

TEST REPORT No. I19Z62374-WMD04

for

SAMSUNG Electronics Co., Ltd.

Multi-band GSM/WCDMA/LTE phone with Bluetooth, WLAN

Model Name: SM-A215U

FCC ID: ZCASMA215U

with

Hardware Version: REV1.0

Software Version: A215U.001

Issued Date: 2020-04-17

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL-Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: cttl_terminals@caict.ac.cn, website: www.caict.ac.cn

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I19Z62374-WMD04	Rev.0	1st edition	2020-03-20
I19Z62374-WMD04	Rev.1	Changed the Client Information	2020-04-14
I19Z62374-WMD04	Rev.2	Changed the EUT Software version	2020-04-17

Note: the latest revision of the test report supersedes all previous version.

CONTENTS

1.	TI	EST LABORATORY 4	ł
1.1.		INTRODUCTION & ACCREDITATION	1
1.2.		TESTING LOCATION	1
1.3.		TESTING ENVIRONMENT	5
1.4.		PROJECT DATA	5
1.5.		SIGNATURE	5
2.	Cl	LIENT INFORMATION	5
2.1.		APPLICANT INFORMATION	
2.2.		MANUFACTURER INFORMATION	
3.		QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	
3.1.		ABOUT EUT	/
3.2.		INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	7
3.3.		INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	7
4.	R	EFERENCE DOCUMENTS	3
4.1.		REFERENCE DOCUMENTS FOR TESTING	3
5.	L	ABORATORY ENVIRONMENT9)
6.	SU	UMMARY OF TEST RESULTS 10)
7.	TI	EST EQUIPMENTS UTILIZED11	1
AN	NE	X A: MEASUREMENT RESULTS 12	2
А	<u>.1</u>	OUTPUT POWER	2
		FREQUENCY STABILITY	
		OCCUPIED BANDWIDTH	
А	. .4	EMISSION BANDWIDTH	2
А	A.5	BAND EDGE COMPLIANCE	1
А	4.6	CONDUCTED SPURIOUS EMISSION)
		PEAK-TO-AVERAGE POWER RATIO	
AN	NE	X B: ACCREDITATION CERTIFICATE	7

1. Test Laboratory

1.1. Introduction & Accreditation

Telecommunication Technology Labs, CAICT is an ISO/IEC 17025:2005 accredited test laboratory under NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM (NVLAP) with lab code 600118-0, and is also an FCC accredited test laboratory (CN5017), and ISED accredited test laboratory (CN0066). The detail accreditation scope can be found on NVLAP website.

1.2. Testing Location

Location 1: CTTL(huayuan North Road)

Address:

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191

1.3. Testing Environment

Normal Temperature:	15-35℃
Relative Humidity:	20-80%

1.4. Project data

Testing Start Date:	2020-01-15
Testing End Date:	2020-03-17

1.5. Signature

Dong Yuan (Prepared this test report)

张王凤

Zhang Yufeng (Reviewed this test report)

Zhao Hui Lin Deputy Director of the laboratory (Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name:	SAMSUNG Electronics Co., Ltd.
Address /Post:	19 Chapin Rd.,Building D Pine Brook ,NJ 07058
Contact:	Jenni Chun
Email:	j1.chun@samsung.com
Telephone:	1-973-808-6375
Fax:	NA

2.2. Manufacturer Information

Company Name:	SAMSUNG Electronics Co., Ltd.	
Address /Post:	Samsung R5, Maetan dong 129, Samsung ro Youngtong gu, Suwon city 443 742, Korea	
Contact:	JP KIM	
Email:	jp426.kim@samsung.com	
Telephone:	NA	
Fax:	NA	

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description	Multi-band GSM/WCDMA/LTE phone with Bluetooth, WLAN
Model	SM-A215U
FCC ID	ZCASMA215U
Frequency	CDMA800MHz(BC0);CDMA1900MHz(BC1)
Antenna	Embedded
Extreme vol. Limits	3.5VDC to 4.4VDC (nominal: 3.8VDC)
Extreme temp. Tolerance	-10°C to +55°C

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of CTTL.

3.2. Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version	Date of receipt	
UT07a	354230110026502	REV1.0	A215U.001	2019-12-27	
*EUT ID:	*EUT ID: is used to identify the test sample in the lab internally.				

3.3. Internal Identification of AE used during the test

AE ID*	Description	
AE1	Battery	
AE1		
Model		NVT-WT-N6
Manufacturer		Dongguan NVT Technology Co., Ltd.
Capacitance		3900mAh

*AE ID: is used to identify the test sample in the lab internally.

4. <u>Reference Documents</u>

4.1. <u>Reference Documents for testing</u>

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 24	PERSONAL COMMUNICATIONS SERVICES	10-1-19
		Edition
FCC Part 22	PUBLIC MOBILE SERVICES	10-1-19
		Edition
FCC Part 2	FREQUENCY ALLOCATIONS AND RADIO TREATY	10-1-19
	MATTERS; GENERAL RULES AND REGULATIONS	Edition
ANSI/TIA-603-E	Land Mobile FM or PM Communications Equipment	2016
	Measurement and Performance Standards	
KDB 971168 D01	Measurement Guidance for Certification of Licensed Digital	v03r01
	Transmitters	

5. LABORATORY ENVIRONMENT

Shielding chamber did not exceed following limits along the RF testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. =20 %, Max. = 80 %

6. SUMMARY OF TEST RESULTS

Items	List	Clause in FCC rules	Verdict
1	Output Power	22.913(a)/24.232(c)	Pass
2	Frequency Stability	2.1055/22.355/24.235	Pass
3	Occupied Bandwidth	2.1049(h)(i)	Pass
4	Emission Bandwidth	22.917(b)/24.238(b)	Pass
5	Band Edge Compliance	22.917(b)/24.238(b)	Pass
6	Conducted Spurious Emission	2.1057/22.917/24.238	Pass
7	Peak to Average Power Ratio	24.232(d)	Pass

7. Test Equipments Utilized

NO.		TYDE	SERIES	PRODUCE	CALIBRATIO	CAL DUE
NO.	NAME	TTPE	TYPE NUMBER	R	N INTERVAL	DATE
1	Spectrum Analyzer	FSV30	101576	R&S	1 Year	2020-05-03
	Wireless		MY4836095			
2	Communications Test	8960(E5515C)	0	Agilent	2 Years	2020-08-29
	Set		0			
3	Climatic chamber	SH-641	92009050	ESPEC	3 Years	2020-12-21

ANNEX A: MEASUREMENT RESULTS

A.1 OUTPUT POWER

A.1.1 Summary

During the process of testing, the EUT was controlled via Agilent Wireless Communications Test Set (8960(E5515C)) to ensure max power transmission and proper modulation.

This result is max output power conducted measurements for the EUT.

In all cases, output power is within the specified limits.

A.1.2 Method of Measurements

The EUT was set up for the max output power with pseudo random data modulation.

The power was measured with Rhode & Schwarz Spectrum Analyzer FSV30 (average).

These measurements were done at 3 frequencies, 1851.25 MHz, 1880.0 MHz and 1908.75 MHz for PCS CDMA band, 824.7MHz, 836.52MHz and 848.31MHz for CDMA 800 band (bottom, middle and top of operational frequency range) for 1x RTT and 1xEVDO.

a) Set span to at least 1.5 times the OBW.

b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.

c) Set VBW \geq 3 × RBW.

- d) Set number of points in sweep $\geq 2 \times \text{span} / \text{RBW}$.
- e) Sweep time = auto-couple.
- f) Detector = RMS (power averaging).

g) If the EUT can be configured to transmit continuously (i.e., burst duty cycle \geq 98%), then set the trigger to free run.

h) If the EUT cannot be configured to transmit continuously (i.e., burst duty cycle < 98 %), then use a sweep trigger with the level set to enable triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each sweep. Ensure that the sweep time is less than or equal to the transmission burst duration.

i) Trace average at least 100 traces in power averaging (i.e., RMS) mode.

j) Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with the band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

A1.3 Measurement results CDMA 800 Measurement result

		Channel power(dBm)		
Channel	Frequency(MHz)	1x RTT	1xEVDO	
			Rel0	RevA
1013	824.70	23.90	24.14	24.15
384	836.52	24.02	24.46	24.47
777	848.31	23.92	24.36	24.24

CDMA 1900

Measurement result

		Channel power(dBm)			
Channel	Frequency(MHz)	1x RTT	1xEVDO		
			Rel0	RevA	
25	1851.25	24.05	23.90	24.00	
600	1880.00	23.97	23.96	24.02	
1175	1908.75	23.95	24.01	24.21	

A.2 FREQUENCY STABILITY

A.2.1 Method of Measurement

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of Agilent 8960(E5515C) Wireless Communications Test Set.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30 $^\circ\!\mathrm{C}$.
- 3. With the EUT, powered via nominal voltage, connected to the 8960(E5515C) and in a simulated call on channel 384 for CDMA 800 and channel 600 for 1900 measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10[°]C increments from -30[°]C to +50[°]C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at +50 $^{\circ}$ C.
- With the EUT, powered via nominal voltage, connected to the 8960(E5515C) and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10[°]C decrements from +50[°]C to -30[°]C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5° during the measurement procedure.

A.2.2 Measurement Limit

A.2.2.1 For Hand carried battery powered equipment

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.5VDC and 4.4VDC, with a nominal voltage of 3.8VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress.

For CDMA800, according to section. 22.355, frequency tolerance cab be maintained within 2.5ppm.

A.2.2.2 For equipment powered by primary supply voltage

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. For this EUT section 2.1055(d)(1) applies. This requires varying primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

For CDMA800, according to section. 22.355, frequency tolerance cab be maintained within 2.5ppm.

A.2.3 Measurement results

CDMA 800

Frequency Error vs Temperature

Temperature(°C)	Voltage(V)	F _L (MHz)	F _H (MHz)	Offset(Hz)	Frequency error(ppm)
20				Oliset(112)	
50				0.57	0.0007
40				1.81	0.0022
30				0.93	0.0011
10	3.8	824.013	848.999	-0.98	0.0012
0				-0.32	0.0004
-10				1.32	0.0016
-20				0.24	0.0003
-30				2.33	0.0028

Frequency Error vs Voltage

Voltage(V)	Temperature(℃)	F _L (MHz)	F _H (MHz)	Offset(Hz)	Frequency error(ppm)
3.5	20	024 012	949 000	0.87	0.0010
4.4	20	824.013	848.999	2.12	0.0025

CDMA 1900

Frequency Error vs Temperature

Temperature(°C)	Voltage(V)	F _L (MHz)	F _H (MHz)	Offset(Hz)	Frequency error(ppm)
20				Oliset(112)	r requency enor(ppin)
50				0.67	0.0004
40				2.10	0.0011
30				0.38	0.0002
10	3.8	1850.562	1909.439	1.59	0.0008
0				-1.58	0.0008
-10				-0.06	0.0000
-20				0.27	0.0001
-30				0.71	0.0004

Frequency Error vs Voltage

Voltage(V)	Temperature(℃)	F _L (MHz)	F _H (MHz)	Offset(Hz)	Frequency error(ppm)
3.5	20	1950 562	1000 420	2.71	0.0014
4.4	20	1850.562	1909.439	4.06	0.0022

A.3 OCCUPIED BANDWIDTH

A.3.1 Occupied Bandwidth Results

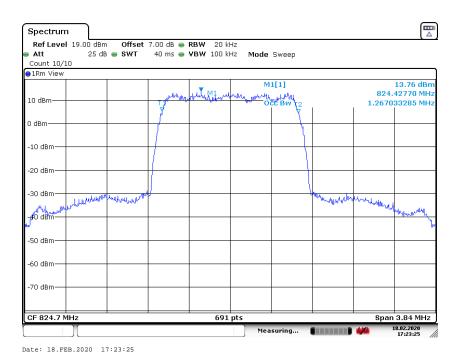
Occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the US Cellular/PCS frequency bands. The table below lists the measured 99% BW. Spectrum analyzer plots are included on the following pages.

The measurement method is from ANSI C63.26:

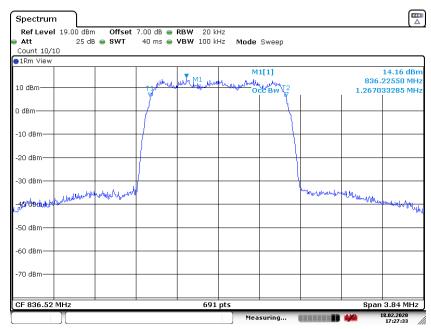
a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts.

b) The nominal IF filter 3 dB bandwidth (RBW) shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be set \ge 3 × RBW.

c) Set the reference level of the instrument as required to prevent the signal amplitude from exceeding the maximum spectrum analyzer input mixer level for linear operation.

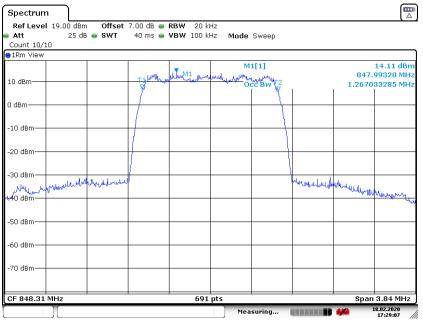

d) Set the detection mode to peak, and the trace mode to max-hold.

Channel	Occupied Bandwidth (99% BW)(MHz)		
1013	1.267		
384	1.267		
777	1.267		



CDMA 800 Channel 1013-Occupied Bandwidth (99% BW)

Channel 384-Occupied Bandwidth (99% BW)



Date: 18.FEB.2020 17:27:33

Channel 777-Occupied Bandwidth (99% BW)

Date: 18.FEB.2020 17:29:06

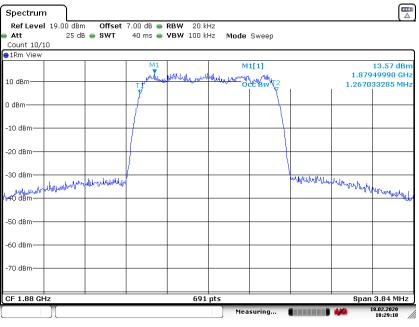


CDMA 1900 (99% BW)

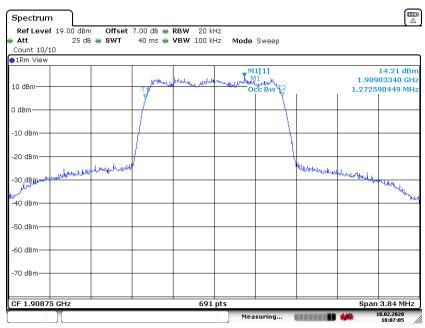
Channel	Occupied Bandwidth (99% BW)(MHz)
25	1.267
600	1.267
1175	1.273

CDMA 1900

Channel 25-Occupied Bandwidth (99% BW)



Date: 18.FEB.2020 18:30:42



Channel 600-Occupied Bandwidth (99% BW)

Date: 18.FEB.2020 18:29:09

Channel 1175-Occupied Bandwidth (99% BW)

Date: 18.FEB.2020 18:07:05

A.4 EMISSION BANDWIDTH

A.4.1Emission Bandwidth Results

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

Similar to conducted emissions; Emission bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies. Table below lists the measured 100% BW. Spectrum analyzer plots are included on the following pages.

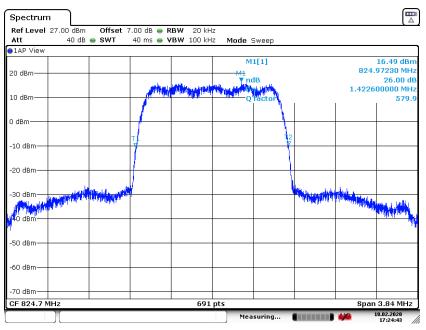
The measurement method is from ANSI C63.26:

a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts.

b) The nominal IF filter 3 dB bandwidth (RBW) shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be set \ge 3 × RBW.

c) Set the reference level of the instrument as required to prevent the signal amplitude from exceeding the maximum spectrum analyzer input mixer level for linear operation.

d) Set the detection mode to peak, and the trace mode to max-hold.

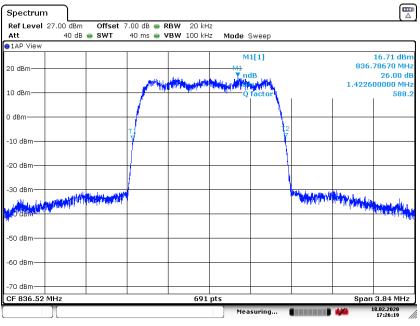


CDMA 800 (100% BW)

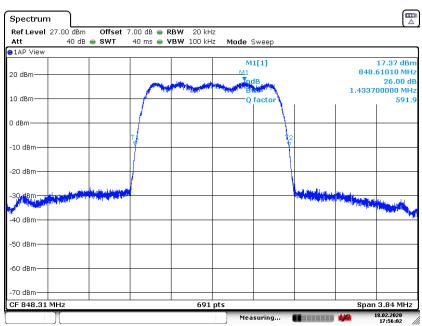
Channel	Emission Bandwidth (100% BW)(MHz)
1013	1.423
384	1.423
777	1.434

CDMA 800

Channel 1013-Emission Bandwidth (100% BW)



Date: 18.FEB.2020 17:24:43

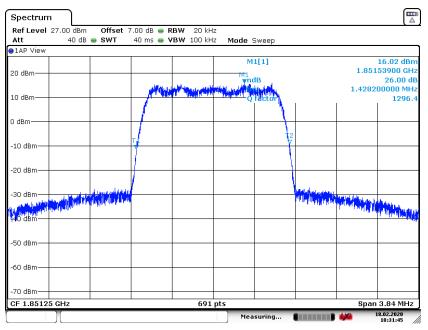


Channel 384-Emission Bandwidth (100% BW)

Date: 18.FEB.2020 17:26:19

Channel 777-Emission Bandwidth (100% BW)

Date: 18.FEB.2020 17:56:02

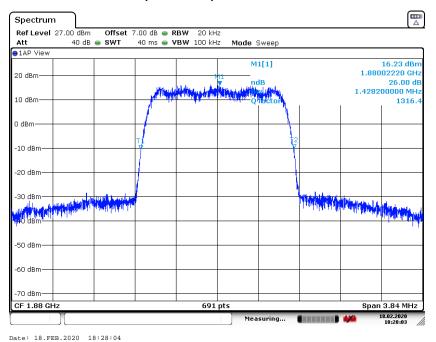


CDMA 1900 (100% BW)

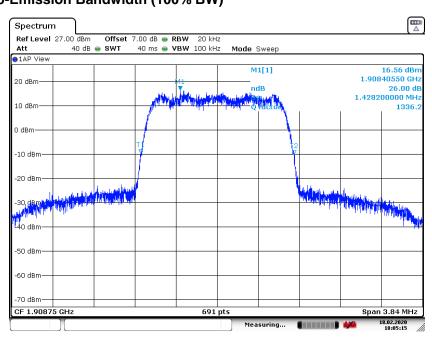
Channel	Emission Bandwidth (100% BW)(MHz)
25	1.428
600	1.428
1175	1.428

CDMA 1900

Channel 25-Emission Bandwidth (100% BW)



Date: 18.FEB.2020 18:31:44



Channel 600-Emission Bandwidth (100% BW)

Channel 1175-Emission Bandwidth (100% BW)

Date: 18.FEB.2020 18:05:16


A.5 BAND EDGE COMPLIANCE

A.5.1 Measurement limit

On any frequency outside frequency band of the US Cellular/PCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log (P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm. According to KDB 971168, a relaxation of the reference bandwidth is often provided for measurements within a specified frequency range at the edge of the authorized frequency block/band. This is often implemented by permitting the use of a narrower RBW (typically limited to a minimum RBW of 1% of the OBW) for measuring the out-of-band emissions without a requirement to integrate the result over the full reference bandwidth.

A.5.2 Measurement result

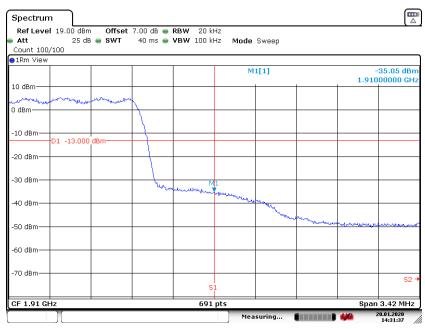
CDMA 800 BAND EDGE BLOCK-Channel 1013

Date: 20.JAN.2020 14:45:42

HIGH BAND EDGE BLOCK-Channel 777



Date: 20.JAN.2020 14:52:51



CDMA 1900 BAND EDGE BLOCK-Channel 25

Date: 20.JAN.2020 14:30:21

HIGH BAND EDGE BLOCK-Channel 1175

Date: 20.JAN.2020 14:31:37

A.6 CONDUCTED SPURIOUS EMISSION

A.6.1 Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

- Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 9 GHz, data taken from 10 MHz to 25 GHz.
- 2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.
- 3. According to KDB 971168 v02r01 6.0, the applicable rule part specifies the reference bandwidth for measuring unwanted emission levels (typically, 100 kHz if the authorized frequency band/block is at or below 1 GHz and 1 MHz if the authorized frequency band/block is above 1 GHz)

Channel	Frequency (MHz)
1013	824.70
384	836.52
777	848.31

CDMA 800 Transmitter

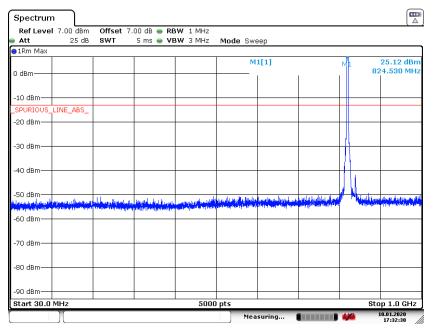
CDMA 1900 Transmitter

Channel	Frequency (MHz)
25	1851.25
600	1880.00
1175	1908.75

A.6.2 Measurement Limit

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

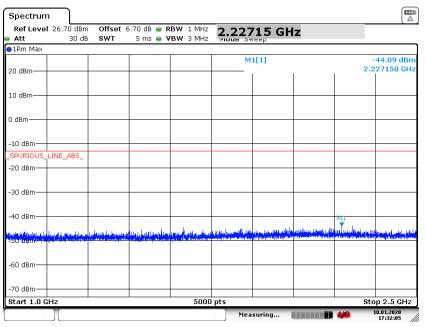
The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.


A.6.3 Measurement result

CDMA 800

Channel 1013: 30MHz –1GHz

Spurious emission limit –13dBm.


NOTE: peak above the limit line is the carrier frequency.

Date: 10.JAN.2020 17:32:30

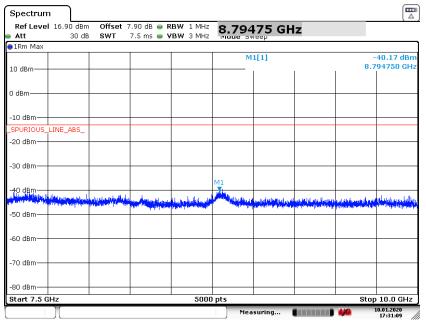
Channel 1013: 1GHz – 2.5GHz

Spurious emission limit –13dBm.

Date: 10.JAN.2020 17:32:05

Channel 1013: 2.5GHz -7.5GHz

Spurious emission limit -13dBm.

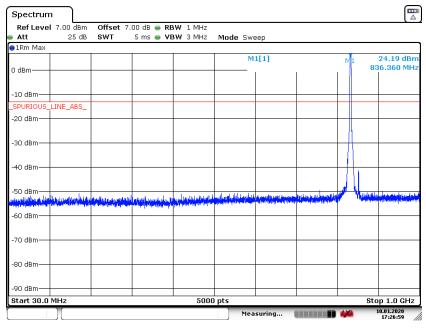

Spectrum Offset 6.70 dB ■ RBW 1 MHz SWT 15 ms ■ VBW 3 MHz Ref Level 15.70 dBm 6.6195 GHz 30 dB Att ●1Rm Ma: M1[1] -43.50 dBm 6.619500 GHz 10 dBm dBm 10 dBm-LINE ABS SPURIOUS -20 dBm— 30 dBm 40 dBm անա 60 dBm 70 dBm-80 dBm 5000 pts Stop 7.5 GHz Start 2.5 GHz Measuring... 10.01.2020 17:31:41

NOTE: peak above the limit line is the carrier frequency.

Date: 10.JAN.2020 17:31:42

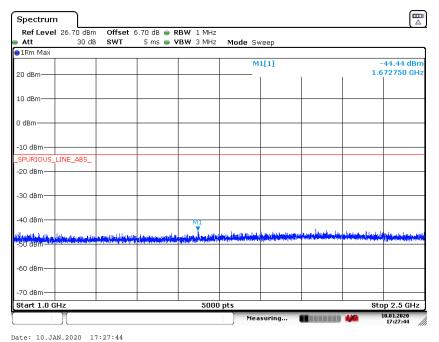
Channel 1013: 7.5GHz – 10GHz

Spurious emission limit –13dBm.



Channel 384: 30MHz –1GHz

Spurious emission limit -13dBm.



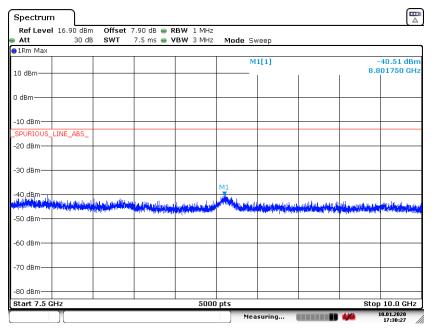
NOTE: peak above the limit line is the carrier frequency.

Date: 10.JAN.2020 17:26:59

Channel 384: 1GHz – 2.5GHz

Spurious emission limit –13dBm.

Channel 384: 2.5GHz -7.5GHz

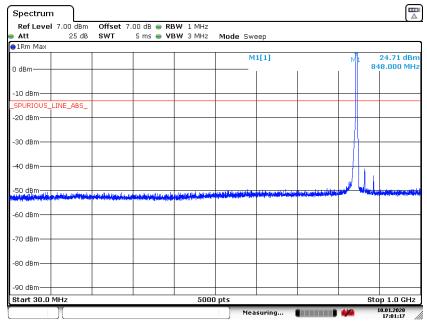

Spurious emission limit -13dBm.

Ref Level 15 Att	5.70 dBm 30 dB	Offset SWT	6.70 dB 👄 I	RBW 1 MHz VBW 3 MHz	Mode Sv	veen			
1Rm Max	00 40	0	10 110		Houe of	100p			
10 dBm					M	1[1]	I		43.91 dBn 08500 GH:
0 dBm									
-10 dBm									
SPURIOUS_LIN	E_ABS_								
-20 dBm									
-30 dBm									
-40 dBm								M1	
Construction of Lands		i in Local attended	Berlen and States		A STATE OF CONTRACTOR	Single milling		and the state of the	
January and the second second	all the second se								
-60 dBm									
-70 dBm									
80 dBm									
Start 2.5 GHz				5000	Ints			Sto	p 7.5 GHz

Date: 10.JAN.2020 17:29:41

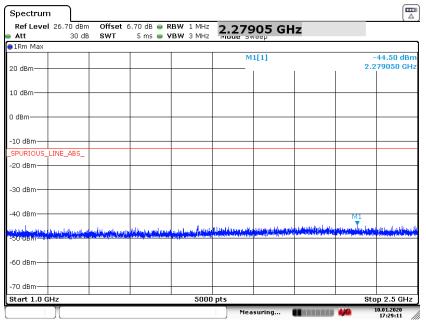
Channel 384: 7.5GHz – 10GHz

Spurious emission limit –13dBm.


Date: 10.JAN.2020 17:30:27

Channel 777: 30MHz -1GHz

Spurious emission limit -13dBm.



NOTE: peak above the limit line is the carrier frequency.

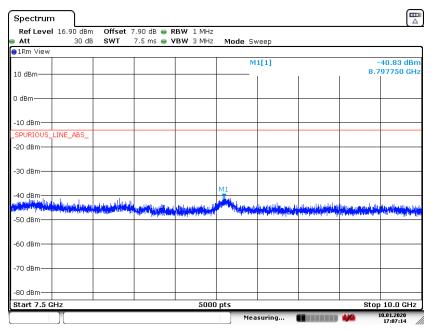
Date: 10.JAN.2020 17:01:17

Channel 777: 1GHz – 2.5GHz

Spurious emission limit –13dBm.

Date: 10.JAN.2020 17:29:11

Channel 777: 2.5GHz -7.5GHz


Spurious emission limit -13dBm.

Ref Level Att	l 15.70 dBn 30 dB		6.70 dB 👄 I	BW 1 MHz BW 3 MHz	Mode Sv				
1Rm View	30 U	3 3 11	12 1112 🖷 י	DW 3MHZ	HOUE 5V	veeb			
10 dBm					M	1[1]	I		43.73 dBn 60500 GH
D dBm									
-10 dBm									
SPURIOUS_	LINE_ABS_								
LO GDIII									
-30 dBm									
-40 dBm								nt state	
		a haire a heling	al all states and the						
-60 dBm									
-70 dBm									
-80 dBm									
Start 2.5 G	Hz			5000	Ints			Sto	p 7.5 GHz

Date: 10.JAN.2020 17:04:43

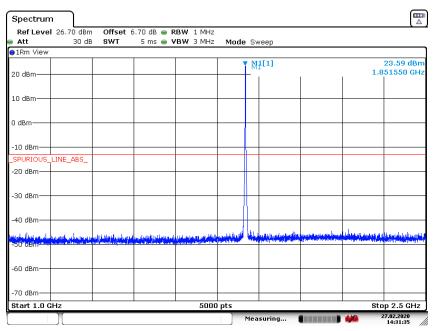
Channel 777: 7.5GHz – 10GHz

Spurious emission limit –13dBm.

Date: 10.JAN.2020 17:07:13

CDMA 1900

Channel 25: 30MHz –1GHz


Spurious emission limit –13dBm.

RefLevel 7.00 dBm Att 25 dB	SWT	00 dB 👄 RE 5 ms 👄 VE		Mode Swi	зер		
1Rm View							
0 dBm				M	1[1]	I	-49.22 dBn 46.360 MH:
-10 dBm							
SPURIOUS_LINE_ABS_							
-20 dBm							
-30 dBm							
-40 dBm							
-50 dBm							M1
	and the state of the		No. distantes	a la su de la desta de la d Nacional de la desta de la d	fen line fieren		
-60 dBm							
-70 dBm							
-80 dBm							
-90 dBm							
Start 30.0 MHz			5000	pts		•	op 1.0 GHz 19.01.2020

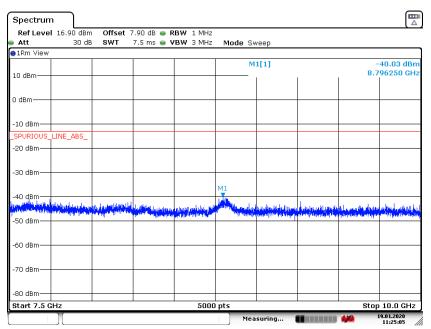
Channel 25: 1GHz –2.5GHz

Spurious emission limit -13dBm.

NOTE: peak above the limit line is the carrier frequency.

Date: 27.FEB.2020 14:31:35

Channel 25: 2.5GHz -7.5GHz


Spurious emission limit -13dBm.

Ref Level	15.70 dBm 30 dB		6.70 dB 👄 F	BW 1 MHz BW 3 MHz	Mode Sv	veen			
1Rm View	00 40		10 110 🖕 1	BH OMIL	Houe Sv	100p			
10 dBm					M	1[1]	1		43.45 dBn 77500 GH
0 dBm									<u> </u>
-10 dBm									
SPURIOUS_	LINE_ABS_								
-20 dBm									
-30 dBm									
-40 dBm								M1	
والالتقاقية والمحمد	ومعارف بالمارين الم	الليق وبالغاظ ورغور	a land a second	NAME AND ADDRESS OF					
	a caller bricketer geder								
-60 dBm									
-70 dBm									
-80 dBm									
Start 2.5 G	Hz			5000	Ints			Sto	p 7.5 GHz

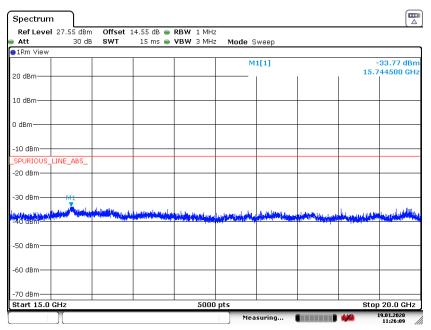
Date: 19.JAN.2020 11:24:14

Channel 25: 7.5GHz –10GHz

Spurious emission limit –13dBm.

Date: 19.JAN.2020 11:25:06

Channel 25: 10GHz –15GHz


Spurious emission limit -13dBm.

Ref Leve	16.90 dBr	n Offset	7.90 dB 👄 F	BW 1 MHz					
Att	30 di	B SWT	15 ms 😑 ۷	BW 3 MHz	Mode Sv	veep			
1Rm View									
					м	1[1]			41.99 dBm 81500 GH;
10 dBm						I	I	10.2	81300 GH
0 dBm									
-10 dBm-									
SPURIOUS -20 dBm	LINE_ABS_								
-20 ubiii									
-30 dBm									
SO GDIII									
-40 den									
ale	م ييان		1400-1	ing intelligiters	and the nation of	. na tatin badala		ana a kitabawa da	والمعادين والمعادلة
-50 dBm4	and the strength of the				aladad İli aradı istifa Marina Marina Marina Marina Marina Marina Marina	The second state of the second	and the second	molycollelation availab	ordation provided and a
-60 dBm									
-70 dBm									
-80 dBm									
Start 10.0	GHz		1	5000	pts	1	1	Stop	15.0 GHz

Date: 19.JAN.2020 11:25:38

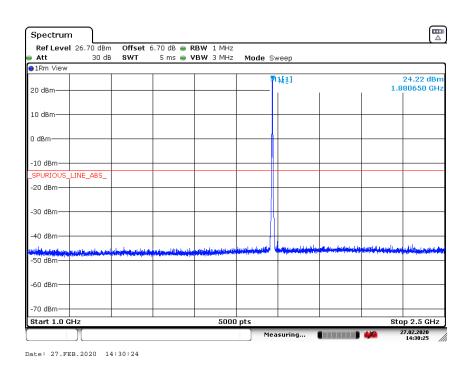
Channel 25: 15GHz –20GHz

Spurious emission limit –13dBm.

Date: 19.JAN.2020 11:26:10

Channel 600: 30MHz –1GHz

Spurious emission limit -13dBm.


Ref Level 7.00	dBm Offset	7.00 dB 🔵 RB	W 1 MHz					
	5 dB SWT	5 ms 👄 🛛 🛛	W 3 MHz	Mode Swe	еер			
1Rm View								
				M	1[1]			49.44 dBn
0 dBm							86	86.220 MH2
-10 dBm								
SPURIOUS LINE A	ABS_							
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm							M1	
-50 dBm	والمرودة وملكا والعاقر والعراق	سالد خلار الفيقية أس	dar of the bar	و بعد المحمد العراجي	a land to a court of	المتعادية المتقدي البريع	and support is	
-60 dBm		nedi tiblik film jan (del per	In the second					
-70 dBm								
-80 dBm								
-90 dBm								
Start 30.0 MHz		·	5000	pts			Sto	p 1.0 GHz

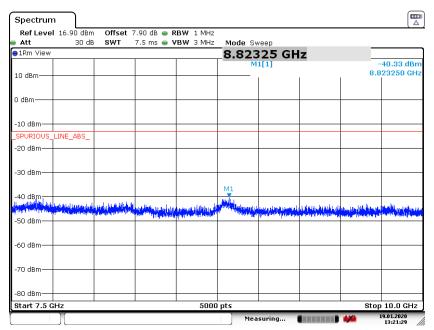
Date: 19.JAN.2020 13:20:03

Channel 600: 1GHz –2.5GHz

Spurious emission limit –13dBm.

NOTE: peak above the limit line is the carrier frequency.

Channel 600: 2.5GHz -7.5GHz


Spurious emission limit -13dBm.

Ref Level Att	15.70 dBn 30 dB		6.70 dB 👄 I	RBW 1 MHz VBW 3 MHz	Mada C				
1Rm View	30 ut	5 5001	15 ms 🖶 1		Mode Sv	veep			
10 dBm					M	1[1]	1		43.54 dBn 49500 GH
0 dBm									
-10 dBm									
SPURIOUS_	LINE_ABS_								
-30 dBm									
-40 dBm								M1	anta .
SQUID IN THE			n <mark>al anterio de la cons</mark> tante de la constante		The second second second		a de la compañía de la compañía de la	a Pitri Di ancara ang ina	
-60 dBm									
-70 dBm									
80 dBm									
Start 2.5 G	Hz			5000) pts			Str	p 7.5 GHz

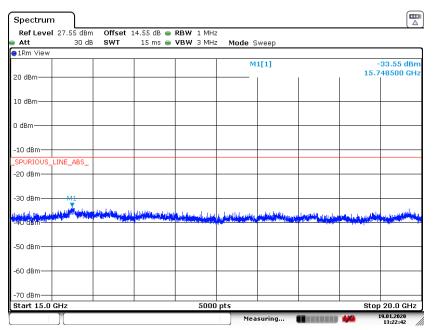
Date: 19.JAN.2020 13:20:57

Channel 600: 7.5GHz –10GHz

Spurious emission limit –13dBm.

Date: 19.JAN.2020 13:21:29

Channel 600: 10GHz –15GHz


Spurious emission limit -13dBm.

Ref Level	16.90 dBm 30 dB		7.90 dB 👄 R 15 ms 👄 V	BW 1 MHz BW 3 MHz	Mode Sv	veen			
1Rm View					_	555 GH	z		
						1[1]			42.38 dBn
10 dBm						I		10.2	55500 GH
) dBm									
10 dBm-									
SPURIOUS	LINE ABS								
-20 dBm	EINE_ADD_								
-30 dBm									
40 🗤 m —									
Market Street	alite di Standari di	and states of the s							
50 dBm	<u>, , , , , , , , , , , , , , , , , , , </u>			,					
60 dBm									
oo abiii									
.70 dBm									
80 dBm									
Start 10.0	GHz			5000) pts			Stop	15.0 GHz

Date: 19.JAN.2020 13:22:05

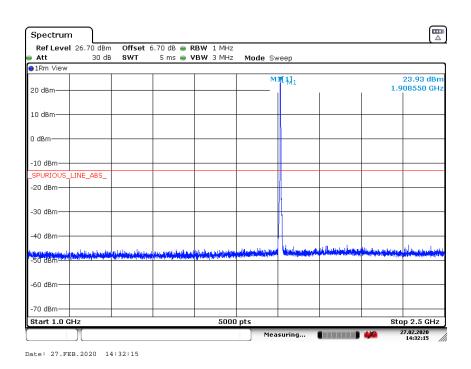
Channel 600: 15GHz –20GHz

Spurious emission limit –13dBm.

Date: 19.JAN.2020 13:22:42

Channel 1175: 30MHz –1GHz

Spurious emission limit -13dBm.


Ref Level 7.00 dBm	Offset 7.00	dB 🔵 RB	W 1 MHz					
Att 25 dB	SWT 5	ms 👄 VB	W 3 MHz	Mode Swe	ер			
1Rm View								
				М	1[1]			49.28 dBn
0 dBm					l	I	87	7.680 MH
-10 dBm								
SPURIOUS LINE ABS								
-20 dBm								
-30 dBm								
-40 dBm								
							M1	
-50 dBm			اليريني ا	المتحالين الم	a da maran	star Eliteration	t kus sada dalat	allination di Maria
-50 dBm L. odbordajilda, a usta i klajila da ji Marina da ji klajila da ji	الكولية المراجعية المساطلة. الأربالية المراجعية مراجع المراجع	and the difference		and produced in the state	and here in the second s	late see hains of the	Paper Prink provide	and a particular for the
-60 dBm								
-70 dBm								
-80 dBm								
-90 dBm								
Start 30.0 MHz			5000	pts		I	Sto	p 1.0 GHz

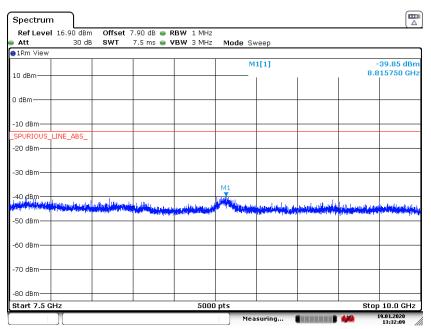
Date: 19.JAN.2020 13:30:48

Channel 1175: 1GHz –2.5GHz

Spurious emission limit –13dBm.

NOTE: peak above the limit line is the carrier frequency.

Channel 1175: 2.5GHz -7.5GHz


Spurious emission limit -13dBm.

Ref Level 15.70 d Att 30	IBm Offset dB SWT	6.70 dB 👄 🖡 15 ms 👄 🛛	BW 1 MHz	Mode Sv	veen			
1Rm View				_	25 GHz			
10 dBm					1(1)	1		43.58 dBn 72500 GH:
0 dBm								
-10 dBm	_							
SPURIOUS_LINE_AB	5_							
-20 dBm	-							
-30 dBm								
-40 dBm				M1			dikata aratatan	
Land the state of	an a substant start of the	المعالية سالمطا		وماليل وماليل الدرود	<u>الافقاد الملحد وارق م</u>			
and the second								
-60 dBm								
-70 dBm								
-80 dBm								
Start 2.5 GHz			5000	nte			Sto	p 7.5 GHz

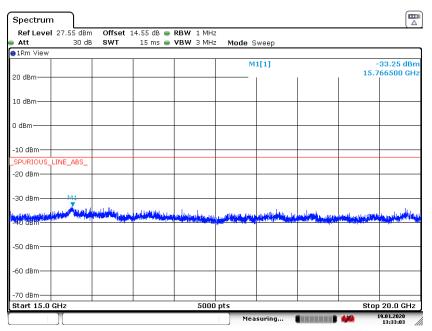
Date: 19.JAN.2020 13:31:39

Channel 1175: 7.5GHz –10GHz

Spurious emission limit –13dBm.

Date: 19.JAN.2020 13:32:10

Channel 1175: 10GHz –15GHz


Spurious emission limit -13dBm.

Ref Level Att	l 16.90 dBm 30 dB		7.90 dB 👄 R 15 ms 👄 V	BW 1 MHz BW 3 MHz	Mode Sv	veep			
1Rm View					_	15 GH	z		
						1[1]			42.28 dBn
10 dBm						I	I	10.2	91500 GH
0 dBm									
5 dBill									
-10 dBm									
SPURIOUS_	LINE_ABS_								
-20 dBm									
-30 dBm									
-40 den									
CONTRACT OF STREET	and the second	and different loss			he a martal ballat	المصر الماليل الم المسين	المراجع المحادث		alullu and the
-50 dBm	all relies to the line of	and a second second second	A LANCE DISA PARTICIPAL		Control without the	متلك يتحقلون معتطيا	atain a		
-60 dBm									
-70 dBm									
80 dBm									
Start 10.0	GHz			5000	pts			Stor	15.0 GHz

Date: 19.JAN.2020 13:32:38

Channel 1175: 15GHz –20GHz

Spurious emission limit –13dBm.

Date: 19.JAN.2020 13:33:04

A.7 PEAK-TO-AVERAGE POWER RATIO

Reference

The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission.

a)Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;

b) Set resolution/measurement bandwidth \geq signal' s occupied bandwidth;

- c) Set the number of counts to a value that stabilizes the measured CCDF curve;
- d) Set the measurement interval to 1 ms

e)Record the maximum PAPR level associated with a probability of 0.1%

A.7.1 Measurement limit

not exceed 13 dB

A.7.2 Measurement results

CDMA 1900

Measurement result

		PAPR(dB)			
Channel	Frequency(MHz)	1x RTT	1xEVDO		
			Rel0	RevA	
600	1880.00	3.42	4.35	4.29	

ANNEX B: Accreditation Certificate

END OF REPORT