Head TSL parameters at $5250 \mathbf{M H z}$

The following parameters and calculations were applied.
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.9	$4.71 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$35.5 \pm 6 \%$	$4.60 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	----

SAR result with Head TSL at 5250 MHz

SAR averaged over $\mathbf{1 \mathbf { c m } ^ { \mathbf { 3 } } \mathbf { (1 ~ g }) \text { of Head TSL }}$	Condition	
SAR measured	$\mathbf{1 0 0 ~ \mathrm { mW } \text { input power }}$	$\mathbf{7 . 9 8 \mathrm { W } / \mathrm { kg }}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{7 9 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9 \%} \mathbf{(k = 2)}$

SAR averaged over $\mathbf{1 0} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 0 \mathbf { g }) \text { of Head TSL }}$	condition	
SAR measured	100 mW input power	$2.29 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 2 . 8} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%$ (k=2)

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.9	$4.76 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$35.5 \pm 6 \%$	$4.67 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\ldots--$.--

SAR result with Head TSL at $5300 \mathbf{~ M H z}$

SAR averaged over $\mathbf{1} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	100 mW input power	$8.24 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 2 . 1} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9 \%} \mathbf{(k = 2)}$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 \mathbf { g }) \text { of Head TSL }}$	condition	
SAR measured	100 mW input power	$2.35 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 3 . 4} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at $5500 \mathbf{M H z}$

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.6	$4.96 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$35.4 \pm 6 \%$	$4.89 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	----

SAR result with Head TSL at 5500 MHz

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Head TSL }}$	Condition	
SAR measured	100 mW input power	$8.56 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 5 . 5} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9 \%} \mathbf{(k = 2)}$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 \mathbf { g }) \text { of Head TSL }}$	condition	
SAR measured	100 mW input power	$2.42 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 4 . 1} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.5	$5.07 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$35.3 \pm 6 \%$	$4.97 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	$-\ldots-$

SAR result with Head TSL at $5600 \mathbf{~ M H z}$

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	100 mW input power	$8.38 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 3 . 6} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9 \% (\mathbf { k } = \mathbf { 2 })}$

SAR averaged over $\left.\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0} \mathbf{g}\right)$ of Head TSL	condition	
SAR measured	100 mW input power	$2.38 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 3 . 8} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at $5750 \mathbf{M H z}$

The following parameters and calculations were applied.
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.4	$5.22 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$35.1 \pm 6 \%$	$5.08 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	----

SAR result with Head TSL at $5750 \mathbf{M H z}$

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Head TSL }}$	Condition	
SAR measured	100 mW input power	$8.07 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 0 . 5} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%$ (k=2)

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 \mathbf { g }) \text { of Head TSL }}$	condition	
SAR measured	100 mW input power	$2.28 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 2 . 7} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Head TSL parameters at $5800 \mathbf{~ M H z}$

The following parameters and calculations were applied.
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	35.3	$5.27 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$35.0 \pm 6 \%$	$5.11 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	----	----

SAR result with Head TSL at $5800 \mathbf{M H z}$

SAR averaged over $\mathbf{1} \mathbf{~ c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	100 mW input power	$8.22 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{8 1 . 9} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 9} \%(\mathbf{k}=\mathbf{2})$

SAR averaged over $\left.\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0} \mathbf{~ g}\right)$ of Head TSL	condition	
SAR measured	100 mW input power	$2.32 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 3 . 1} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 9 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	$48.6 \Omega-5.3 \mathrm{j} \Omega$
Return Loss	-25.1 dB

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	$47.7 \Omega-4.1 \mathrm{j} \Omega$
Return Loss	-26.2 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	$46.9 \Omega-2.2 \mathrm{j} \Omega$
Return Loss	-28.0 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	$50.6 \Omega-4.0 \mathrm{j} \Omega$
Return Loss	-28.0 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	$53.6 \Omega+1.2 \mathrm{j} \Omega$
Return Loss	-28.6 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	$51.4 \Omega-0.3 \mathrm{j} \Omega$
Return Loss	-37.3 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	$51.2 \Omega-2.2 \mathrm{j} \Omega$
Return Loss	-32.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 19.06.2023
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2-SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz , Frequency: 5250 MHz , Frequency: 5300 MHz, Frequency: 5500 MHz , Frequency: 5600 MHz , Frequency: 5750 MHz , Frequency: 5800 MHz Medium parameters used: $\mathrm{f}=5200 \mathrm{MHz} ; \sigma=4.53 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.5 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$, Medium parameters used: $\mathrm{f}=5250 \mathrm{MHz} ; \sigma=4.60 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.5 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$, Medium parameters used: $\mathrm{f}=5300 \mathrm{MHz} ; \sigma=4.67 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.5 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$, Medium parameters used: $\mathrm{f}=5500 \mathrm{MHz} ; \sigma=4.89 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.4 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$, Medium parameters used: $\mathrm{f}=5600 \mathrm{MHz} ; \sigma=4.97 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.3 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: $\mathrm{f}=5750 \mathrm{MHz} ; \sigma=5.08 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.1 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$,
Medium parameters used: f $=5800 \mathrm{MHz} ; \sigma=5.11 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=35.0 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(5.8, 5.8, 5.8) @ $5200 \mathrm{MHz}, \operatorname{ConvF}(5.5,5.5,5.5) @ 5250 \mathrm{MHz}$, ConvF($5.49,5.49,5.49$) @ $5300 \mathrm{MHz}, \operatorname{ConvF}(5.25,5.25,5.25) @ 5500 \mathrm{MHz}, \operatorname{ConvF}(5.1,5.1,5.1)$ @ $5600 \mathrm{MHz}, \operatorname{ConvF}(5.08,5.08,5.08)$ @ $5750 \mathrm{MHz}, \operatorname{ConvF}(5.01,5.01,5.01)$ @ 5800 MHz ; Calibrated: 07.03.2023
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5200 \mathrm{MHz} /$ Zoom Scan,

dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $d x=4 \mathrm{~mm}, d y=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=76.08 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.08 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=27.3 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{7 . 9 2} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 2 7} \mathbf{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=6.9 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=70.9 \%$
Maximum value of SAR $($ measured $)=18.0 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5250 \mathrm{MHz} /$ Zoom Scan,
dist $=1.4 \mathrm{~mm}(8 x 8 x 7) /$ Cube 0: Measurement grid: $d x=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=75.90 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.04 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=26.7 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{7 . 9 8} \mathbf{W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 2 9} \mathbf{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=71.8 \%$
Maximum value of SAR $($ measured $)=18.0 \mathrm{~W} / \mathrm{kg}$

Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5300 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 x 8 x 7) /$ Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=76.02 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.08 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=28.5 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.24 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 3 5} \mathrm{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=6.8 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=70.8 \%$
Maximum value of SAR (measured) $=18.8 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5500 \mathrm{MHz} /$ Zoom Scan, dist $=1.4 \mathrm{~mm}(8 \times 8 \times 7) /$ Cube 0: Measurement grid: $d x=4 \mathrm{~mm}, d y=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=75.86 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.04 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=32.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.56 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 4 2} \mathbf{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=67.3 \%$
Maximum value of SAR $($ measured $)=20.1 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, $f=5600 \mathrm{MHz} /$ Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=76.37 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.04 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=30.3 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.38 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(\mathbf{1 0} \mathrm{g})=\mathbf{2 . 3 8} \mathbf{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=68.5 \%$
Maximum value of SAR $($ measured $)=19.6 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, $f=5750 \mathrm{MHz} /$ Zoom Scan,
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=73.46 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.04 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=30.9 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.07 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=2.28 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=66.6 \%$
Maximum value of SAR $($ measured $)=19.3 \mathrm{~W} / \mathrm{kg}$
Dipole Calibration for Head Tissue/Pin $=100 \mathrm{~mW}$, dist $=10 \mathrm{~mm}, \mathrm{f}=5800 \mathrm{MHz} /$ Zoom Scan,
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: $\mathrm{dx}=4 \mathrm{~mm}, \mathrm{dy}=4 \mathrm{~mm}, \mathrm{dz}=1.4 \mathrm{~mm}$
Reference Value $=74.09 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.05 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=31.5 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=8.22 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=\mathbf{2 . 3 2} \mathrm{W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=7.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=66.5 \%$
Maximum value of SAR $($ measured $)=19.6 \mathrm{~W} / \mathrm{kg}$

$0 \mathrm{~dB}=20.1 \mathrm{~W} / \mathrm{kg}=13.03 \mathrm{dBW} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL (5200, 5300, 5500, 5800 MHz)

Impedance Measurement Plot for Head TSL (5250, 5600, 5750 MHz)

File	e Yiew	Channel	Sweep	Calibration	Irace	Scale	Marker	System	Window	Help		
$\left.\right\|_{-5.00} ^{0.00}$												
${ }^{-10.00}$												
$f_{-15.00}^{-20.00}$												
30.00												
$40.00 \quad$ Ch 1 Avg $=20$												
	Ch1	tart 5.00000	GHz								Stop 6.00000 GHz	
	Status	CH 1:	511		$\mathrm{C}^{\times} 1$			Avg=20	Delay			LCL

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdiens
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)			ation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA			
Multilateral Agreement for the recognition of calibration certificates			
Client CTTL (Auden)		Certifica	450V2-853_Jul22
CALIBRATION CERTIFICATE			
Object D2450V2 - SN:853			
Calibration procedure(s)	QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between $0.7-3 \mathrm{GHz}$		
Calibration date: July 20, 2022			
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.			
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 $\pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.			
Calibration Equipment used (M\&TE critical for calibration)			
Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
Type-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23
Reference Probe EX3DV4	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Dec-22
DAE4	SN: 601	02-May-22 (No. DAE4-601_May22)	May-23
Secondary Standards	ID \#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R\&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
	Name	Function	Signature
Calibrated by:	Aidonia Georgiadou	Laboratory Technician	
Approved by:	Sven Kühn	Technical Manager	
			Issued: July 22, 2022
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.			

Calibration Laboratory of

Schmid \& Partner
Engineering AG

S Schweizerischer Kalibrierdienst

En
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x, y, z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL. The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1 .
DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$2450 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	39.2	$1.80 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.9 \pm 6 \%$	$1.85 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	--

SAR result with Head TSL

SAR averaged over $\mathbf{1} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 \mathbf { g })}$ of Head TSL	Condition	
SAR measured	250 mW input power	$13.5 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{5 2 . 7} \mathbf{~ W} / \mathbf{k g} \pm \mathbf{1 7 . 0} \% \mathbf{(k = 2)}$

SAR averaged over $\mathbf{1 0} \mathbf{c m}^{\mathbf{3}} \mathbf{(1 0 ~ \mathbf { g })}$ of Head TSL	condition	
SAR measured	$\mathbf{2 5 0} \mathrm{mW}$ input power	$6.29 \mathrm{~W} / \mathbf{k g}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 4 . 9} \mathbf{W} / \mathbf{k g} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$54.3 \Omega+4.7 \mathrm{j} \Omega$
Return Loss	-24.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.162 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

| Manufactured by SPEAG |
| :--- | :--- |

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2450 MHz ; Type: D2450V2; Serial: D2450V2 - SN:853
Communication System: UID 0 - CW; Frequency: 2450 MHz
Medium parameters used: $\mathrm{f}=2450 \mathrm{MHz} ; \sigma=1.85 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.9 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz ; Calibrated: 31.12.2021
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.05.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, $\mathbf{d = 1 0 m m} /$ Zoom Scan (7x7x7)/Cube 0:

Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=116.2 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.03 \mathrm{~dB}$
Peak SAR (extrapolated) $=26.6 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=13.5 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=6.29 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=9 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=50.6 \%$
Maximum value of SAR (measured) $=22.2 \mathrm{~W} / \mathrm{kg}$

$0 \mathrm{~dB}=22.2 \mathrm{~W} / \mathrm{kg}=13.47 \mathrm{dBW} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

ANNEX I SAR Sensor Triggering Data Summary

How SAR Sensor Works

The human body is equivalent to a large capacitor. When human tissue approaches the antenna, it will form an antenna-human body (capacitor)-earth path with the antenna. The SAR sensor is placed in the mobile phone to detect the change of the capacitance value when the human body is close or far away. When the human body is close, the capacitance value becomes larger, and when the human body is far away, the capacitance value
becomes smaller. After the capacitance value exceeds the threshold set in the SAR sensor, the event is reported and an interrupt is issued, and the software function is combined to reduce the power to reduce the SAR. While the capacitance value lower than the threshold set in the SAR sensor, the event is reported and another interrupt is issued, the software function is combined to boost the power to normal value .

The Trigger Distance of SAR Sensor

The following table is the trigger distance of the SAR sensor for this project. When the distance between head and mobile phone is equal to the trigger distance or even smaller, the SAR sensor will issue an interrupt and cooperate with the software to lower the SAR. For example, the front surface of top antenna will lower SAR when the distance between human body and mobile phone is equal to or less than 20 mm , so 0 mm must be in the SAR reduced state.

Top Main Antenna(MH-Band)	Back (mm)	24
	Front(mm)	20
	Top(mm)	28
	Left (mm)	13
Bottom Main Antenna(L-Band)	Back (mm)	18
	Front(mm)	15
	Bottom(mm)	22
	Right(mm)	6
	Left (mm)	12
WIFI Antenna (ANT6)	Back (mm)	14
	Front(mm)	8
	Top(mm)	14
	Right (mm)	11
WIFI Antenna (ANT10)	Back (mm)	14
	Front(mm)	0
	Top(mm)	0

Per FCC KDB Publication 616217 D04v01r02, this device was tested by the manufacturer to determine the proximity sensor triggering distances for some positions. The measured output power within $\pm 5 \mathrm{~mm}$ of the triggering points (or until touching the phantom) is included for front, rear and each applicable edge.

To ensure all production units are compliant it is necessary to test SAR at a distance 1 mm less than the smallest distance from the device and SAR phantom (determined from these triggering tests according to the KDB 616217 D04v01r02) with the device at maximum output power without power reduction. These SAR tests are included in addition to the SAR tests for the device touching the SAR phantom, with reduced power.

ANT3-Top Main Antenna(MH-Band):

Front

Moving device toward the phantom:

sensor near or far(KDB 6162176.2.6)											
Distance $[\mathbf{m m}]$	$\mathbf{2 5}$	$\mathbf{2 4}$	$\mathbf{2 3}$	$\mathbf{2 2}$	$\mathbf{2 1}$	$\mathbf{2 0}$	$\mathbf{1 9}$	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near

Moving device away from the phantom:

| sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Distance $[\mathbf{m m}]$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ | $\mathbf{2 1}$ | $\mathbf{2 2}$ | $\mathbf{2 3}$ | $\mathbf{2 4}$ | $\mathbf{2 5}$ |
| Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far |

Rear

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)													
Distance $[\mathbf{m m}]$	$\mathbf{2 9}$	$\mathbf{2 8}$	$\mathbf{2 7}$	$\mathbf{2 6}$	$\mathbf{2 5}$	$\mathbf{2 4}$	$\mathbf{2 3}$	$\mathbf{2 2}$	$\mathbf{2 1}$	$\mathbf{2 0}$	$\mathbf{1 9}$		
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near		

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	19	20	21	22	23	24	25	26	27	28	29
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

Top Edge

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance $[\mathrm{mm}]$	$\mathbf{3 3}$	$\mathbf{3 2}$	$\mathbf{3 1}$	$\mathbf{3 0}$	$\mathbf{2 9}$	$\mathbf{2 8}$	$\mathbf{2 7}$	$\mathbf{2 6}$	$\mathbf{2 5}$	$\mathbf{2 4}$	$\mathbf{2 3}$
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	23	24	25	26	27	28	29	30	31	32	33
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

Left Edge

Moving device toward the phantom:

sensor near or far(KDB 6162176.2.6)													
Distance [mm]	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$		
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near		

Moving device away from the phantom:

| sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Distance $[\mathbf{m m}]$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ |
| Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far |

ANT1 - Bottom Main Antenna(L-Band):

Front

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)															
Distance $[\mathbf{m m}]$	$\mathbf{2 0}$	$\mathbf{1 9}$	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$				
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near				

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	10	11	12	13	14	15	16	17	18	19	20
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

Rear

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	23	22	21	20	19	18	17	16	15	14	13
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near

Moving device away from the phantom:

| sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Distance $[\mathbf{m m}]$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ | $\mathbf{2 1}$ | $\mathbf{2 2}$ | $\mathbf{2 3}$ |
| Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far |

Right Edge

Moving device toward the phantom:

| sensor near or $\operatorname{far}(\mathrm{KDB} 6162176.2 .6)$ | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Distance $[\mathbf{m m}]$ | $\mathbf{1 1}$ | $\mathbf{1 0}$ | $\mathbf{9}$ | $\mathbf{8}$ | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ |
| Main antenna | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near |

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	1	2	3	4	5	6	7	8	9	10	11
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

Left Edge

Moving device toward the phantom:

sensor near or far(KDB 6162176.2.6)															
Distance [mm]	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$				
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near				

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	7	8	9	10	11	12	13	14	15	16	17
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

WIFI Antenna (ANT6)

Front

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)															
Distance $[\mathbf{m m}]$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$				
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near				

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	3	4	5	6	7	8	9	10	11	12	13
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

Rear

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	19	18	17	16	15	14	13	12	11	10	9
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)															
Distance $[\mathbf{m m}]$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$				
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far				

Top Edge

Moving device toward the phantom:

sensor near or far(KDB 6162176.2.6)													
Distance $[\mathrm{mm}]$	$\mathbf{1 9}$	$\mathbf{1 8}$	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$		
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near		

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	9	10	11	12	13	14	15	16	17	18	19
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

Right Edge

Moving device toward the phantom:

sensor near or far(KDB 6162176.2.6)															
Distance [mm]	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$				
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near				

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	6	7	8	9	10	11	12	13	14	15	16
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

WIFI Antenna (ANT10)

Rear

Moving device toward the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	19	18	17	16	15	14	13	12	11	10	9
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near

Moving device away from the phantom:

sensor near or far(KDB 616217 6.2.6)											
Distance [mm]	9	10	11	12	13	14	15	16	17	18	19
Main antenna	Near	Near	Near	Near	Near	Near	Far	Far	Far	Far	Far

Per FCC KDB Publication 616217 D04v01r02, the influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distanceby rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is $\pm 45^{\circ}$ or more from the vertical position at 0°.

The front/rear edge evaluation

The left/right edge evaluation
Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the $\pm 45^{\circ}$ range at the smallest sensor triggering test distance declared by manufacturer.

ANNEX J P-Sensor Triggering Data Summary

	-P-Sensor
Device model device manufacturer	-STK3335-X from Sensortek(昇佳)
Trigger distance	about 2.5cm
	When both the receiver and proximity sensor are triggered, the head SAR exposure mode power will be degraded.

Front Edge

Moving device toward the phantom:

sensor near or far(KDB 6162176.2.6)											
Distance [mm]	$\mathbf{3 0}$	$\mathbf{2 9}$	$\mathbf{2 8}$	$\mathbf{2 7}$	$\mathbf{2 6}$	$\mathbf{2 5}$	$\mathbf{2 4}$	$\mathbf{2 3}$	$\mathbf{2 2}$	$\mathbf{2 1}$	$\mathbf{2 0}$
Main antenna	Far	Far	Far	Far	Far	Near	Near	Near	Near	Near	Near

Moving device away from the phantom:

| sensor near or far(KDB 6162176.2.6) | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Distance [mm] | $\mathbf{2 0}$ | $\mathbf{2 1}$ | $\mathbf{2 2}$ | $\mathbf{2 3}$ | $\mathbf{2 4}$ | $\mathbf{2 5}$ | $\mathbf{2 6}$ | $\mathbf{2 7}$ | $\mathbf{2 8}$ | $\mathbf{2 9}$ | $\mathbf{3 0}$ |
| Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far |

ANNEX K Accreditation Certificate

Accredited Laboratory

A2LA has accredited

TELECOMMUNICATION TECHNOLOGY LABS, CAICT

Beijing, People's Republic of China
for technical competence in the field of
Electrical Testing
This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council
Cerlificate Number 7049.01
Valid to July 31, 2024

