



### Test graphs as below:

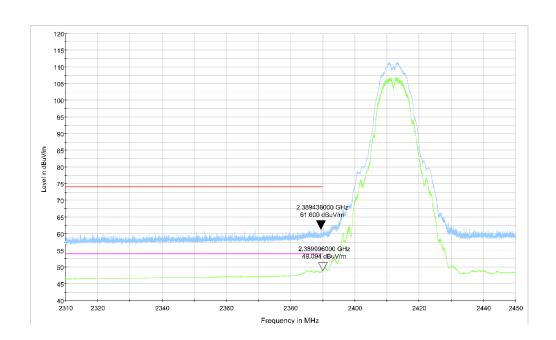



Fig.A.6.2.1 Transmitter Spurious Emission - Radiated (Power): 802.11b, ch1, 2.31 GHz - 2.45GHz

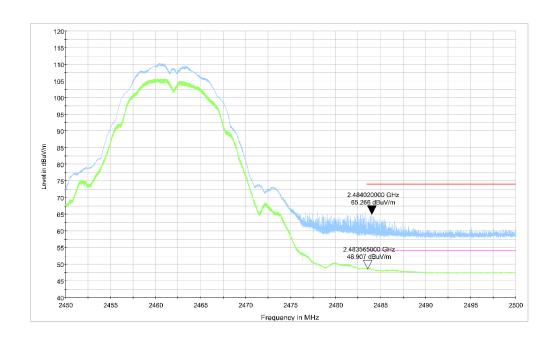



Fig.A.6.2.2 Transmitter Spurious Emission - Radiated (Power): 802.11b, ch11, 2.45 GHz - 2.50GHz





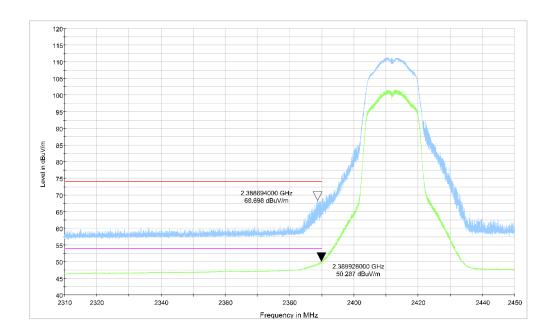



Fig.A.6.2.3 Transmitter Spurious Emission - Radiated (Power): 802.11g, ch1, 2.31 GHz - 2.45GHz

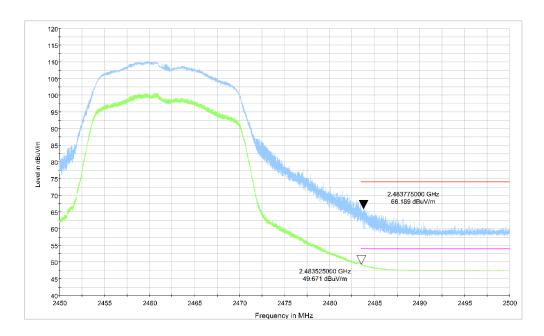



Fig.A.6.2.4 Transmitter Spurious Emission - Radiated (Power): 802.11g, ch11, 2.45 GHz - 2.50GHz





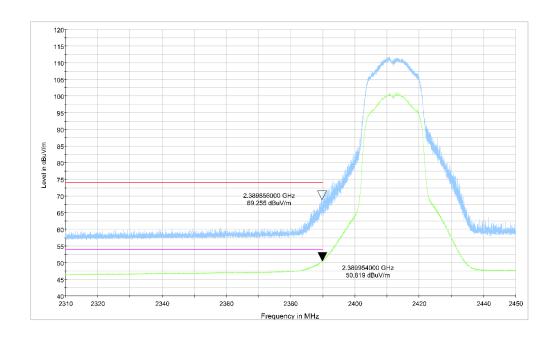



Fig.A.6.2.5 Transmitter Spurious Emission - Radiated (Power): 802.11n-HT20, ch1, 2.31 GHz - 2.45GHz

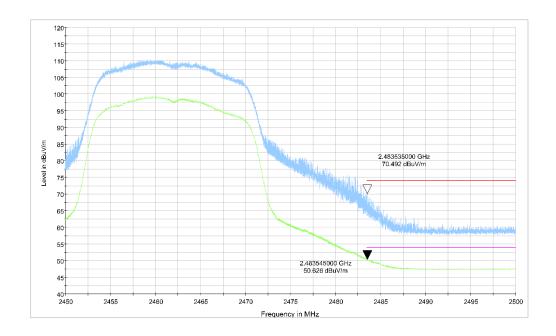



Fig.A.6.2.6 Transmitter Spurious Emission - Radiated (Power): 802.11n-HT20, ch11, 2.45 GHz - 2.50GHz





## A.7. AC Power-line Conducted Emission

#### **Method of Measurement:**

See Clause 6.2 of ANSI C63.10-2013 specifically.

See Clause 4 and Clause 5 of ANSI C63.10-2013 generally.

The conducted emissions from the AC port of the EUT are measured in a shielding room. The EUT is connected to a Line Impedance Stabilization Network (LISN). An overview sweep with peak detection was performed. The measurements were performed with a quasi-peak detector and if required, an average detector.

The conducted emission measurements were made with the following detector of the test receiver: Quasi-Peak / Average Detector.


The measurement bandwidth is:

| Frequency of Emission (MHz) | RBW/IF bandwidth |  |  |
|-----------------------------|------------------|--|--|
| 0.15-30                     | 9kHz             |  |  |

#### **Test Condition:**

| Voltage (V) | Frequency (Hz) |  |  |
|-------------|----------------|--|--|
| 120         | 60             |  |  |

### **Measurement Setup**







#### **Measurement Result and limit:**

WLAN (Quasi-peak Limit)

| Frequency range (MHz) | Quasi-peak<br>Limit (dBμV) | Result (dBμV)<br>With charger |           | Conclusion |
|-----------------------|----------------------------|-------------------------------|-----------|------------|
| (141112)              | Еши (авру)                 | 802.11b                       | ldle      |            |
| 0.15 to 0.5           | 66 to 56                   |                               |           |            |
| 0.5 to 5              | 56                         | Fig.A.7.1                     | Fig.A.7.2 | Р          |
| 5 to 30               | 60                         |                               |           |            |

NOTE: The limit decreases linearly with the logarithm of the frequency in the range  $0.15~\mathrm{MHz}$  to  $0.5~\mathrm{MHz}$ .

## WLAN (Average Limit)

| Frequency range | Average Limit | Result (dBμV)<br>With charger |           | Conclusion |
|-----------------|---------------|-------------------------------|-----------|------------|
| (IVITIZ)        | (MHz) (dBμV)  |                               | ldle      |            |
| 0.15 to 0.5     | 56 to 46      |                               |           |            |
| 0.5 to 5        | 46            | Fig.A.7.1                     | Fig.A.7.2 | Р          |
| 5 to 30         | 50            |                               |           |            |

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

**Conclusion: Pass** 

Test graphs as below:





### **Result for Traffic:**

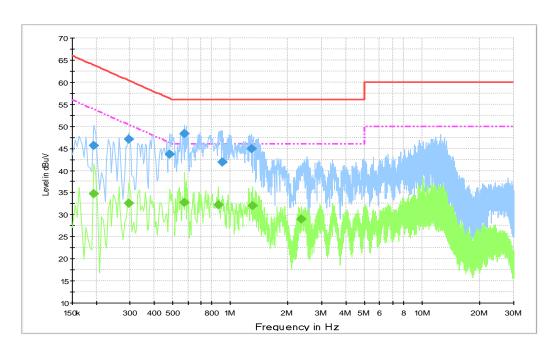



Fig.A.7.1 AC Powerline Conducted Emission-802.11b

Note1: The graphic result above is the maximum of the measurements for both phase line and neutral line.

# **Final Result 1**

| Frequency | QuasiPeak | Meas. | Bandwidth | Line | Corr. | Margin | Limit  |
|-----------|-----------|-------|-----------|------|-------|--------|--------|
| (MHz)     | (dBµV)    | Time  | (kHz)     |      | (dB)  | (dB)   | (dBµV) |
|           |           | (ms)  |           |      |       |        |        |
| 0.195000  | 45.7      | 5000. | 9.000     | N    | 19.9  | 18.1   | 63.8   |
| 0.294000  | 47.0      | 5000. | 9.000     | L1   | 19.9  | 13.4   | 60.4   |
| 0.483000  | 43.7      | 5000. | 9.000     | L1   | 19.9  | 12.6   | 56.3   |
| 0.577500  | 48.3      | 5000. | 9.000     | L1   | 19.8  | 7.7    | 56.0   |
| 0.906000  | 41.9      | 5000. | 9.000     | L1   | 19.7  | 14.1   | 56.0   |
| 1.288500  | 44.9      | 5000. | 9.000     | N    | 19.7  | 11.1   | 56.0   |

# Final Result 2

| Frequency | Average | Meas.  | Bandwidth | Line | Corr. | Margin | Limit  |
|-----------|---------|--------|-----------|------|-------|--------|--------|
| (MHz)     | (dBµV)  | Time   | (kHz)     |      | (dB)  | (dB)   | (dBµV) |
|           |         | (ms)   |           |      |       |        |        |
| 0.195000  | 34.7    | 5000.0 | 9.000     | L1   | 19.9  | 19.1   | 53.8   |
| 0.294000  | 32.6    | 5000.0 | 9.000     | N    | 19.9  | 17.8   | 50.4   |
| 0.577500  | 32.7    | 5000.0 | 9.000     | N    | 19.8  | 13.3   | 46.0   |
| 0.865500  | 32.2    | 5000.0 | 9.000     | N    | 19.7  | 13.8   | 46.0   |
| 1.306500  | 32.1    | 5000.0 | 9.000     | N    | 19.7  | 13.9   | 46.0   |
| 2.355000  | 29.0    | 5000.0 | 9.000     | L1   | 19.6  | 17.0   | 46.0   |





#### Result for Idle:

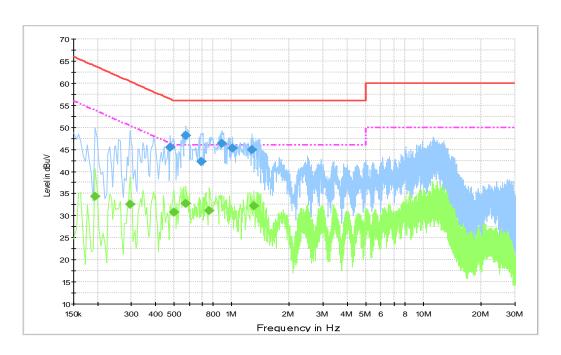



Fig.A.7.2 AC Powerline Conducted Emission-Idle

Note1: The graphic result above is the maximum of the measurements for both phase line and neutral line.

**Final Result 1** 

| Frequency | QuasiPeak | Meas. | Bandwidth | Line | Corr. | Margin | Limit  |
|-----------|-----------|-------|-----------|------|-------|--------|--------|
| (MHz)     | (dBµV)    | Time  | (kHz)     |      | (dB)  | (dB)   | (dBµV) |
|           |           | (ms)  |           |      |       |        |        |
| 0.478500  | 45.5      | 5000. | 9.000     | N    | 19.9  | 10.9   | 56.4   |
| 0.577500  | 48.2      | 5000. | 9.000     | L1   | 19.8  | 7.8    | 56.0   |
| 0.694500  | 42.2      | 5000. | 9.000     | N    | 19.8  | 13.8   | 56.0   |
| 0.892500  | 46.4      | 5000. | 9.000     | N    | 19.7  | 9.6    | 56.0   |
| 1.005000  | 45.2      | 5000. | 9.000     | N    | 19.7  | 10.8   | 56.0   |
| 1.275000  | 44.9      | 5000. | 9.000     | N    | 19.7  | 11.1   | 56.0   |

# Final Result 2

| Frequency | Average | Meas.  | Bandwidth | Line | Corr. | Margin | Limit  |
|-----------|---------|--------|-----------|------|-------|--------|--------|
| (MHz)     | (dBµV)  | Time   | (kHz)     |      | (dB)  | (dB)   | (dBµV) |
|           |         | (ms)   |           |      |       |        |        |
| 0.195000  | 34.3    | 5000.0 | 9.000     | L1   | 19.9  | 19.5   | 53.8   |
| 0.294000  | 32.5    | 5000.0 | 9.000     | N    | 19.9  | 17.9   | 50.4   |
| 0.501000  | 30.8    | 5000.0 | 9.000     | N    | 19.9  | 15.2   | 46.0   |
| 0.577500  | 32.7    | 5000.0 | 9.000     | N    | 19.8  | 13.3   | 46.0   |
| 0.766500  | 31.1    | 5000.0 | 9.000     | N    | 19.8  | 14.9   | 46.0   |
| 1.311000  | 32.2    | 5000.0 | 9.000     | N    | 19.7  | 13.8   | 46.0   |

Note: The measurement results showed here are worst cases of the combinations of different cables.





## **ANNEX B: EUT parameters**

Disclaimer: The antenna gain provided by the client may affect the validity of the measurement results in this report, and the client shall bear the impact and consequences arising therefrom.

# **ANNEX C: Accreditation Certificate**





# Certificate of Accreditation to ISO/IEC 17025:2017

NVLAP LAB CODE: 600118-0

#### Telecommunication Technology Labs, CAICT

Beijing China

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

#### Electromagnetic Compatibility & Telecommunications

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2021-09-29 through 2022-09-30

Effective Dates



For the National Voluntary Laboratory Accreditation Program

\*\*\*END OF REPORT\*\*\*