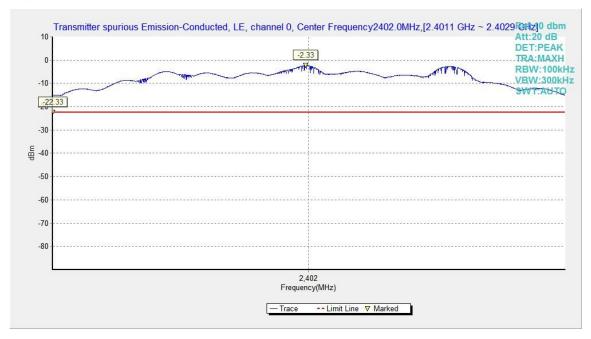


Fig.5. Transmitter Spurious Emission - Conducted: GFSK,2402MHz

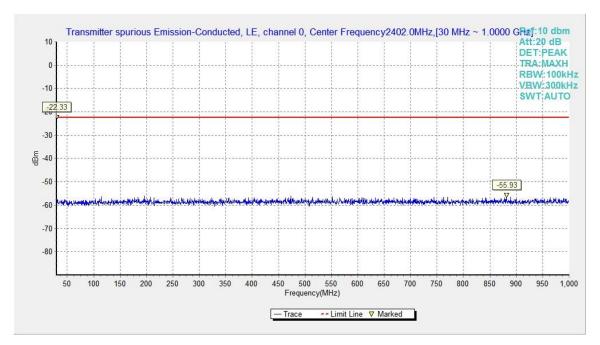


Fig.6. Transmitter Spurious Emission - Conducted: GFSK, 2402 MHz, 30MHz - 1GHz

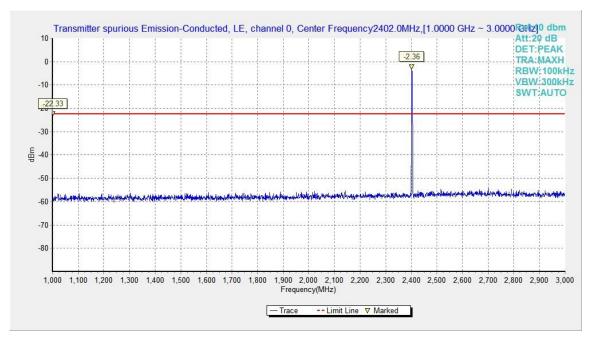


Fig.7. Transmitter Spurious Emission - Conducted: GFSK, 2402 MHz,1GHz - 3GHz

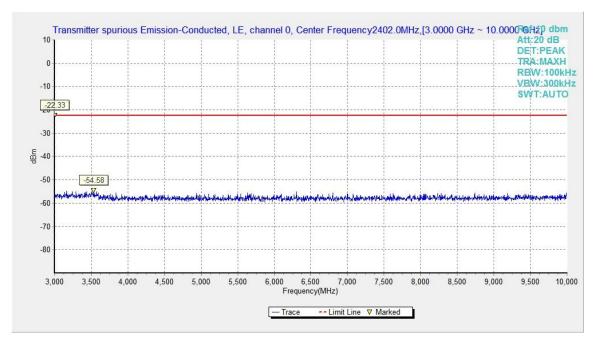


Fig.8. Transmitter Spurious Emission - Conducted: GFSK, 2402 MHz,3GHz - 10GHz

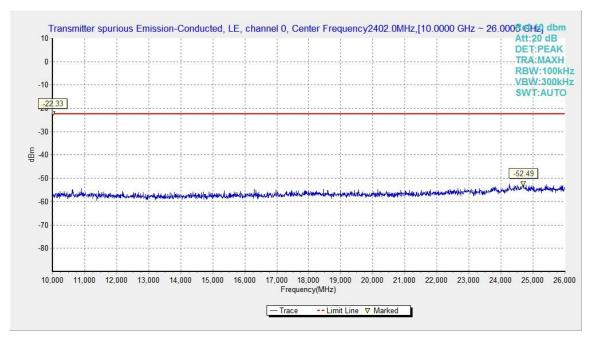


Fig.9. Transmitter Spurious Emission - Conducted: GFSK, 2402 MHz,10GHz - 26GHz

Fig.10. Transmitter Spurious Emission - Conducted: GFSK, 2440MHz

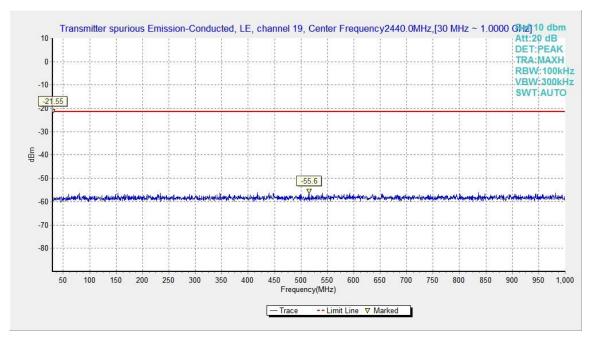


Fig.11. Transmitter Spurious Emission - Conducted: GFSK, 2440 MHz, 30MHz - 1GHz

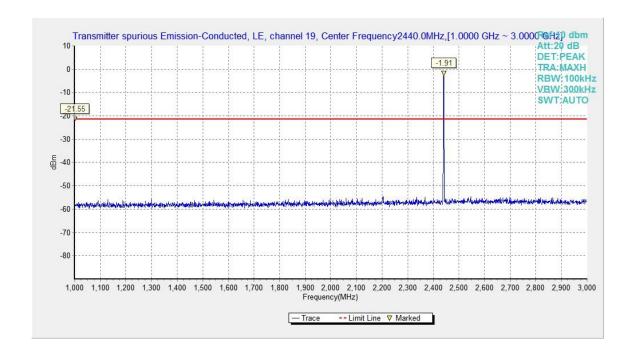


Fig.12. Transmitter Spurious Emission - Conducted: GFSK, 2440 MHz, 1GHz - 3GHz

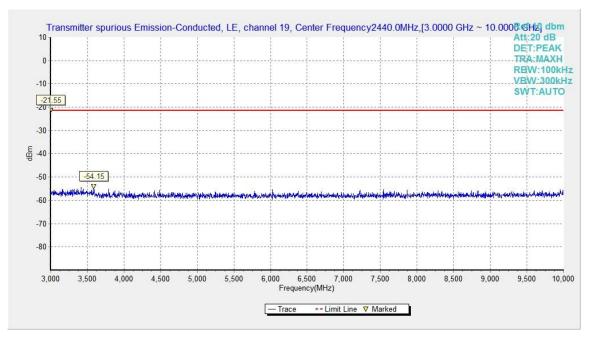


Fig.13. Transmitter Spurious Emission - Conducted: GFSK, 2440 MHz, 3GHz - 10GHz

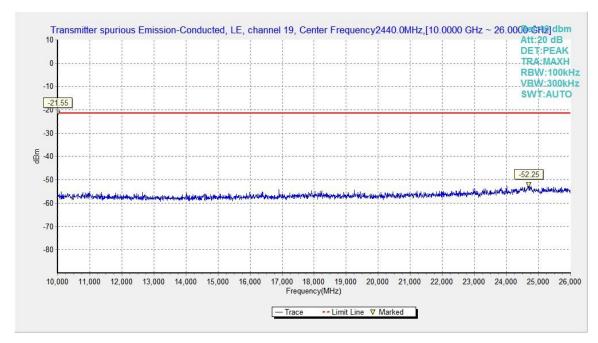


Fig.14. Transmitter Spurious Emission - Conducted: GFSK, 2440 MHz, 10GHz - 26GHz

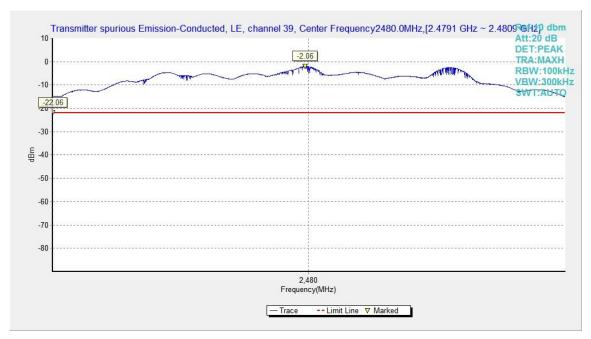


Fig.15. Transmitter Spurious Emission - Conducted: GFSK, 2480 MHz

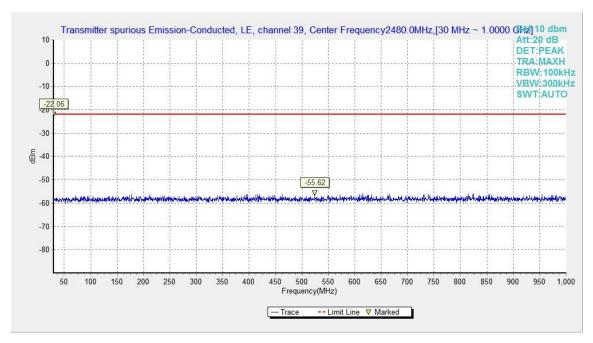


Fig.16. Transmitter Spurious Emission - Conducted: GFSK, 2480 MHz, 30MHz - 1GHz

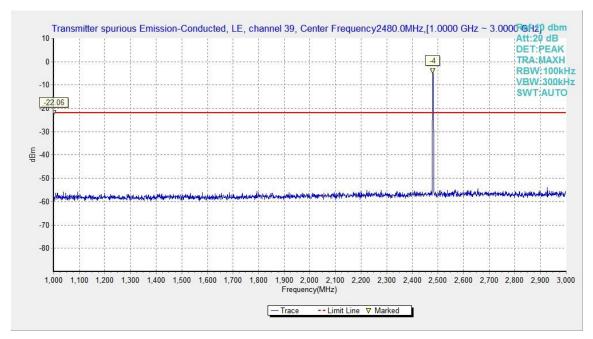


Fig.17. Transmitter Spurious Emission - Conducted: GFSK, 2480 MHz, 1GHz - 3GHz

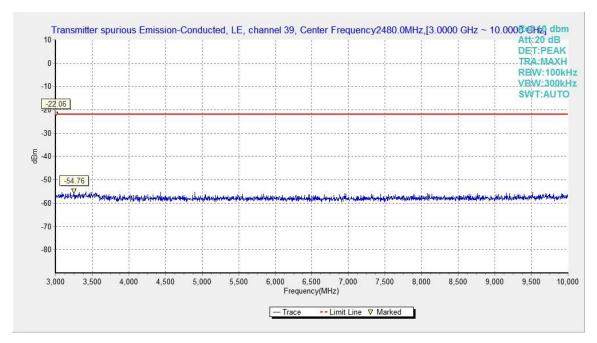


Fig.18. Transmitter Spurious Emission - Conducted: GFSK, 2480 MHz, 3GHz - 10GHz

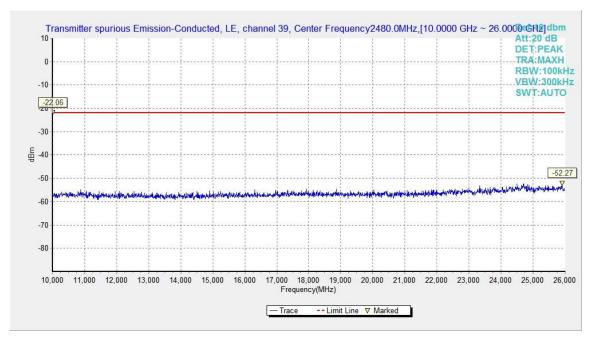


Fig.19. Transmitter Spurious Emission - Conducted: GFSK, 2480 MHz, 10GHz - 26GHz

B.6. Transmitter Spurious Emission - Radiated

Method of Measurement: See ANSI C63.10 clause 6.4 &6.5 & 6.6

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247, 15.205, 15.209	20dB below peak output power

Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency (MHz)	Field strength(μV/m)	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30

Frequency of emission	Field strength	Field strength	Measurement distance
(MHz)	(uV/m)	(dBuV/m)	(m)
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Set up:

Tabletop devices shall be placed on a nonconducting platform with nominal top surface dimensions 1 m by 1.5 m. For emissions testing at or below 1 GHz, the table height shall be 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height shall be 1.5 m

The EUT and transmitting antenna shall be centered on the turntable.

Note:

1. A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss.

 $\ensuremath{P_{\text{Mea}}}$ is the field strength recorded from the instrument.

The measurement results are obtained as described below:

Result=P_{Mea}+A_{Rpl=} P_{Mea}+Cable Loss+Antenna Factor

2. The range of evaluated frequency is from 9 kHz to 26GHz. Measurement value showed here only 6 maximum emissions noted.

Average Measurement results

GFSK 2402MHz

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2389.725	46.51	4.61	27.48	14.42	54.00	7.49	V
2389.875	46.55	4.62	27.48	14.45	54.00	7.45	V
4804.000	29.52	-35.05	33.98	30.59	54.00	24.48	V
7206.000	31.31	-33.04	35.52	28.83	54.00	22.69	V
9608.000	32.43	-32.21	36.32	28.32	54.00	21.57	Н
12010.000	35.01	-30.19	38.80	26.40	54.00	18.99	Н

GFSK 2440MHz

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2435.944	46.85	4.66	27.72	14.48	54.00	7.15	V
2443.425	46.98	4.67	27.76	14.55	54.00	7.02	V
4882.000	29.75	-34.37	33.83	30.30	54.00	24.25	V
7323.000	31.10	-33.03	35.40	28.72	54.00	22.90	Н
9764.000	32.42	-31.87	36.57	27.73	54.00	21.58	Н
12205.000	35.41	-29.39	38.79	26.00	54.00	18.59	Н

GFSK 2480MHz

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2483.981	47.39	4.65	27.80	14.94	54.00	6.61	V
2484.094	47.38	4.65	27.80	14.93	54.00	6.62	V
4960.000	29.26	-34.42	33.80	29.89	54.00	24.74	Н
7440.000	30.59	-32.79	35.42	27.96	54.00	23.41	Н
9920.000	32.33	-32.04	36.84	27.52	54.00	21.67	Н
12400.000	35.33	-29.42	38.60	26.14	54.00	18.67	V

Peak Measurement results GFSK 2402MHz

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2388.610	60.80	4.61	27.48	28.71	74.00	13.20	V
2389.398	60.79	4.61	27.48	28.70	74.00	13.21	Н
4804.500	42.61	-35.05	33.97	43.69	74.00	31.39	Н
7207.000	44.74	-33.05	35.53	42.25	74.00	29.26	V
9608.000	44.69	-32.21	36.32	40.58	74.00	29.31	Н
12028.000	47.37	-30.12	38.80	38.69	74.00	26.63	Н

GFSK 2440MHz

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2366.200	45.81	-35.65	31.40	50.06	74.00	28.19	Н
2507.200	46.66	-35.65	32.43	49.88	74.00	27.34	V
4882.000	43.78	-34.37	33.83	44.33	74.00	30.22	V
7322.000	43.79	-33.03	35.40	41.42	74.00	30.21	Н
9763.000	45.15	-31.87	36.57	40.45	74.00	28.85	Н
12205.000	47.48	-29.39	38.79	38.08	74.00	26.52	V

GFSK 2480MHz

Frequency	Measurement	Cable	Antenna	Receiver	Limit	Margin	Antenna
(MHz)	Result	Loss	Factor	Reading	(dBuV/m)	(dB)	Pol.
	(dBuV/m)	(dB)	(dB/m)	(dBuV)			(H/V)
2483.512	61.34	4.65	27.80	28.88	74.00	12.66	Н
2483.706	61.01	4.65	27.80	28.56	74.00	12.99	V
4961.000	42.53	-34.40	33.80	43.13	74.00	31.47	V
7439.500	42.83	-32.79	35.42	40.20	74.00	31.17	Н
9920.500	45.62	-32.04	36.84	40.81	74.00	28.38	V
12399.500	47.97	-29.42	38.60	38.79	74.00	26.03	V

Conclusion: PASS

B.7. 6dB Bandwidth

Method of Measurement:

The measurement is made according to ANSI C63.10 clause 11.8.1

- 1.Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) = 300 kHz.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247(a)(2)	>= 500KHz

Measurement Results:

For GFSK

Channel No.	Frequency (MHz)	6dB Band	Conclusion	
0	2402	Fig.20	1164.00	Р
19	2440	Fig.21	1167.00	Р
39	2480	Fig.22	1168.50	Р

Conclusion: PASS
Test graphs as below:

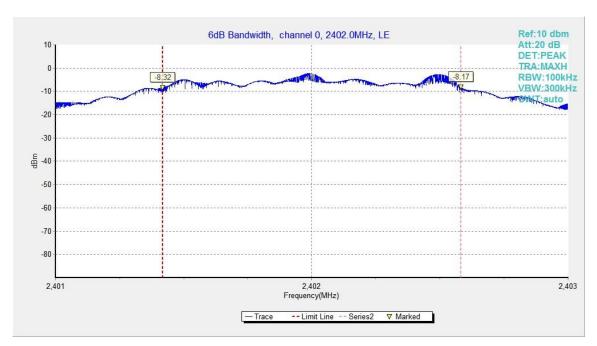


Fig.20. 6dB Bandwidth: GFSK, 2402 MHz

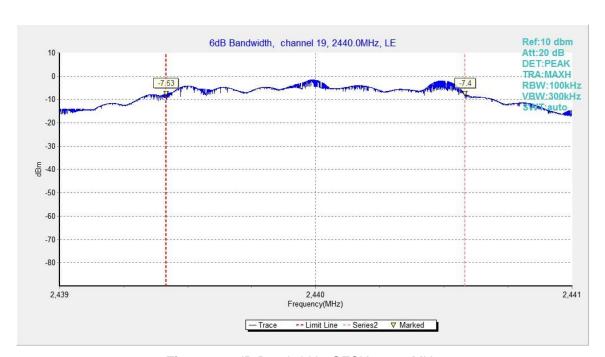


Fig.21. 6dB Bandwidth: GFSK, 2440 MHz

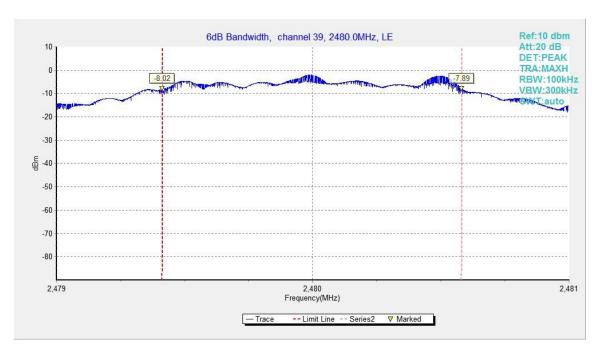


Fig.22. 6dB Bandwidth: GFSK, 2480 MHz

B.8. Maximum Power Spectral Density Level

Method of Measurement:

The measurement is made according to ANSI C63.10 clause 11.10.2

- 1. Set the RBW = 3 kHz.
- 2. Set the VBW = 10 kHz.
- 3. Set the span to 2 times the DTS bandwidth.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the maximum amplitude level within the RBW.

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247(e)	<=8.0dBm/3kHz

Measurement Results:

For GFSK

Channel No.	Frequency (MHz)	Maximum Powe Level(d	Conclusion	
0	2402	Fig.23	-20.18	Р
19	2440	Fig.24	-19.44	Р
39	2480	Fig.25	-19.92	Р

Test graphs as below:

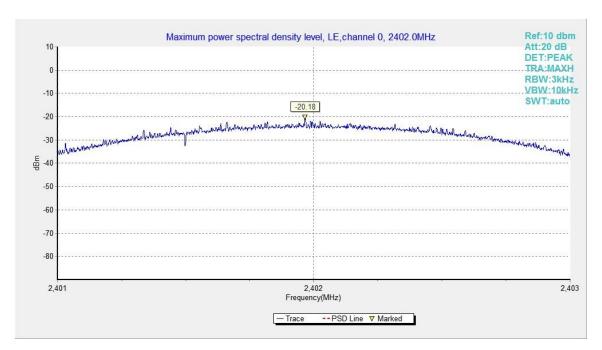


Fig.23. Maximum Power Spectral Density Level Function: GFSK, 2402 MHz

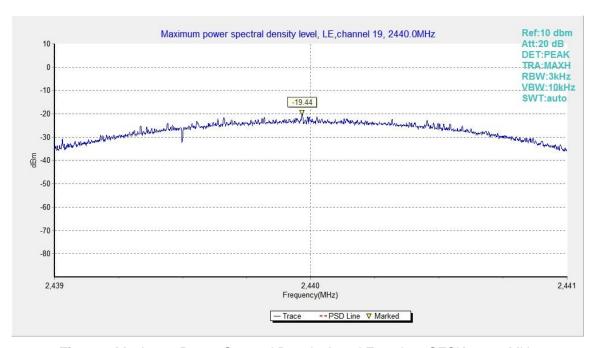


Fig.24. Maximum Power Spectral Density Level Function: GFSK, 2440 MHz

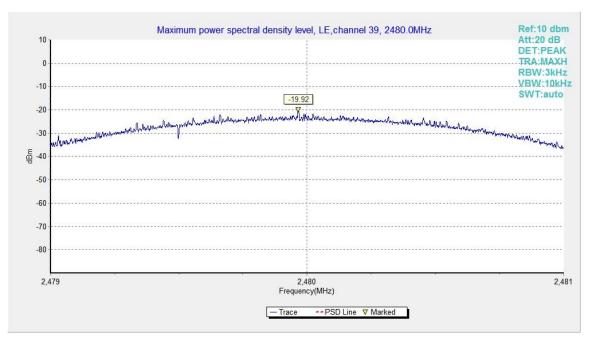


Fig.25. Maximum Power Spectral Density Level Function: GFSK, 2480 MHz

B.9. AC Powerline Conducted Emission

Summary

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section

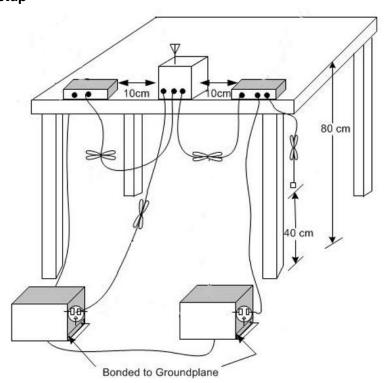
Method of Measurement:

See Clause 6.2 of ANSI C63.10 specifically.

See Clause 4 and Clause 5 of ANSI C63.10 generally.

The conducted emissions from the AC port of the EUT are measured in a shielding room. The EUT is connected to a Line Impedance Stabilization Network (LISN). An overview sweep with peak detection was performed. The measurements were performed with a quasi-peak detector and if required, an average detector.

The conducted emission measurements were made with the following detector of the test receiver: Quasi-Peak / Average Detector.


The measurement bandwidth is:

Frequency of Emission (MHz)	RBW/IF bandwidth
0.15-30	9kHz

Test Condition:

Voltage (V)	Frequency (Hz)
120	60

Measurement Setup

Measurement Result and limit:

EUT ID: UT07a

Bluetooth (Quasi-peak Limit)

Frequency range (MHz)	Quasi-peak Limit (dBμV)	Result (dBμV) With charger				Conclusion
(141112)	Επιπε (αΒμν)	bluetooth	ldle			
0.15 to 0.5	66 to 56					
0.5 to 5	56	Fig.B.9.1	Fig.B.9.2	Р		
5 to 30	60					

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Bluetooth (Average Limit)

Frequency range	Average Limit	Result With c	Conclusion	
(MHz)	(dBμV)	bluetooth	Idle	Conclusion
0.15 to 0.5	56 to 46			
0.5 to 5	46	Fig.B.9.1	Fig.B.9.2	Р
5 to 30	50			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Conclusion: Pass
Test graphs as below:

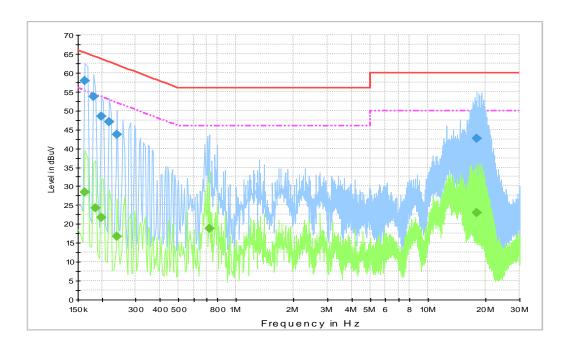


Fig.B.9.1 AC Powerline Conducted Emission- bluetooth

Note: The graphic result above is the maximum of the measurements for both phase line and neutral line.

Final Result 1

Frequency	QuasiPeak	Meas. Time	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)
0.163500	58.0	2000.0	9.000	On	L1	26.0	7.3	65.3
0.181500	53.8	2000.0	9.000	On	L1	22.7	10.7	64.4
0.199500	48.5	2000.0	9.000	On	L1	19.8	15.1	63.6
0.217500	47.0	2000.0	9.000	On	L1	19.7	15.9	62.9
0.240000	43.7	2000.0	9.000	On	L1	19.7	18.4	62.1
17.974500	42.6	2000.0	9.000	On	L1	19.9	17.4	60.0

Final Result 2

Frequency	Average	Meas. Time	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)
0.163500	28.5	2000.0	9.000	On	N	26.0	26.8	55.3
0.186000	24.2	2000.0	9.000	On	N	22.0	30.0	54.2
0.199500	21.8	2000.0	9.000	On	L1	19.8	31.8	53.6
0.240000	16.7	2000.0	9.000	On	L1	19.7	35.4	52.1
0.726000	18.8	2000.0	9.000	On	L1	19.7	27.2	46.0
17.974500	23.0	2000.0	9.000	On	N	19.9	27.0	50.0

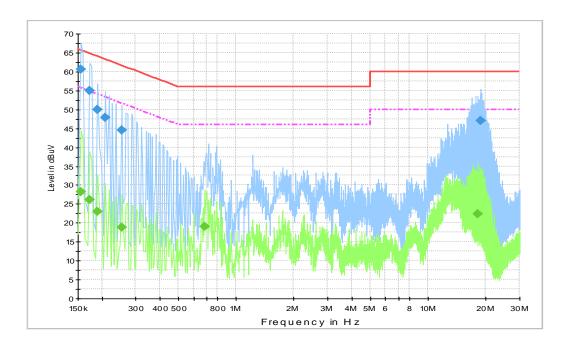


Fig.B.9.2 AC Powerline Conducted Emission-Idle

Note: The graphic result above is the maximum of the measurements for both phase line and neutral line.

Final Result 1

Frequency	QuasiPeak	Meas. Time	Bandwidth	Filter	Line	Corr.	Margin	Limit
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)
0.154500	60.5	2000.0	9.000	On	N	27.7	5.2	65.8
0.172500	55.0	2000.0	9.000	On	L1	24.3	9.8	64.8
0.190500	50.0	2000.0	9.000	On	L1	21.2	14.0	64.0
0.208500	47.9	2000.0	9.000	On	N	19.7	15.3	63.3
0.253500	44.6	2000.0	9.000	On	N	19.7	17.1	61.6
18.721500	47.0	2000.0	9.000	On	N	19.9	13.0	60.0

Final Result 2

Frequency	Average	Meas. Time	Bandwidth	Filter	Line	Corr.	Margin	Limit		
(MHz)	(dBµV)	(ms)	(kHz)			(dB)	(dB)	(dBµV)		
0.154500	28.2	2000.0	9.000	On	L1	27.7	27.5	55.8		
0.172500	26.1	2000.0	9.000	On	L1	24.3	28.7	54.8		
0.190500	23.0	2000.0	9.000	On	L1	21.2	31.0	54.0		
0.253500	18.8	2000.0	9.000	On	L1	19.7	32.9	51.6		
0.685500	19.0	2000.0	9.000	On	N	19.7	27.0	46.0		
18.114000	22.3	2000.0	9.000	On	L1	19.9	27.7	50.0		

ANNEX C: Accreditation Certificate

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2017

NVLAP LAB CODE: 600118-0

Telecommunication Technology Labs, CAICT

Beijing China

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Electromagnetic Compatibility & Telecommunications

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2022-10-01 through 2023-09-30

Effective Dates

For the National Voluntary Laboratory Accreditation Program

END OF REPORT