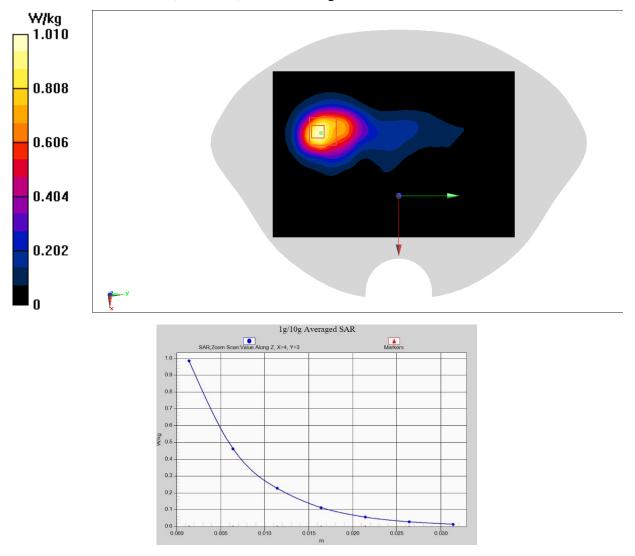


LTE B41 PC2 Head ANT4 DSI1

Date: 10/23/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 2680 MHz; $\sigma = 2.097$ S/m; $\epsilon_r = 38.854$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: LTE Band41 2680 MHz Duty Cycle: 1:2.309 Probe: EX3DV4 - SN7600 ConvF(7.62, 7.62, 7.62)

Area Scan (81x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.918 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.452 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 1.11 W/kg SAR(1 g) = 0.452 W/kg; SAR(10 g) = 0.184 W/kg Maximum value of SAR (measured) = 0.811 W/kg



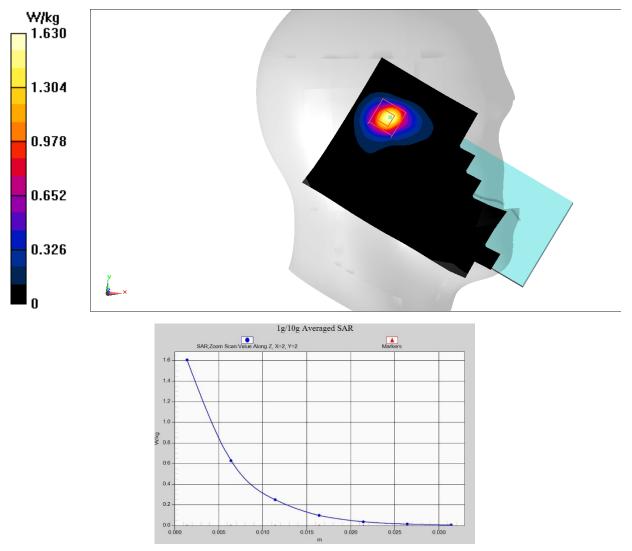
LTE B41 PC2 Body ANT4 DSI2

Date: 10/23/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 2680 MHz; $\sigma = 2.097$ S/m; $\epsilon_r = 38.854$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: LTE Band41 (0) Frequency: 2680 MHz Duty Cycle: 1:2.309 Probe: EX3DV4 - SN7600 ConvF(7.62, 7.62, 7.62)

Area Scan (111x161x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.01 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 5.038 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 1.25 W/kg SAR(1 g) = 0.597 W/kg; SAR(10 g) = 0.300 W/kg Maximum value of SAR (measured) = 0.986 W/kg

Page 293 of 475

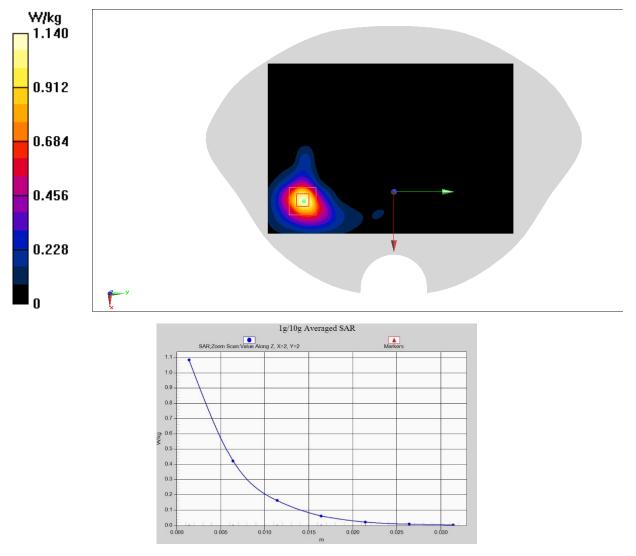


LTE B48 Head ANT5 DSI1

Date: 10/24/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 3560 MHz; σ = 2.849 S/m; ϵ_r = 37.997; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: LTE Band48 3560 MHz Duty Cycle: 1:1.5787 Probe: EX3DV4 - SN7600 ConvF(7.34, 7.34, 7.34)

Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.63 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 11.40 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 2.26 W/kg SAR(1 g) = 0.717 W/kg; SAR(10 g) = 0.314 W/kg Maximum value of SAR (measured) = 1.61 W/kg

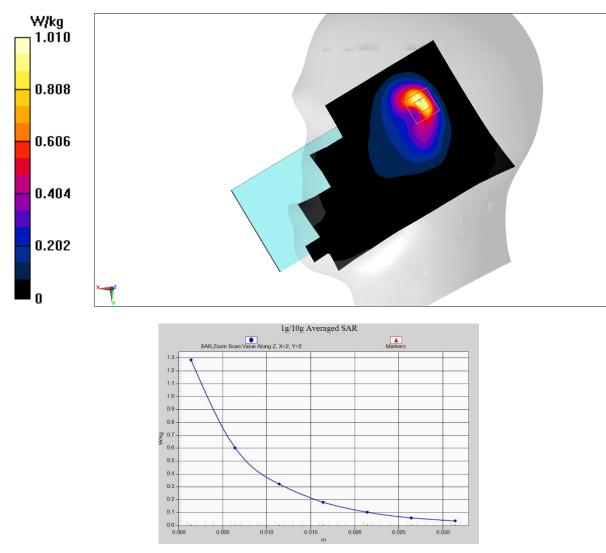


LTE B48 Body ANT5 DSI2

Date: 10/24/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 3625 MHz; $\sigma = 3.04$ S/m; $\epsilon_r = 36.991$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: LTE Band48 3625 MHz Duty Cycle: 1:1.5787 Probe: EX3DV4 - SN7600 ConvF(7.34, 7.34, 7.34)

Area Scan (91x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.14 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 1.655 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 1.52 W/kg SAR(1 g) = 0.607 W/kg; SAR(10 g) = 0.261 W/kg Maximum value of SAR (measured) = 1.08 W/kg



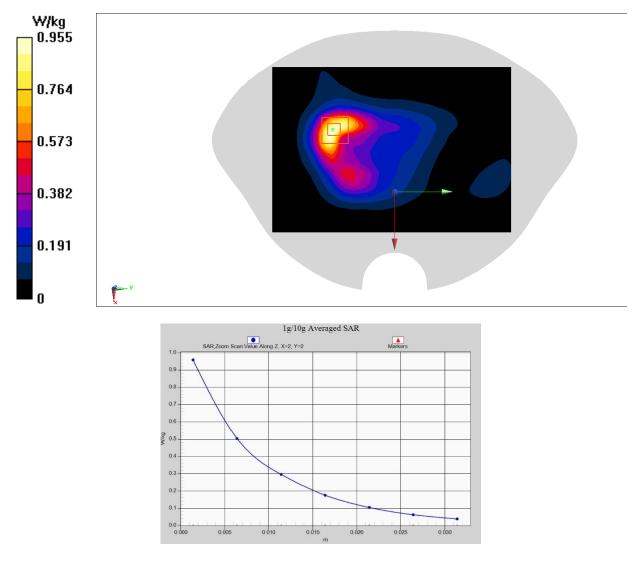
LTE B66 Head ANT4 DSI1

Date: 10/1/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1770 MHz; σ = 1.408 S/m; ϵ_r = 41.534; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: LTE Band66 1770 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF (8.93, 8.93, 8.93)

Area Scan (81x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.01 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.60 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 1.55 W/kg SAR(1 g) = 0.722 W/kg; SAR(10 g) = 0.336 W/kg Maximum value of SAR (measured) = 1.29 W/kg

Page 296 of 475

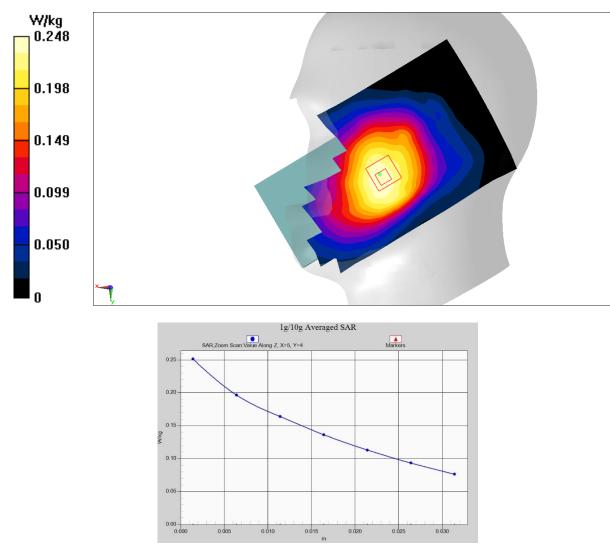


LTE B66 Body ANT4 DSI2

Date: 10/1/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1770 MHz; σ = 1.408 S/m; ϵ_r = 41.534; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: LTE Band66 1770 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.93, 8.93, 8.93)

Area Scan (91x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.955 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.46 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 1.20 W/kg SAR(1 g) = 0.615 W/kg; SAR(10 g) = 0.332 W/kg Maximum value of SAR (measured) = 0.959 W/kg

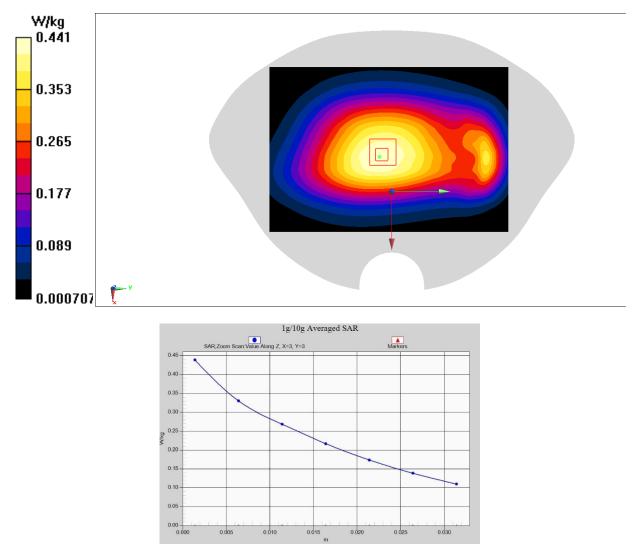


LTE B71 Head ANT0

Date: 10/2/2022Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 688 MHz; $\sigma = 0.86$ S/m; $\epsilon_r = 43.793$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: LTE Band71 688 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(10.74, 10.74, 10.74)

Area Scan (101x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.248 W/kg

Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.233 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.274 W/kg SAR(1 g) = 0.215 W/kg; SAR(10 g) = 0.174 W/kg Maximum value of SAR (measured) = 0.252 W/kg



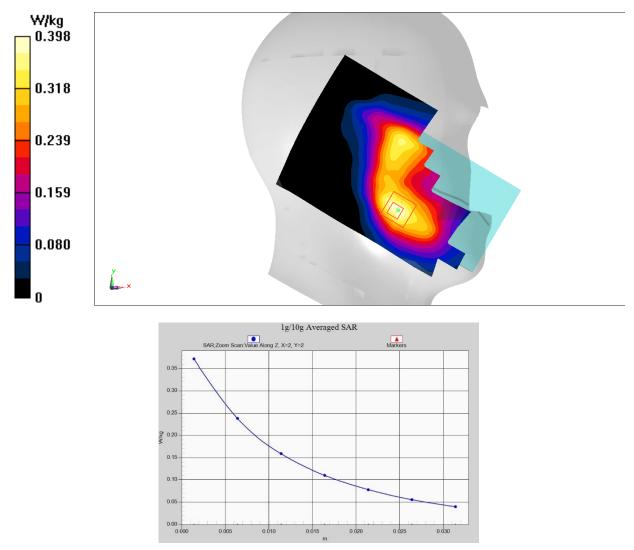
LTE B71 Body ANT0

Date: 10/2/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 688 MHz; $\sigma = 0.86$ S/m; $\epsilon_r = 43.793$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: LTE Band71 688 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(10.74, 10.74, 10.74)

Area Scan (91x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.441 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.18 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 0.491 W/kg SAR(1 g) = 0.363 W/kg; SAR(10 g) = 0.281 W/kg Maximum value of SAR (measured) = 0.439 W/kg

Page 299 of 475

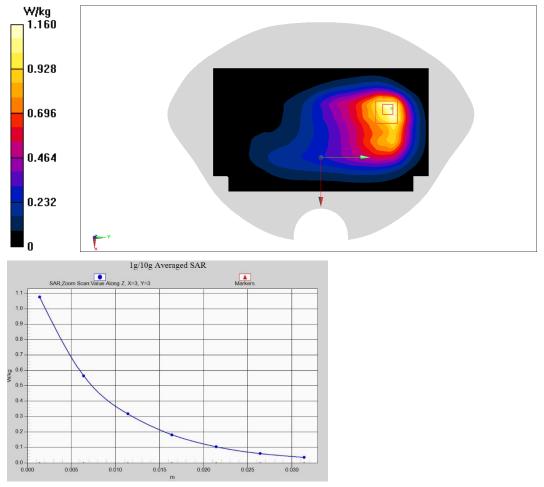


LTE B2 Head ANT1 ENDC

Date: 10/18/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1880 MHz; σ = 1.462 S/m; ϵ_r = 40.317; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: LTE Band2 1880 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.54, 8.54, 8.54)

Area Scan (81x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.398 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.408 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 0.428 W/kg SAR(1 g) = 0.271 W/kg; SAR(10 g) = 0.176 W/kg Maximum value of SAR (measured) = 0.372 W/kg

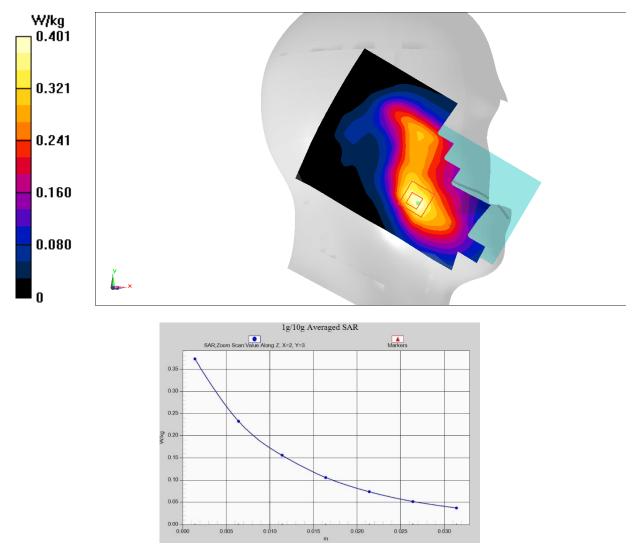

LTE B2 Body ANT1 ENDC

Date: 10/18/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1880 MHz; σ = 1.462 S/m; ϵ_r = 40.317; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: LTE Band2 1880 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.54, 8.54, 8.54)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.16 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.12 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.35 W/kg SAR(1 g) = 0.732 W/kg; SAR(10 g) = 0.434 W/kg Maximum value of SAR (measured) = 1.08 W/kg

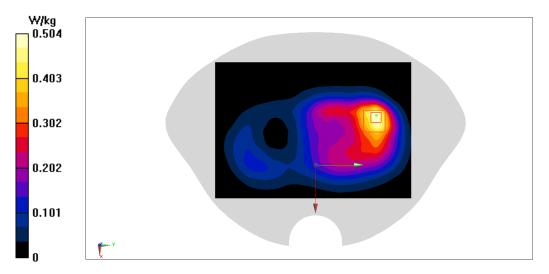


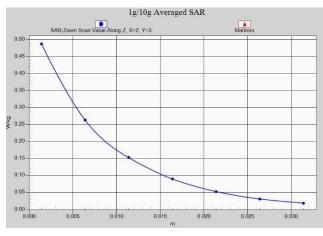
LTE B4 Head ANT1 ENDC

Date: 10/17/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1732.5 MHz; σ = 1.319 S/m; ϵ_r = 41.829; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: LTE Band4 1732.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.93, 8.93, 8.93)

Area Scan (81x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.401 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.343 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.437 W/kg SAR(1 g) = 0.280 W/kg; SAR(10 g) = 0.185 W/kg Maximum value of SAR (measured) = 0.373 W/kg

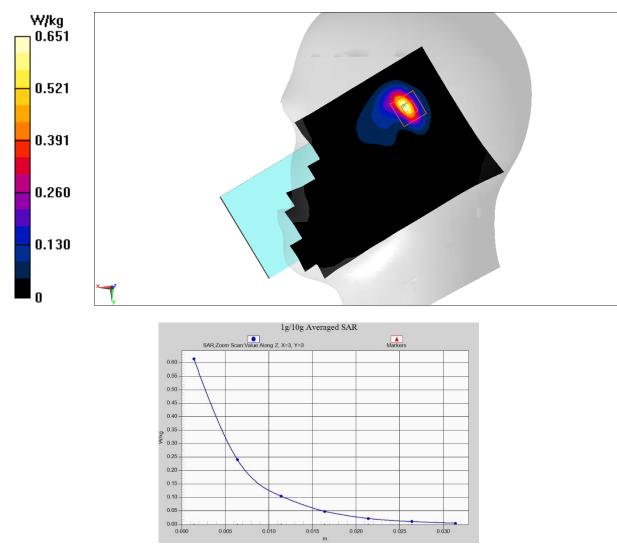

LTE B4 Body ANT1 ENDC


Date: 10/17/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1732.5 MHz; σ = 1.319 S/m; ϵ_r = 41.829; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: LTE Band4 1732.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.93, 8.93, 8.93)

Area Scan (91x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.504 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.12 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.614 W/kg SAR(1 g) = 0.332 W/kg; SAR(10 g) = 0.189 W/kg Maximum value of SAR (measured) = 0.487 W/kg

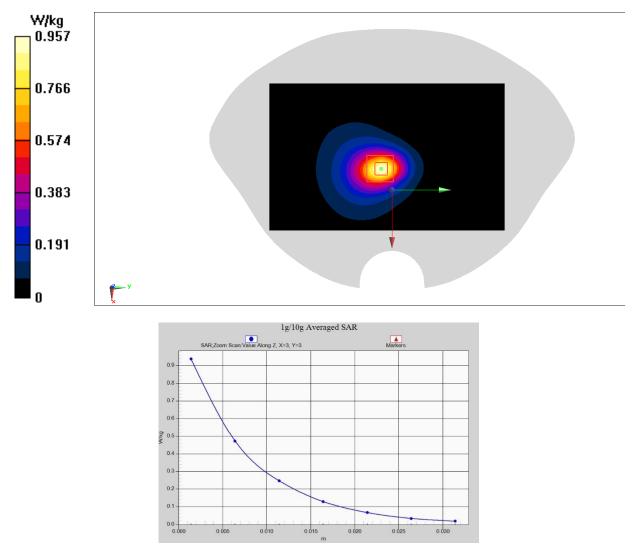


LTE B7 Head ANT4 ENDC

Date: 10/22/2022Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 2560 MHz; $\sigma = 1.951$ S/m; $\epsilon r = 38.669$; $\rho = 1000$ kg/m3 Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: LTE Band7 2560 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(7.62, 7.62, 7.62)

Area Scan (101x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.651 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.567 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.859 W/kg SAR(1 g) = 0.339 W/kg; SAR(10 g) = 0.136 W/kg Maximum value of SAR (measured) = 0.614 W/kg

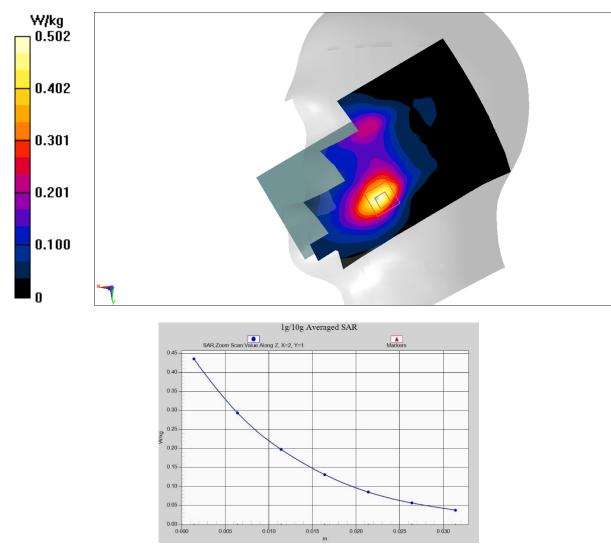


LTE B7 Body ANT4 ENDC

Date: 10/22/2022Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 2535 MHz; $\sigma = 1.924$ S/m; $\epsilon r = 38.739$; $\rho = 1000$ kg/m3 Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: LTE Band7 2535 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(7.62, 7.62, 7.62)

Area Scan (101x161x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.957 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 20.11 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.16 W/kg SAR(1 g) = 0.583 W/kg; SAR(10 g) = 0.289 W/kg Maximum value of SAR (measured) = 0.938 W/kg

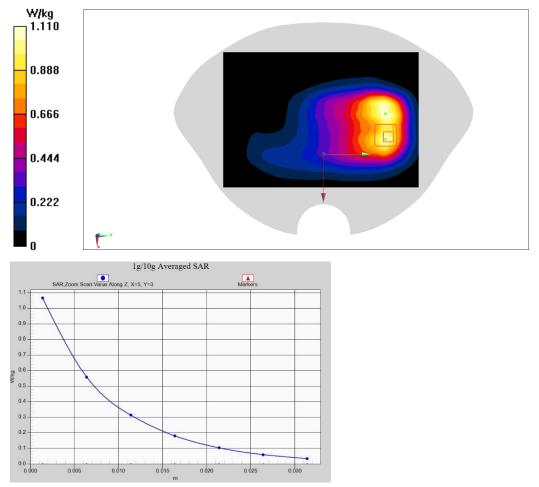


LTE B25 Head ANT1 ENDC

Date: 10/29/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1905 MHz; σ = 1.43 S/m; ϵ_r = 39.541; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: LTE Band25 1905 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.54, 8.54, 8.54)

Area Scan (81x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.502 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.564 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.538 W/kg SAR(1 g) = 0.335 W/kg; SAR(10 g) = 0.202 W/kg Maximum value of SAR (measured) = 0.436 W/kg

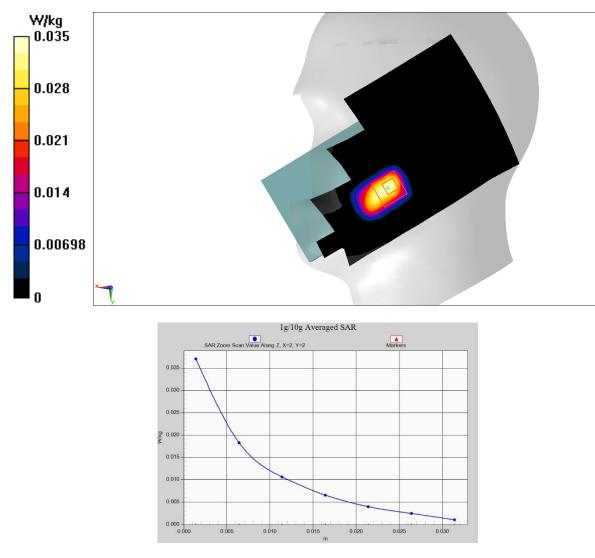

LTE B25 Body ANT1 ENDC

Date: 10/29/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1905 MHz; σ = 1.43 S/m; ϵ_r = 39.541; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: LTE Band25 1905 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.54, 8.54, 8.54)

Area Scan (91x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.11 W/kg

Zoom Scan (7x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.40 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 1.32 W/kg SAR(1 g) = 0.727 W/kg; SAR(10 g) = 0.451 W/kg Maximum value of SAR (measured) = 1.07 W/kg

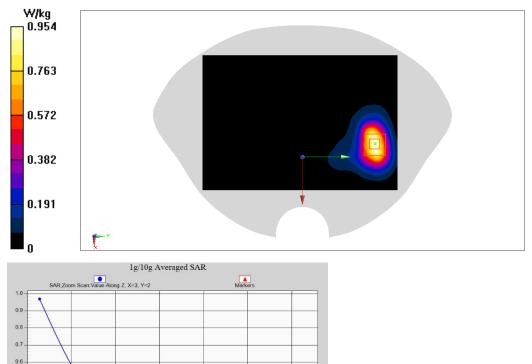


LTE B30 Head ANT0 ENDC

Date: 10/21/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 2310 MHz; $\sigma = 1.672$ S/m; $\epsilon_r = 40.684$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: LTE Band30 2310 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.14, 8.14, 8.14)

Area Scan (81x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.0349 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.0470 W/kg SAR(1 g) = 0.024 W/kg; SAR(10 g) = 0.012 W/kg Maximum value of SAR (measured) = 0.0371 W/kg


LTE B30 Body ANT0 ENDC

Date: 10/21/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 2310 MHz; σ = 1.672 S/m; ϵ_r = 40.684; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: LTE Band30 2310 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.14, 8.14, 8.14)

Area Scan (91x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.954 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.236 V/m; Power Drift = 0.18 dB
Peak SAR (extrapolated) = 1.31 W/kg
SAR(1 g) = 0.642 W/kg; SAR(10 g) = 0.319 W/kg
Maximum value of SAR (measured) = 0.969 W/kg

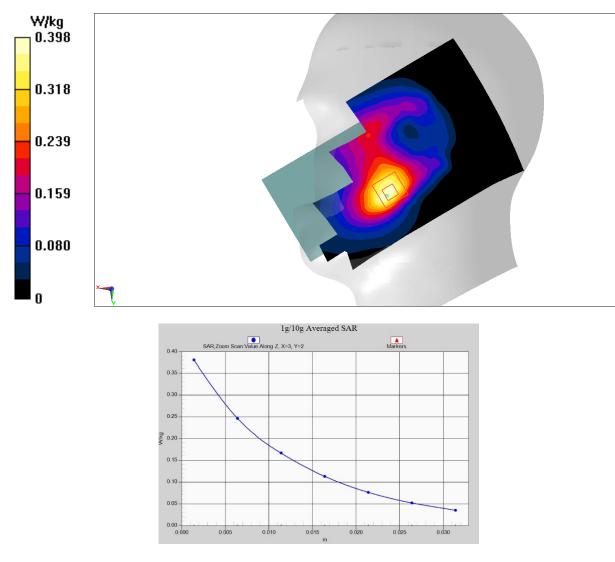
0.010

0.005

0.015

0.02

0.5 0.4 0.3 0.2 0.1 0.0 0.00

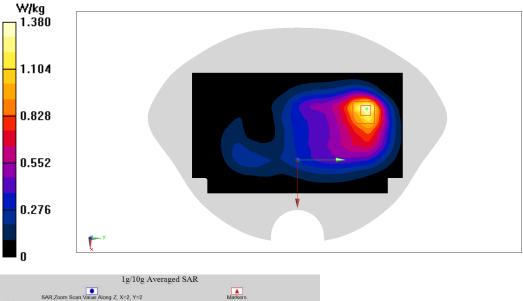


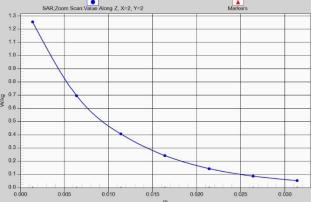
LTE B66 Head ANT1 ENDC

Date: 10/1/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1770 MHz; $\sigma = 1.408$ S/m; $\varepsilon_r = 41.534$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: LTE Band66 1770 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.93, 8.93, 8.93)

Area Scan (81x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.398 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.124 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.446 W/kg SAR(1 g) = 0.285 W/kg; SAR(10 g) = 0.182 W/kg Maximum value of SAR (measured) = 0.381 W/kg

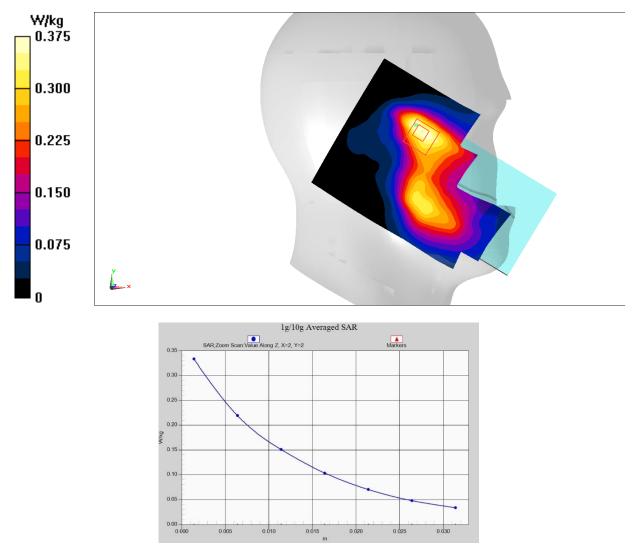

LTE B66 Body ANT1 ENDC


Date: 10/1/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1770 MHz; σ = 1.408 S/m; ϵ_r = 41.534; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: LTE Band66 1770 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.93, 8.93, 8.93)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.38 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.04 V/m; Power Drift = 0.01 dB
Peak SAR (extrapolated) = 1.54 W/kg
SAR(1 g) = 0.857 W/kg; SAR(10 g) = 0.501 W/kg
Maximum value of SAR (measured) = 1.25 W/kg

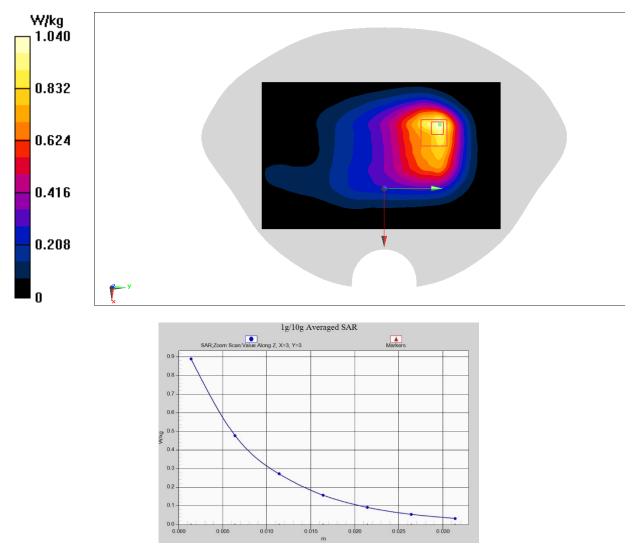


N2 Head ANT1

Date: 10/16/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1880 MHz; σ = 1.448 S/m; ϵ_r = 41.636; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: 5G N2 1880 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.54, 8.54, 8.54)

Area Scan (81x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.375 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.560 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 0.387 W/kg SAR(1 g) = 0.251 W/kg; SAR(10 g) = 0.162 W/kg Maximum value of SAR (measured) = 0.333 W/kg

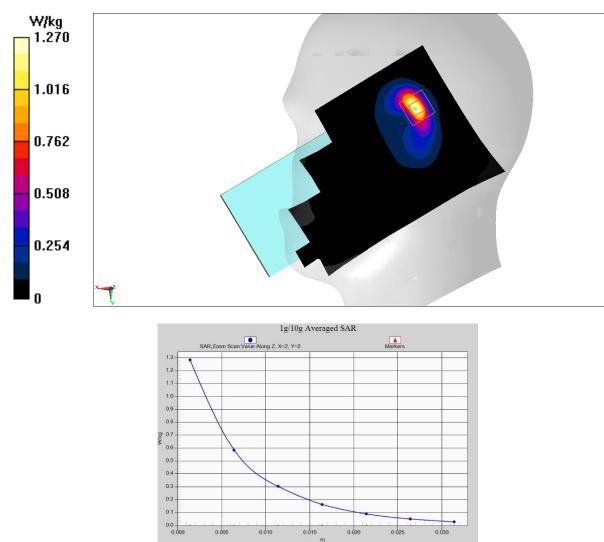


N2 Body ANT1

Date: 10/16/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1852.5 MHz; σ = 1.43 S/m; ϵ_r = 41.656; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: 5G N2 1852.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.54, 8.54, 8.54)

Area Scan (81x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.04 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.93 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 1.11 W/kg SAR(1 g) = 0.617 W/kg; SAR(10 g) = 0.379 W/kg Maximum value of SAR (measured) = 0.890 W/kg

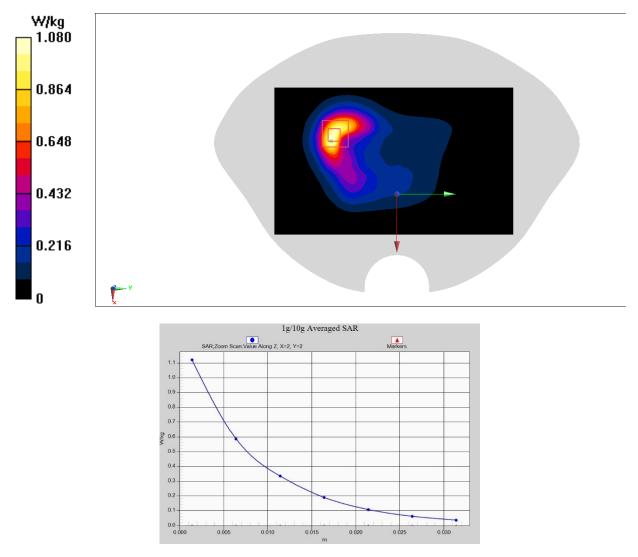


N2 Head ANT4

Date: 10/16/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1907.5 MHz; σ = 1.465 S/m; ϵ_r = 41.599; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: 5G N2 1907.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.54, 8.54, 8.54)

Area Scan (81x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.27 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.19 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.67 W/kg SAR(1 g) = 0.758 W/kg; SAR(10 g) = 0.332 W/kg Maximum value of SAR (measured) = 1.28 W/kg



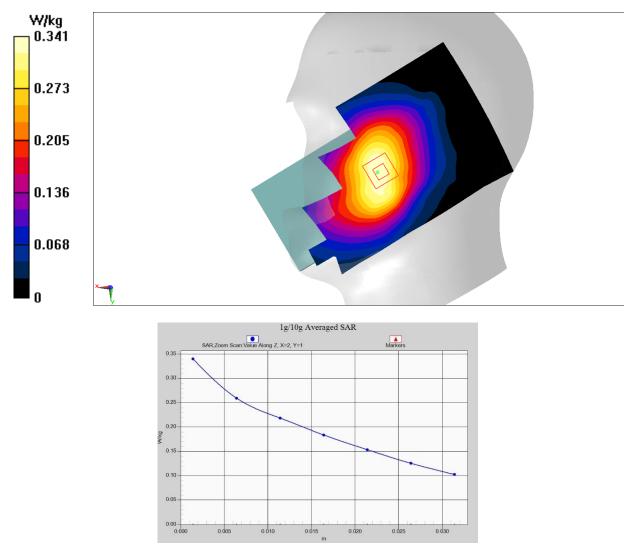
N2 Body ANT4

Date: 10/16/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1907.5 MHz; σ = 1.465 S/m; ϵ_r = 41.599; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: 5G N2 1907.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.54, 8.54, 8.54)

Area Scan (81x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.08 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.04 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 1.39 W/kg SAR(1 g) = 0.721 W/kg; SAR(10 g) = 0.370 W/kg Maximum value of SAR (measured) = 1.12 W/kg

Page 315 of 475

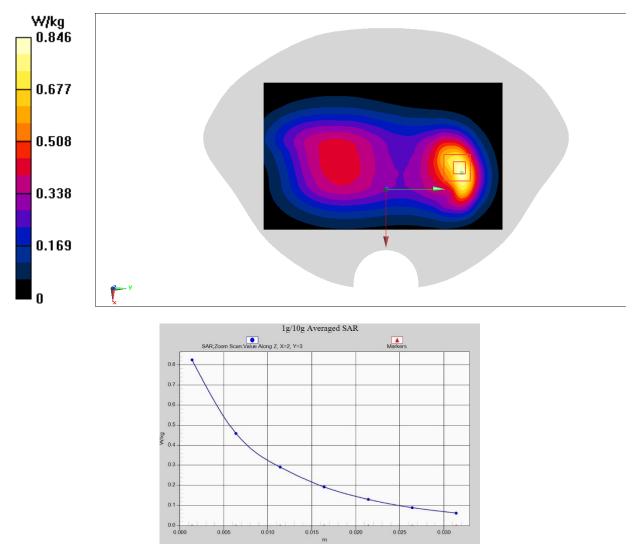


N5 Head ANT0

Date: 10/3/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 836.5 MHz; σ = 0.868 S/m; ϵ_r = 42.853; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: 5G N5 836.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(10.74, 10.74, 10.74)

Area Scan (81x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.341 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.980 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.380 W/kg SAR(1 g) = 0.286 W/kg; SAR(10 g) = 0.225 W/kg Maximum value of SAR (measured) = 0.340 W/kg



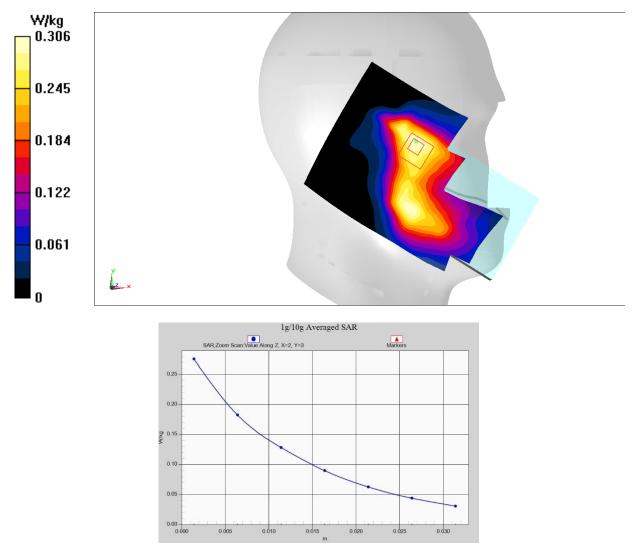
N5 Body ANT0

Date: 10/3/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 846.5 MHz; σ = 0.874 S/m; ϵ_r = 42.836; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: 5G N5 846.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(10.74, 10.74, 10.74)

Area Scan (81x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.846 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.96 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.02 W/kg SAR(1 g) = 0.564 W/kg; SAR(10 g) = 0.345 W/kg Maximum value of SAR (measured) = 0.825 W/kg

Page 317 of 475

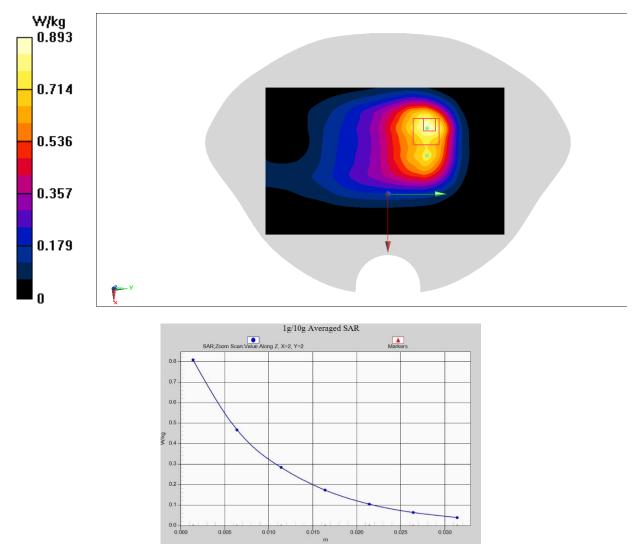


N25 Head ANT1

Date: 10/16/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1852.5 MHz; σ = 1.43 S/m; ϵ_r = 41.656; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: 5G N25 1852.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.54, 8.54, 8.54)

Area Scan (81x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.306 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.390 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.323 W/kg SAR(1 g) = 0.211 W/kg; SAR(10 g) = 0.141 W/kg Maximum value of SAR (measured) = 0.276 W/kg



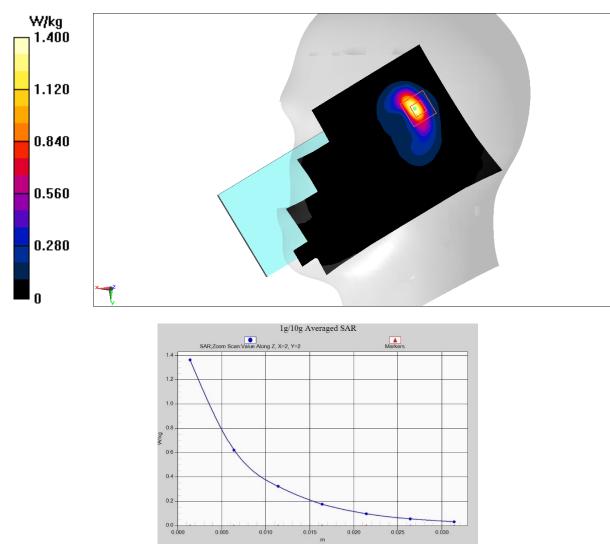
N25 Body ANT1

Date: 10/16/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1852.5 MHz; σ = 1.43 S/m; ϵ_r = 41.656; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: 5G N25 1852.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.54, 8.54, 8.54)

Area Scan (81x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.893 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.74 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 1.01 W/kg SAR(1 g) = 0.570 W/kg; SAR(10 g) = 0.350 W/kg Maximum value of SAR (measured) = 0.808 W/kg

Page 319 of 475

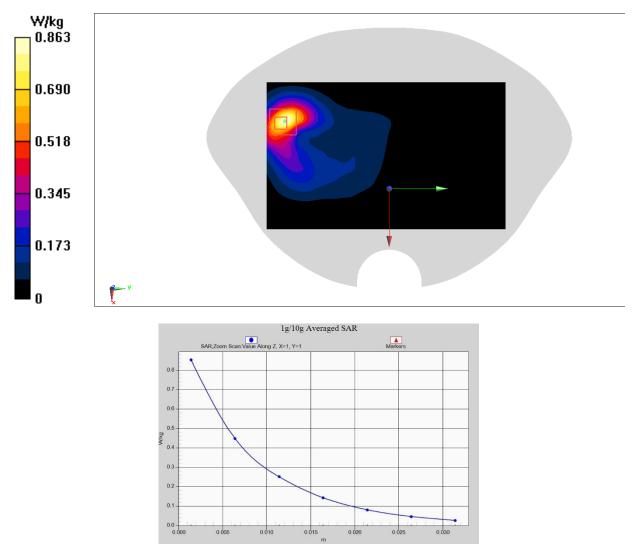


N25 Head ANT4

Date: 10/16/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1912.5 MHz; σ = 1.487 S/m; ϵ_r = 40.333; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: 5G N25 1912.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.54, 8.54, 8.54)

Area Scan (81x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.40 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.61 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 1.81 W/kg SAR(1 g) = 0.823 W/kg; SAR(10 g) = 0.359 W/kg Maximum value of SAR (measured) = 1.36 W/kg

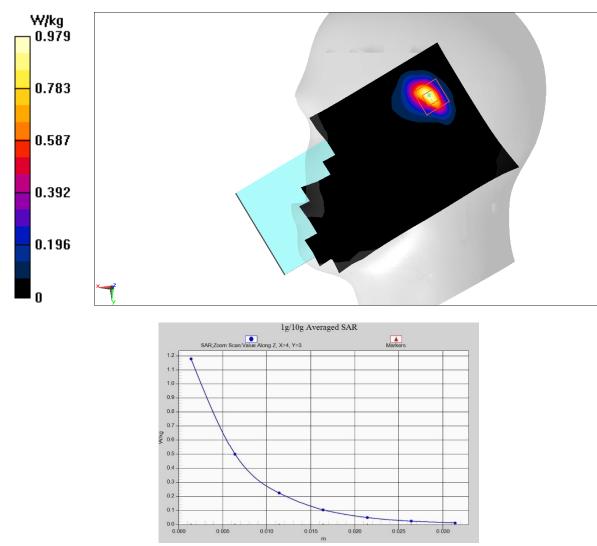


N25 Body ANT4

Date: 10/16/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1912.5 MHz; σ = 1.487 S/m; ϵ_r = 40.333; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: 5G N25 1912.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.54, 8.54, 8.54)

Area Scan (81x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.863 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.719 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 1.10 W/kg SAR(1 g) = 0.567 W/kg; SAR(10 g) = 0.292 W/kg Maximum value of SAR (measured) = 0.853 W/kg

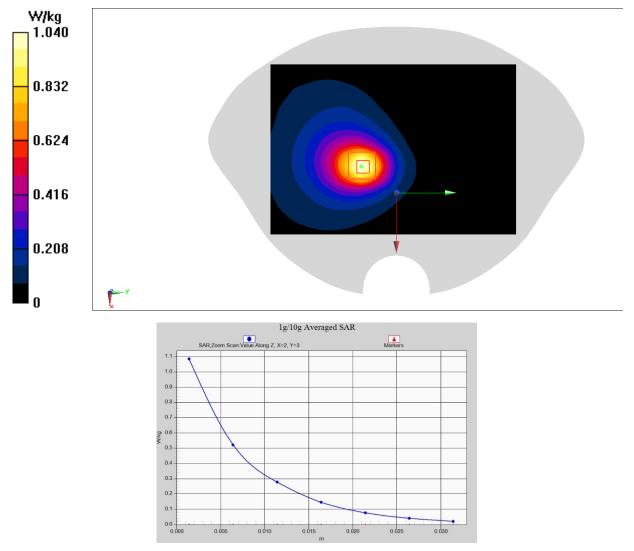


N41 Head ANT4

Date: 10/23/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 2546.01 MHz; σ = 1.994 S/m; ϵ_r = 40.222; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: 5G N41 2546.01 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(7.62, 7.62, 7.62)

Area Scan (101x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.979 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.035 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 1.59 W/kg SAR(1 g) = 0.632 W/kg; SAR(10 g) = 0.247 W/kg Maximum value of SAR (measured) = 1.18 W/kg

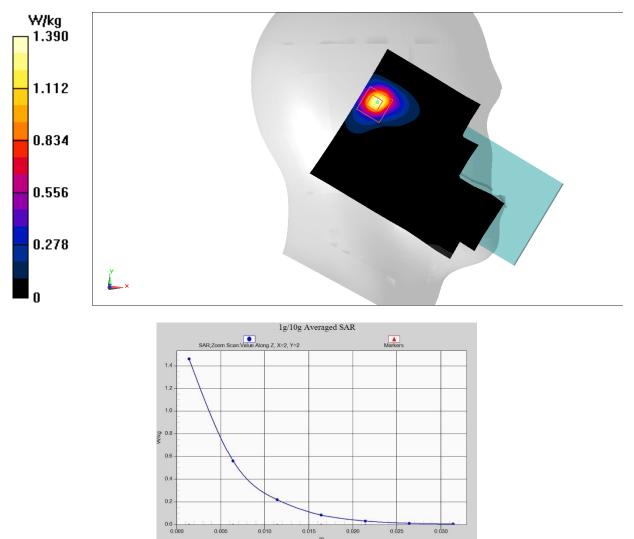


N41 Body ANT4

Date: 10/23/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 2616.49 MHz; σ = 2.043 S/m; ϵ_r = 39.97; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: 5G N41 2616.49 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(7.62, 7.62, 7.62)

Area Scan (91x131x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.04 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 10.97 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 1.44 W/kg SAR(1 g) = 0.710 W/kg; SAR(10 g) = 0.372 W/kg Maximum value of SAR (measured) = 1.09 W/kg



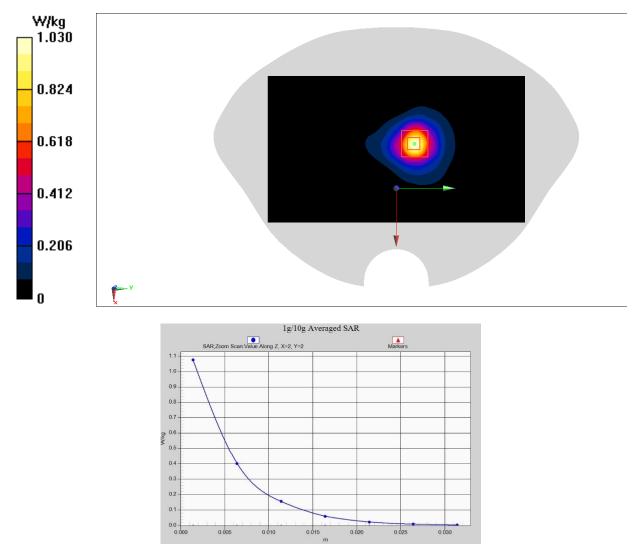
N48 Head ANT5

Date: 10/24/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 3555 MHz; σ = 2.998 S/m; ϵ_r = 38.567; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: 5G N48 3555 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(7.05, 7.05, 7.05)

Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.39 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 8.347 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 2.00 W/kg SAR(1 g) = 0.752 W/kg; SAR(10 g) = 0.284 W/kg Maximum value of SAR (measured) = 1.46 W/kg

Page 324 of 475

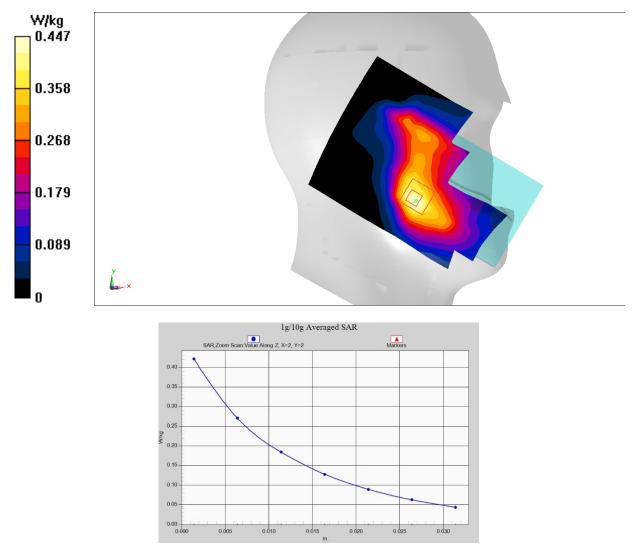


N48 Body ANT5

Date: 10/24/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 3555 MHz; σ = 2.998 S/m; ϵ_r = 38.567; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: 5G N48 3555 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(7.05, 7.05, 7.05)

Area Scan (81x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.03 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 7.332 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 1.50 W/kg SAR(1 g) = 0.576 W/kg; SAR(10 g) = 0.238 W/kg Maximum value of SAR (measured) = 1.08 W/kg

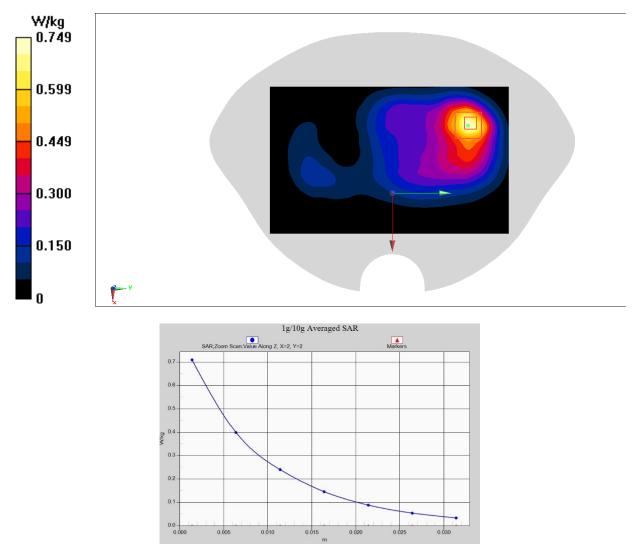


N66 Head ANT1

Date: 10/1/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1777.5 MHz; σ = 1.411 S/m; ϵ_r = 41.512; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: N66 1777.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.93, 8.93, 8.93)

Area Scan (81x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.447 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.049 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 0.486 W/kg SAR(1 g) = 0.308 W/kg; SAR(10 g) = 0.200 W/kg Maximum value of SAR (measured) = 0.421 W/kg

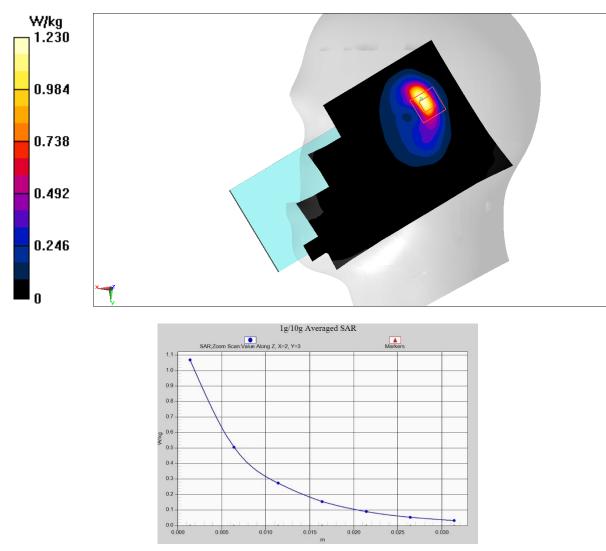


N66 Body ANT1

Date: 10/1/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1777.5 MHz; σ = 1.433 S/m; ϵ_r = 41.857; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: N66 1777.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.93, 8.93, 8.93)

Area Scan (81x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.749 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.45 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.875 W/kg SAR(1 g) = 0.481 W/kg; SAR(10 g) = 0.275 W/kg Maximum value of SAR (measured) = 0.709 W/kg

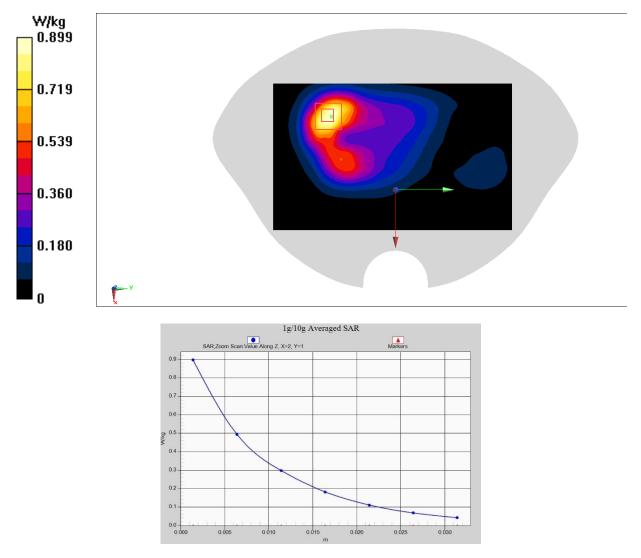


N66 Head ANT4

Date: 10/1/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1777.5 MHz; σ = 1.411 S/m; ϵ_r = 41.512; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: N66 1777.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.93, 8.93, 8.93)

Area Scan (81x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.23 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.29 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 1.50 W/kg SAR(1 g) = 0.704 W/kg; SAR(10 g) = 0.328 W/kg Maximum value of SAR (measured) = 1.07 W/kg



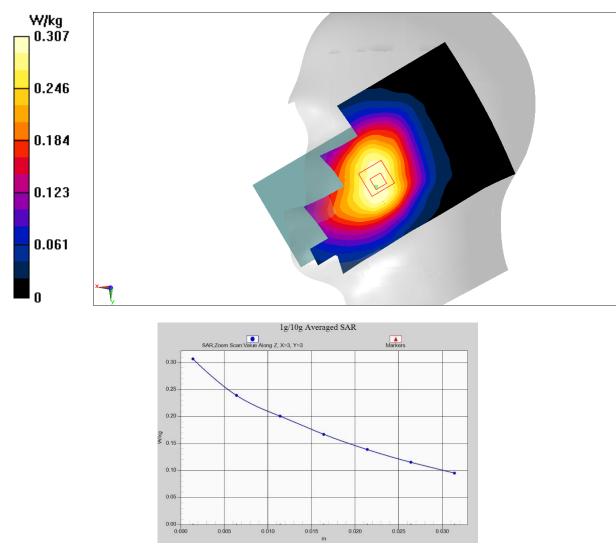
N66 Body ANT4

Date: 10/1/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1777.5 MHz; σ = 1.411 S/m; ϵ_r = 41.512; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: N66 1777.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.93, 8.93, 8.93)

Area Scan (81x131x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.899 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.86 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 1.14 W/kg SAR(1 g) = 0.608 W/kg; SAR(10 g) = 0.336 W/kg Maximum value of SAR (measured) = 0.897 W/kg

Page 329 of 475

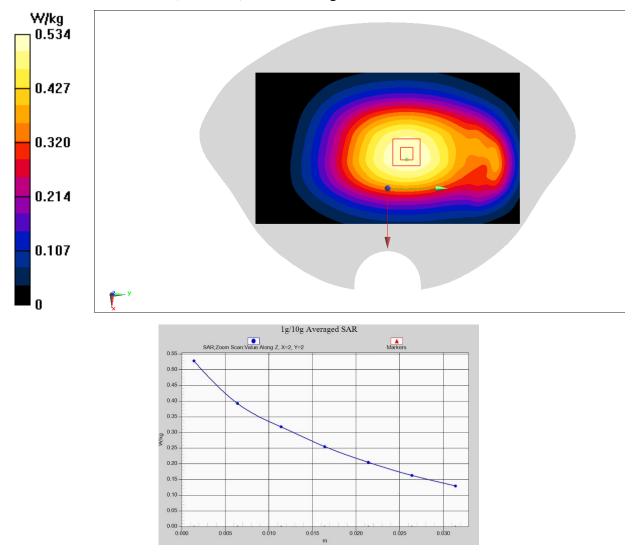


N71 Head ANT0

Date: 10/2/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 665.5 MHz; σ = 0.858 S/m; ϵ_r = 43.963; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: 5G N71 665.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(10.74, 10.74, 10.74)

Area Scan (81x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.307 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.261 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 0.338 W/kg SAR(1 g) = 0.261 W/kg; SAR(10 g) = 0.209 W/kg Maximum value of SAR (measured) = 0.307 W/kg

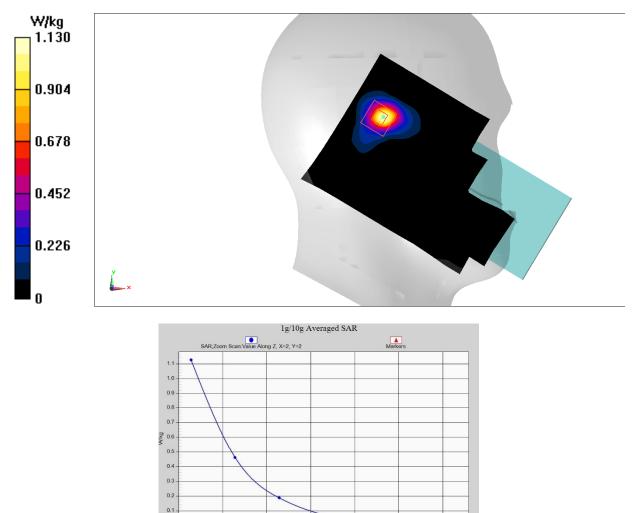


N71 Body ANT0

Date: 10/2/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 665.5 MHz; σ = 0.858 S/m; ϵ_r = 43.963; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: 5G N71 665.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(10.74, 10.74, 10.74)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.534 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.39 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.588 W/kg SAR(1 g) = 0.435 W/kg; SAR(10 g) = 0.339 W/kg Maximum value of SAR (measured) = 0.528 W/kg



N77-L Head ANT5

Date: 10/15/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 3460.02 MHz; $\sigma = 2.806$ S/m; $\epsilon_r = 38.353$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: 5G N77 3460.02 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(7.05, 7.05, 7.05)

Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.13 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 11.02 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.58 W/kg SAR(1 g) = 0.614 W/kg; SAR(10 g) = 0.232 W/kg Maximum value of SAR (measured) = 1.13 W/kg

0.0

0.010

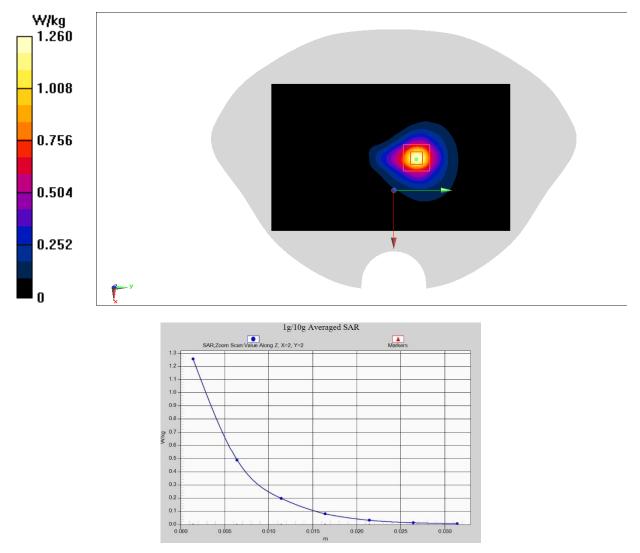
0.015

0.005

0.020

0.025

0.030

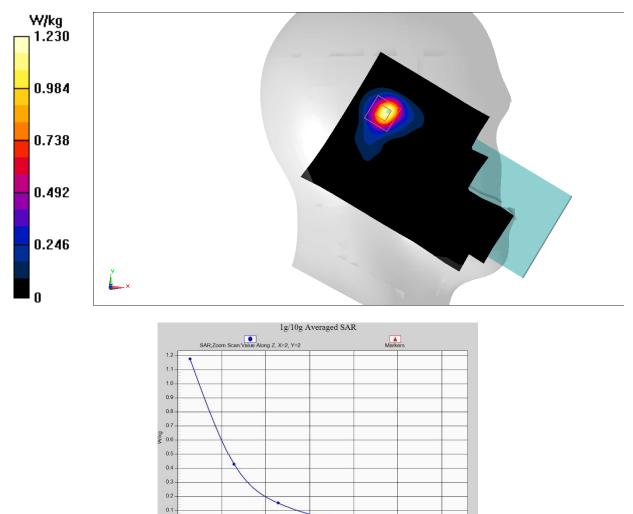


N77-L Body ANT5

Date: 10/15/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 3460.02 MHz; $\sigma = 2.806$ S/m; $\epsilon_r = 38.353$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: 5G N77 3460.02 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(7.05, 7.05, 7.05)

Area Scan (81x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.26 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 10.65 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 1.72 W/kg SAR(1 g) = 0.681 W/kg; SAR(10 g) = 0.287 W/kg Maximum value of SAR (measured) = 1.26 W/kg



N77-H Head ANT5

Date: 10/15/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 3918 MHz; σ = 3.329 S/m; ϵ_r = 37.516; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: 5G N77 3918 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(6.68, 6.68, 6.68)

Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.23 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 10.72 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 1.76 W/kg SAR(1 g) = 0.626 W/kg; SAR(10 g) = 0.227 W/kg Maximum value of SAR (measured) = 1.18 W/kg

0.0

0.010

0.005

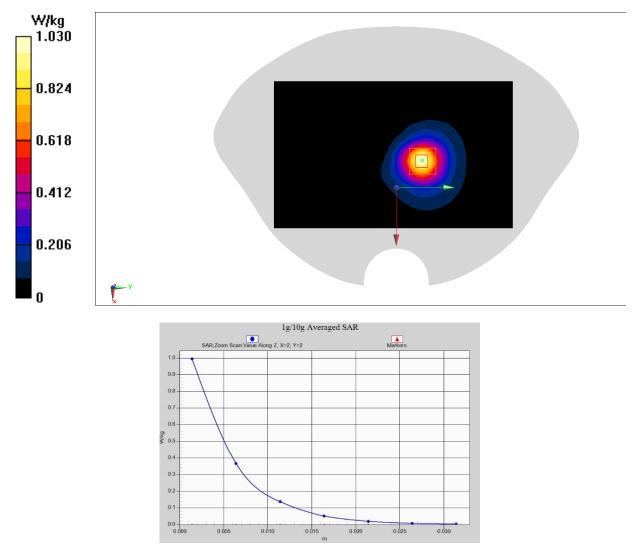
Page 334 of 475

0.025

0.020

0.015

0.030

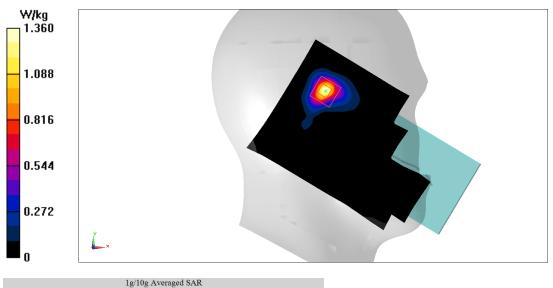


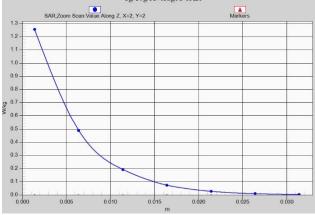
N77-H Body ANT5

Date: 10/15/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 3710.01 MHz; σ = 3.134 S/m; ϵ_r = 37.89; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: 5G N77 3710.01 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(6.78, 6.78, 6.78)

Area Scan (81x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.03 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 9.707 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 1.45 W/kg SAR(1 g) = 0.548 W/kg; SAR(10 g) = 0.233 W/kg Maximum value of SAR (measured) = 0.995 W/kg


N78-L Head ANT5

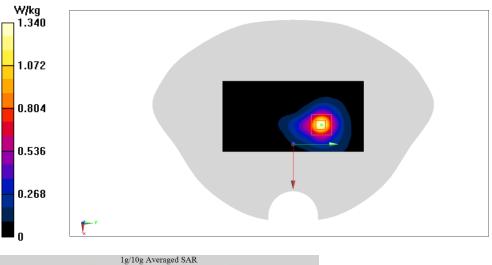

Date: 10/15/2022Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 3460.02 MHz; $\sigma = 2.806$ S/m; $\epsilon_r = 38.353$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: 5G N78 3460.02 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(7.05, 7.05, 7.05)

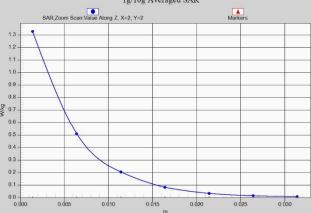
Area Scan (81x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.36 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 9.204 V/m; Power Drift = 0.14 dBPeak SAR (extrapolated) = 1.70 W/kgSAR(1 g) = 0.645 W/kg; SAR(10 g) = 0.247 W/kgMaximum value of SAR (measured) = 1.26 W/kg

©Copyright. All rights reserved by CTTL.

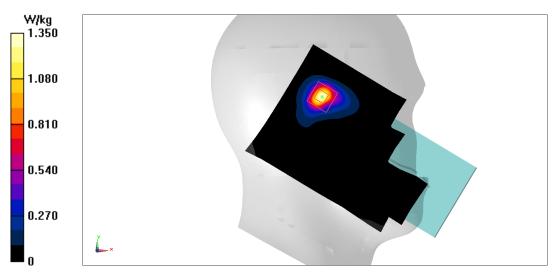

N78-L Body ANT5

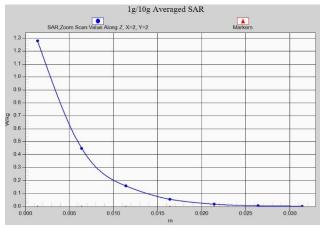

Date: 10/15/2022Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 3460.02 MHz; $\sigma = 2.806$ S/m; $\epsilon_r = 38.353$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: 5G N78 3460.02 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(7.05, 7.05, 7.05)

Area Scan (51x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.34 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 10.71 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.85 W/kg SAR(1 g) = 0.720 W/kg; SAR(10 g) = 0.299 W/kg Maximum value of SAR (measured) = 1.33 W/kg

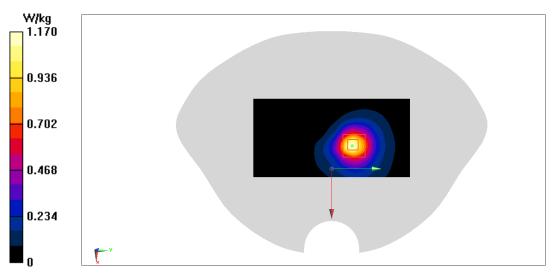

N78-H Head ANT5

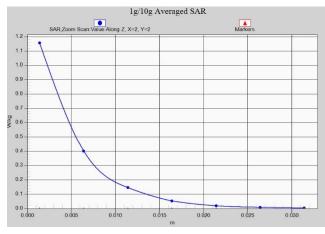

Date: 10/15/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 3750 MHz; $\sigma = 3.172$ S/m; $\epsilon r = 37.82$; $\rho = 1000$ kg/m3 Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: 5G N78 3750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(6.78, 6.78, 6.78)

Area Scan (81x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.35 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 9.371 V/m; Power Drift = -0.17 dBPeak SAR (extrapolated) = 1.79 W/kgSAR(1 g) = 0.638 W/kg; SAR(10 g) = 0.241 W/kgMaximum value of SAR (measured) = 1.28 W/kg

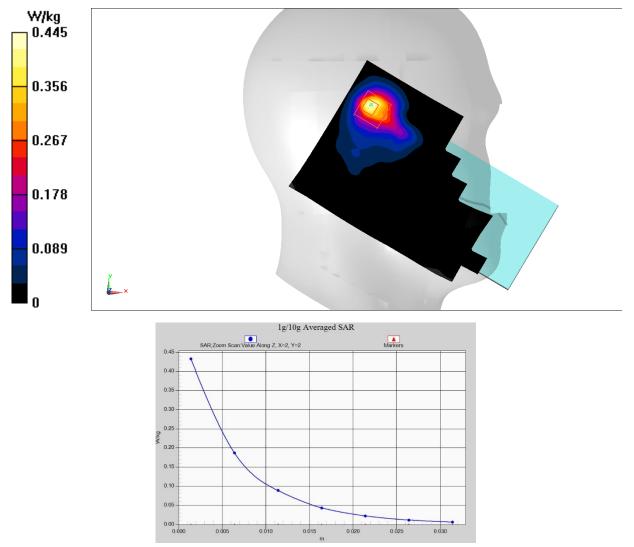

N78-H Body ANT5


Date: 10/15/2022Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 3750 MHz; $\sigma = 3.129$ S/m; $\epsilon r = 37.9$; $\rho = 1000$ kg/m3 Ambient Temperature:23.3oC Liquid Temperature: 22.5oC Communication System: 5G N78 3750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(6.78, 6.78, 6.78)

Area Scan (51x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.17 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 10.14 V/m; Power Drift = 0.19 dB
Peak SAR (extrapolated) = 1.63 W/kg
SAR(1 g) = 0.602 W/kg; SAR(10 g) = 0.257 W/kg
Maximum value of SAR (measured) = 1.16 W/kg

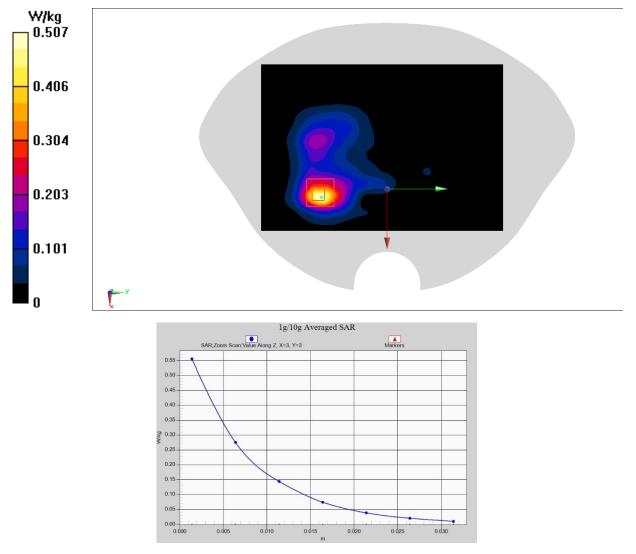


WIFI2.4G Head ANT6

Date: 10/26/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 2437 MHz; $\sigma = 1.835$ S/m; $\epsilon_r = 40.332$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: WIFI 2450 2437 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(7.82, 7.82, 7.82)

Area Scan (81x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.445 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.779 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 0.571 W/kg SAR(1 g) = 0.238 W/kg; SAR(10 g) = 0.107 W/kg Maximum value of SAR (measured) = 0.433 W/kg

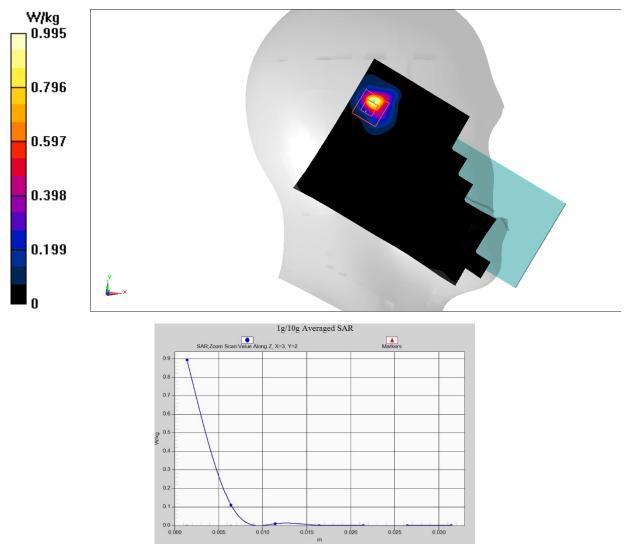


WIFI2.4G Body ANT6

Date: 10/26/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 2437 MHz; σ = 1.835 S/m; ϵ_r = 40.332; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: WIFI 2450 2437 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(7.82, 7.82, 7.82)

Area Scan (111x161x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.507 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.034 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 0.773 W/kg SAR(1 g) = 0.333 W/kg; SAR(10 g) = 0.134 W/kg Maximum value of SAR (measured) = 0.556 W/kg

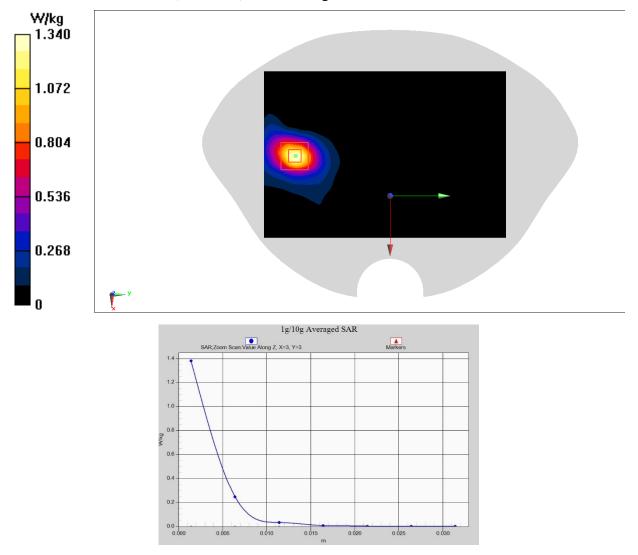


WIFI5G Head ANT6

Date: 11/1/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 5530 MHz; σ = 4.889 S/m; ϵ_r = 35.325; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: WLAN 11a 5530 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(5.13, 5.13, 5.13)

Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.995 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 4.523 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 2.39 W/kg SAR(1 g) = 0.323 W/kg; SAR(10 g) = 0.083 W/kg Maximum value of SAR (measured) = 0.894 W/kg

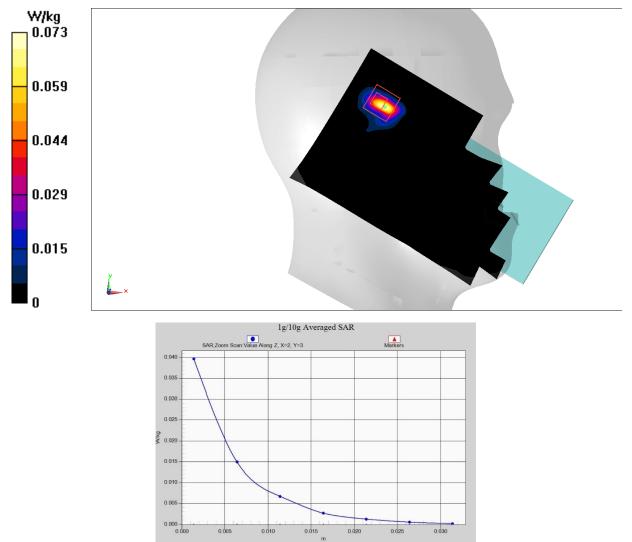


WIFI5G Body ANT6

Date: 11/1/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 5745 MHz; σ = 5.074 S/m; ϵ_r = 34.021; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: WLAN 11a 5745 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(5.16, 5.16, 5.16)

Area Scan (111x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.34 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 2.555 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 2.40 W/kg SAR(1 g) = 0.457 W/kg; SAR(10 g) = 0.180 W/kg Maximum value of SAR (measured) = 1.38 W/kg

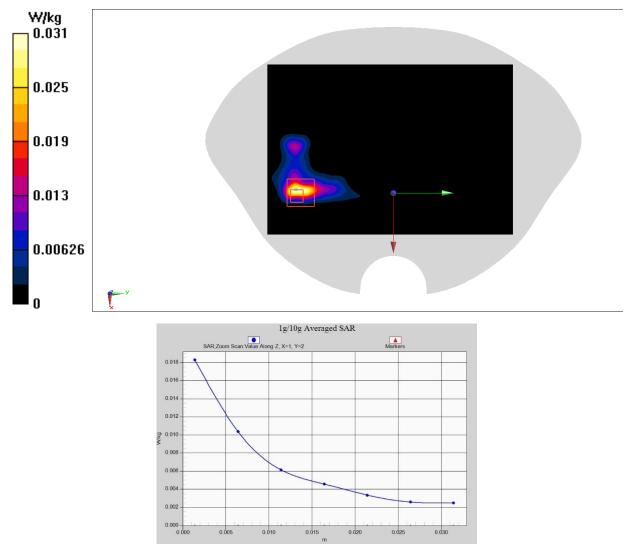


BT Head ANT6

Date: 10/26/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 2441 MHz; $\sigma = 1.839$ S/m; $\epsilon_r = 40.327$; $\rho = 1000$ kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: Bluetooth 2441 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(7.82, 7.82, 7.82)

Area Scan (81x121x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.0734 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.062 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.0540 W/kg SAR(1 g) = 0.023 W/kg; SAR(10 g) = 0.00896 W/kg Maximum value of SAR (measured) = 0.0397 W/kg

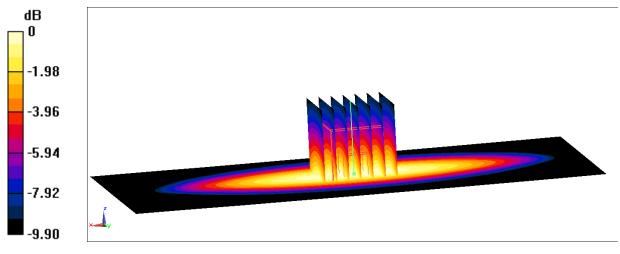


BT Body ANT6

Date: 10/26/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 2441 MHz; σ = 1.839 S/m; ϵ_r = 40.327; ρ = 1000 kg/m³ Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: Bluetooth 2441 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(7.82, 7.82, 7.82)

Area Scan (91x131x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.0313 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.7240 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 0.0400 W/kg SAR(1 g) = 0.012 W/kg; SAR(10 g) = 0.00418 W/kg Maximum value of SAR (measured) = 0.0183 W/kg


ANNEX B Verification Results

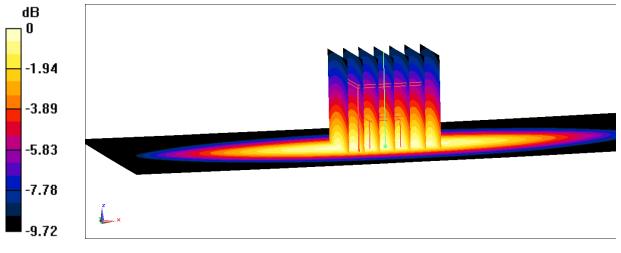
750MHz

Date: 9/25/2022Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 750 MHz; σ = 0.856 S/m; ϵ r = 43.29; ρ = 1000 kg/m3 Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(10.74, 10.74, 10.74)

Area Scan (131x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 54.52 V/m; Power Drift = -0.01 dB Fast SAR: SAR(1 g) = 2.09 W/kg; SAR(10 g) = 1.38 W/kg Maximum value of SAR (interpolated) = 2.87 W/kg

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.52 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.40 W/kg SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.4 W/kg Maximum value of SAR (measured) = 2.91 W/kg

0 dB = 2.91 W/kg = 4.64 dBW/kg

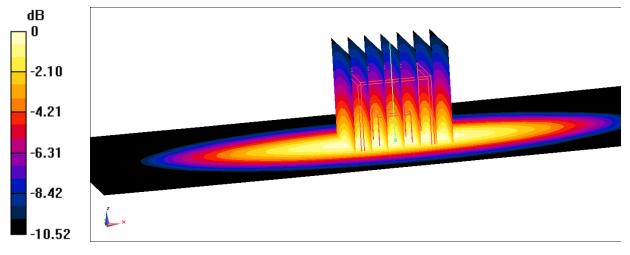


Date: 10/2/2022Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 750 MHz; $\sigma = 0.895$ S/m; $\epsilon r = 43.52$; $\rho = 1000$ kg/m3 Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(10.74, 10.74, 10.74)

Area Scan (131x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 55.85 V/m; Power Drift = -0.01 dB Fast SAR: SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.43 W/kg Maximum value of SAR (interpolated) = 2.82 W/kg

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.85 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.16 W/kg SAR(1 g) = 2.19 W/kg; SAR(10 g) = 1.46 W/kg Maximum value of SAR (measured) = 2.86 W/kg

0 dB = 2.86 W/kg = 4.56 dBW/kg

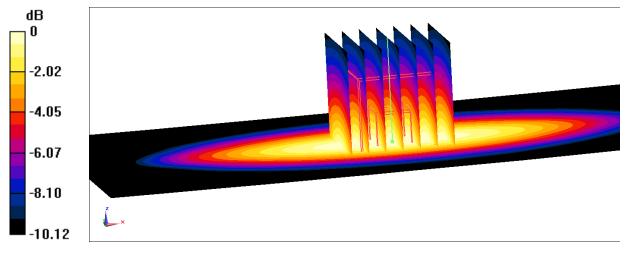


Date: 9/26/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 835 MHz; $\sigma = 0.906$ S/m; $\epsilon r = 43.18$; $\rho = 1000$ kg/m3 Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(10.74, 10.74, 10.74)

Area Scan (131x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 56.47 V/m; Power Drift = -0.05 dB Fast SAR: SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.55 W/kg Maximum value of SAR (interpolated) = 3.28 W/kg

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.47 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 3.87 W/kg SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.56 W/kg Maximum value of SAR (measured) = 3.30 W/kg

0 dB = 3.30 W/kg = 5.19 dBW/kg

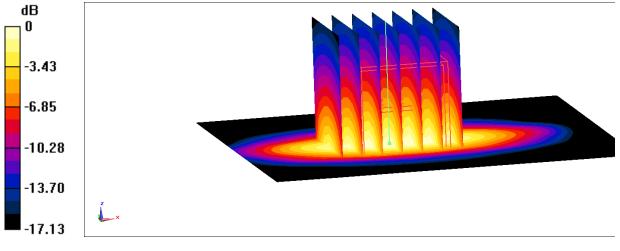


Date: 10/3/2022Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 835 MHz; $\sigma = 0.868$ S/m; $\epsilon r = 42.85$; $\rho = 1000$ kg/m3 Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(10.74, 10.74, 10.74)

Area Scan (131x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 59.03 V/m; Power Drift = -0.06 dB Fast SAR: SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (interpolated) = 3.21 W/kg

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.03 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 3.60 W/kgSAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.59 W/kgMaximum value of SAR (measured) = 3.20 W/kg

0 dB = 3.20 W/kg = 5.05 dBW/kg

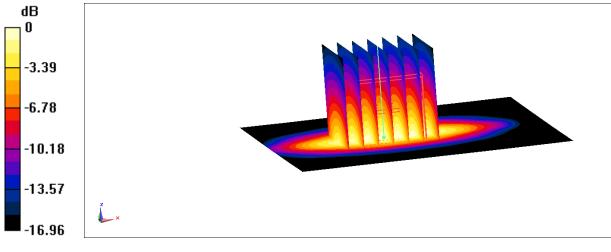


Date: 10/1/2022Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1750 MHz; $\sigma = 1.397$ S/m; $\epsilon r = 41.6$; $\rho = 1000$ kg/m3 Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 1750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.93, 8.93, 8.93)

Area Scan (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 99.34 V/m; Power Drift = -0.01 dB Fast SAR: SAR(1 g) = 9.06 W/kg; SAR(10 g) = 4.85 W/kg Maximum value of SAR (interpolated) = 14.2 W/kg

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.34 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 16.9 W/kg SAR(1 g) = 8.98 W/kg; SAR(10 g) = 4.78 W/kg Maximum value of SAR (measured) = 14.1 W/kg

0 dB = 14.1 W/kg = 11.49 dBW/kg

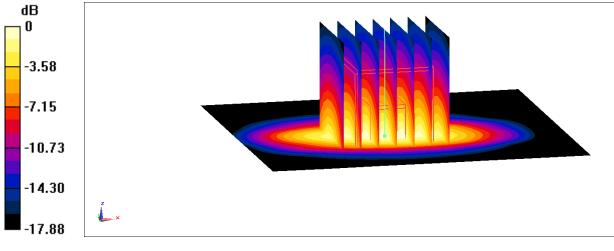


Date: 10/17/2022Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1750 MHz; σ = 1.326 S/m; ϵ r = 40.89; ρ = 1000 kg/m3 Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 1750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.93, 8.93, 8.93)

Area Scan (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 97.57 V/m; Power Drift = 0.00 dB Fast SAR: SAR(1 g) = 9.15 W/kg; SAR(10 g) = 4.83 W/kg Maximum value of SAR (interpolated) = 14.1 W/kg

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.57 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 8.89 W/kg; SAR(10 g) = 4.69 W/kg Maximum value of SAR (measured) = 13.9 W/kg

0 dB = 13.9 W/kg = 11.43 dBW/kg

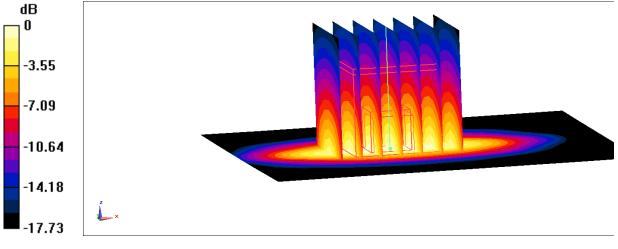


Date: 10/16/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1900 MHz; $\sigma = 1.46$ S/m; $\epsilon r = 41.61$; $\rho = 1000$ kg/m3 Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.54, 8.54, 8.54)

Area Scan (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 91.53 V/m; Power Drift = -0.04 dB Fast SAR: SAR(1 g) = 9.67 W/kg; SAR(10 g) = 4.82 W/kg Maximum value of SAR (interpolated) = 15.4 W/kg

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.53 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 19.2 W/kg SAR(1 g) = 9.86 W/kg; SAR(10 g) = 5.06 W/kg Maximum value of SAR (measured) = 15.7 W/kg

0 dB = 15.7 W/kg = 11.96 dBW/kg



Date: 10/18/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1900 MHz; $\sigma = 1.364$ S/m; $\epsilon r = 40.67$; $\rho = 1000$ kg/m3 Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.54, 8.54, 8.54)

Area Scan (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 101.5 V/m; Power Drift = 0.05 dB Fast SAR: SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.27 W/kg Maximum value of SAR (interpolated) = 16.2 W/kg

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.5 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 19.2 W/kg SAR(1 g) = 9.99 W/kg; SAR(10 g) = 5.15 W/kg Maximum value of SAR (measured) = 15.9 W/kg

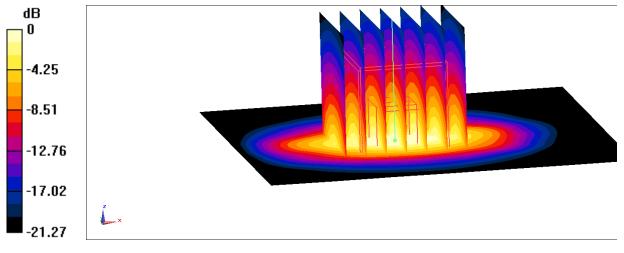
0 dB = 15.9 W/kg = 12.01 dBW/kg

Date: 10/29/2022Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 1900 MHz; σ = 1.426 S/m; ϵ r = 39.54; ρ = 1000 kg/m3 Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.54, 8.54, 8.54)

Area Scan (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 100.0 V/m; Power Drift = -0.05 dB Fast SAR: SAR(1 g) = 9.95 W/kg; SAR(10 g) = 5.12 W/kg Maximum value of SAR (interpolated) = 15.9 W/kg

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.0 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 19.3 W/kg SAR(1 g) = 9.88 W/kg; SAR(10 g) = 5.06 W/kg Maximum value of SAR (measured) = 15.8 W/kg

0 dB = 15.8 W/kg = 11.99 dBW/kg

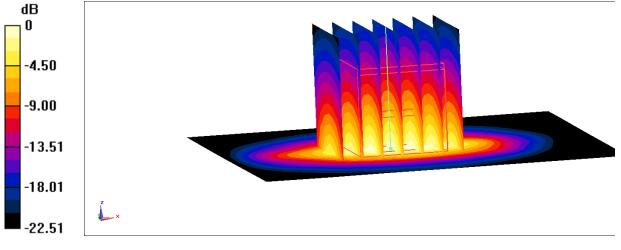


Date: 10/21/2022Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 2300 MHz; σ = 1.664 S/m; ϵ r = 40.7; ρ = 1000 kg/m3 Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 2300 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(8.14, 8.14, 8.14)

Area Scan (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 101.3 V/m; Power Drift = -0.05 dB Fast SAR: SAR(1 g) = 12.2 W/kg; SAR(10 g) = 5.85 W/kg Maximum value of SAR (interpolated) = 20.2 W/kg

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.3 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 24.8 W/kg SAR(1 g) = 12.1 W/kg; SAR(10 g) = 5.79 W/kg Maximum value of SAR (measured) = 20.1 W/kg

0 dB = 20.1 W/kg = 13.03 dBW/kg

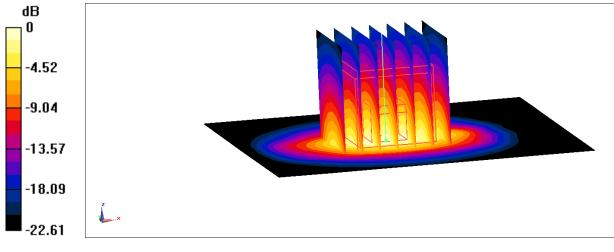


Date: 10/26/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 2450 MHz; $\sigma = 1.847$ S/m; $\epsilon r = 40.31$; $\rho = 1000$ kg/m3 Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 2450 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(7.82, 7.82, 7.82)

Area Scan (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 105.0 V/m; Power Drift = -0.06 dB Fast SAR: SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.93 W/kg Maximum value of SAR (interpolated) = 22.0 W/kg

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.0 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.05 W/kg Maximum value of SAR (measured) = 22.4 W/kg

0 dB = 22.4 W/kg = 13.50 dBW/kg

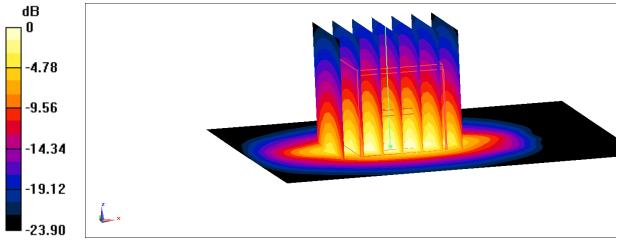


Date: 10/22/2022Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 2600 MHz; $\sigma = 1.986$ S/m; $\epsilon r = 38.59$; $\rho = 1000$ kg/m3 Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 2600 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(7.62, 7.62, 7.62)

Area Scan (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 102.3 V/m; Power Drift = -0.08 dB Fast SAR: SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.15 W/kg Maximum value of SAR (interpolated) = 24.2 W/kg

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.3 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 30.3 W/kg SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.51 W/kg Maximum value of SAR (measured) = 24.4 W/kg

0 dB = 24.4 W/kg = 13.87 dBW/kg

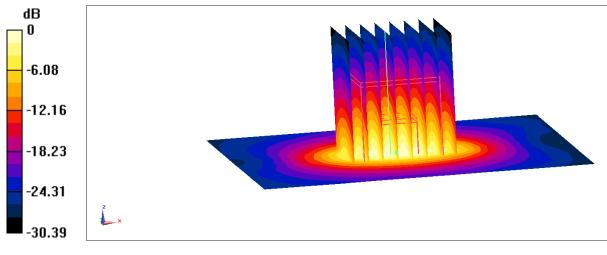


Date: 10/23/2022Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 2600 MHz; $\sigma = 2.028$ S/m; $\epsilon r = 40.01$; $\rho = 1000$ kg/m3 Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 2600 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(7.62, 7.62, 7.62)

Area Scan (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 103.8 V/m; Power Drift = 0.04 dB Fast SAR: SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.21 W/kg Maximum value of SAR (interpolated) = 24.3 W/kg

Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.8 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.29 W/kg Maximum value of SAR (measured) = 24.4 W/kg

0 dB = 24.4 W/kg = 13.87 dBW/kg

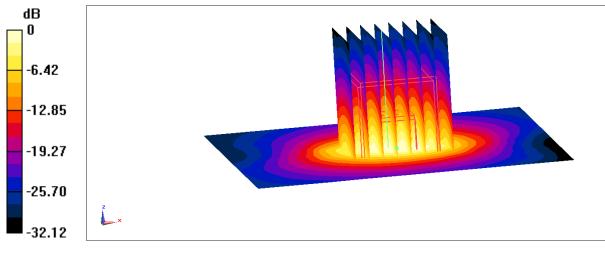


Date: 10/24/2022Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 3300 MHz; σ = 2.745 S/m; ϵ r = 39.06; ρ = 1000 kg/m3 Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 3300 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(7.34, 7.34, 7.34)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 12.8 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.24 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(1 g) = 6.59 W/kg; SAR(10 g) = 2.55 W/kg Maximum value of SAR (measured) = 12.0 W/kg

0 dB = 12.0 W/kg = 10.79 dBW/kg

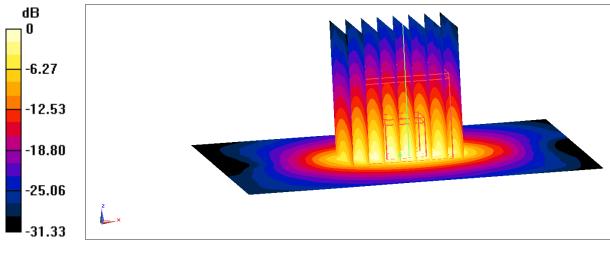


Date: 10/24/2022Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 3500 MHz; σ = 2.947 S/m; ϵ r = 38.66; ρ = 1000 kg/m3 Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 3500 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(7.05, 7.05, 7.05)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 13.2 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.26 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 18.0 W/kg SAR(1 g) = 6.62 W/kg; SAR(10 g) = 2.5 W/kg Maximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 11.07 dBW/kg

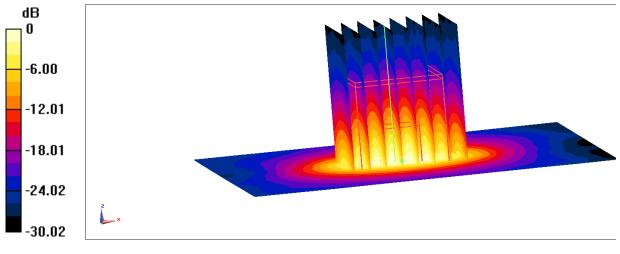


Date: 10/15/2022Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 3500 MHz; σ = 2.842 S/m; ϵ r = 38.28; ρ = 1000 kg/m3 Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 3500 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(7.05, 7.05, 7.05)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 12.6 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.33 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 6.7 W/kg; SAR(10 g) = 2.61 W/kg Maximum value of SAR (measured) = 12.2 W/kg

0 dB = 12.2 W/kg = 10.86 dBW/kg

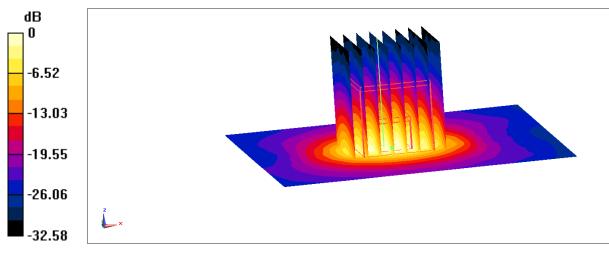


Date: 10/15/2022Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 3700 MHz; σ = 3.065 S/m; ϵ r = 39.03; ρ = 1000 kg/m3 Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 3700 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(6.78, 6.78, 6.78)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 13.2 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.36 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 6.5 W/kg; SAR(10 g) = 2.4 W/kg Maximum value of SAR (measured) = 12.6 W/kg

0 dB = 12.6 W/kg = 11.00 dBW/kg

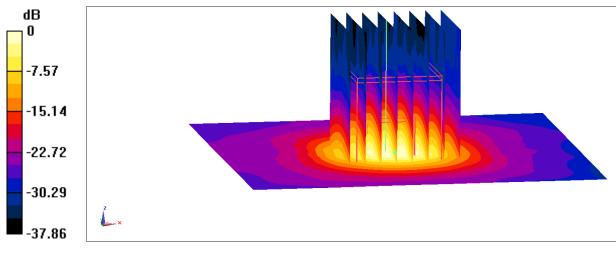


Date: 10/15/2022Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 3900 MHz; $\sigma = 3.25$ S/m; $\epsilon r = 38.68$; $\rho = 1000$ kg/m3 Ambient Temperature: 23.3° C Liquid Temperature: 22.5° C Communication System: CW (0) Frequency: 3900 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(6.68, 6.68, 6.68)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 13.7 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.16 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 19.0 W/kg SAR(1 g) = 6.79 W/kg; SAR(10 g) = 2.38 W/kg Maximum value of SAR (measured) = 13.3 W/kg

0 dB = 13.3 W/kg = 11.24 dBW/kg



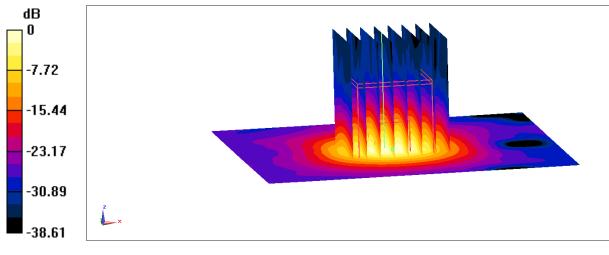
5250MHz

Date: 11/1/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 5250 MHz; $\sigma = 4.588$ S/m; $\epsilon r = 35.8$; $\rho = 1000$ kg/m3 Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 5250 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(5.59, 5.59, 5.59)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.3 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.74 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 32.5 W/kg SAR(1 g) = 7.75 W/kg; SAR(10 g) = 2.24 W/kg Maximum value of SAR (measured) = 18.6 W/kg

0 dB = 18.6 W/kg = 12.70 dBW/kg



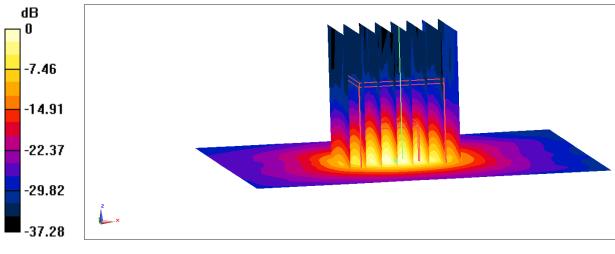
5600MHz

Date: 11/1/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 5600 MHz; $\sigma = 4.965$ S/m; $\epsilon r = 35.22$; $\rho = 1000$ kg/m3 Ambient Temperature:23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 5600 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(5.13, 5.13, 5.13)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 19.3 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.28 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 37.3 W/kg SAR(1 g) = 8.07 W/kg; SAR(10 g) = 2.32 W/kg Maximum value of SAR (measured) = 20.2 W/kg

0 dB = 20.2 W/kg = 13.05 dBW/kg



5750MHz

Date: 11/1/2022 Electronics: DAE4 Sn777 Medium: H700-6000M Medium parameters used: f = 5750 MHz; $\sigma = 5.08$ S/m; $\epsilon r = 34.01$; $\rho = 1000$ kg/m3 Ambient Temperature: 23.3°C Liquid Temperature: 22.5°C Communication System: CW (0) Frequency: 5750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7600 ConvF(5.16, 5.16, 5.16)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 19.1 W/kg

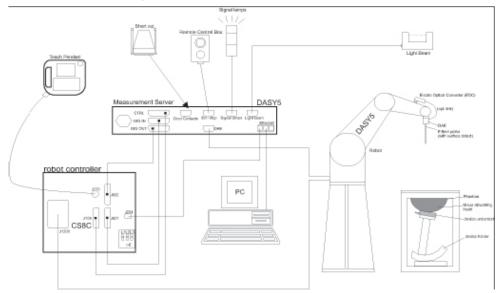
Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.29 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 36.8 W/kg SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 19.2 W/kg

0 dB = 19.2 W/kg = 12.83 dBW/kg

The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR.

Date	Band	Position	Area scan (1g)	Zoom scan (1g)	Drift (%)
2022/9/25	750 MHz	Head	2.09	2.12	-1.42
2022/10/2	750 MHz	Head	2.15	2.19	-1.83
2022/9/26	835 MHz	Head	2.37	2.39	-0.84
2022/10/3	835 MHz	Head	2.42	2.41	0.41
2022/10/1	1750 MHz	Head	9.06	8.98	0.89
2022/10/17	1750 MHz	Head	9.15	8.89	2.92
2022/10/16	1900 MHz	Head	9.67	9.86	-1.93
2022/10/18	1900 MHz	Head	10.2	9.99	2.10
2022/10/29	1900 MHz	Head	9.95	9.88	0.71
2022/10/21	2300 MHz	Head	12.2	12.1	0.83
2022/10/26	2450 MHz	Head	12.9	13.2	-2.27
2022/10/22	2600 MHz	Head	14.2	14.4	-1.39
2022/10/23	2600 MHz	Head	14.1	14.2	-0.70

Table B.1 Comparison between area scan and zoom scan for system verification



ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (StäubliTX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2 Dasy4 or DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model:	ES3DV3, EX3DV4				
Frequency	10MHz — 6.0GHz(EX3DV4)				
Range:	10MHz — 4GHz(ES3DV3)				
Calibration:	In head and body simulating tissue at				
	Frequencies from 835 up to 5800MHz				
Linearity:	± 0.2 dB(30 MHz to 6 GHz) for EX3DV4				
	± 0.2 dB(30 MHz to 4 GHz) for ES3DV3				
Dynamic Range: 10 mW/kg — 100W/kg					
Probe Length:	330 mm				
Probe Tip					
Length:	20 mm				
Body Diameter: 12 mm					
Tip Diameter:	2.5 mm (3.9 mm for ES3DV3)				
Tip-Center:	1 mm (2.0mm for ES3DV3)				
Application:	SAR Dosimetry Testing				
	Compliance tests of mobile phones				
	Dosimetry in strong gradient fields				

Picture C.2Near-field Probe

Picture C.3 E-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or

No.I22Z70331-SEM01

other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 $\Delta t = Exposure time (30 seconds),$

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY4: RX90XL; DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- > Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5DASY 4

Picture C.6DASY 5

C.4.3 Measurement Server

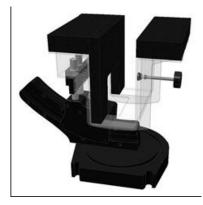
The Measurement server is based on a PC/104 CPU broad with CPU (dasy4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128MB), RAM (DASY4: 64 MB, DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture C.7 Server for DASY 4

Picture C.8 Server for DASY 5

C.4.4 Device Holder for Phantom


The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. <Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.9-1: Device Holder

Picture C.9-2: Laptop Extension Kit

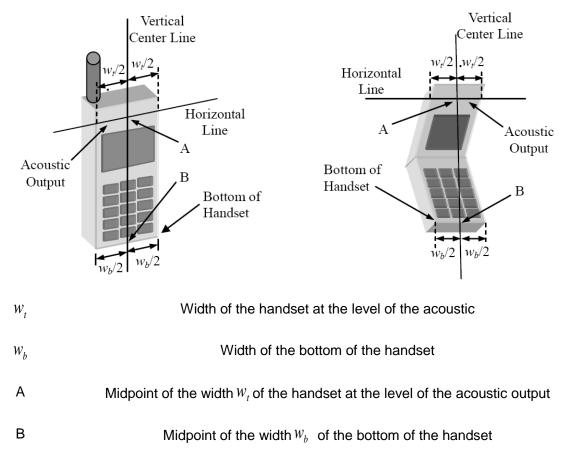
C.4.5 Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness:2±0. 2 mmFilling Volume:Approx. 25 litersDimensions:810 x 1000 x 500 mm (H x L x W)Available:Special

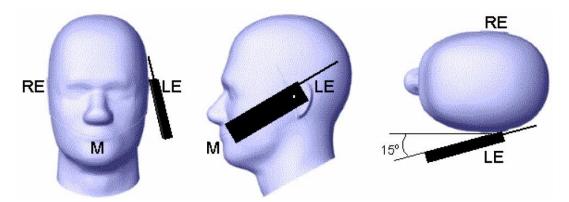
Picture C.10: SAM Twin Phantom



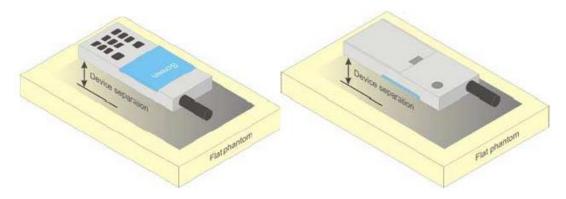

ANNEX D Position of the wireless device in relation to the phantom

D.1 General considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.


Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset

Picture D.2 Cheek position of the wireless device on the left side of SAM

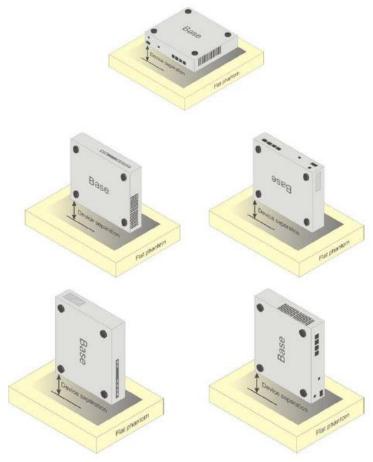


Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.

Picture D.4Test positions for body-worn devices


D.3 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

D.4 DUT Setup Photos

Picture D.6

©Copyright. All rights reserved by CTTL.

ANNEX E Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

TableL.1. Composition of the Tissue Equivalent Matter									
Frequency	835Head	925 Pody	1900	1900	2450	2450	5800	5800	
(MHz)	835Head	Head 835Body	Head	Body	Head	Body	Head	Body	
Ingredients (% by	Ingredients (% by weight)								
Water	41.45	52.5	55.242	69.91	58.79	72.60	65.53	65.53	
Sugar	56.0	45.0	١	١	١	١	١	١	
Salt	1.45	1.4	0.306	0.13	0.06	0.18	١	١	
Preventol	0.1	0.1	١	١	١	١	١	١	
Cellulose	1.0	1.0	١	١	١	١	١	١	
Glycol	1	1	44.452	29.96	41.15	27.22	1	1	
Monobutyl	Λ	١	44.452	29.90	41.15	21.22	\	١	
Diethylenglycol	1	1	1	N	1	1	17.24	17.24	
monohexylether	Λ	1	١	١	١	λ	١	17.24	17.24
Triton X-100	١	١	١	١	١	١	17.24	17.24	
Dielectric	ε=41.5	ε=55.2	ε=40.0	c=52.2	ε=39.2	c=50.7	c=25.2	ε=48.2	
Parameters				ε=53.3		ε=52.7	ε=35.3		
Target Value	σ=0.90	σ=0.97	σ=1.40	σ=1.52	σ=1.80	σ=1.95	σ=5.27	σ=6.00	
	•	•							

TableE.1: Composition of the Tissue Equivalent Matter

Note: There are a little adjustment respectively for 750, 1750, 2600, 5200, 5300 and 5600 based on the recipe of closest frequency in table E.1.

ANNEX F System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Table 1.1. System valuation for 7000							
Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)			
7600	Head 750MHz	January 2, 2022	750 MHz	OK			
7600	Head 900MHz	January 2, 2022	900 MHz	OK			
7600	Head 1450MHz	January 3, 2022	1450 MHz	OK			
7600	Head 1750MHz	January 3, 2022	1750 MHz	OK			
7600	Head 1900MHz	January 4, 2022	1900 MHz	OK			
7600	Head 2100MHz	January 4, 2022	2000 MHz	OK			
7600	Head 2300MHz	January 4, 2022	2300 MHz	OK			
7600	Head 2450MHz	January 5, 2022	2450 MHz	OK			
7600	Head 2600MHz	January 5, 2022	2600 MHz	OK			
7600	Head 3300MHz	January 6, 2022	3300 MHz	OK			
7600	Head 3500MHz	January 6, 2022	3500 MHz	OK			
7600	Head 3700MHz	January 6, 2022	3700 MHz	OK			
7600	Head 3900MHz	January 7, 2022	3900 MHz	OK			
7600	Head 4100MHz	January 7, 2022	4100MHz	OK			
7600	Head 4200MHz	January 7, 2022	4200MHz	OK			
7600	Head 4400MHz	January 8, 2022	4400MHz	OK			
7600	Head 4600MHz	January 8, 2022	4600MHz	OK			
7600	Head 4800MHz	January 8, 2022	4800MHz	OK			
7600	Head 4950MHz	January 9, 2022	4950MHz	OK			
7600	Head 5250MHz	January 9, 2022	5250MHz	OK			
7600	Head 5600MHz	January 9, 2022	5600 MHz	OK			
7600	Head 5750MHz	January 9, 2022	5750 MHz	OK			

Table F.1: System Validation for 7600