

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	6.24 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.51 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jul19

Page 10 of 23

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	48.7 Ω - 5.5 jΩ
Return Loss	- 24.9 dB

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	48.6 Ω - 4.0 jΩ
Return Loss	- 27.5 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	47.7 Ω - 3.3 jΩ	
Return Loss	- 27.7 dB	

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	50.9 Ω - 3.9 jΩ	
Return Loss	- 28.2 dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	$54.2~\Omega + 0.3~\mathrm{j}\Omega$
Return Loss	- 27.9 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	$51.7~\Omega$ - $0.8~j\Omega$
Return Loss	- 34.7 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	52.1 Ω - 2.4 jΩ
Return Loss	- 30.1 dB

Certificate No: D5GHzV2-1060_Jul19

Page 11 of 23

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	48.9 Ω - 5.6 jΩ	
Return Loss	- 24.8 dB	

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	48.0 Ω - 2.2 jΩ	
Return Loss	- 30.4 dB	

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	48.3 Ω - 3.0 jΩ	
Return Loss	- 29.1 dB	

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	50.2 Ω - 2.2 jΩ	
Return Loss	- 33.1 dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	$55.5 \Omega + 1.0 j\Omega$	
Return Loss	- 25.5 dB	

Antenna Parameters with Body TSL at 5750 MHz

$52.3 \Omega + 0.8 j\Omega$	
- 32.3 dB	
	direction depth is an extra * day

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	52.9 Ω - 1.8 jΩ	
Return Loss	- 29.5 dB	

Certificate No: D5GHzV2-1060_Jul19

Page 12 of 23

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: D5GHzV2-1060_Jul19

Page 13 of 23

DASY5 Validation Report for Head TSL

Date: 22.07.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.46$ S/m; $\varepsilon_r = 35.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5250 MHz; $\sigma = 4.51 \text{ S/m}$; $\varepsilon_r = 35.5$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: f = 5300 MHz; $\sigma = 4.56 \text{ S/m}$; $\varepsilon_r = 35.4$; $\rho = 1000 \text{ kg/m}^3$. Medium parameters used: f = 5500 MHz; $\sigma = 4.76 \text{ S/m}$; $\varepsilon_r = 35.1$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5600 MHz; $\sigma = 4.86 \text{ S/m}$; $\varepsilon_r = 35$; $\rho = 1000 \text{ kg/m}^3$ Medium parameters used: f = 5750 MHz; $\sigma = 5.02$ S/m; $\epsilon_r = 34.8$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 5.07 \text{ S/m}$; $\varepsilon_r = 34.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.64, 5.64, 5.64) @ 5200 MHz, ConvF(5.4, 5.4, 5.4) @ 5250 MHz, ConvF(5.39, 5.39, 5.39) @ 5300 MHz, ConvF(5.1, 5.1, 5.1) @ 5500 MHz, ConvF(4.95, 4.95, 4.95) @ 5600 MHz, ConvF(4.98, 4.98, 4.98) @ 5750 MHz, ConvF(4.96, 4.96, 4.96) @ 5800 MHz; Calibrated: 25.03.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.16 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 28.1 W/kg SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.32 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 74.71 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 27.3 W/kg

SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.33 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

Certificate No: D5GHzV2-1060 Jul19

Page 14 of 23

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 75.07 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 28.8 W/kg

SAR(1 g) = 8.23 W/kg; SAR(10 g) = 2.37 W/kg

Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 74.21 V/m; Power Drift = 0.7 dB

Peak SAR (extrapolated) = 32.1 W/kg

SAR(1 g) = 8.51 W/kg; SAR(10 g) = 2.43 W/kg

Maximum value of SAR (measured) = 19.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 75.03 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 31.0 W/kg

SAR(1 g) = 8.49 W/kg; SAR(10 g) = 2.43 W/kg

Maximum value of SAR (measured) = 19.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 71.89 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 31.1 W/kg

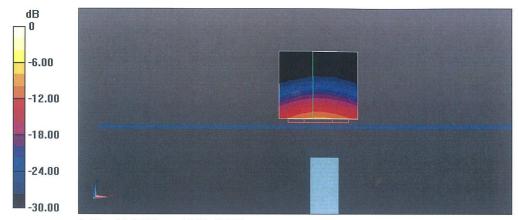
SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.31 W/kg

Maximum value of SAR (measured) = 18.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

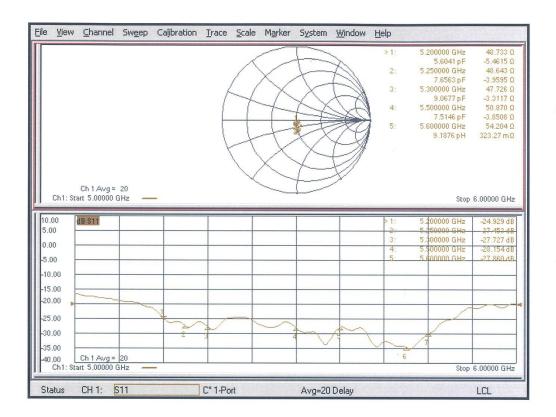
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.69 V/m; Power Drift = 0.09 dB

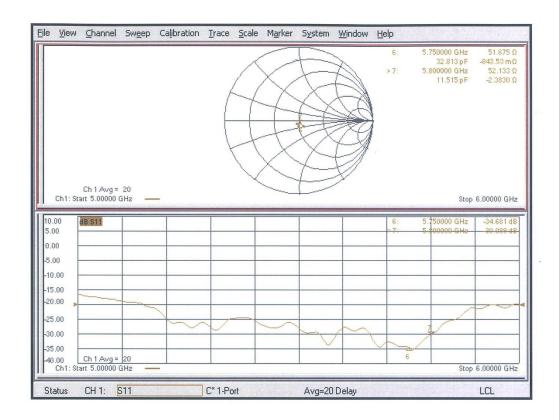

Peak SAR (extrapolated) = 31.8 W/kg

SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.30 W/kg

Maximum value of SAR (measured) = 19.0 W/kg



0 dB = 19.0 W/kg = 12.79 dBW/kg


Impedance Measurement Plot for Head TSL (5200, 5250, 5300, 5500, 5600 MHz)

Impedance Measurement Plot for Head TSL (5750, 5800 MHz)

Certificate No: D5GHzV2-1060_Jul19

DASY5 Validation Report for Body TSL

Date: 22.07.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f=5200 MHz; $\sigma=5.43$ S/m; $\epsilon_r=47.3$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5250 MHz; $\sigma=5.49$ S/m; $\epsilon_r=47.2$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5300 MHz; $\sigma=5.56$ S/m; $\epsilon_r=47.1$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5500 MHz; $\sigma=5.83$ S/m; $\epsilon_r=46.7$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=5.97$ S/m; $\epsilon_r=46.6$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5750 MHz; $\sigma=6.17$ S/m; $\epsilon_r=46.3$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5750 MHz; $\sigma=6.17$ S/m; $\epsilon_r=46.3$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5800 MHz; $\sigma=6.24$ S/m; $\epsilon_r=46.2$; $\rho=1000$ kg/m 3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.14, 5.14, 5.14) @ 5200 MHz, ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(5.25, 5.25, 5.25) @ 5300 MHz, ConvF(4.79, 4.79, 4.79) @ 5500 MHz, ConvF(4.74, 4.74, 4.74) @ 5600 MHz, ConvF(4.62, 4.62, 4.62) @ 5750 MHz, ConvF(4.62, 4.62, 4.62) @ 5800 MHz; Calibrated: 25.03.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.89 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 7.41 W/kg; SAR(10 g) = 2.08 W/kg Maximum value of SAR (measured) = 17.2 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.26 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 29.2 W/kg SAR(1 g) = 7.67 W/kg; SAR(10 g) = 2.15 W/kg Maximum value of SAR (measured) = 17.9 W/kg

Certificate No: D5GHzV2-1060_Jul19

Page 19 of 23

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.18 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 29.0 W/kg

SAR(1 g) = 7.52 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 17.4 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 69.45 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 32.7 W/kg

SAR(1 g) = 8 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 19.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.13 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 32.9 W/kg

SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (measured) = 18.8 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.49 V/m; Power Drift = 0.04 dB

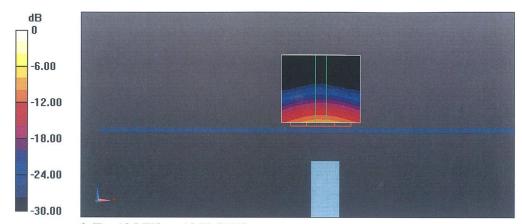
Peak SAR (extrapolated) = 34.1 W/kg

SAR(1 g) = 7.79 W/kg; SAR(10 g) = 2.18 W/kg

Maximum value of SAR (measured) = 19.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

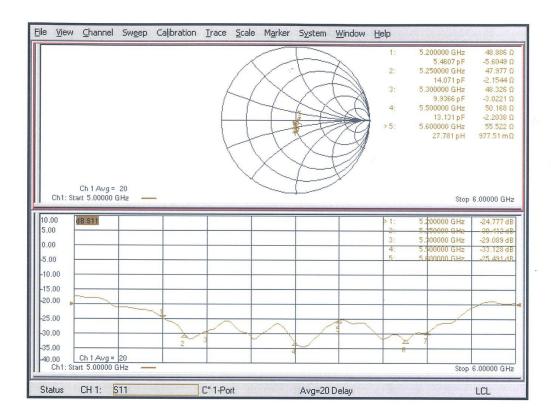
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 66.59 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 32.0 W/kg

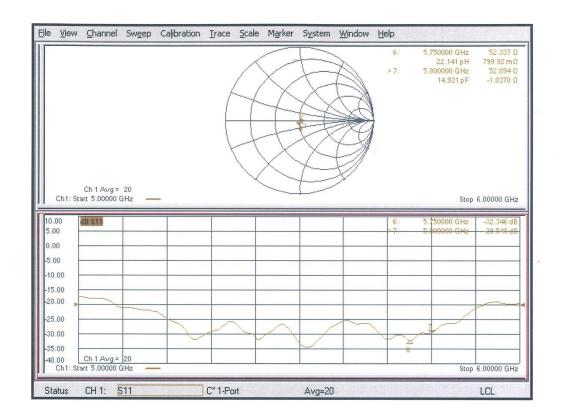
SAR(1 g) = 7.51 W/kg; SAR(10 g) = 2.09 W/kg

Maximum value of SAR (measured) = 18.0 W/kg

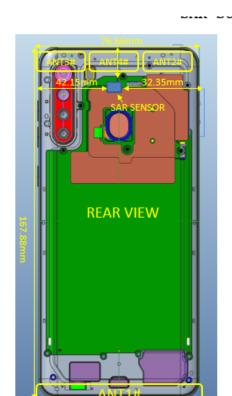


0 dB = 18.0 W/kg = 12.55 dBW/kg

Impedance Measurement Plot for Body TSL (5200, 5250, 5300, 5500, 5600 MHz)



Certificate No: D5GHzV2-1060_Jul19


Impedance Measurement Plot for Body TSL (5750, 5800 MHz)

ANNEX I Sensor Triggering Data Summary

Antenna	Band	Maximum power L evel (dBm) (Body)	Maximum power Le vel (dBm) (Head)
3# Wifi Ant enna	11B/G/N	17	14
4# Wifi Ant enna	11A/N/AC	18	13

Antenna	Trigger Position	Trigger Distance(
	Rear	22		
1#	Bottom	22		
Main Antenna	Front	16		
2#8.4#	Rear	18		
3#&4# WIFI Antenna	Top	16		
wiri Antenna	Front	14		

According to the above description, this device was tested by the manufacturer to determine the SAR sensor triggering distances for the rear, left edge and top edge of the device. The measured power state within ± 5 mm of the triggering points (or until touching the phantom) is included for rear and each applicable edge.

To ensure all production units are compliant it is necessary to test SAR at a distance 1mm less than the smallest distance from the device and SAR phantom with the device at maximum output power without power reduction.

We tested the power and got the different proximity sensor triggering distances for rear, left edge and top edge. But the manufacturer has declared 22mm (rear/bottom) / 16mm (front) are the most conservative triggering distance for main antenna. Therefore base on the most conservative triggering distances as above, additional SAR measurements were required at 21mm (rear/bottom) / 15mm (front) for main antenna.

We tested the power and got the different proximity sensor triggering distances for rear, left edge and top edge. But the manufacturer has declared 18mm (rear) / 14mm (front) /16mm (top) are the most conservative triggering distance for main antenna. Therefore base on the most conservative

triggering distances as above, additional SAR measurements were required at17mm (rear) / 13mm (front) /15mm (top) for wifi antenna.

Rear/Bottom of main antenna

Moving device toward the phantom:

The power state											
Distance [mm] 27 26 25 24 23 22 21 20 19 18 1								17			
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

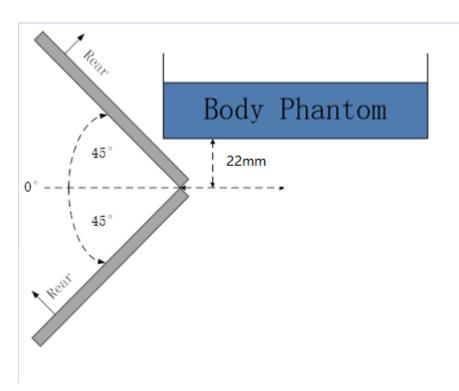
Moving device away from the phantom:

The power state											
Distance [mm] 17 18 19 20 21 22 23 24 25 26 2							27				
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

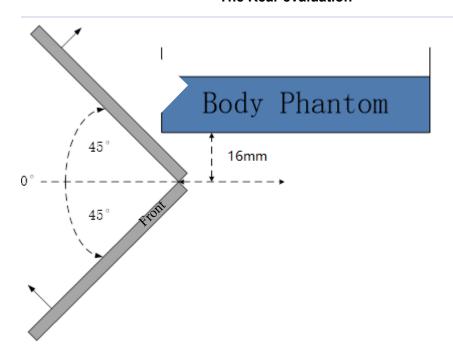
Front Edge of main antenna

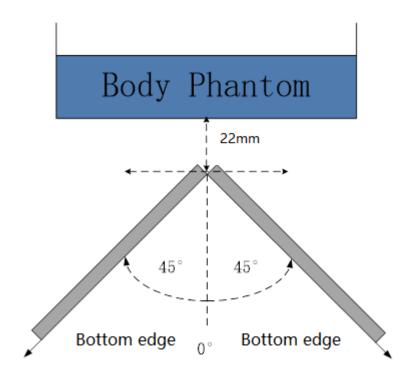
Moving device toward the phantom:

The power state											
Distance [mm] 21 20 19 18 17 16 15 14 13 12							11				
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low


Moving device away from the phantom:

The power state												
Distance [mm] 11 12 13 14 15 16 17 18 19 20 21										21		
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal	


The influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is $\pm 45^{\circ}$ or more from the vertical position at 0° .


The Rear evaluation

The Front edge evaluation

The bottom edge evaluation

Rear of wifi antenna

Moving device toward the phantom:

The power state												
Distance [mm] 23 22 21 20 19 18 17 16 15 14 13											13	
Wifi antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low	

Moving device away from the phantom:

The power state											
Distance [mm] 13 14 15 16 17 18 19 20 21 22 23										23	
Wifi antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Front Edge of wifi antenna

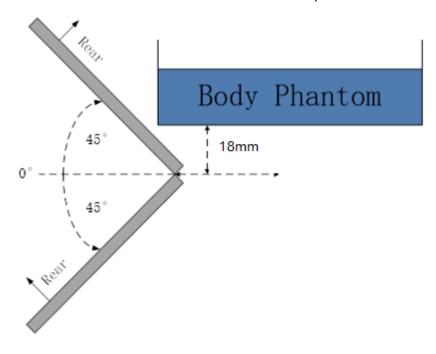
Moving device toward the phantom:

The power state													
Distance [mm]	19	18	17	16	15	14	13	12	11	10	9		
Wifi antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low		

Moving device away from the phantom:

The power state											
Distance [mm]	stance [mm] 9 10 11 12 13 14 15 16 17 18 19									19	
Wifi antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

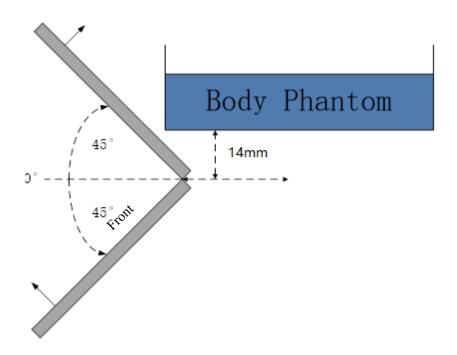
Top Edge of wifi antenna

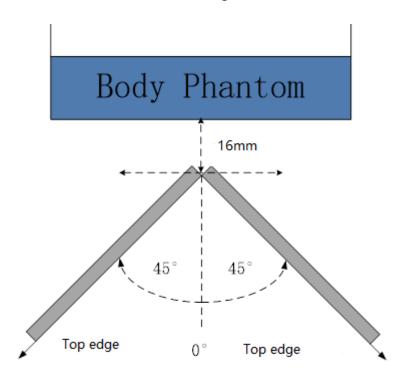

Moving device toward the phantom:

The power state												
Distance [mm] 21 20 19 18 17 16 15 14 13 12										11		
Wifi antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low	

Moving device away from the phantom:

The power state											
Distance [mm]									21		
Wifi antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal


The influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is $\pm 45^{\circ}$ or more from the vertical position at 0° .


The Rear evaluation

The Front edge evaluation

The Top edge evaluation

Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the $\pm 45^{\circ}$ range at the smallest sensor triggering test distance declared by manufacturer.

ANNEX J Accreditation Certificate

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 600118-0

Telecommunication Technology Labs, CAICT

Beijing China

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Electromagnetic Compatibility & Telecommunications

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2019-09-26 through 2020-09-30

Effective Dates

For the National Voluntary Laboratory Accreditation Program